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Metastable states in a microscopic model of traffic flow
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It is a well known fact that metastable states of very high throughput and hysteresis effects exist in traffic
flow, which the simple cellular automaton model of traffic flow and its continuous generalization fail to
reproduce. It is shown that the model can be generalized to give a one-parametric family of models, a part of
which reproduces the metastable states and the hysteresis. The models that have that property and those that do
not that are separated by a transition that can be clearly iden{i8a063-651X97)10705-X

PACS numbds): 47.55~t, 89.40+k

[. INTRODUCTION continuity in the fundamental diagram, if the system is suf-
ficiently small.

When describing freeway traffic, one is hardly ever inter- Figure 1 shows the fundamental diagram for the CA
ested in the way individual cars move, but rather in the macmodel of a one-lane ring of approximately 750 m length. The
roscopic properties of the system, meaning the propertiefundamental diagram clearly reveals a capacity drop at the
that are expressed as probability distributions or averagegensity of maximum throughput. A qualitative explanation
taken over many cars. Therefore it is obviously inefficient tofor this can easily be given. As reported #] the appearance
use very detailed models of individual driver behavior if only of traffic jams in partly constrained flow can be viewed as
the flow-density relation or gap distributions, for example,the coexistence of two phases of traffic flow in a dynamic
are to be calculated. equilibrium. The phases have different densigiegindp; in

This is the starting point for the cellular automaton modelthe jammed and the free phase respectively, which are
(CA) of traffic flow, first proposed by Nagel and Schrecken-yniquely determined by equilibrium conditions. The picture
berg [1-3]. The model tries to reproduce the macroscopicof coexisting phases, however, is only valid if both phases
properties of traffic with the simplest possible microscopiccontain a “macroscopic” number of cars.
dynamics. Although the motion of individual cars has some  Thjs is exactly the reason for the finite size effect seen
unphysical peculiarities, these cancel out when an averagghove. If the overall density in the system is only slightly
over a sufficient number of cars is performed and typicalahove the equilibrium density of the free phase and the sys-
phenomena such as jamming can be reproduced qualitgem is sufficiently small, any macroscopic traffic jam would
tively. However, it is not clear whether or not the model is in absorb so many cars that the density in the free phase would
fact able to assume all the relevant macroscopic states thgtop below the equilibrium density; . So the coexistence of

are found in real traffic flow. _ two phases is impossible in this case and the homogeneous
In this work we want to refer to the highly ordered meta- state remains stable.

stable state that can be found at densities shortly below the The capacity drop in the CA model is a finite size effect

point where traffic breaks down and jams occur. of limited interest. However, we will show that this effect

The existence of such metastable states manifests itseffan also appear in infinite systems if the model is only modi-
for example, in a discontinuity and the existence of two

branches in the fundamental diagram. Unfortunately, the
simple CA model does not come up with either one of these
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properties, so there is definitely a discrepancy between the 0.5+ 8
model and reality even on a macroscopic scale. We will see
in this work how this discrepany can be fixed by generalizing oar 1

the model in a very natural way. When using the term CA in
the following, we will no longer distinguish between the
original model and its continuous generalization described in 02f .
[4]. However, it should be kept in mind that this work only

investigates models discrete in time, but continuous in space

whereas the original CA is discrete in both time and space. 0.0 - . : s
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Il. FINITE SIZE EFFECTS pl(7.5m)7 ]

Before turning to the generalization of the model it should
be mentioned that also the simple CA model reveals a dis- FIG. 1. Discontinuity due to finite size effects.
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fied slightly. The stable homogeneous state of high through- Now consider the case that the maximum deceleration is

put in the finite system then corresponds to a metastable stalienited to a value ofb. By calculating the minimum braking

of the infinite system. distances for the two cars it can be derived in a straightfor-
ward way that the maximum safe velocity is given by

Ill. DRIVING WITH LIMITED DECELERATION

UsSUsate™ D @satet Bsate (3
It is very plausible that the states of very high throughputwhereaSafe and ..., are given by

that we try to model must be highly organized in some way.
In the simple CA model and its continuous generalization d.+ 1 1
\/ 22 g +—-——=
b 4 2
Here| x| denotes the integer part of the real numkeihe

highly organized states of this kind cannot appear. The rea-
braking distancel, of the car ahead is given by

: 4

Xsafe™

son is that, loosely speaking, individual cars can destroy an
ordered state easily by braking very hdribte that there is
no limit to the maximum deceleration of the cars in the

mode).
Of course the unlimited braking capabilities are highly ay(ap—1)
unrealistic, not only because they do not agree with the laws dp= b( apBpt %) , 5)

of physics, but rather, because everyday experience tells us

in the model may appear as a sensible thing to do. Not&aieq in discrete time steps. For a derivation the reader is

however, that the CA model of traffic flow is not designed 10 eferred to the Appendix.

