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Nonlinear growth dynamics of Langmuir monolayers limited by both surface and bulk diffusion
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A theory of growth of Langmuir monolayers limited by both surface and bulk impurity diffusion is devel-
oped. It is shown that unlike the traditional situation where only surface diffusion is present—leading to
similarity solution where a straight front advances with time/asvhich is at the basis of dendritic growth and
“fractal-like” morphologies—bulk diffusion leads to the existence of a straight front moving at a constant
speed. This is interpreted in terms of dimensional considerations: bulk diffusion introduces a new length scale,
making this solution possible. As a consequence, the growth morphology must be dense. This is what is
observed experimentally. An exact solution for a straight front and its stability is provided analytically. The
straight front is unstable above a critical spéedcritical supersaturationThe nonlinear dynamics are tackled
by means of a gauge-field-invariant geometrical formulation. It is shown that the existence of a straight front
solution moving steadily also implies that a circular front solution moving at a constant speed exists as well.
For a nearly straight geometiput deformed dynamics falls into a Kuramoto-Sivashinsky one where spa-
tiotemporal chaos is expected. For a more curved fisoth as the one generated initially from a circle
instability), numerical analysis reveals a variety of compact patté®HE063-651X97)08105-1

PACS numbe(s): 47.20.Dr, 47.20.Hw, 81.10.Aj, 81.30.Fb

[. INTRODUCTION ter of the boundary, albeit crystalline anisotropy remains in a
reasonable order of magnitude. The former casgurities
Langmuir-Blodgett films are important to studies of mem-which are miscible in watgrhas recently been treated ex-
brane structure and function, chemical reactions at an intePerimentally{11] and has constituted a source of stimulation
face, and as coating for electronic and photonic devicedor the present work. This experiment was performed on
While the identification of Langmuir monolayers could be fatty alcohols where the impurities are fatty acids. The mis-
traced back at least to the last cent{ity, there has recently Cibility depends on the length of the fatty acid molecules. In
been an upsurge of interest in the study of structural an#is system, it has been observed that when impurities are
dynamical features of these systef@s-7]. These monolay- Miscible in water, then the branched structure disappears and
ers form at an air/water interface due to the amphiphilic narather compactalmost circular on some scalmorphologies
ture of the molecules in question. Typical systems includeare observed. It is one of the goals of this paper to show that
fatty acids[8] such as pentadecanoic acid, or phospholipidghis is attributed to bulk diffusion.
[2] such as dimyristoylphosphatic adiBMPA). In the theory of traditional growth, one of the most im-
Besides their natural interest—these systems often repréortant achievements in free crystal growth during the last
sent the principal component of biological membranes—thdlecade is the resolution of the velocitgnd tip radius se-
physics of nonequilibrium patterns in these systems differdection dilemma of a growing dendrifé3,14). Usually when
from that of more standard alloy solidification in two man- a solid alloy is grown at the expense of its undercooled melt,
ners. First, these systems are unique truly two dimensiondhe predominant growth morphologies are dendfiticcom-
objects on the atomic scale. Hence the growth of domaingletely faceted if the surface is below its roughening transi-
between different phases is a problem of evolution of a ondion). Dendritic growth results because the fréwhich is a
dimensional interface where we expect, for example, an ersource of latent heat generatjohas to heat a large bulk,
hanced role of statistical fluctuations. The second distinctiosince the temperature can nowhere exceed the freezing tem-
lies in the ability to act easily on several parameters to whictPerature. It is now well established that a planar front cannot
the growth structure may be quite sensitive. For example, thgrow at a constant speed. For such a geometry, the position
molecules may be quite susceptible to fit¢ modification.  increases as/t in the course of time. This is the so-called
This results in interesting behaviof$0]. One can also de- similarity solution, since the diffusion field does not depend
vise a setup where the growth dynamics may be limited byseparately on the spatial coordinateand the temporal one
added impurities which can either be miscible or not in wa-t, but only on the combinatior/ \/t. The absence of a planar
ter. In the latter caséimpurities are not miscible in water front solution moving steadily can be traced back to a dimen-
the growth pattern is strongly branched or occasionally densional constraint: given the physical parameters that enter the
dritic. The seldom nature of dendrites may be a signature gproblem, it is not possible to construct a quantity having the
the weakness of anisotropy of the growing crystal, may bealimension of velocity.
related to the presence of a hexatic pn@eor (more prob- It turns out that the similarity solution is unstable: the
ably in our opinion is due to the importance of noigeoise  front undergoes a morphological instability. Since, as stated
is expected to destroy the needle crystal when its magnitudabove, the front has to heat a large bulk, it has to curve as
is large enoughstemming from the one dimensional charac-much as possible, so that far behind the advancing tip the
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solid becomes asymptotically planar. We can use the feature

of the similarity solution for the asymptotic solution in order monolayer — g?_ X

to guess the famous parabolic solution in the absence of sur- ¢
face tension due to Ivants¢®5]. Thus from a simple analy- 3 .?

