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The field equations of linear irreversible thermodynamics have been deduced from Hamilton’s principle. The
Hamiltonian formalism has been considered as a theory of conservative systems without dissipative processes.
In this paper, we present the field equations of linear irreversible thermodynamics that are deduced from a
Hamiltonian principle. First, we present the canonical mathematical model for purely dissipative transport
processes. Then introducing a Lie algebra of the potentials with the help of an algebraic-type transformation,
we examine the physical processes in this algebra. We expect that two kinds of descriptions of the same
physical situation develop into two such descriptions in time, which describe the same physical situations as
well. Since the given transformation is a dynamical transformafiicleaves the Lagrangian invarigrin the
sense of the above-mentioned expectation, we expect that the entropy density function and the entropy pro-
duction density function(\which pertains to the same physical situajidrave to be invariant under that
transformation which leaves the Lagrangian invariant. It is shown that these are satisfied if the phenomeno-
logical coefficient matrices are symmetrj&1063-651X97)08305-0

PACS numbd(s): 44.60+k

I. INTRODUCTION which are the equations of motio8, ' ,L;, are the phenom-
enological coefficient matrices, and these are supposed to be
In the field theory of irreversible thermodynamids-15]  symmetric:
we regard the local specific entropyas a fundamental state
variable. In the case of local equilibrium systems it is the siT(l:sk—il, (6)
function of specific extensive quantities, which are continu-
ously differentiable functions of space and time, L= L. )
ik ki -
$=8(0u(rD), - Gi(r 1) =s(r,b). @ S, ! is the matrix of generalized specific capacities, which is
negative definite and related to the existence and stability of
%he local equilibriun{8,16,17. The second equation is called
Onsager’s reciprocity relatiof8,18,19 in field theory. This
relation ranks among one of the most important statements of
p@-l—Vu]-:o" ) irreversible thermodynamics. There are numerous articles
at o [18-47) that deal with the proof, generalization, and exten-
sion of it. They use statistical or/and phenomenological
whereJ;(r,t) is the conductive current density,is the mass methods and different assumptions for the examinations of
density, andv means the nabla operator. There are two kindthe relation. Since Miller's experimental resylts,49 most

The specific extensive quantities satisfy the balance equ
tions

of constitutive equations scientists have accepted the relation and taken advantage of
it in various special cases. Onsager relations are of help in

agi T solving the set of differential equations because these reduce

ot ok ot (3)  the number of independent quantities. Here we mention that

fluxes and thermodynamical forces of different tensorial
character do not coupl€urie’s theoren i.e., the number of

and independent quantities is decreased in this way too. This re-
J— L VT 4 sults from the invariance of the phenomenological equations
i kY ko ) (constitutive equationaunder special orthogonal transforma-
. . . ) tions.
where['j(r,t) is an intensive quantity, e.g., Tp/T. If we Nonequilibrium thermodynamics is mainly restricted to
substitute Eqs(3) and(4) into the balance equatior8), we  the study of linear phenomena and the balance equation for
get the field equationfiransport equations the entropy plays a central role. The local mathematical ex-
pression for the second law of thermodynamics is
al'y
_1_ . . = .
PSic 5 TV (LaVTw =0, ® o=J-VT,=3;-X;=0, (8)
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whereo is the entropy production density. over the domairT is

Il. THE MATHEMATICAL MODEL 5,S= fT'L((’Di—'— 5o it 5%;” @it 5¢i;w)
In this section we give a canonical mathematical model

for those kind of irreversible transport processes that can be | Lo -
described by source-free and convection-free transport equa- T @i Piips Piipy
tions with constant coefficients. This model is based on three
postulates [ 9 4
Postulate | Hamilton's principle is - JT(;XM(®M§5X§+Hw5t€0iH\iuv‘st@i;v)d X,
ta (17)
582] f L dV dt=0, (9)
SV where u,é=1,2,3,4; X,=X; X,=Y; X3=2;, and X,=t.

