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Nonlinear growth dynamics of Langmuir monolayers limited by both surface and bulk diffusion
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A theory of growth of Langmuir monolayers limited by both surface and bulk impurity diffusion is devel-
oped. It is shown that unlike the traditional situation where only surface diffusion is present—leading to
similarity solution where a straight front advances with time asAt which is at the basis of dendritic growth and
‘‘fractal-like’’ morphologies—bulk diffusion leads to the existence of a straight front moving at a constant
speed. This is interpreted in terms of dimensional considerations: bulk diffusion introduces a new length scale,
making this solution possible. As a consequence, the growth morphology must be dense. This is what is
observed experimentally. An exact solution for a straight front and its stability is provided analytically. The
straight front is unstable above a critical speed~or critical supersaturation!. The nonlinear dynamics are tackled
by means of a gauge-field-invariant geometrical formulation. It is shown that the existence of a straight front
solution moving steadily also implies that a circular front solution moving at a constant speed exists as well.
For a nearly straight geometry~but deformed! dynamics falls into a Kuramoto-Sivashinsky one where spa-
tiotemporal chaos is expected. For a more curved front~such as the one generated initially from a circle
instability!, numerical analysis reveals a variety of compact patterns.@S1063-651X~97!08105-1#

PACS number~s!: 47.20.Dr, 47.20.Hw, 81.10.Aj, 81.30.Fb
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I. INTRODUCTION

Langmuir-Blodgett films are important to studies of me
brane structure and function, chemical reactions at an in
face, and as coating for electronic and photonic devic
While the identification of Langmuir monolayers could b
traced back at least to the last century@1#, there has recently
been an upsurge of interest in the study of structural
dynamical features of these systems@2–7#. These monolay-
ers form at an air/water interface due to the amphiphilic
ture of the molecules in question. Typical systems inclu
fatty acids@8# such as pentadecanoic acid, or phospholip
@2# such as dimyristoylphosphatic acid~DMPA!.

Besides their natural interest—these systems often re
sent the principal component of biological membranes—
physics of nonequilibrium patterns in these systems diff
from that of more standard alloy solidification in two ma
ners. First, these systems are unique truly two dimensio
objects on the atomic scale. Hence the growth of doma
between different phases is a problem of evolution of a
dimensional interface where we expect, for example, an
hanced role of statistical fluctuations. The second distinc
lies in the ability to act easily on several parameters to wh
the growth structure may be quite sensitive. For example,
molecules may be quite susceptible to thepH modification.
This results in interesting behaviors@10#. One can also de
vise a setup where the growth dynamics may be limited
added impurities which can either be miscible or not in w
ter. In the latter case~impurities are not miscible in water!
the growth pattern is strongly branched or occasionally d
dritic. The seldom nature of dendrites may be a signatur
the weakness of anisotropy of the growing crystal, may
related to the presence of a hexatic phase@9#, or ~more prob-
ably in our opinion! is due to the importance of noise~noise
is expected to destroy the needle crystal when its magni
is large enough! stemming from the one dimensional chara
551063-651X/97/55~5!/5564~11!/$10.00
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ter of the boundary, albeit crystalline anisotropy remains i
reasonable order of magnitude. The former case~impurities
which are miscible in water! has recently been treated e
perimentally@11# and has constituted a source of stimulati
for the present work. This experiment was performed
fatty alcohols where the impurities are fatty acids. The m
cibility depends on the length of the fatty acid molecules.
this system, it has been observed that when impurities
miscible in water, then the branched structure disappears
rather compact~almost circular on some scale! morphologies
are observed. It is one of the goals of this paper to show
this is attributed to bulk diffusion.

In the theory of traditional growth, one of the most im
portant achievements in free crystal growth during the l
decade is the resolution of the velocity~and tip radius! se-
lection dilemma of a growing dendrite@13,14#. Usually when
a solid alloy is grown at the expense of its undercooled m
the predominant growth morphologies are dendritic~or com-
pletely faceted if the surface is below its roughening tran
tion!. Dendritic growth results because the front~which is a
source of latent heat generation! has to heat a large bulk
since the temperature can nowhere exceed the freezing
perature. It is now well established that a planar front can
grow at a constant speed. For such a geometry, the pos
increases asAt in the course of time. This is the so-calle
similarity solution, since the diffusion field does not depe
separately on the spatial coordinatex and the temporal one
t, but only on the combinationx/At. The absence of a plana
front solution moving steadily can be traced back to a dim
sional constraint: given the physical parameters that enter
problem, it is not possible to construct a quantity having
dimension of velocity.

It turns out that the similarity solution is unstable: th
front undergoes a morphological instability. Since, as sta
above, the front has to heat a large bulk, it has to curve
much as possible, so that far behind the advancing tip
5564 © 1997 The American Physical Society
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55 5565NONLINEAR GROWTH DYNAMICS OF LANGMUIR . . .
solid becomes asymptotically planar. We can use the fea
of the similarity solution for the asymptotic solution in ord
to guess the famous parabolic solution in the absence of
face tension due to Ivantsov@15#. Thus from a simple analy
sis of similarity the equation relating the supersaturation
the Péclet number (p5rV/2D, wherer is the radius of cur-
vature,V the tip velocity, andD the diffusion constant! can
be derived. Depending on the supersaturation and
strength of crystalline anisotropy, the pattern can be dend
with a fractal character or a compact one, or having a ra
branched~or seaweed! structure which can be fractal or com
pact as well@16#. We shall devote a brief review to the la
decade of development.