sis of similarity the equation relating the supersaturation to .? z z

the Pelet number p=pV/2D, wherep is the radius of cur-

vature,V the tip velocity, and the diffusion constantcan %

be derived. Depending on the supersaturation and theaqueous solution
strength of crystalline anisotropy, the pattern can be dendritic
with a fractal character or a compact one, or having a rather
branchedor seaweepstructure which can be fractal or com-
pact as wel[16]. We shall devote a brief review to the last o ) ) ) )
decade of development. wherg a similarity solution existévhich falls broadly in a
The problem we are interested in has brought several nef§endritic or branched pattems

features. Here in contrast, due to diffusion in the bulk of 'Nhe scheme of this paper is as follows. In Sec. Il we
water, there exists a planar front solutiemore precisely a Present our model of growth of a condensed phase at the
straight front solution since the growing front of our system&XPense of its expanded phase, where the growth is limited
is one dimensionalmoving at a constant speed. This is at- by surfacg apd bulk impurity diffusion. Section Il is devoted
tributed to the appearance of a length scale: the diffusiof® @ qualitative analysis of the model together with a short
length of an impurity(which is rejected at the front, for Survey of traditional growth. In Sec. IV, after arguing physi-
examplé before it enters the underlying bulk. This quantity Cally about the existence of a straight front solution, we
is defined agt,=D.r, whereDy is the diffusion constant study in detail this solution from the mathematical point of

and 7 the residence time on the surface. This quantity lies ipview. Section V deals with the linear stability analysis of the

the range of lum. From a dimensional analysis we argue _straight front solution. In Sec. VI we present the gauge-field-

that the front velocity is fixed by~ (&,/7)A whereA is an invariant formulation, and discus; its far reaching conse-
appropriate dimensionless supersaturation. The existence plences. We then present the main outcome of the analysis.
bulk diffusion completely destroys the similarity solution. ection VIl sums up the results.
We have analyzed the stability of this solution and found that
it becomes unstable above a critical supersaturation. The ex-
istence of a straight solution should have important conse-
guences on the subsequent dynamics, and this is what will Let us consider a film of Langmuir monolayer growing on
emanate from the present work. First, while the front bethe water surface as schematically shown in Fig. 1. In reality
comes unstable, and even if it starts developing a needle, fahe experimental device is different from traditional ones
behind the tip, the front should reach asymptotically awhere growth is usually induced by applying a two dimen-
straight front solution moving at a constant speed given byional pressure. An interesting alternative is to use the so-
vcos@)~(&/7)A, where 6 is the angle between the growth called “Gibbs™ protocol[7] which consists of depositing a
axis and the normalthe opening ang)e andv is the axial microscopic droplet of the amphiphilic system under consid-
growth velocity. This implies that the front cannot be moreeration on the water surface. At ordinary temperatures there
curved beyond this limiting angle. Physically, diffusion in is a layer of “expanded” phaséP) which spreads out on
the bulk plays an efficient role of a short circuit, precludingthe water surface. The droplet thus serves as a reservoir
thereby development of branched structures. We expeathose chemical potential is fixggvhile the number of par-
therefore the morphology to be compact as compared to thicles inside fluctuatgs Then, by lowering the temperature,
case where impurities are not miscible in water. the expanded phase undergoes a first order transition into the
Above the straight front solution threshold, nonlinear ef-condensed one. We first consider a straight boundary where
fects come to the fore. Instead of using an integro-differentiathe condensed phag€P) is advancing in they direction.
formulation of the free boundary problem, we shall make uséVe shall assume that the growth is limited by impurity dif-
of general concepts of symmetry, combined with a gaugefusion. We consider the general case where impurities are
field-invariant formulation analogous to that developed formiscible in water, so that both diffusion on the surface and in
free dendritic growtj 13]. We show by using only the con- the underlying water bulk are permissible. logfp,t) be the
cept of existence of a straight front solution moving steadilyimpurity concentration at the surface of water, andr,t)
and the above mentioned formulation, that, for example, aheir concentration in the bulk, where=(x,y), and
circular solution moving at a constant speed exists as welk=(x,y,z). Since we shall be first interested in a straight
Then, by concentrating on a nearly curved front, we showfront advancing in they direction at a constant velocity
that dynamics are described by a Kuramoto-Sivashinskywhich will ultimately be determined if such a solution is to
equation[17]. For a strongly curved fronffor example, an exist, we find it convenient to write the transport equations
initial circle that becomes unstabjeve shall show, based on in the rest frame. The surface and bulk concentrations then
the invariant of the metrics, that the existence of the straighbbey the following mass conservation equatiasBulk,
front solution leads to a completely different morphology
than that found when a similarity solution was possible. We
show, in particular, that the pattern in the presence of anisot- DV2c 9Cy _ 9C, (1)
ropy is not reminiscent of those which arise in the case v

impurities

FIG. 1. A schematic view of the experimental setup.

II. MODEL EQUATIONS

ay ot
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where D is the bulk diffusion constant, and the present study. Therefore we have decided not to make the
V2= 5?1 9x?+ 6%l 9y*+ 6%/ 972 is the bulk Laplacian(ii) Sur-  presentation too complex unnecessarily.

face The above equations must be supplemented with kinetic
equations at the front relating the lack of chemical equilib-
2 dCq dc, dCq rium to the mass current across the front. For a molecularly

DsVj CSJFVWJF D iz OZE' 2 rough front(a situation which is in principle expected to be

always fulfilled for a one dimensional objgcthemical equi-

where D, designates the surface diffusion constant, andibriumis i_nstantaneously established. Expanding the chemi-
V|2=(92/ax2+(92/(9y2 is the surface Laplacian. The last term cal potentials on both sides of the front about a reference

on the left hand side of Ed2) stands for the exchange with point, anq using_ well k”OW” thermodyr_lamical identit_i_es to-
the bulk, as will be clarified below. Indeed the quantity 9€ther with an ideal solution assumptipt8], the equilib-

