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Metastable states in a microscopic model of traffic flow
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It is a well known fact that metastable states of very high throughput and hysteresis effects exist in traffic
flow, which the simple cellular automaton model of traffic flow and its continuous generalization fail to
reproduce. It is shown that the model can be generalized to give a one-parametric family of models, a part of
which reproduces the metastable states and the hysteresis. The models that have that property and those that do
not that are separated by a transition that can be clearly identified.@S1063-651X~97!10705-X#
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I. INTRODUCTION

When describing freeway traffic, one is hardly ever int
ested in the way individual cars move, but rather in the m
roscopic properties of the system, meaning the proper
that are expressed as probability distributions or avera
taken over many cars. Therefore it is obviously inefficient
use very detailed models of individual driver behavior if on
the flow-density relation or gap distributions, for examp
are to be calculated.

This is the starting point for the cellular automaton mod
~CA! of traffic flow, first proposed by Nagel and Schrecke
berg @1–3#. The model tries to reproduce the macrosco
properties of traffic with the simplest possible microsco
dynamics. Although the motion of individual cars has so
unphysical peculiarities, these cancel out when an ave
over a sufficient number of cars is performed and typi
phenomena such as jamming can be reproduced qua
tively. However, it is not clear whether or not the model is
fact able to assume all the relevant macroscopic states
are found in real traffic flow.

In this work we want to refer to the highly ordered met
stable state that can be found at densities shortly below
point where traffic breaks down and jams occur.

The existence of such metastable states manifests it
for example, in a discontinuity and the existence of tw
branches in the fundamental diagram. Unfortunately,
simple CA model does not come up with either one of th
properties, so there is definitely a discrepancy between
model and reality even on a macroscopic scale. We will
in this work how this discrepany can be fixed by generaliz
the model in a very natural way. When using the term CA
the following, we will no longer distinguish between th
original model and its continuous generalization describe
@4#. However, it should be kept in mind that this work on
investigates models discrete in time, but continuous in sp
whereas the original CA is discrete in both time and spa

II. FINITE SIZE EFFECTS

Before turning to the generalization of the model it shou
be mentioned that also the simple CA model reveals a
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continuity in the fundamental diagram, if the system is s
ficiently small.

Figure 1 shows the fundamental diagram for the C
model of a one-lane ring of approximately 750 m length. T
fundamental diagram clearly reveals a capacity drop at
density of maximum throughput. A qualitative explanatio
for this can easily be given. As reported in@4# the appearance
of traffic jams in partly constrained flow can be viewed
the coexistence of two phases of traffic flow in a dynam
equilibrium. The phases have different densitiesr j andr f in
the jammed and the free phase respectively, which
uniquely determined by equilibrium conditions. The pictu
of coexisting phases, however, is only valid if both phas
contain a ‘‘macroscopic’’ number of cars.

This is exactly the reason for the finite size effect se
above. If the overall density in the system is only sligh
above the equilibrium density of the free phase and the s
tem is sufficiently small, any macroscopic traffic jam wou
absorb so many cars that the density in the free phase w
drop below the equilibrium densityr f . So the coexistence o
two phases is impossible in this case and the homogen
state remains stable.

The capacity drop in the CA model is a finite size effe
of limited interest. However, we will show that this effe
can also appear in infinite systems if the model is only mo

FIG. 1. Discontinuity due to finite size effects.
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fied slightly. The stable homogeneous state of high throu
put in the finite system then corresponds to a metastable
of the infinite system.

III. DRIVING WITH LIMITED DECELERATION

It is very plausible that the states of very high throughp
that we try to model must be highly organized in some w
In the simple CA model and its continuous generalizat
highly organized states of this kind cannot appear. The
son is that, loosely speaking, individual cars can destroy
ordered state easily by braking very hard~note that there is
no limit to the maximum deceleration of the cars in t
model!.

Of course the unlimited braking capabilities are high
unrealistic, not only because they do not agree with the la
of physics, but rather, because everyday experience tell
that we obviously use a driving strategy that generally allo
us to travel hundreds of miles without ever having to bra
very hard. So allowing only small values for the decelerat
in the model may appear as a sensible thing to do. N
however, that the CA model of traffic flow is not designed
reproduce individual driver behavior correctly anyway,
rather represents a ‘‘minimal’’ model capable of explaini
macroscopic properties of traffic flow. So refining the mod
can only be justified within this modeling philosophy b
showing that the refinements do result in macrosopic effe
and that the model can still be considered ‘‘minimal’’ in
proper sense.