The problem we are interested in has brought several
features. Here in contrast, due to diffusion in the bulk
water, there exists a planar front solution~more precisely a
straight front solution since the growing front of our syste
is one dimensional! moving at a constant speed. This is a
tributed to the appearance of a length scale: the diffus
length of an impurity~which is rejected at the front, fo
example! before it enters the underlying bulk. This quanti
is defined asjs5ADst, whereDs is the diffusion constan
andt the residence time on the surface. This quantity lies
the range of 1mm. From a dimensional analysis we arg
that the front velocity is fixed byV;(js /t)D whereD is an
appropriate dimensionless supersaturation. The existenc
bulk diffusion completely destroys the similarity solutio
We have analyzed the stability of this solution and found t
it becomes unstable above a critical supersaturation. The
istence of a straight solution should have important con
quences on the subsequent dynamics, and this is what
emanate from the present work. First, while the front b
comes unstable, and even if it starts developing a needle
behind the tip, the front should reach asymptotically
straight front solution moving at a constant speed given
vcos(u);(js/t)D, whereu is the angle between the growt
axis and the normal~the opening angle!, andv is the axial
growth velocity. This implies that the front cannot be mo
curved beyond this limiting angle. Physically, diffusion
the bulk plays an efficient role of a short circuit, precludi
thereby development of branched structures. We exp
therefore the morphology to be compact as compared to
case where impurities are not miscible in water.

Above the straight front solution threshold, nonlinear
fects come to the fore. Instead of using an integro-differen
formulation of the free boundary problem, we shall make u
of general concepts of symmetry, combined with a gau
field-invariant formulation analogous to that developed
free dendritic growth@13#. We show by using only the con
cept of existence of a straight front solution moving stead
and the above mentioned formulation, that, for example
circular solution moving at a constant speed exists as w
Then, by concentrating on a nearly curved front, we sh
that dynamics are described by a Kuramoto-Sivashin
equation@17#. For a strongly curved front~for example, an
initial circle that becomes unstable!, we shall show, based o
the invariant of the metrics, that the existence of the stra
front solution leads to a completely different morpholo
than that found when a similarity solution was possible. W
show, in particular, that the pattern in the presence of ani
ropy is not reminiscent of those which arise in the ca
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where a similarity solution exists~which falls broadly in a
dendritic or branched patterns!.

The scheme of this paper is as follows. In Sec. II w
present our model of growth of a condensed phase at t
expense of its expanded phase, where the growth is limit
by surface and bulk impurity diffusion. Section III is devoted
to a qualitative analysis of the model together with a sho
survey of traditional growth. In Sec. IV, after arguing physi
cally about the existence of a straight front solution, w
study in detail this solution from the mathematical point o
view. Section V deals with the linear stability analysis of th
straight front solution. In Sec. VI we present the gauge-field
invariant formulation, and discuss its far reaching conse
quences. We then present the main outcome of the analy
Section VII sums up the results.

II. MODEL EQUATIONS

Let us consider a film of Langmuir monolayer growing on
the water surface as schematically shown in Fig. 1. In reali
the experimental device is different from traditional one
where growth is usually induced by applying a two dimen
sional pressure. An interesting alternative is to use the s
called ‘‘Gibbs’’ protocol @7# which consists of depositing a
microscopic droplet of the amphiphilic system under consid
eration on the water surface. At ordinary temperatures the
is a layer of ‘‘expanded’’ phase~EP! which spreads out on
the water surface. The droplet thus serves as a reserv
whose chemical potential is fixed~while the number of par-
ticles inside fluctuates!. Then, by lowering the temperature,
the expanded phase undergoes a first order transition into
condensed one. We first consider a straight boundary whe
the condensed phase~CP! is advancing in they direction.
We shall assume that the growth is limited by impurity dif
fusion. We consider the general case where impurities a
miscible in water, so that both diffusion on the surface and
the underlying water bulk are permissible. Letcs(r,t) be the
impurity concentration at the surface of water, andcv(r ,t)
their concentration in the bulk, wherer5(x,y), and
r5(x,y,z). Since we shall be first interested in a straigh
front advancing in they direction at a constant velocityV
~which will ultimately be determined if such a solution is to
exist!, we find it convenient to write the transport equation
in the rest frame. The surface and bulk concentrations th
obey the following mass conservation equations.~i! Bulk,

D¹2cv1V
]cv
]y

5
]cv
]t

, ~1!

FIG. 1. A schematic view of the experimental setup.
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5566 55ALEXANDRE VALANCE AND CHAOUQI MISBAH
where D is the bulk diffusion constant, an
¹25]2/]x21]2/]y21]2/]z2 is the bulk Laplacian.~ii ! Sur-
face,

Ds¹ i
2cs1V

]cs
]y

1DS ]cv
]z D

z50

5
]cs
]t
, ~2!

where Ds designates the surface diffusion constant, a
¹ i
25]2/]x21]2/]y2 is the surface Laplacian. The last ter

on the left hand side of Eq.~2! stands for the exchange wit
the bulk, as will be clarified below. Indeed the quant
(]cv /]z)z50 is the mass flux across the water surface. T
flux is composed of two contributions. There are impurit
in the bulk characterized by a ‘‘diffusion’’ lengthj, or by a
‘‘drift’’ velocity D/j that will enter the surface from th
underlying bulk. Similarly, impurities which are adsorbed
water are characterized by a diffusion lengthjs , which is
perhaps better represented by evoking their residence
t. The impurities leave the surface towards the bulk a
frequency 1/t. At equilibrium mass balance implies tha
(D/j)cv

eq5cs
eq/t (t5xs

2/Ds). In an out-of-equilibrium situa-
tion there is a deviation from this equality, which must
counterbalanced by a flux across the surface. Therefore
bulk-to-surface mass exchange is described by the follow
kinetic relation:

SD ]cv
]z D

z50

5
Dcv

j
2
cs
t
. ~3!