(dc,19z),- is the mass flux across the water surface. Thigium cqndition then implies a condition on the impurity con-
flux is composed of two contributions. There are impuritiescemrat'on at the front

in the bulk characterized by a “diffusion” length, or by a
“drift” velocity D/¢ that will enter the surface from the
underlying bulk. Similarly, impurities which are adsorbed on

water are characterized by a diffusion lengih which is \ here we have introduced a dimensionless supersaturation

perhaps better represented by evoking their residence tim&z(TM—mcS —T)/(mAc)=(c®—c,.)/Ac. .. is the sur-
00 s s + LUsoo

7. The impurities Ieav_g the surface towards _the _bU|k a 3ace impurity concentration far ahead of the front,
frequency 1#. At equilibrium mass balanc.e. |mplle§ that do= Ty, /(mAcLa) is the so-called capillary lengtiwhere
(D/€§)c;"=cgY 7 (7=x2/Dy). In an out-of-equilibrium situa- Ty is the melting temperature of the pure substantés the
tion there is a deviation from this equality, which must beiqiqus slope for the coexistence of the two dimensional CP

counterbalanced by a flux across the syrface. Therefore_t%d its melt,y the line tensionL the latent heat of melting,
bulk-to-surface mass exchange is described by the foIIowm%nd a the molecular length and « is the front curvature

kinetic relation: counted to be positive for a convex profile. The
#-dependent prefactor in Ed5) accounts for line tension
ac, Dc, cs
%, -
z=0

SO\ donlLt pootdn)],

= (3) anisotropy, whergs measures the strength of anisotropy, and
9z 3 T 6 is the polar angle between the growth axis and the normal
to the front. For definiteness we have chosen a fourfold sym-
Before analyzing the order of magnitude of different parammetry_ In the expression for the Supersaturamm' is the
eters introduced above, we shall complete our description. Alemperature of the system ac is the surface concentra-
the front, whose instantaneous position is denoted Dbyion of impurities at the growing interface for a straight front.

y={(xt), the jump of the normal derivative is related to the  Fjpa|ly, the boundary condition far away in the bulk reads
normal growth velocity by the continuity equation

Ao D 9Cs aCs
e 1y R
7g+ -

y= y=¢~

c,(z=d)=cpe, (6)

, (4 which corresponds to the initial impurity concentration in the
bulk. Hered is the width of the diffusion layer in the bulk.
The set of Eqs(1)—(6) completely describes front dynamics.

whereAc is the miscibility gap(which will be taken con-  gefore proceeding to the analysis, we shall first present a
stany, andv, is the normal growth velocity. Here mass dif- qyalitative description.

fusion in the CP is neglected since the corresponding diffu-
sion constant is several orders of magnitude smaller than that
in the EP. Similarly, latent heat generation will not be ac-
counted for given the fact that it diffuses much faster than According to Eg.(3), the surface-to-bulk current ex-
the mass. Expressio@) must be understood as containing change is given byDc,/£. From a dimensional analysis
contributions from diffusion ahead and behind the advancing/¢ is a frequency multiplied by an atomic distance. Of
front as schematically represented in Fig. 1. In principle, arcourse at very large temperature the time needed for a mol-
impurity which is rejected behind the front has a finite resi-ecule to enter the surface from the bulk is fixed by a molecu-
dence time on the CP/water interface before it diffuses poslar frequency. However, at ordinary temperatures, this is a
sibly towards the bulk phase. In principle, one has to write arthermally activated process, and there is a need to jump an
exchange mass balance between the CP/water suvieze  energy barrier, which is nothing but the adsorption energy.
molecules have the ability to be adsorbedd the underly- Therefore

ing water phase. This should amount to an equation similar

to Eq.(3) with different kinetic coefficients. While this ques- D U, /keT

IIl. QUALITATIVE ANALYSIS AND SHORT REVIEW

tion can easily be incorporated in our description, we shall Ewyae_ @)

assume a symmetric model where the exchange between the

adsorbed molecules and those in the bulk are identical fowherea is a molecular lengthy a molecular frequency, and
both y>¢ andy</{. Since the involved adsorption energy U, is the adsorption barrier. Moreover, diffusion in the bulk
barriers are of the same order of magnitude on both sides, wienplies a diffusion barriet) 4, so thatD~ vaeYa’keT, |t

do not expect this assumption to alter the main outcomes dbllows that
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§~ae(ua_ud)/kBT_ (8) Ceq_ Co

_ % A= Y'2/4D v

| | o I oV D gy JY e dY'+c.,, (12
If the adsorption process is less favorable than the diffusion 0

one (as we may expektthenU,>Uy, and consequently where we have imposet{Y=x)=c.. andc(Y=yg)=Ceq.
&>a. That is to say, the length is not a molecular “mean The quantityy, (undetermined for the momeris defined in
free path,” but may even reach values in the range of Isuch a way that the instantaneous front position is given by

wm given the exponential dependence on energy scales. Qn=y,\'t (the subscripti refers to the interfade Since

the other hand, at equilibrium E¢B) yields yi/\t=Y;, it follows that the front position in the similarity
variable is given byy;=y,. Hitherto, we did not evoke mass
Dr cdf conservation at the front, which will result in a closure con-
?= cea (9)  dition relating the supersaturation to the velocity amplitude
v Yo (Yo has in fact a dimension of D). Assuming for sim-