reproduce individual driver behavior correctly anyway, it Condition(3) does not try to model a certain driving strat-

rather represents a “minimal” model capable of explaining oy it only states a condition that any strategy has to satisfy
macroscopic properties of traffic flow. So refining the modelit'cqjisions are to be avoided with limited braking capabili-
can only be justified within this modeling philosophy by g

showing that the refinements do result in macrosopic effects étill we will, following a minimalistic modeling philos-
and that the model can still be considered “minimal” in a ;

oroper sense phy, adopt the above conditions as driving strategies and

model deviations from optimal driving in this context as

Consider now a single-lane road, on which vehicles MOV& 5ise. The model corresponding to E8) is a simplified
at speeds between O ang,,. The velocity is not restricted | orsion of the well known Gipps modgs).

to integer values. As_sume that the system experiences a par-\e thus acquire a family of models, each model charac-
allel update for a discrete succession of time steps. Ong,..q.q by the ratio =b/v .. Forr =1 the braking rules of

timestep can be identified with the reaction time of the indi'the Nagel-Schreckenberg model are resumed. The model is
vidual drivers, because the velocity that a driver chooses 3§4fined as follows: '

timestept is determined by the velocity his predecessor has 14 redquce the number of free parameters, the maximum

chosen at timestep-1. _ - acceleration and maximum deceleration were both set equal
Now look at two cars following each other: if the secondq, j, For clarity the auxiliary variables, andv, are intro-

driver chooses the velocitys during the update, he thus q,ceq The variable, denotes the optimal velocity for the
determines the minimum distandg he has to travel before . update, and,— v, the maximum deviation from,
he can come to a complete stop. His choice will be based %Fue to imperfections in drivings ,q, denotes the maximum

the velocityv, and the corresponding minimum braking dis- velocity of the cars and ... the maximum safe velocit
tanced, that his predecessor has before the update. If the gaé’ccord)i/ng t0 Eq(3). safe y

between the cars B, the condition for a safe velocity choice 114 update rules are then given by
is

v1=min[v(t) +b,0 max, Usatd

vo=v1—€{(v,—[v(t)—Db]} ,

de<dy+g . (1)

Any safe driving strategy has to satisfy this condition.

If no restrictions are put on the way cars can brake, the v(t+1)=van Doy (6)
cars can stop immediately, sh=0 andds=vs. Note that
ds is nonzero, because the successor travels the distance X(t+1)=x(t)+ov(t+1) .

before the next update. In this case the safety condition re-
duces to The parametee was always chosen to be 0.4 for the calcu-

lations presented herea,ram,w1 denotes a random number

vsS0, (2 betweenv, andv;. The unit length corresponds to 7.5 m,
one time step corresponds to 1 s.
which is the well known safety condition of the Nagel- Note that the amount by which the velocity of a car is
Schreckenberg model. Note that the model is minimal in theperturbed randomly depends on how much the driver is
sense that nothing but the absence of collisions has bedarced to decelerate. On the one hand this is necessary to
assumed to establish the model. guarantee that the maximum deceleratiois not exceeded
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FIG. 2. The branched fundamental diagram. osr A SN ’
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due to random perturbations. On the other hand, this feature
crudely models the fact that strong interactions between cars [ _1]°~4 " i
reduce the freedom of individual drivers to choose their ve- ¥ .l J
locity.
0.2 1
IV. THE HYSTERESIS 01} e
We now study the properties of the model for small val- 0950 10600 Tso00 20000 35000 30000
ues ofr. As mentioned before, we expect the existence of z[7.5m]

highly ordered states, if is sufficiently small.

Figure 2 depicts the fundamental diagram fer1/30 in
the interesting range of densities. The vatuel/30 means
that it takes cars at least 30 time steps to come to a comple
stop from maximum velocity. The flow is measured in units™

of cars per time step,_where one time step corresponds {gy) observation§6] as well as hydrodynamical modd[g].
roughly 1 s. The maximum flow therefore corresponds ton the model proposed here the outflayy, from a jam is
about 2200 cars/h. The result shown corresponds to the caggyer than the maximum flow, namely,