Consider now a single-lane road, on which vehicles mo
at speeds between 0 andvmax. The velocity is not restricted
to integer values. Assume that the system experiences a
allel update for a discrete succession of time steps. O
timestep can be identified with the reaction time of the in
vidual drivers, because the velocity that a driver choose
timestept is determined by the velocity his predecessor h
chosen at timestept21.

Now look at two cars following each other: if the seco
driver chooses the velocityvs during the update, he thu
determines the minimum distanceds he has to travel before
he can come to a complete stop. His choice will be based
the velocityvp and the corresponding minimum braking di
tancedp that his predecessor has before the update. If the
between the cars isg, the condition for a safe velocity choic
is

ds<dp1g . ~1!

Any safe driving strategy has to satisfy this condition.
If no restrictions are put on the way cars can brake,

cars can stop immediately, sodp50 andds5vs . Note that
ds is nonzero, because the successor travels the distancvs
before the next update. In this case the safety condition
duces to

vs<g , ~2!

which is the well known safety condition of the Nage
Schreckenberg model. Note that the model is minimal in
sense that nothing but the absence of collisions has b
assumed to establish the model.
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Now consider the case that the maximum deceleratio
limited to a value ofb. By calculating the minimum braking
distances for the two cars it can be derived in a straight
ward way that the maximum safe velocity is given by

vs<vsafe5b~asafe1bsafe! , ~3!

whereasafe andbsafe are given by

asafe5FA2
dp1g

b
1
1

4
2
1

2 G , ~4!

Here bxc denotes the integer part of the real numberx. The
braking distancedp of the car ahead is given by

dp5bS apbp1
ap~ap21!

2 D , ~5!

whereap andbp are defined as the integer and the fraction
part of vp /b. The somewhat strange appearance of th
formulas is a consequence of the fact that the system is
dated in discrete time steps. For a derivation the reade
referred to the Appendix.

Condition~3! does not try to model a certain driving stra
egy, it only states a condition that any strategy has to sat
if collisions are to be avoided with limited braking capabi
ties.

Still we will, following a minimalistic modeling philos-
phy, adopt the above conditions as driving strategies
model deviations from optimal driving in this context a
noise. The model corresponding to Eq.~3! is a simplified
version of the well known Gipps model@5#.

We thus acquire a family of models, each model char
terized by the ratior5b/vmax. For r51 the braking rules of
the Nagel-Schreckenberg model are resumed. The mod
defined as follows:

To reduce the number of free parameters, the maxim
acceleration and maximum deceleration were both set e
to b. For clarity the auxiliary variablesv0 andv1 are intro-
duced. The variablev1 denotes the optimal velocity for th
next update, andv12v0 the maximum deviation fromv1
due to imperfections in driving.vmax denotes the maximum
velocity of the cars andvsafe the maximum safe velocity
according to Eq.~3!.

The update rules are then given by

v15min@v~ t !1b,vmax,vsafe# ,

v05v12e$~v12@v~ t !2b#% ,

v~ t11!5v ran ,v0 ,v1 , ~6!

x~ t11!5x~ t !1v~ t11! .

The parametere was always chosen to be 0.4 for the calc
lations presented here,v ran,v0 ,v1 denotes a random numbe

betweenv0 and v1. The unit length corresponds to 7.5 m
one time step corresponds to 1 s.

Note that the amount by which the velocity of a car
perturbed randomly depends on how much the driver
forced to decelerate. On the one hand this is necessar
guarantee that the maximum decelerationb is not exceeded
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due to random perturbations. On the other hand, this feat
crudely models the fact that strong interactions between c
reduce the freedom of individual drivers to choose their v
locity.

IV. THE HYSTERESIS

We now study the properties of the model for small va
ues of r . As mentioned before, we expect the existence
highly ordered states, ifr is sufficiently small.

Figure 2 depicts the fundamental diagram forr51/30 in
the interesting range of densities. The valuer51/30 means
that it takes cars at least 30 time steps to come to a comp
stop from maximum velocity. The flow is measured in unit
of cars per time step, where one time step corresponds
roughly 1 s. The maximum flow therefore corresponds
about 2200 cars/h. The result shown corresponds to the c
of an infinite system and was obtained by analyzing the sc
ing of the fundamental diagram with system size, so fini
size effects have been eliminated. The model reveals a d
continuous change in throughput at the density of maximu
flow r2, just as the CA model did for very small systems.