) o ) plicity the one sided model, mass conservation at the front
The quantityc>? corresponds to the initial concentration for a dy/dt=(D/Ac)(dc/dy) becomes yo=—(2D/Ac)(dc/

given experiment, while%is the equilibrium concentration dY)(Y=y,). Using expression(12), we obtain the sought
of the adsorbed molecules. The bulk concentration is an eXelation
perimental controlled quantity while the surface concentra-
tion can be estimated from neutron scattefibg]. The order \/;yo 2/(4D)
of magnitude for the ratio can thus be extracted and hence an A= ﬁeyo erfdy,/(24/D)], (13
estimate forD7/&. Using experimental values afg? and
csd, we find thatDr/é~0 um. Dsr=£&((~ D7 since  where erfc) = (2/\7) [ “e~’dt is the complementary error
D¢~ D) represents the diffusion length on the surface beforgynction.
the molecules have a chance to enter the bulk, which is of the |n reality such a solution is unstable. Let us have a short
same order ag for a situation where miscibility in water is digression. It is a bit puzzling at this juncture to note that
sufficiently favorable. Theré~0 um. We shall keep in usually one talks about the instability of a straight frpb@]
mind these orders of magnitude in the following. moving at a constant velocity, which is not only unstable, but
Since the present paper is intended also for researcheyghich does not existexcept forA =1)—we may talk about
from different disciplines than crystal growth, we have felt it g solution which isstructurally unstablgin the sense that an
worthwhile to provide a brief review of the last decade Ofarbitrarily small deviation fromA=1 completely destroys
developments in the study of interfacial pattern formationihe existence of such a solution.
during free growth(as opposed to directional growthn the We expect in such a situation to have a dendritic growth.
absence of a bulk-to-surface exchange, the length scales disendrites take place because the front, which rejects impu-
cussed above{(and ;) are absent. This entails thdbr a  rities (or generates latent heat in a thermal model which is
straight geometrywe are left with a problem which is free formally identical to the present onkas to undersaturater
of an intrinsic length scale. The only parameters that entefo heat in a thermal modeh large bulk of melt, since the
the model areD andV. Therefore a straight front solution concentration can nowhere exceed the equilibrium @re
moving steadily at a velocityy cannot exist as a conse- the temperature can nowhere exceed the freezing tempera-
quence of dimensional constraints. In order to fix a velocityture). lvantsov[15] has indeed shown that the free surface
we need to combin® to a length scale”, or a time scale tension problem admits a parabolic solution moving steadily.
7. Had such scales been available, then the velocity scaf€his solution can also be understood from the above similar-
would have been fixed b®// or D/ 7. The only possibility ity solution. Indeed, if the front has to undersaturate a large
to have a straight solution is that the velocity be not constanbulk, it has to curve in such a way that far behind the tip of
in time. Upon introduction of the time variable, a natural the advancing solid, the front becomes more and more
choice for velocity isyD/t (up to a dimensionless factor ~straight(see Fig. 2 There the coordinate must reach as-
This implies that the front position behaves @t. Thisis  ymptotically the solutionx=x,+t according to the above
nothing but the similarity solution to the diffusion equation similarity solution. If a needle has to move at a constant

(written in the laboratory frame speedy=uv,t, the only way to have a shape-preserving solu-
tion is to imposey~x? which is a parabola. Setting
Jc y=—x%/(2p) (Wherep is the parabola radius of curvatiye
DVfc= FL (10 we immediately identify thaky,= \2pv,. Using in relation

(13) the quantityx, instead ofy, we get immediately the

hich holds in the ab ¢ surf to-bulk h L famous lvantsov relation which is usually obtained after sev-
which nolds in the absence or surface-to-bulk exchange. e(-{'ral, more or less tedious, mathematical manipulations

Y=y/\/t be a new variable, and assume toéy,t)=c(Y) [15,20
(the similarity assumption then Eq.(10) becomes T

A= /mpePerfe(\p), (14)
d’c  Ydc _ . . .
o (11) where A= (ceq—C.)/Ac is the dimensionless supersatura-
dy 2.dy tion, p=puvo/(2D) is the Pelet number. It can easily be

checked that relatiofil4) holds forA<1. In the limit where
the solution of which is easily found to be given by A—1, p—oo, which corresponds to the limit of a straight
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FIG. 3. Dendrite grown in a Langmuir monolayer of D-myristol
alanine, as observed by epifluorescence microscopy. The bright
halo around the dendrite corresponds to the diffusion layer of the

FIG. 2. A parabolic solution showing the use of similarity solu- fluorescent dydinsoluble in waterin the EP.

tion.

Uwaha and Sait¢21], who have provided a beautiful inter-
front. Relation(14) shows that there exists a continuous fam-polation between the fractal pattefwhich is expected for a
ily of solutions for the coupled,v,), whereas experiments vanishing supersaturatipand a dense ong@r what is usu-
show that a unique solution is selected for a giverThis is  ally called the Eden morphologyvhich should be attained
the Ivantsov dilemma which has given rise to a myriad ofon increasing the supersaturation. More recently Brener,
studies in the 1980EL3,14. The Ivantsov dilemma follows Miller-Krumbhaar, and TemkifiL6], using Uwaha and Sai-
again from dimensional considerations. Indeed, in the abto’s results, along with previous analyses, have provided a
sence of surface tensidier more precisely line tension in nice phase diagram in the plar(supersaturatiom\, the
our problem, the capillary length introduced in E(p) does  strength of crystalline anisotropg). They distinguish be-
not enter the problem, and again the same dimensionalveen dense and fractal patterns. Very schematidllfor
analysis evoked above for a straight front holds. In order taow A and 8 we expect “fractal” patterns. For loy8 we
remove this degeneracy, we need to introduce surface teexpect ordinary fractals, while on increasifd‘fractal den-
sion which leads to the appearance of a new length scalgrites” should appeafthe structure is fractal, but it still
do. A dimensional requirement is necessary but may not b&eeps the memory of an underlying snowflakelike pajtern
sufficient. This is what happens precisely in the present prokxii) Large 8 and largeA: here the pattern is denger com-
lem. The Ivantsov dilemma has in fact been resolved onlypach. For smallB the dendrite identity is lost, and the result-
after the recognitiorti) that surface tension acts as a singularing pattern is called compact seaweed. On increaginden-