of an infinite system and was obtained by analyzing the scal-
ing of the fundamental diagram with system size, so finite Jouw=0(p1) - (7)
size effects have been eliminated. The model reveals a dis-
continuous change in throughput at the density of maximum Figure 3 shows a jam that is just developing. We see that
flow p,, just as the CA model did for very small systems. the outflow region already influenced by the jam has a sig-
Also it can be seen that two branches of the fundamentdpificantly lower throughput due to a reduced density. Clearly
diagram exist between the densities and p,. The upper the partial reduction of the flow in the early stages of the
branch was calculated by adding cars to a homogeneo@’dlﬂ"o“ of the jam can be distinguished from the final flow
state, while the lower one was calculated by removing cargeduction. _ .
from a jammed state and allowing the system to relax after This fact has important consequences for the dynamics of
the intervention. In this way a hysteresis loop can be trace§luster formation. Assume that the system is in a state of
(arrows in Fig. 2. A hysteresis effect that appears similar atOversaturation(i.e., p>p,). The creation of microscopic
first glance has been found in the so-called cruise contrd®MS can then be described in an analogous way to an unbi-
limit of the Nagel-Schreckenberg mod@l]. Note, however, ~ased random walk, just as in the ¢8,9]. This, however, is
that in the cruise control limit random perturbations are sim10 longer true when a microscopic jam is large enough to
ply switched off for cars traveling at maximum speed. In thisréduce the outflow significantly. Once this is the case, the
way the system can be locked in a deterministic state of higfgm will grow inevitably, until inflow and outflow become
throughput if it is started in an initially homogeneous con-€qual again. o o _
figuration. Such states are essentially different from the When the system is in an equilibrium state again, where
metastable states found here, as will be shown in Sec. V. inflow and outflow of all jams are equal, the random walk
Note that no hysteresis can exist if the discontinuity in theRrgument holds again, so small jams may eventually dissolve
fundamental diagram is a mere finite size effect. So trying tg2g&in. However, if this actually happens the cars of a dis-
perform the same procedure as described above for the cgplved jam will be swallowed by the next one, increasing its
of small system size does not reveal any new branch of thifetime. So the stable equilibrium state will be a state with
fundamental diagram. very few large jams with correspondingly large lifetimes.

FIG. 3. A developing jam. The upper figure shows the velocity
, the lower one the flowg as a function of the space coordinate

V. OUTFLOW FROM JAMS VI. THE STATE OF MAXIMUM FLOW

In the CA model the outflow from traffic jams is equal to ~ We will now investigate the states close to the point of
the maximum flow(the capacity. This contrasts with empiri- maximum flow.
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FIG. 4. The rise of the velocity variance near the jamming point

(dashed lingin the CA FIG. 6. The correlation length near the jamming pdiished
ashed lingin the CA.

line).

It has been reportel0—132 that a rise in velocity vari- pegt by measuring the correlation length in the system.
ance is encountered within the free flow shortly before itrparefore a correlation functios for the velocity fluctua-
collapses into a jammed state. In contrast to this observatiogy,ns s defined that depends on the distance of two cars with
in the CA a rise of the velocity variance is only found due 10 ggnect to their numbering. Note that this distance cannot be

jamming phenomena. _ _ identified with any metric distance. So we define
In Fig. 4 the ratio of the actual velocity variance and the

variance in the free flow due to the randomization step is 1 N
displayed as a function of the density for the CA model with G(j)= N E (vi—(v)) (Wirj—(v)), jeN, (8
continuous space coordinatel. It can be seen that it rises =1
by only a few percent in the homogeneous flow, before ac- o
tual jamming occurgdashed ling At that point the variance where (v) denotes the average velocity in the system and

remains a continuous function of the density. We observe thei Is the velomty of theth car. The simulation res_ults show
same behavior in the model proposed here i§ set to 1. that the correlation function can be represented in the form

Note, however, that the case=1 is not completely equiva- 1 -

; X . J
lent to the CA model due to differences in the way cars G(j)*— exp( __) , 9
accelerate. ] ¢

D Oglec:jwhghrz \?v?trrrr]e: E;ggei:yﬁl; (glsli\;@/esi Jot[];??hr;c\)/gﬂ Cﬁ)tg/o_where the parameter of interest here is the correlation length
variance rises considerably before any jamming is encoun?’ _. . .
tered. At the jamming pointythe velocityyujndergoges a discon- F|gure 6 shows the correlation length as a f‘%”C“O” of the
tinuous change and rises due to jamming. However, if théiens!typ. We see that far ffOF’PZ the correl_atu_)r_w length
variance is calculated separately for the jammed and the fr ract|c_ally vanishes, whereas it increases significantly near
parts of the system, it drops approximately to the free flowe Point where the cars start jamming.
value (see also Fig. B The fact that the point of maximum
flow is also the point of maximum velocity variance clearly VIl. PROPERTIES OF THE MODEL FAMILY
distinguishes our model from the state of maximum flow in
the cruise control limit of the Nagel-Schreckenberg model.
The degree of self-organization near can be estimated

So far we looked at a single model=€ 1/30) and inves-
tigated the properties of that model nggr The next natural
step to be taken is the investigation of the way the properties
at p, change when the parameterwhich characterizes the
model, runs from zero to one.