Before analyzing the order of magnitude of different para
eters introduced above, we shall complete our description
the front, whose instantaneous position is denoted
y5z(x,t), the jump of the normal derivative is related to th
normal growth velocity by the continuity equation

vnDc52DsF S ]cs
]n D

y5z1

2S ]cs
]n D

y5z2

G , ~4!

whereDc is the miscibility gap~which will be taken con-
stant!, andvn is the normal growth velocity. Here mass di
fusion in the CP is neglected since the corresponding di
sion constant is several orders of magnitude smaller than
in the EP. Similarly, latent heat generation will not be a
counted for given the fact that it diffuses much faster th
the mass. Expression~4! must be understood as containin
contributions from diffusion ahead and behind the advanc
front as schematically represented in Fig. 1. In principle,
impurity which is rejected behind the front has a finite re
dence time on the CP/water interface before it diffuses p
sibly towards the bulk phase. In principle, one has to write
exchange mass balance between the CP/water surface~where
molecules have the ability to be adsorbed! and the underly-
ing water phase. This should amount to an equation sim
to Eq.~3! with different kinetic coefficients. While this ques
tion can easily be incorporated in our description, we sh
assume a symmetric model where the exchange betwee
adsorbed molecules and those in the bulk are identical
both y.z and y,z. Since the involved adsorption energ
barriers are of the same order of magnitude on both sides
do not expect this assumption to alter the main outcome
d

s
s

e
a

he
g

-
t
y

-
at
-
n

g
n
-
s-
n

ar

ll
the
or

e
of

the present study. Therefore we have decided not to make
presentation too complex unnecessarily.

The above equations must be supplemented with kin
equations at the front relating the lack of chemical equil
rium to the mass current across the front. For a molecula
rough front~a situation which is in principle expected to b
always fulfilled for a one dimensional object!, chemical equi-
librium is instantaneously established. Expanding the che
cal potentials on both sides of the front about a refere
point, and using well known thermodynamical identities t
gether with an ideal solution assumption@18#, the equilib-
rium condition then implies a condition on the impurity co
centration at the front

cs~y5z!2cs`
Dc

5D2d0k@11bcos~4u!#, ~5!

where we have introduced a dimensionless supersatura
D5(TM2mcs`2T)/(mDc)5(cs

eq2cs`)/Dc. cs` is the sur-
face impurity concentration far ahead of the fron
d05gTM /(mDcLa) is the so-called capillary length~where
TM is the melting temperature of the pure substance,m is the
liquidus slope for the coexistence of the two dimensional
and its melt,g the line tension,L the latent heat of melting
and a the molecular length!, and k is the front curvature
counted to be positive for a convex profile. Th
u-dependent prefactor in Eq.~5! accounts for line tension
anisotropy, whereb measures the strength of anisotropy, a
u is the polar angle between the growth axis and the nor
to the front. For definiteness we have chosen a fourfold sy
metry. In the expression for the supersaturationD, T is the
temperature of the system andcs

eq is the surface concentra
tion of impurities at the growing interface for a straight fron

Finally, the boundary condition far away in the bulk rea

cv~z5d!5cv` , ~6!

which corresponds to the initial impurity concentration in t
bulk. Hered is the width of the diffusion layer in the bulk
The set of Eqs.~1!–~6! completely describes front dynamic
Before proceeding to the analysis, we shall first presen
qualitative description.

III. QUALITATIVE ANALYSIS AND SHORT REVIEW

According to Eq. ~3!, the surface-to-bulk current ex
change is given byDcv /j. From a dimensional analysi
D/j is a frequency multiplied by an atomic distance. O
course at very large temperature the time needed for a m
ecule to enter the surface from the bulk is fixed by a mole
lar frequency. However, at ordinary temperatures, this i
thermally activated process, and there is a need to jump
energy barrier, which is nothing but the adsorption ener
Therefore

D

j
;nae2Ua /kBT, ~7!

wherea is a molecular length,n a molecular frequency, and
Ua is the adsorption barrier. Moreover, diffusion in the bu
implies a diffusion barrierUd , so thatD;na2e2Ud /kBT. It
follows that
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55 5567NONLINEAR GROWTH DYNAMICS OF LANGMUIR . . .
j;ae~Ua2Ud!/kBT. ~8!

If the adsorption process is less favorable than the diffus
one ~as we may expect!, thenUa.Ud , and consequently
j@a. That is to say, the lengthj is not a molecular ‘‘mean
free path,’’ but may even reach values in the range o
mm given the exponential dependence on energy scales
the other hand, at equilibrium Eq.~3! yields

Dt

j
5
cs
eq

cv
eq. ~9!

The quantitycv
eq corresponds to the initial concentration for

given experiment, whilecs
eq is the equilibrium concentration

of the adsorbed molecules. The bulk concentration is an
perimental controlled quantity while the surface concen
tion can be estimated from neutron scattering@12#. The order
of magnitude for the ratio can thus be extracted and henc
estimate forDt/j. Using experimental values ofcs

eq and
cv
eq, we find thatDt/j;0 mm. ADst5js(;ADt since
Ds;D) represents the diffusion length on the surface bef
the molecules have a chance to enter the bulk, which is of
same order asj for a situation where miscibility in water is
sufficiently favorable. Thenj;0 mm. We shall keep in
mind these orders of magnitude in the following.