perturbation andii) that crystalline anisotropy is necessary dritic patterns which are compact are expected.
in order to lead to dendrites. In the absence of crystalline

anisotropy{which enters in a natural way in line tension; see\,, GROWTH IN THE PRESENCE OF BULK-TO-SURFACE
Eq. (5)], a needle crystal can initially grow. However, in the EXCHANGE: STRAIGHT ERONT SOLUTION
course of time the needle suffers from successive tip-splitting

instabilities leading ultimately to a branched morphology. As discussed above, allowing for bulk-to-surface ex-
Anisotropy stabilizes the tip; it leads to a stable pattern havehange provides us with several length sc@les\d¢;. Be-

ing features similar to those which arise during snowflakefore resorting to a systematic analysis we shall first focus on
growth. As displayed in Fig. 3, a dendrite generates sidethe qualitative aspect. The impurities which are rejected at
branches as it moves. The conventional wisdom is that sidehe front will diffuse on the surface, and their residence time
branches result from noise amplification. Indeed, a small peris given by . Their diffusion length isés=+/Dg7. If this
turbation on the tifsay, of thermal origijp is exponentially  length is infinite, then we expect no exchange between sur-
amplified as it moves downwards. While an initial perturba-face and bulk. We are back to the traditional situation. The
tion is initially small (presumably of the molecular size, due length must be finite. Thug, appears as a relevant length
to the very nature of thermal nojsea protuberance of ap- scale. From a dimensional analysis the scale of the growth
preciable amplitude may have grown at some distance fromelocity is given byD/&;. The growth velocity is propor-
the tip. For example, in numerical solutions, the numericational to the driving force, so that

noise is sufficient to produce sidebranches. Sidebranch activ-

ity is recognized as being “dangerous” against tip stability. Ve EA (15
More precisely, the noise amplification is stronger and stron- T

ger (and therefore the point where amplification has attained

an appreciable amplitude is closer and closer to theatieen ~ Typically Ds~10"% cm?/s and é~10* cm, so that
anisotropy becomes gradually weaker. We expect a destrust~10 %A cm/s. The lack of information on the phase dia-
tion of needle crystal solutions, and the emergence ofiram of the amphiphilic system precludes a precise evalua-
branched structures. Whether a branched solution may bé&ion of the dimensionless supersaturation. Usually, in ordi-
come fractal or not was addressed in an interesting paper byary experiments, a small supersaturatidbr-0.1 or even
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0.01 is largely sufficient to initiate the growth. This amountsthe contribution of the function. The remaining parts of the
to V in the range of Jum/s, which is consistent with experi- operations are straightforward. Using the fact that

mental observationgl1]. w(q,z=d)=0 [which follows from Eq.(6), and Whereq

Let us now proceed to the calculation. Our starting pomtd
. : esignates the variable in Fourier sphwe can expresw as
is the set of Egs(1) and (2), where we look for a straight 9 P P
a function ofu. The result is

front solution moving at a constant speédWe find it con-
venient to set  u=cy(y)—(7D/&)c,|,—0 and ((q) sinfr(z—d)

w=c,(y,z) —C,. . Equations(1)—(3) become W= —
o(¥,2) q SERE) W= costrd) (19)

D a2w+ W V&W—O 16 h
Wg‘ Ez‘ W— , ( ) wnere
&2 W u au Eow =—[Jg*+V2q?D 2+ q?]¥2
. 55 LU [ S o, f q"+Veq q°]
TEW? T £y, q
17

STV - (20)

owl u 8 \/—

% |70 T where the+ and — branches are adopted fg<O and

. . . g>0, respectively, to ensure well behaved solutions. Using
Use of Fourier transforms with re§pect 'Eo tgna:oorAdlnate the surface equatiofi7) where the discontinuity ofu/dy at
leads to algebraic equations relatingandu (wherew and  the front(such a discontinuity is related to the growth veloc-
u are Fourier transforms ofv and u, respectively. Care ity) arises after integration by parts, together with Eif),
should be taken, however. Indeetll/ dy is discontinuous at and exploiting the fact that the normal veloci) is related
y=0. Therefore when integrating by parts we should retairto the jump ofdu/dy, we obtain

~ VAc 1
"D, g7+ & T o Manf(rd)] - 1qVD; 1+ (60 Nanf(rd)] @
In real space the concentration fields can be represented by Fourier integrals
_ VAc fw g e 'y -
u(y)= 27Dg) - q[q2+§g2+q2(§r)*1tanr(rd)]—quD;1[1+(§r)*1tan}‘(rd)]' 22
_ VAc foc sintr(z—d) e lay 03
WOD= 505 ) 9% costrd) [+ £, 2+ qP(ér) Tanhrd)]—iqvD. 11 (¢r) ttanhrd)]’ 23