Also it can be seen that two branches of the fundamen
diagram exist between the densitiesr1 and r2. The upper
branch was calculated by adding cars to a homogeneo
state, while the lower one was calculated by removing ca
from a jammed state and allowing the system to relax aft
the intervention. In this way a hysteresis loop can be trac
~arrows in Fig. 2!. A hysteresis effect that appears similar a
first glance has been found in the so-called cruise cont
limit of the Nagel-Schreckenberg model@9#. Note, however,
that in the cruise control limit random perturbations are sim
ply switched off for cars traveling at maximum speed. In th
way the system can be locked in a deterministic state of hi
throughput if it is started in an initially homogeneous con
figuration. Such states are essentially different from th
metastable states found here, as will be shown in Sec. VI

Note that no hysteresis can exist if the discontinuity in th
fundamental diagram is a mere finite size effect. So trying
perform the same procedure as described above for the
of small system size does not reveal any new branch of t
fundamental diagram.

V. OUTFLOW FROM JAMS

In the CA model the outflow from traffic jams is equal to
the maximum flow~the capacity!. This contrasts with empiri-

FIG. 2. The branched fundamental diagram.
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cal observations@6# as well as hydrodynamical models@7#.
In the model proposed here the outflowqout from a jam is
lower than the maximum flow, namely,

qout5q~r1! . ~7!

Figure 3 shows a jam that is just developing. We see tha
the outflow region already influenced by the jam has a sig-
nificantly lower throughput due to a reduced density. Clearly
the partial reduction of the flow in the early stages of the
evolution of the jam can be distinguished from the final flow
reduction.

This fact has important consequences for the dynamics o
cluster formation. Assume that the system is in a state o
oversaturation~i.e., r.r1). The creation of microscopic
jams can then be described in an analogous way to an unb
ased random walk, just as in the CA@8,9#. This, however, is
no longer true when a microscopic jam is large enough to
reduce the outflow significantly. Once this is the case, the
jam will grow inevitably, until inflow and outflow become
equal again.

When the system is in an equilibrium state again, where
inflow and outflow of all jams are equal, the random walk
argument holds again, so small jams may eventually dissolve
again. However, if this actually happens the cars of a dis-
solved jam will be swallowed by the next one, increasing its
lifetime. So the stable equilibrium state will be a state with
very few large jams with correspondingly large lifetimes.

VI. THE STATE OF MAXIMUM FLOW

We will now investigate the states close to the point of
maximum flow.

FIG. 3. A developing jam. The upper figure shows the velocity
v, the lower one the flowq as a function of the space coordinate
x.
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It has been reported@10–12# that a rise in velocity vari-
ance is encountered within the free flow shortly before i
collapses into a jammed state. In contrast to this observatio
in the CA a rise of the velocity variance is only found due to
jamming phenomena.

In Fig. 4 the ratio of the actual velocity variance and the
variance in the free flow due to the randomization step i
displayed as a function of the density for the CA model with
continuous space coordinates@4#. It can be seen that it rises
by only a few percent in the homogeneous flow, before ac
tual jamming occurs~dashed line!. At that point the variance
remains a continuous function of the density. We observe th
same behavior in the model proposed here ifr is set to 1.
Note, however, that the caser51 is not completely equiva-
lent to the CA model due to differences in the way car
accelerate.

Now the same property is displayed for the model pro
posed here withr51/30 in Fig. 5. We see that the velocity
variance rises considerably before any jamming is encou
tered. At the jamming point the velocity undergoes a discon
tinuous change and rises due to jamming. However, if th
variance is calculated separately for the jammed and the fr
parts of the system, it drops approximately to the free flow
value ~see also Fig. 3!. The fact that the point of maximum
flow is also the point of maximum velocity variance clearly
distinguishes our model from the state of maximum flow in
the cruise control limit of the Nagel-Schreckenberg model.

The degree of self-organization nearr2 can be estimated

FIG. 4. The rise of the velocity variance near the jamming poin
~dashed line! in the CA.

FIG. 5. The rise of the velocity variance near the jamming poin
~dashed line! for r51/30.
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best by measuring the correlation length in the syste
Therefore a correlation functionG for the velocity fluctua-
tions is defined that depends on the distance of two cars
respect to their numbering. Note that this distance canno
identified with any metric distance. So we define

G~ j !5
1

N (
i51

N

~v i2^v&! ~v i1 j2^v&!, jPN , ~8!

where ^v& denotes the average velocity in the system a
v i is the velocity of thei th car. The simulation results show
that the correlation function can be represented in the fo

G~ j !}
1

j a
expS 2

j

j D , ~9!

where the parameter of interest here is the correlation len
j.

Figure 6 shows the correlation length as a function of
density r. We see that far fromr2 the correlation length
practically vanishes, whereas it increases significantly n
the point where the cars start jamming.

VII. PROPERTIES OF THE MODEL FAMILY

So far we looked at a single model (r51/30) and inves-
tigated the properties of that model nearr2. The next natural
step to be taken is the investigation of the way the proper
at r2 change when the parameterr , which characterizes the
model, runs from zero to one.