Since the present paper is intended also for researc
from different disciplines than crystal growth, we have felt
worthwhile to provide a brief review of the last decade
developments in the study of interfacial pattern format
during free growth~as opposed to directional growth!. In the
absence of a bulk-to-surface exchange, the length scales
cussed above (j and js) are absent. This entails that~for a
straight geometry! we are left with a problem which is fre
of an intrinsic length scale. The only parameters that en
the model areD andV. Therefore a straight front solutio
moving steadily at a velocityV cannot exist as a conse
quence of dimensional constraints. In order to fix a veloc
we need to combineD to a length scalel , or a time scale
t. Had such scales been available, then the velocity s
would have been fixed byD/l orAD/t. The only possibility
to have a straight solution is that the velocity be not cons
in time. Upon introduction of the time variable, a natur
choice for velocity isAD/t ~up to a dimensionless factor!.
This implies that the front position behaves asADt. This is
nothing but the similarity solution to the diffusion equatio
~written in the laboratory frame!

D¹ i
2c5

]c

]t
, ~10!

which holds in the absence of surface-to-bulk exchange.
Y5y/At be a new variable, and assume thatc(y,t)5c(Y)
~the similarity assumption!, then Eq.~10! becomes

D
d2c

dY2
52

Y

2

dc

dY
, ~11!

the solution of which is easily found to be given by
n
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ceq2c`

*y0
` eY82/4DdY8

E
Y

`e2Y82/4DdY81c` , ~12!

where we have imposedc(Y5`)5c` andc(Y5y0)5ceq.
The quantityy0 ~undetermined for the moment! is defined in
such a way that the instantaneous front position is given
yi5y0At ~the subscripti refers to the interface!. Since
yi /At5Yi , it follows that the front position in the similarity
variable is given byYi5y0. Hitherto, we did not evoke mas
conservation at the front, which will result in a closure co
dition relating the supersaturation to the velocity amplitu
y0 (y0 has in fact a dimension ofAD). Assuming for sim-
plicity the one sided model, mass conservation at the fr
dy/dt5(D/Dc)(]c/]y) becomes y052(2D/Dc)(dc/
dY)(Y5y0). Using expression~12!, we obtain the sough
relation

D5
Apy0

2AD
ey0

2/~4D !erfc@y0 /~2AD !#, ~13!

where erfc(x)5(2/Ap)*x
`e2t2dt is the complementary erro

function.
In reality such a solution is unstable. Let us have a sh

digression. It is a bit puzzling at this juncture to note th
usually one talks about the instability of a straight front@19#
moving at a constant velocity, which is not only unstable, b
which does not exist~except forD51)—we may talk about
a solution which isstructurally unstable, in the sense that an
arbitrarily small deviation fromD51 completely destroys
the existence of such a solution.

We expect in such a situation to have a dendritic grow
Dendrites take place because the front, which rejects im
rities ~or generates latent heat in a thermal model which
formally identical to the present one! has to undersaturate~or
to heat in a thermal model! a large bulk of melt, since the
concentration can nowhere exceed the equilibrium one~or
the temperature can nowhere exceed the freezing temp
ture!. Ivantsov@15# has indeed shown that the free surfa
tension problem admits a parabolic solution moving stead
This solution can also be understood from the above simi
ity solution. Indeed, if the front has to undersaturate a la
bulk, it has to curve in such a way that far behind the tip
the advancing solid, the front becomes more and m
straight~see Fig. 2!. There the coordinatex must reach as-
ymptotically the solutionx5x0At according to the above
similarity solution. If a needle has to move at a consta
speedy5v0t, the only way to have a shape-preserving so
tion is to impose y;x2, which is a parabola. Setting
y52x2/(2r) ~wherer is the parabola radius of curvature!,
we immediately identify thatx05A2rv0. Using in relation
~13! the quantityx0 instead ofy0 we get immediately the
famous Ivantsov relation which is usually obtained after s
eral, more or less tedious, mathematical manipulati
@15,20#,

D5Appeperfc~Ap!, ~14!

where D5(ceq2c`)/Dc is the dimensionless supersatur
tion, p5rv0 /(2D) is the Pe´clet number. It can easily be
checked that relation~14! holds forD,1. In the limit where
D→1, r→`, which corresponds to the limit of a straigh
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5568 55ALEXANDRE VALANCE AND CHAOUQI MISBAH
front. Relation~14! shows that there exists a continuous fa
ily of solutions for the couple (r,v0), whereas experiment
show that a unique solution is selected for a givenD. This is
the Ivantsov dilemma which has given rise to a myriad
studies in the 1980s@13,14#. The Ivantsov dilemma follows
again from dimensional considerations. Indeed, in the
sence of surface tension~or more precisely line tension in
our problem!, the capillary length introduced in Eq.~5! does
not enter the problem, and again the same dimensio
analysis evoked above for a straight front holds. In orde
remove this degeneracy, we need to introduce surface
sion which leads to the appearance of a new length s
d0. A dimensional requirement is necessary but may not
sufficient. This is what happens precisely in the present pr
lem. The Ivantsov dilemma has in fact been resolved o
after the recognition~i! that surface tension acts as a singu
perturbation and~ii ! that crystalline anisotropy is necessa
in order to lead to dendrites. In the absence of crystal
anisotropy@which enters in a natural way in line tension; s
Eq. ~5!#, a needle crystal can initially grow. However, in th
course of time the needle suffers from successive tip-split
instabilities leading ultimately to a branched morpholog
Anisotropy stabilizes the tip; it leads to a stable pattern h
ing features similar to those which arise during snowfla
growth. As displayed in Fig. 3, a dendrite generates si
branches as it moves. The conventional wisdom is that s
branches result from noise amplification. Indeed, a small p
turbation on the tip~say, of thermal origin!, is exponentially
amplified as it moves downwards. While an initial perturb
tion is initially small ~presumably of the molecular size, du
to the very nature of thermal noise!, a protuberance of ap
preciable amplitude may have grown at some distance f
the tip. For example, in numerical solutions, the numeri
noise is sufficient to produce sidebranches. Sidebranch a
ity is recognized as being ‘‘dangerous’’ against tip stabili
More precisely, the noise amplification is stronger and str
ger ~and therefore the point where amplification has attain
an appreciable amplitude is closer and closer to the tip! when
anisotropy becomes gradually weaker. We expect a des
tion of needle crystal solutions, and the emergence
branched structures. Whether a branched solution may
come fractal or not was addressed in an interesting pape