I1;, and\;,, are the canonical coefficients. The canonical

wherelL is the Lagrange density function, which is generallyImomentum density; of the field is

a function of time and space, and the function of the first- o
higher-order derivatives of the field quantities with respect to JL

time and space. pi=Ii,N,=——=pS; 'y, (18
Postulate 1l The Lagrange density function of the source- Pist

free and convection-free nonequilibrium systems is where the normal vector can be writtéf, =(0,0,0,1). The

1 thermodynamic tenso® . is the canonical tensor of the
L(¢; ,(pi;t,A(pi)ZE(QSj_ilcpj;t—LjiAq;j)z, (10 field. —©,, yields the Hamilton density functiofp1,52 if
we take and define the canonical momentum density function

where theg; are four times differentiable field quantities (18) by the formula

(potentialg [50,51] and A=V?2. These give the measurable P
quantitiesl';(r,t) as —04,=H(p; ,A¢i)=¢i;tW—L
it

g0y
Ii=0S;'— —LiAg.. 11 1 - -
IZ@S T T HiAe (1) =5(p 'Sip))*+p'SjpiLkiA o (19

Sj‘il,Lji are constant coefficientg, is the mass density, and

A'is the Laplace operator. H(g;, o i i) (where =1,2,3), the differential of
Postulate Il The entropy density functios is the qua- H(Igggépéyiid @i P ( pr=123),

dratic form of the generalized canonical momentum density

In general, if we have a Hamiltonian density function

functions JH JH JH oH
dH=—d¢;+——d¢;.,+ dei.,,+——dp;.
1 Fys Pi I, Pi:u Iy Piin ETSY Pi
s= Epilpisijpj , (12 (20
] i With the use of the definition dfl
wherep; is defined by
JL
JL —Ou=H(o,0i.,,¢i- S Pi) =@ i——L, 21
b= . (13) 44 (@i Piru Piu pi) (PIYt‘?‘Pi;t (21
Ip;y
i i we obtaindH in the form
From the first two postulates we obtain the Euler-Lagrange
equations d aL q aL d aL d q
H=———d¢— Piu™ @i prt @idp; .
L g oL doi T D depy, T
——— 0. (14) (22)

—+ —_—
dei It deiy A
When Eqgs(13) and(14) are taken into account, a compari-
These are the equations of motion or field equations foson of Eqs(20) and(22) yields
@i, which are equivalent to

. JH L
0SSy Tk +LikAT',=0. (15) o dg;’ (23
These are the source-free and convection-free transport equa- JH L
tions. = , (24)
The total variation of the functional Qi i
S f L d* (16) ik o (25)
= 1 Pi s Pi X = )
T (()DI ()DI,M qDI,,u, ) acpi;’uv &(Pi;MV
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dH os(p;j) oH  S6H 8s(p;)

— =i (26) [sHI=| — s~ —5—

ap; S¢; op; Sej Op;
Equation(26) is the first group of canonical equations. With = —pflsijijigApflsgkpk
the help of Eqs(23)—(25) we obtain the second group of
canonical equations if we take the derivatives of canonical =—V-[p 'S;pjLig- V(p *Syupi)]
momentum densitiep; with respect ta and use the Euler-
Lagrange equations +V(p™'Sjpj)Lig- V(p ™~ 'Sgubi)

I e N R A ==p "SiLigSV - (VP
VUGt dgiy Ao IX, IQi,  OX,0X, i, L
(27 +p SijLigSekVp;- Vpk.- (35

H o9 oH 2 JH Thus we obtain the entropy balance equation

_+_ — .
i IX, @i, IXLOX, IPi-

Pi;t=— (28

E+P725u'|—igsgkv'(ijPk)=972$j LigSgkVPj- VP,

In our case, when the Hamilton density function is (36)

H(p:,A;), we obtain for the second canonical equation
(pl ‘Pl) q where

dH Js=p %S LigSekp; V Pk (37)

pi;t:_AaA_(p_- (29
1

is the entropy current density and

It is very useful to introduce the Poisson bracket in a general g:p—zaj LigSgkV ;- VkaP_lsijVPj . Ligp_lsng Py
form because the time derivative of a physical quantity can (38

be given by a Poisson bracket of the Hamilton density func- . . . . .
tion and the quantity itself is the entropy production density. This can be simply written