Finally the growth velocity as a function of the supersaturation is determined by making use of the conditig{iy)oat
y=0 [Eq. (5)] which takes the following form in the new representation:

e Co=uly—o+ E5¢ Wly_g,0- (24
In view of Egs.(22) and(23) the growth velocity should fulfill the equation

Ae jw 1+(r¢) ‘tank(rd)
" 27DgJ . [q 24+ £.24+92(ér) " Manh(rd)]—iqVDg {1+ (ér) ‘tanHrd)]’

(29

We recall thatA = (cg%cg..)/Ac represents the dimension- other lengths. This limit corresponds tBmin(¢,£)<1. In
less supersaturation. Equati¢2b) relatesV to the driving  this case the integral in E¢R5) reduces to the evaluation of
force A. Note that this is a nonlinear equation since the quan-
tity r which appears in the integrand is parametrized by the " eiay 2D
velocity [see Eq.(20)]. The integral can easily be tabulated, |im f dg— i = S )
andV as a function ofA can then be extracted. Let us first (y0J—= G- +& “—iaVDs " V\[1+4DZ/(V2£)
focus on a limiting case where further analytical results can (26)
be obtained. This is encountered when the impurities reach

their bulk value €,..) on short scale as compared to all the It then follows from Eq.(25) thatV is given by
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10.0 L(x,t)= el et et (30)
0
=
> 80 where(, is a constant amplitude. Note that because Fourier
s modes do not couple in the linear regime, it suffices to con-
g 60 sider one Fourier component only. In E¢88) and(29) k is
g the perturbation wave number aadis the amplification or
£ 40 attenuation rate that we wish to determine. The transport
< equations read
>
‘g 2.0
w
0.0 - k2W1+ VHW]_: 0, (31)
Undercooling A (Arbitrary units)
2 2 2 2
FIG. 4. The behavior o¥ as a function ofA. Full line: analytic D. —Kk2 9°uy _ ékz é& W1 _ﬂ _
e - s U+ —=3 Wy F 2 =
theory [Eq. (27)]. Dotted line: d=¢=¢,=1 um. Dashed line: ay I3 -0 & oy -0 T
§=§&=1 um, andd=2 pm. (32
\/:2% A ] (27) The kinetic equation takes the form
& J1-A?
Equation(27) is what was anticipated from a dimensional oW, uq
; ; ; D—- =——. (33
analysis for a small supersaturation. Thaseems to diverge az | _, T
z=

for A—1 is not a surprise. This simply means that the liquid
is supersaturated at the solidus line, and that therefore the

solid should grow instantaneously. Of course before that rett must be noted that the boundary conditions at the front are
gime is reached, our assumption of instantaneous chemicg pe evaluated at= £, and that therefore the zeroth order

equilibrium at the front breaks down. Kinetics are expectedso|ytions are nonlinear functions ef and they will contrib-
to be relevant when the diffusion tini2/V? becomes com- e to the first order ire as well. For example, Eq4) be-

parable to the freezing timgV wherel is the CP-EP tran- comes to first order i
sition extent. Typicallyl is a molecular lengthl~10"8 cm
at mos}, D~10 ¢ cm?/s, so that the order of magnitude of

the growth velocity where kinetics become decisive is given duy 8u,

by V~D/I~10? cm/s, which is several orders of magnitude wfAC=— DS{ ( WJF 51(9_),2)

larger than what we are interested in. This corresponds to a y=07"
supersaturation of the ordek~1/(1+1%/¢2)Y?~1. Both du;  PPug

Egs.(27) and(25) are understood to be valid fdr not too —(W+ 513—),2) } (34
close to unity. y=0-

Figure 4 showd/ as a function ofA for several values of
the parameter§, &5, andd, and comparison with expression | . .
(27) is made. It is clear that the latter captures the essentia\'}’h'Ie the condition at the front oo, [see Eq(5)] leads to
qualitative features. In conclusion of this section we have
shown that diffusion in the bulk leads to the existence of a

2
straight front solution moving at a constant velocity. It can ACkzdo§1=U1|y=o+ 51% + é W1|y=0z=0
also be shown that the similarity solutiqwiewed as an Nl ¢ '
asymptotic solutiopis destroyed by bulk diffusiof22]. The
natural next step is to study the linear stability. 51% ) _ (35)
y y=0z=0

V. LINEAR STABILITY ANALYSIS

We study regression of fluctuations by looking for solu- Finally the boundary condition far in the bulk amounts to
tions of the form

u(x,y)=ug(y)+ euy(y,z)e** !, (28) w;(z=d)=0. (36)

W(X,y,2)=Wo(y,2) + ew,(y,z)e ", (29)
The set of Eqs(28)—(36) constitutes the linearized version
The subscript zero refers to the straight front solution, andf front dynamics. Using the same procedure as in the zeroth
€ is a small parameter. The instantaneous front position isrder case, we can express the deviatiprandw; in terms
written as of Fourier integrals. We shall give directly the results
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(y) & wAC+2r92uo f“’ q e-lay @7
U(y)=o—| = +2——> ,
7 2m | D oy y=0/ /== q[k2+q2+§s_2+ ¢ 1k +g’tanidvk*+9?)]

gl / wAc &Zuo
2 +2 2
27T§S\ Ds ay

Wl(yaz) ==

"

B sinhyk?+g%(z—d) e~ lay
Xquzz 2,42 20 20 =24 ¢—1 1,21 A2 21 +24\1 (38)
—= K2+ q2cosh Vk?+q?d) [K2+ g2+ & 2+ & VK2 + qtanh( VK2 + g2d) |
The dispersion relation is obtained by making use of B6). This yields
wAc+202uo F dq 1+ (&VKkZ+ g% ttanh(VkZ+ g%d) Acd k2 auo+ 5. 1MW
— — =-Ac o — .
Do “ay®|, o) J-w27 [k2+ g2+ £, 2+ £ 1K+ qPtank k2 + g2d) ] “olay Ty ool
39