FIG. 2. A parabolic solution showing the use of similarity sol
tion.
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Uwaha and Saito@21#, who have provided a beautiful inter
polation between the fractal pattern~which is expected for a
vanishing supersaturation! and a dense one~or what is usu-
ally called the Eden morphology! which should be attained
on increasing the supersaturation. More recently Bren
Müller-Krumbhaar, and Temkin@16#, using Uwaha and Sai
to’s results, along with previous analyses, have provide
nice phase diagram in the plane~supersaturationD, the
strength of crystalline anisotropyb). They distinguish be-
tween dense and fractal patterns. Very schematically~i! for
low D andb we expect ‘‘fractal’’ patterns. For lowb we
expect ordinary fractals, while on increasingb ‘‘fractal den-
drites’’ should appear~the structure is fractal, but it stil
keeps the memory of an underlying snowflakelike patter!.
~ii ! Largeb and largeD: here the pattern is dense~or com-
pact!. For smallb the dendrite identity is lost, and the resu
ing pattern is called compact seaweed. On increasingb, den-
dritic patterns which are compact are expected.

IV. GROWTH IN THE PRESENCE OF BULK-TO-SURFACE
EXCHANGE: STRAIGHT FRONT SOLUTION

As discussed above, allowing for bulk-to-surface e
change provides us with several length scalesj andjs . Be-
fore resorting to a systematic analysis we shall first focus
the qualitative aspect. The impurities which are rejected
the front will diffuse on the surface, and their residence tim
is given by t. Their diffusion length isjs5ADst. If this
length is infinite, then we expect no exchange between
face and bulk. We are back to the traditional situation. T
length must be finite. Thusjs appears as a relevant leng
scale. From a dimensional analysis the scale of the gro
velocity is given byD/js . The growth velocity is propor-
tional to the driving force, so that

V;
Ds

js
D. ~15!

Typically Ds;1026 cm2/s and js;1024 cm, so that
V;1022D cm/s. The lack of information on the phase di
gram of the amphiphilic system precludes a precise eva
tion of the dimensionless supersaturation. Usually, in or
nary experiments, a small supersaturationD;0.1 or even

FIG. 3. Dendrite grown in a Langmuir monolayer of D-myrist
alanine, as observed by epifluorescence microscopy. The b
halo around the dendrite corresponds to the diffusion layer of
fluorescent dye~insoluble in water! in the EP.
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0.01 is largely sufficient to initiate the growth. This amoun
to V in the range of 1mm/s, which is consistent with exper
mental observations@11#.

Let us now proceed to the calculation. Our starting po
is the set of Eqs.~1! and ~2!, where we look for a straigh
front solution moving at a constant speedV. We find it con-
venient to set u5cs(y)2(tD/j)cvuz50 and
w5cv(y,z)2cv` . Equations~1!–~3! become

DS ]2w

]y2
1

]2w

]z2 D1V
]w

]y
50, ~16!

DsS ]2u

]y2
1

js
2

j

]2w

]y2 U
z50

D 2
u

t
1VS ]u

]y
1

js
2

j

]w

]y U
z50

D 50,

~17!

D
]w

]y U
z50

52
u

t
. ~18!

Use of Fourier transforms with respect to they coordinate
leads to algebraic equations relatingŵ and û ~whereŵ and
û are Fourier transforms ofw and u, respectively!. Care
should be taken, however. Indeed,]u/]y is discontinuous at
y50. Therefore when integrating by parts we should ret
-

an
th
d,
st
a
a
he
t

n

the contribution of thed function. The remaining parts of th
operations are straightforward. Using the fact th
ŵ(q,z5d)50 @which follows from Eq.~6!, and whereq
designates the variable in Fourier space# we can expressŵ as
a function ofû. The result is

ŵ52
û~q!

js
2r

sinhr ~z2d!

cosh~rd !
, ~19!

where

r65
1

A2
@Aq41V2q2D221q2#1/2

6
1

A2
@Aq41V2q2D222q2#1/2, ~20!

where the1 and 2 branches are adopted forq,0 and
q.0, respectively, to ensure well behaved solutions. Us
the surface equation~17! where the discontinuity of]u/]y at
the front~such a discontinuity is related to the growth velo
ity! arises after integration by parts, together with Eq.~19!,
and exploiting the fact that the normal velocity~4! is related
to the jump of]u/]y, we obtain
û5
VDc

Ds

1

@q21js
221q2~jr !21tanh~rd !#2 iqVDs

21@11~jr !21tanh~rd !#
. ~21!