[taking into account Eq<4), (8), and(18)]

sp; OH  SH op, —X. 3
oy HI= o= P (30 =% @9

On the basis of Eq39) we can express the entropy produc-

. R .. . tion density with the potentialg; ,
where the functional derivatives mean, e.g., the Hamiltonian y P ®i

density functionH with respect top; , (@) =V(p5ﬂl¢j;t— LiAg)-LyV
SH oH o oH ?  oH X (pSmk®mit— Lmid ¢m)
S 001 X, Iy | IKedX, Iy 3y = pS LS Ve 1 Veom:
1 N )
The Poisson bracket expressions of the canonical equations —LiiLikpSniVA @) Veom
hold —pS;i LikkmkV @) VA@m+ LiiLikk iV A @
eii=[ei HI, (32) -VAep,. (40)
pie=[pi H]. (33 lll. LIE ALGEBRA
e1(r,t),eo(r,t), ... ,ok(r,t) are scalar-vector functions,

Since this Hamiltonian density pertains to purely dissipativeyhich are four times differentiable and linearly independent.
convection-free transport processes without heat sources apgt ys consider a linear vector spagg over the field of real
chemical reactions, we expect to get the well-known bilineanmpers; the basis vectors ape, ¢, . . . ok . Any vector
form of the entropy production density in the formalism. ¢ can be expanded in terms of the basis!. If we introduce
Let us derive the balance equations of the entropy denSitXnultiplication among the elements ¢, , which means the
If we calculate the Poisson bracket of specific entropy denp,jtiplication of scalar-vector functions, then we obtain a
sity s (postulate 1) and the Hamiltonian density function |inear associative and commutative algeBia.
H [Eq. (19)], we get the time evolution of entropy density i ye have an arbitrary associative algebra, a Lie algebra
S can be constructed from it if we introduce a different multi-
plication
Js
i - IsH] (34 aOb=(ab—ba). (41)
Thus we obtain a Lie algebra(A) from an associative al-
We calculate this Poisson bracket expression gebraA on the same field.
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Let us consider the fOIIOWing infinitesimal, linear, and We can conclude tha"i:'((ﬁK): ¢II( linear vector space with
biective transformation, which transforms the basis vectorghe above-defined algebraic multiplication is a Lie algebra

¢; into the basis vectorg; : [53,54.

o=@/ =8¢~ 0T Pegy, (42 A
IV. T AS A DYNAMICAL TRANSFORMATION
where the transformatioh: dk— ¢y is an isomorphism, and

A . . ) ) If the equations of motion are invariant with respectijo
¢k is the different vector field. The inverse of transformationy,

e transformations af,t, we speak about geometrical trans-

Tis formations and geometrical symmetry, afiid the transfor-
A mations of field quantitieg(r,t), we speak about dynamical
T Lor— bk, (43)  transformations and dynamical symmetry. Since we have de-
duced the equations of motion from the variation of action
¢j=5j|<P|’+Tj||5sD|'- (44) S (Hamilton’s principle, the sufficient condition for the

equations of motion is the invariance of the action. If the

hasize that and T infinitesimal action is invariant with respect to dynamical transformation,
We emphasize thal and T~ are infinitesimal linear trans- i+ 1aans mathematically th&65-58

formations, i.e., the second-order terms are negligible. The
& is the Kronecker symbol® is an infinitesimal constant,
Ty is the mixing matrix in which the element; =0, and L(@i(r,1),¢i;,(r 1), @i,,(1,1))
P is the ordering operator. The opera®iorders the indices
) N . =L(¢{(r,t), /. ,(r,0), ¢ (1), 50
of ¢. There are three different casé¢b: P=+1, in the case (@i (1,0, 001 (1 0, 07,1 1) (50)
of ®i, P, the ordering 4i, is even, i.e., the number of inver-
sions is 0, sd;>i,; (Il P=0, if there is no ordering, i.e., i.€., itis sufficient to examine the invariance of Lagrangian.
i,=i,: (Il) P=—1, if the orderingi,i, is odd, i.e., the Our. aim is to dlscuss.rlow the LagrgnglahO) behaves
number of inversions is 1,>i,. The effect of operatop in ~ 2dainst the transformatioh. We can point out after a long
. A T but elementary calculatiga3] that the Lagrangian is invari-
the last case is thaP makes the orderingi{i,—ijiq) ) N , ) ,
inversion-fr. Moreover. th ratBr commutates with ant with respect td’, so this dynamical transformation per-
ersion-iree. Moreover, the operatsr commutates wit tains to the dynamical invariance of equations of motion of
all other operators because this acts only on the ordering.