This is the SOUght dispersion relation which relates thq:)y Settingé)wlo’}k:()) Corresponds to a wave numu%ax
growth ratew to the wave numbek. As for the straight front  anq a growth rate . given by
solution, the integrals ovey can be tabulated. It is instruc-

tive, however, to focus on the situation wheteis small v—1 Do (v—1)2
; ; ; ; K =§_1 —, Omac 3 (44)
since a complete analytical evaluation of the integrals be- max— €s v+ 1 max— g3 ()
comes possible. In this limit, andw, are easily found to be s
given by The v-dependent prefactors are of order unity above the

threshold. This means that the length scale of the pattern
corrugation is roughly of the order @f, and the temporal
scale for the evolution of the instability is of the order of
£31(dgDg) ~ (&s/do) 7. Since we expect thaf/dy~107—
Wo(y,z=0)=0. (41) 103, the time scale for the evolution of the instability should
give a direct access to the estimaterofn the experiment of
The last equation simply states that the bulk concentration isenneet al. [11], the time scale for the instability is of the
homogeneous; it simply serves as a reservoir for impuritiesgrder of 1 sedor a few seconds This entails thatr can

AcVég
Uo(y)=—5—e e, (40
S

It is straightforward to show that E§39) reduces to roughly be estimated to lie in the range 16-10 2 s.
©=2D — dok? K2+ £ 7+ £, 1A (VK + 532—551)](- ) VI. NONLINEAR REGIME
42

The linear stability analysis provides us with the critical
» has two contributions: the first one is proportionald®  condition for the onset of the instability, and the range of
(which is proportional to the line tensipand it is stabiliz-
ing. The second one is destabilizing and is proportional to 20 : : ,
the driving forceA. This expresses the enhancement of the
diffusion gradient ahead of the front due to a protuberance.
Thus the stability of the straight geometry results from a
compromise between these two antagonistic effects. Further
analytical results follow. A close inspection of E2)
shows that the bifurcation from the straight geometry into a
corrugated one occurs fér— 0 (actually this result holds in
general and can be traced back to translational symmetry in
the y direction. In the smallk regime Eq.(42) reads to
leading order

Growth Rate  (Arbitrary units)

Dsdo 2 2,4 2%.0 05 1.0 15 2.0
W= &s L»=1) K-+l §Sk /2]' 43 Wave vector k (Arbitrary units)
wherev=A&;/(2d). The straight front is unstable if>1 FIG. 5. The growth rates as a function of the wave number.

and stable fow<<1. The critical condition occurs fov=1.  Fuyll line: unstable. Dashed line: stable. Perturbations are analyzed
Figure 5 showsw as a function ofk (which conserves the ase/®**t wherew is the growth rate and the wave number.
same qualitative feature in the general ¢agmve and below Wave numbers havingn>0 (w<0) correspond to unstable
the instability threshold. The fastest growing mddbtained  (stableé modes.
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40.0 ' 40.0 ,
20.0 _ 20.0 - ]
) )
£ =
: >
2 8 00+t
3 <
< >
>
-20.0
-20.0 i
00— l ' 20.0 40.0
.40.0 ‘ , ‘ -40.0 -20.0 00 ) '
240.0 -20.0 0.0 20.0 40.0 (a) X (Arbitrary units)
X (Arbitrary units)
(a) 40.0 T
40.0 T
200 +
200 - i _
2
=
=1
0 >
"‘é) g 0.0
> 2
2 <
g 0.0 ] N
s}
<
> -200 |
-20.0 4
-40.0 ‘ L .
-40.0 -20.0 0.0 20.0 40.0
(b) X (Arbitrary units)
-40.0 s : .
-40.0 -20.0 0.0 20.0 40.0 40.0 ,
(b) X (Arbitrary units)

FIG. 6. A typical pattern when the constant velocity solution
exists. Here Eq(49) is solved withv,, given by Eq.(47). The 20.0 -
parameters used arec=1, ay=a;=a,=1, and b;=[1

—vcos(4)]. Other choices led to the same qualitative featuf@s. 0

No crystalline anisotropy ¥=0), (b) with crystalline anisotropy §

(V=01) ;‘_—E 0.0 |
g

those perturbations which are likely to grow first. If the sub- >

sequent morphology is to be determined and/or the long time 200

behavior to be ascertained, then a nonlinear analysis is nec-
essary.

We may use a Green’s function technique in order to
derive a nonlinear integro-differential equation for the 400 . ‘ ‘
CP-EP boundary. This treatment will be postponed to the -40.0 -20.0 0.0 20.0 40.0
future. Here we shall focus on rather general nonlinear fea- () X (Arbitrary units)
tures based on symmetry arguments together with a gauge-
field-invariant formulation.