In real space the concentration fields can be represented by Fourier integrals

u~y!5
VDc

2pDs
E

2`

`

dq
e2 iqy

@q21js
221q2~jr !21tanh~rd !#2 iqVDs

21@11~jr !21tanh~rd !#
, ~22!

w~y,z!5
VDc

2pDsjs
2E

2`

`

dq
sinhr ~z2d!

rcosh~rd !

e2 iqy

@q21js
221q2~jr !21tanh~rd !#2 iqVDs

21@11~jr !21tanh~rd !#
. ~23!

Finally the growth velocity as a function of the supersaturation is determined by making use of the condition oncs(y) at
y50 @Eq. ~5!# which takes the following form in the new representation:

cs
eq2cs`5uuy501js

2j21wuy50,z50 . ~24!

In view of Eqs.~22! and ~23! the growth velocity should fulfill the equation

D5
V

2pDs
E

2`

`

dq
11~r j!21tanh~rd !

@q21js
221q2~jr !21tanh~rd !#2 iqVDs

21@11~jr !21tanh~rd !#
. ~25!
f

We recall thatD5(cs

eq2cs`)/Dc represents the dimension
less supersaturation. Equation~25! relatesV to the driving
forceD. Note that this is a nonlinear equation since the qu
tity r which appears in the integrand is parametrized by
velocity @see Eq.~20!#. The integral can easily be tabulate
andV as a function ofD can then be extracted. Let us fir
focus on a limiting case where further analytical results c
be obtained. This is encountered when the impurities re
their bulk value (cv`) on short scale as compared to all t
-
e

n
ch

other lengths. This limit corresponds tod/min(j,js)!1. In
this case the integral in Eq.~25! reduces to the evaluation o

lim
~y→0!

E
2`

`

dq
e2 iqy

q21js
222 iqVDs

21 5
2Dsp

VA114Ds
2/~V2js

2!
.

~26!

It then follows from Eq.~25! thatV is given by
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V52
Ds

js

D

A12D2
. ~27!

Equation ~27! is what was anticipated from a dimension
analysis for a small supersaturation. ThatV seems to diverge
for D→1 is not a surprise. This simply means that the liqu
is supersaturated at the solidus line, and that therefore
solid should grow instantaneously. Of course before that
gime is reached, our assumption of instantaneous chem
equilibrium at the front breaks down. Kinetics are expec
to be relevant when the diffusion timeD/V2 becomes com-
parable to the freezing timel /V where l is the CP-EP tran-
sition extent. Typicallyl is a molecular length (l;1028 cm
at most!, D;1026 cm2/s, so that the order of magnitude o
the growth velocity where kinetics become decisive is giv
by V;D/ l;102 cm/s, which is several orders of magnitud
larger than what we are interested in. This corresponds
supersaturation of the orderD;1/(11 l 2/js

2)1/2;1. Both
Eqs. ~27! and ~25! are understood to be valid forD not too
close to unity.

Figure 4 showsV as a function ofD for several values of
the parametersj, js , andd, and comparison with expressio
~27! is made. It is clear that the latter captures the essen
qualitative features. In conclusion of this section we ha
shown that diffusion in the bulk leads to the existence o
straight front solution moving at a constant velocity. It c
also be shown that the similarity solution~viewed as an
asymptotic solution! is destroyed by bulk diffusion@22#. The
natural next step is to study the linear stability.

V. LINEAR STABILITY ANALYSIS

We study regression of fluctuations by looking for so
tions of the form

u~x,y!5u0~y!1eu1~y,z!eikx1vt, ~28!

w~x,y,z!5w0~y,z!1ew1~y,z!eikx1vt, ~29!

The subscript zero refers to the straight front solution, a
e is a small parameter. The instantaneous front positio
written as

FIG. 4. The behavior ofV as a function ofD. Full line: analytic
theory @Eq. ~27!#. Dotted line: d5j5js51 mm. Dashed line:
j5js51 mm, andd52 mm.
he
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z~x,t !5ez1e
ikx1vt, ~30!

wherez1 is a constant amplitude. Note that because Fou
modes do not couple in the linear regime, it suffices to c
sider one Fourier component only. In Eqs.~28! and~29! k is
the perturbation wave number andv is the amplification or
attenuation rate that we wish to determine. The transp
equations read

2k2w11¹iw150, ~31!

DsS 2k2u11
]2u1
]y2

2
js
2

j
k2w1U

z50

1
js
2

j

]2w1

]y2 U
z50

D 2
u1
t

50.

~32!

The kinetic equation takes the form

D
]w1

]z U
z50

52
u1
t
. ~33!

It must be noted that the boundary conditions at the front
to be evaluated atz5z, and that therefore the zeroth ord
solutions are nonlinear functions ofe, and they will contrib-
ute to the first order ine as well. For example, Eq.~4! be-
comes to first order ine

vz1Dc52DsF S ]u1
]y

1z1
]2u0
]y2 DU

y501

2S ]u1
]y

1z1
]2u0
]y2 DU

y502

G , ~34!

while the condition at the front oncs @see Eq.~5!# leads to

Dck2d0z15u1uy501z1
]u0
]y U

y50

1
js
2

j Sw1uy50,z50

1z1
]w1

]y U
y50,z50

D . ~35!

Finally the boundary condition far in the bulk amounts to

w1~z5d!50. ~36!