) nonequilibrium thermodynamics.
We consider that case whét=3 and we take the prod- Given this knowledge, the question arises how the spe-

ucts cific entropy densitys and the specific entropy production
b 5 T p density ¢ behave under this dynamical transformation
0203= (02~ OT21P 1~ OToPe3) First we write the entropy densitywith the potential func-
X (<P3_®T31|5<P1_ ®T32|5<P2) tons ;.
= P23 T21|5901593_T23|5§03<P3 1
-1r o1 —1
A A s= S, 4~ LA ipS;
00T P o1~ 0,0 ToP 0 5P LeSik (pStkeri— LikA 1) SijpS;
=203 OT210103+OT310107 (45) X (pSyi¢gt—LglAegy)]
1., _
and :Epssmlsfk‘ﬁ’f;tsij S 'Sgi¢q:t
P302= 302~ OT310102,+ OT2101 3. (46)

1
2c—1 -1
. — 5P Sk LikA ¢rS; S "Syieg;
We can calculate the difference of these products 2 S LA 9155 "B g

! ! ! ! 1 — —
203~ ¢3¢02= 20 (Ta10102— T2101¢3), (47 - ngSlefkwf;tSjS,-, LgAeg
from which we can see that it is useful to introduce and 1
define a different algebraic product among the elements of + EpST(lLkazpfS”Sj’,leAng. (51
bk
@i O0k=¢{ o= ¢k®| =20 (T @190}~ TimPmei). Now we transform the potential functions and get the trans-

(48 formed entropy densitg’. We show the transformation for
] ) o the first term ofs, which is underlined in Eq(51), and we
wherel,m#j k. In this way, it is easy to prove can sign[s];. The transformed of this term is signgs'];,
which is the first term of the transformed entropy density
?jOe=—O0p; . 49  s'(¢),
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Sij=Sji, (54)

1 — ! — !
[5']1:§P33|k13fk<Pf;tSiij| ngl‘Pg;t
i.e., the entropy density is invariant if and only if the matrix

1,4 . . Sj is symmetric. We can examine the invariance property of
= 5P Sk SikSii Sy Syi(SimPmit = O TrmPom;t) entropy production density in the same wag,51] and we
get
X(6gp®p:t~ OTgpP@p:t) ol(p)=o0(¢'). (55)
1 A : I . : . .
= §p33.113fk3115ﬁ139|(@f;t(Pg;t—®Tfmp¢m;t¢g;t This equality is true if and only if the Onsager reciprocity

relations hold

~ 1 _ _ =1,
_ﬁpf;tGTgpP‘Pp;t):Epsslklsfksijsjl1SgI(Pf;t‘Pg;t Li="Lui- (56)

Consequently, if we demand the invariance of entropy den-
sity function and the entropy production density under the
introduced transformation, which is a dynamical transforma-
tion since it leaves the Lagrangian invariably, the phenom-
enological coefficient matrices are symmetric in linear cases.

1 et -1 2
_Ep Sik kaSiijl SgI®TmeQDm;tQDg;t

1, _ N
— 50°SK 'S0 S "Syie O TPy (52

V. CONCLUSION
We neglected the second-order terms and now change the

indicesm—p, f—g, g—f, i—j, j—i, |—=k, andk—lI The canonical model developed allows us to exploit the
in those terms which contaim, underlined in Eq(52); we  possibilities of the invariance principles. We have shown that
obtain the result the descriptions of the dissipative processes in the linear vec-

tor space generalized by, and in the Lie algebra general-
1T 3a-1 o1 ized by, are equivalent if the phenomenological coefficient
[8'11=5 9" S SuSi i Sqier0q: matrices are symmetric. This is in line with our expectation
1 from a suitable model, i.e., our canonical model can provide
3a-1 -le @ the existence of the reciprocity relations in the framework of
- Ep SjI SgISji ik kaTgp‘Pp;t‘Pf;t the model. P y

1 —_ —
+5P°5 1SS Sy O Tgpepuer-  (53) ACKNOWLEDGMENT
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