As we already know from the properties of the CA mod
the discontinuity in the fundamental diagram and along w
it the ordered states of high flow have to disappear for so
r c between zero and one. A suitable parameter for charac
izing the existence of the ordered states is the height of
jump Dq at r2:

Dq~r !5 lim
r→r2~r !2

q~r!2 lim
r→r2~r !1

q~r! . ~10!

From the definition ofr c we haveDq(r )50 for r>r c .
When getting close tor c , preparing homogeneous stat

becomes difficult and it is a laborious task to calculate li
times of such states with sufficient accuracy. Therefore
will limit ourselves to the following procedure.

t

t

FIG. 6. The correlation length near the jamming point~dashed
line!.
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For eachr perfectly homogeneous initial configuration
are prepared at different densities. The highest density
which a homogeneous state can evolve for more than5

time steps without developing any inhomogeneities is th
considered to be an approximation forr2(r ). The flow of
that homogeneous state is then compared to the flow of
jammed state that we get if we start the system with the s
density and an initially slightly inhomogeneous state.

Figure 7 shows the functionDq(r ). It can be seen that th
ordered states disappear forr50.41. Note, however, that thi
value is not universal, but depends on details of the par
eters used in the model, like the values ofvmax and the noise
parametere . Above this threshold the system assumes qu
tatively the same properties as the CA model. The impor
point about this observation is that the CA model and
models for smallr presented here are separated by a tra
tion that changes the macroscopic properties for state
high flow. The quantitative results concerning the wayDq
goes to zero have to be considered with caution, howe
because the very details of the behavior depend on how
curatelyr2 can be calculated. The algorithm used here c
tainly allows improvements in that respect.

VIII. CONCLUSIONS

A generalization of the Nagel-Schreckenberg model
traffic flow has been proposed that leads to a one-param
family of models characterized by a parameterr that deter-
mines the braking capabilites of the cars.

It has been found that the macroscopic physical proper
of the models within this family are not uniform. When sca
ning the properties of the models by varying the characte
tic parameterr between 0 and 1 a transition is observed
r5r c , where the model behavior for states of very high flo
changes qualitatively. Belowr c the outflow from traffic jams
is lower than the maximum flow and ordered states with v
high flow and large correlation lengths can exist. The fun
mental diagram displays a discontinuous change in throu
put at the point of maximum flow. Abover c the discontinu-
ity in the fundamental diagram and the ordered states

FIG. 7. The discontinuous change in throughputDq as a func-
tion of r5b/vmax.
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longer exist. The outflow from the jams is approximate
equal to the maximum flow again.

The changes concerning the outflow from jams have s
nificant impact on the clustering dynamics. Abover c the
system displays small, comparatively short-lived, contin
ously branching jams, whereas belowr c the system assume
an equilibrium state with only few, but large and stable jam

Note that we need to introduce considerable noise into
simple CA model using a randomization step to acquire p
nomena of cluster formation. The noise, however, redu
the maximum flow considerably, so difficulties in attainin
realistic capacities are encountered. In the model propo
here cluster formation also exists for very small artific
noise. In fact we found that the qualitative appearance of
state space pattern is relatively insensitive towards chan
of the noise parameter. The value of this parameter ma
determines the relaxation time of the system~details on this
topic will be published elsewhere!. As a consequence we ca
easily simulate realistic road capacities of 2200 cars
hour, without losing jamming phenomena.

APPENDIX A: THE SAFETY CONDITION

In a discrete time-step model, braking is modeled by s
tracting in each time step one unit of the decelerationb from
the velocity. With the above notation the braking distance
the first car is then given by

dp5b@~ap1bp21!1~ap1bp22!1•••1bp#

5bS apbp1
ap~ap21!

2 D . ~A1!

Similarly, if the second driver chooses the veloci
vsafe5b(asafe1bsafe), his braking distance becomes

ds5b@~asafe1bsafe!1~asafe1bsafe21!1•••1bsafe#

5bS ~asafe11!bsafe1
asafe~asafe11!

2 D . ~A2!

If the expression is inserted into the safety condition,
resulting equation can be solved formally forasafe to give

asafe5 f ~bsafe! , ~A3!

where the functionf (b) is given by

f ~b!5A2
dp1gap

b
1S b2

1

2D
2

2S b1
1

2D . ~A4!

We know thatasafe is a non-negative integer andbsafe a
non-negative real number smaller than 1. So the fact
f (b) is a decreasing function ofb and f (0)2 f (1)51 im-
mediately yields

asafe5 b f ~0!c . ~A5!

bsafe can then be found from Eq.~A3!.
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