The set of Eqs.~28!–~36! constitutes the linearized versio
of front dynamics. Using the same procedure as in the ze
order case, we can express the deviationu1 andw1 in terms
of Fourier integrals. We shall give directly the results
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u1~y!5
z1
2p S vDc

Ds
12

]2u0
]y2 U

y50
D E

2`

`

dq
e2 iqy

@k21q21js
221j21Ak21q2tanh~dAk21q2!#

, ~37!

w1~y,z!52
z1

2pjs
2S vDc

Ds
12

]2u0

]y2
U
y50

D
3E

2`

`

dq
sinhAk21q2~z2d!

Ak21q2cosh~Ak21q2d!

e2 iqy

@k21q21js
221j21Ak21q2tanh~Ak21q2d!#

. ~38!

The dispersion relation is obtained by making use of Eq.~36!. This yields

S vDc

Ds
12

]2u0
]y2 U

y50
D E

2`

` dq

2p

11~jAk21q2!21tanh~Ak21q2d!

@k21q21js
221j21Ak21q2tanh~Ak21q2d!#

52Dcd0k
22S ]u0

]y
1js

2j21
]w0

]y U
y50,z50

D .
~39!
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This is the sought dispersion relation which relates
growth ratev to the wave numberk. As for the straight front
solution, the integrals overq can be tabulated. It is instruc
tive, however, to focus on the situation whered is small
since a complete analytical evaluation of the integrals
comes possible. In this limitu0 andw0 are easily found to be
given by

u0~y!5
DcVjs
2Ds

e2uyu/js, ~40!

w0~y,z50!50. ~41!

The last equation simply states that the bulk concentratio
homogeneous; it simply serves as a reservoir for impurit
It is straightforward to show that Eq.~39! reduces to

v52Ds@2d0k
2Ak21js

221js
21D~Ak21js

222js
21!#.

~42!

v has two contributions: the first one is proportional tod0
~which is proportional to the line tension! and it is stabiliz-
ing. The second one is destabilizing and is proportiona
the driving forceD. This expresses the enhancement of
diffusion gradient ahead of the front due to a protuberan
Thus the stability of the straight geometry results from
compromise between these two antagonistic effects. Fur
analytical results follow. A close inspection of Eq.~42!
shows that the bifurcation from the straight geometry int
corrugated one occurs fork→0 ~actually this result holds in
general and can be traced back to translational symmetr
the y direction!. In the smallk regime Eq.~42! reads to
leading order

w.
2Dsd0

js
@~n21!k22~n11!js

2k4/2#, ~43!

wheren5Djs /(2d0). The straight front is unstable ifn.1
and stable forn,1. The critical condition occurs forn51.
Figure 5 showsv as a function ofk ~which conserves the
same qualitative feature in the general case! above and below
the instability threshold. The fastest growing mode~obtained
e

-

is
s.

o
e
e.

er

a

in

by setting]v/]k50) corresponds to a wave numberkmax
and a growth ratevmax given by

kmax5js
21An21

n11
, vmax5

Dsd0
js
3

~n21!2

~n11!
. ~44!

The n-dependent prefactors are of order unity above
threshold. This means that the length scale of the pat
corrugation is roughly of the order ofjs , and the temporal
scale for the evolution of the instability is of the order
js
3/(d0Ds);(js /d0)t. Since we expect thatj/d0;1022
103, the time scale for the evolution of the instability shou
give a direct access to the estimate oft. In the experiment of
Lenneet al. @11#, the time scale for the instability is of th
order of 1 sec~or a few seconds!. This entails thatt can
roughly be estimated to lie in the range 102121022 s.

VI. NONLINEAR REGIME

The linear stability analysis provides us with the critic
condition for the onset of the instability, and the range

FIG. 5. The growth ratev as a function of the wave numbe
Full line: unstable. Dashed line: stable. Perturbations are analy
as eiqx1vt, wherev is the growth rate andk the wave number.
Wave numbers havingv.0 (v,0) correspond to unstable
~stable! modes.
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those perturbations which are likely to grow first. If the su
sequent morphology is to be determined and/or the long t
behavior to be ascertained, then a nonlinear analysis is
essary.

We may use a Green’s function technique in order
derive a nonlinear integro-differential equation for t
CP-EP boundary. This treatment will be postponed to
future. Here we shall focus on rather general nonlinear f
tures based on symmetry arguments together with a ga
field-invariant formulation.

This method consists first in writing the evolution of th
geometry. Because of the one dimensional character of
boundary, we shall be concerned with a string geometry.
r (a,t) be the instantaneous position of the ‘‘string,’’ whe
a is a string parametrization which can be chosen at libe

FIG. 6. A typical pattern when the constant velocity soluti
exists. Here Eq.~49! is solved withvn given by Eq. ~47!. The
parameters used arec51, a05a15a251, and b15@1
2ncos(4u)#. Other choices led to the same qualitative features.~a!
No crystalline anisotropy (n50), ~b! with crystalline anisotropy
(n50.1).
-
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y

FIG. 7. A typical pattern in the presence of similarity solutio
~a!, ~b! No crystalline anisotropy (n50), ~c! with crystalline anisot-
ropy (n50.1). In the simulation~b!, we have implemented in ou
numerical code rules which mimic the repulsion. Other parame
as used in Fig. 6.
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to be time independent. For a closed geometry the tange
velocity is a gauge and is fixed once the parametrizatio
fixed. Let k(s,t) be the curvature, wheres is the arclength
element, andvn the normal velocity. The curvature obeys th
integral equation@13#

]k

]t U
s

52S ]2

]s2
1k2D vn2 ]k

]sE0
s

ds8kvn ~45!

and the polar angleu ~between the normal and some ax
sayy) obeys the equation

]u

]t U
s

52
]vn
]s

2kE
0

s

ds8kvn . ~46!