This method consists first in writing the evolution of the  FIG. 7. A typical pattern in the presence of similarity solution.
geometry. Because of the one dimensional character of thg), (b) No crystalline anisotropy®=0), (c) with crystalline anisot-
boundary, we shall be concerned with a string geometry. Letopy (v=0.1). In the simulatior(b), we have implemented in our
r(a,t) be the instantaneous position of the “string,” where numerical code rules which mimic the repulsion. Other parameters
a is a string parametrization which can be chosen at libertyas used in Fig. 6.
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to be time independent. For a closed geometry the tangentia®
velocity is a gauge and is fixed once the parametrization is
fixed. Let k(s,t) be the curvature, whergis the arclength
element, and , the normal velocity. The curvature obeys the
integral equatiori13]

K
at

&2
= | —+ 2
((952 K
S

ok (s
Un— EfodS,KUn (45)

and the polar angl@ (between the normal and some axis,
sayy) obeys the equation
FIG. 8. Observation of the growth of two dimensional solid
—— " | ds' kv, (46) domains in the dodecanol monolayéd], over a subphase contain-
aJs 0 n ing 1.9 nM octanoid acid. Left pangdH=12 adjusted by NaOH. In
this case impurities are miscible in water; right panai=2 ad-
As in most gauge problems, a gauge-invariant formulationiusted by HCI addition. Here impurities are not miscible in water.

introduces non-locality. Note that the physics is contained irkhang equatioi24], which has been widely used as an at-

Yn: tempt to describe kinetic roughening during molecular beam
epitaxy.

a6
at
s

A. Generic limiting cases

Let us focus on the curvature evolution. The normal ve- B. Strongly curved fronts
locity should be invariant under reparametrization of the in- .. 5 more curved front we have analyzed the equation

terface. Therefore, is a function of the curvature and its ,;merically. We have used a parametrization of the front so
covariant derivatives only. The normal velocity must have  h4t the relative arclengts/L remains constant, wheie is

the following form: the total length for the closed geometry. In such reparametri-

P2k zation, it can be shown that obeys the equation
Un=C+a0K+a1K2+a2K3+'"+b1§+'"' (47) J az J S S
K K
—=—| s+« vt —| - P ds'kv,— [ ds’ :
it 952 T s\ L 3§ “Un fo KU“)

Note that the presence of the constant teris very impor-
tant. In the limit of a straight front, onlg survives, and we
recover our straight front solution moving at a constant speegind where the total length is governed by

c. For a circlex(s,t) = k(t) and it follows immediately from

Eq. (45) that k obeysk= —c«?. This equation is solved for ﬁ: § ds’ kv (50)
R=1/k=ct. That is to say, a straight geometry moving at a at n

constant speed implies that a circular geometry solution ex- . :
ists where the radius increases proportionally with time.  Numerical resultjusing Eq.(48)] reveals that the presence

We turn now to the case of a weakly curved front. We canOf the cqnstant terne (W_hich follows from the existence of
represent the front by its Cartesian coordindtest), where the S”?'ght_ front SO!Ut'(.)h I_eads to compact patt_erns as
s~x, and k~h,, (derivatives are subscriptedn the long shown in Fig. 6, while n its absence patterns “k? those
wavelength limit and the slow time evolutiof@ situation shown in Fig. .7 are prected. We note that in Fig. 7, a
encountered close enough to the instability threshdlds a  cascade” of tip splitting occurs and leads to a strongly

simple matter to show that E¢45) reduces to leading order branched structure. Here since our model is local, it does not
to prevent crossing, as expected from repulsion via a diffusion

field. By implementing rules in our code which mimic this
c repulsion, we confirm the above assertion about the “tip-

hy= —aghy,—b1hyyxxt Eh)z(, (48) splitting cascade’[see Fig. Tb)]. We plan to give a detailed
description of our finding in the future. Note finally that the

which is nothing but the Kuramoto-Sivashinsky equation, forpatterns shown in F.'gs'(ﬁ and a) b_ear a quite good re-
semblance to experimental observations of Leenal. (see

which we have already given a universal foundation in a 9
recent paper by using another philosopBg]. From the lin- 9. 9
ear stability analysis we have identified an instability which

must be here signified bg, being positive. For a physically

well behaved systerb; must be positive in order that the ~ We have developed a physical description of growth of a
fourth derivative plays the role of a short cutoff. Equationcondensed phase at the expense of the expanded one where
(48) is well known to produce spatiotemporal chaos. Hadimpurities are miscible in water. We have shown that diffu-

ap been negative, then there would have been no need tsion in the bulk completely destroys the similarity solution.
introduce the fourth derivativésince there is no instability, A straight front solution becomes possible. This is attributed
and there would be no need for a cujo8y adding a Lange- to a dimensional reason: bulk diffusion brings out a new
vin force tov,,, we would have obtained the Kardar-Parisi- length scale. We have provided an analytical solution for the

(49

VIl. CONCLUSION
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straight front and have analyzed its stability. We have arguedtatistical fluctuations must come to the fore and should
physically that the existence of a straight front solutionstrongly compete with the deterministic instability studied
should lead generically to a compact pattern. Our nonlineahere. It seems a bit premature on the experimental level to
analysis has confirmed our expectation. In this first paper wémpose an initial straight front which undergoes a morpho-
have focused on general features with regard to nonlinedogical instability at a critical speed, and thereby to study in
development. That is, we have used a geometrical represea-controlled way competition between noise and determin-
tation of the “string” combined with symmetries. We have ism. We are, however, confident that this should open new
shown that for a weakly curved front, dynamics fall onto aand decisive lines of inquiries in the near future.

universal Kuramoto-Sivashinsky one, which generates weak

“turbule_n(_:e.” For a s_trongly c_urved front compact patterns ACKNOWLEDGMENTS

are exhibited both with and without crystalline anisotropy.
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boundary between the condensed phase and the expandBedrge and P.F. Lenne. We are grateful to the “Centre Greno-
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