7 As we already know from the properties of the CA model
the discontinuity in the fundamental diagram and along with
it the ordered states of high flow have to disappear for some
r. between zero and one. A suitable parameter for character-

2.20 |

2.00

1.80

vl ol ] izing the existence of the ordered states is the height of the
jump Aq at p,:
1.40 - 4
120l ] Aq(r)=lim q(p)— lm q(p) . (10
p—p2(r)— p—po(r)+
1.00 - %
0 0.05 0.1 0.15 0.28%

From the definition of . we haveAq(r)=0 forr=r,.

When getting close to., preparing homogeneous states
becomes difficult and it is a laborious task to calculate life-

FIG. 5. The rise of the velocity variance near the jamming pointtimes of such states with sufficient accuracy. Therefore we
(dashed lingfor r =1/30. will limit ourselves to the following procedure.

pl(7.5m)=1]
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012 . . : : longer exist. The outflow from the jams is approximately
equal to the maximum flow again.
0.10 |- s, q The changes concerning the outflow from jams have sig-

nificant impact on the clustering dynamics. Abowg the
system displays small, comparatively short-lived, continu-
0.06 - - ously branching jams, whereas belowthe system assumes
Agqfs™] an equilibrium state with only few, but large and stable jams.
0.04 ] Note that we need to introduce considerable noise into the
simple CA model using a randomization step to acquire phe-
nomena of cluster formation. The noise, however, reduces
0.00 | : : . . the maximum flow considerably, so difficulties in attaining
, realistic capacities are encountered. In the model proposed
here cluster formation also exists for very small artificial
noise. In fact we found that the qualitative appearance of the
state space pattern is relatively insensitive towards changes
of the noise parameter. The value of this parameter mainly
For eachr perfectly homogeneous initial configurations det_erm!nes the r_elaxatlon time of the systétails on this
are prepared at different densities. The highest density fdioPic Will be published elsewhereAs a consequence we can
which a homogeneous state can evolve for more than 1cFasily simulate realistic road capacities of 2200 cars per
time steps without developing any inhomogeneities is theriour: Without losing jamming phenomena.
considered to be an approximation fes(r). The flow of
that homogeneous state is then compared to the flow of the APPENDIX A: THE SAFETY CONDITION
jammed state that we get if we start the system with the same | 5 discrete time-step model, braking is modeled by sub-

density and an initially slightly inhomogeneous state. tracting in each time step one unit of the deceleratidrom

Figure 7 shows the functioAq(r). It can be seen that the {he velocity. With the above notation the braking distance of
ordered states disappear for 0.41. Note, however, that this he first car is then given by

value is not universal, but depends on details of the param-
eters used in the mod.el, like the valuesgf,, and the noise _ do=b[(ap+Bp—1)+(aptBp—2)+ -+ 6,]
parametek . Above this threshold the system assumes quali-

tatively the same properties as the CA model. The important =b( Byt ap(ap— 1))

point about this observation is that the CA model and the PP 2 '

models for smaltr presented here are separated by a transi- | ) i ]
tion that changes the macroscopic properties for states of Similarly, if the second driver chooses the velocity
high flow. The quantitative results concerning the why  Usafe= P(@saret Bsard» his braking distance becomes

goes to zero have to be considered with caution, however, _ _

because the very details of the behavior depend on how ac- ds=bl(@satet Bsatd + (Asatet Bsate™ 1) -+ + Board

0.02 -

FIG. 7. The discontinuous change in throughpuf as a func-
tion of r =b/v pax-

(A1)

curatelyp, can be calculated. The algorithm used here cer- Asatd Asaret 1)
tainly allows improvements in that respect. = b( (@saret 1) Bsaret — (A2)
VIIl. CONCLUSIONS If the expression is inserted into the safety condition, the

A generalization of the Nagel-Schreckenberg model Otresultlng equation can be solved formally fogyeto give
traffic flow has been proposed that leads to a one-parametric X saie= T(Bsatd (A3)
family of models characterized by a parametdhat deter-
mines the braking capabilites of the cars. where the functiorf () is given by

It has been found that the macroscopic physical properties e 12 1
of the models within this family are not uniform. When scan- f(B)= \/2 P gap+ B— _) —B+= (A4)
ning the properties of the models by varying the characteris- b 2 2

tic parameter between 0 and 1 a transition is observed a\Ne know that is a non-negative integer anfly, a
X safe - safe

r=r., where the model behavior for states of very high flow .

changes qualitatively. Below; the outflow from traffic jams non-qegatlve reall number.smaller than 1. So the fact that
is lower than the maximum flow and ordered states with ver);(ﬁ). IS a dgcreasmg function ¢8 andf(0)—f(1)=1 im-
high flow and large correlation lengths can exist. The funda_medlately yields

mental diagram displays a discontinuous change in through- ae=|F(0)] . (A5)
put at the point of maximum flow. Above. the discontinu- sae

ity in the fundamental diagram and the ordered states n@..can then be found from E¢A3).
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