As in most gauge problems, a gauge-invariant formulat
introduces non-locality. Note that the physics is contained
vn .

A. Generic limiting cases

Let us focus on the curvature evolution. The normal v
locity should be invariant under reparametrization of the
terface. Thereforevn is a function of the curvature and it
covariant derivatives only. The normal velocityvn must have
the following form:

vn5c1a0k1a1k
21a2k

31•••1b1
]2k

]s2
1•••. ~47!

Note that the presence of the constant termc is very impor-
tant. In the limit of a straight front, onlyc survives, and we
recover our straight front solution moving at a constant sp
c. For a circlek(s,t)5k(t) and it follows immediately from
Eq. ~45! thatk obeysk̇52ck2. This equation is solved fo
R51/k5ct. That is to say, a straight geometry moving a
constant speed implies that a circular geometry solution
ists where the radius increases proportionally with time.

We turn now to the case of a weakly curved front. We c
represent the front by its Cartesian coordinatesh(x,t), where
s;x, andk;hxx ~derivatives are subscripted!. In the long
wavelength limit and the slow time evolution~a situation
encountered close enough to the instability threshold!, it is a
simple matter to show that Eq.~45! reduces to leading orde
to

ht52a0hxx2b1hxxxx1
c

2
hx
2 , ~48!

which is nothing but the Kuramoto-Sivashinsky equation,
which we have already given a universal foundation in
recent paper by using another philosophy@23#. From the lin-
ear stability analysis we have identified an instability whi
must be here signified bya0 being positive. For a physically
well behaved systemb1 must be positive in order that th
fourth derivative plays the role of a short cutoff. Equati
~48! is well known to produce spatiotemporal chaos. H
a0 been negative, then there would have been no nee
introduce the fourth derivative~since there is no instability
and there would be no need for a cutoff!. By adding a Lange-
vin force tovn , we would have obtained the Kardar-Paris
ial
is

,

n
n

-
-

d

x-

n

r
a

d
to

Zhang equation@24#, which has been widely used as an a
tempt to describe kinetic roughening during molecular be
epitaxy.

B. Strongly curved fronts

For a more curved front we have analyzed the equa
numerically. We have used a parametrization of the front
that the relative arclengths/L remains constant, whereL is
the total length for the closed geometry. In such reparame
zation, it can be shown thatk obeys the equation

]k

]t
52S ]2

]s2
1k2D vn1 ]k

]sS sL R ds8kvn2E
0

s

ds8kvnD ,
~49!

and where the total length is governed by

]L

]t
5 R ds8kvn . ~50!

Numerical results@using Eq.~48!# reveals that the presenc
of the constant termc ~which follows from the existence o
the straight front solution! leads to compact patterns a
shown in Fig. 6, while in its absence patterns like tho
shown in Fig. 7 are expected. We note that in Fig. 7
‘‘cascade’’ of tip splitting occurs and leads to a strong
branched structure. Here since our model is local, it does
prevent crossing, as expected from repulsion via a diffus
field. By implementing rules in our code which mimic th
repulsion, we confirm the above assertion about the ‘‘t
splitting cascade’’@see Fig. 7~b!#. We plan to give a detailed
description of our finding in the future. Note finally that th
patterns shown in Figs. 6~a! and 7~a! bear a quite good re
semblance to experimental observations of Lenneet al. ~see
Fig. 8!.

VII. CONCLUSION

We have developed a physical description of growth o
condensed phase at the expense of the expanded one w
impurities are miscible in water. We have shown that diff
sion in the bulk completely destroys the similarity solutio
A straight front solution becomes possible. This is attribu
to a dimensional reason: bulk diffusion brings out a n
length scale. We have provided an analytical solution for

FIG. 8. Observation of the growth of two dimensional so
domains in the dodecanol monolayer@11#, over a subphase contain
ing 1.9 nM octanoid acid. Left panel:pH512 adjusted by NaOH. In
this case impurities are miscible in water; right panel:pH52 ad-
justed by HCl addition. Here impurities are not miscible in wate
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straight front and have analyzed its stability. We have arg
physically that the existence of a straight front soluti
should lead generically to a compact pattern. Our nonlin
analysis has confirmed our expectation. In this first paper
have focused on general features with regard to nonlin
development. That is, we have used a geometrical repre
tation of the ‘‘string’’ combined with symmetries. We hav
shown that for a weakly curved front, dynamics fall onto
universal Kuramoto-Sivashinsky one, which generates w
‘‘turbulence.’’ For a strongly curved front compact patter
are exhibited both with and without crystalline anisotropy

The Langmuir systems are rather unique in that
boundary between the condensed phase and the expa
one is truly one dimensional. In principle, we should exp
the boundary to be rough at all temperatures. In other wo
hy

y

.P
nd

o

rg
d

ar
e
ar
n-

k

e
ded
t
s,

statistical fluctuations must come to the fore and sho
strongly compete with the deterministic instability studi
here. It seems a bit premature on the experimental leve
impose an initial straight front which undergoes a morph
logical instability at a critical speed, and thereby to study
a controlled way competition between noise and determ
ism. We are, however, confident that this should open n
and decisive lines of inquiries in the near future.
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