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Constraints, metastability, and inherent structures in liquids
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Void-size distributions have been calculated for the shifted-force Lennard-Jones fluid over substantial tem-
perature and density ranges, both for the liquid-state configurations themselves, as well as for their inherent
structures(local potential energy minima The latter distribution is far more structured than the former,
displaying fcc-like short-range order, and a large-void tail due to system-spanning cavities. Either void distri-
bution can serve as the basis for constraints that retain the liquid in metastable states of superheating or
stretching by eliminating configurations that contain voids beyond an adjustable cutoff size. While acceptable
cutoff sizes differ substantially in the two versions, ranges of choices have been identified yielding metastable
equations of state that agree between the two approaches. Our results suggest that the structure-magnifying
character of configuration mapping to inherent structures may be a useful theoretical and computational tool to
identify the low-temperature mechanisms through which liquids and glasses lose their mechanical strength.
[S1063-651%97)03805-1

PACS numbgs): 61.20.Gy, 64.60.My, 64.70.Fx, 05.70a

[. INTRODUCTION parisons of the two constraint versions are provided. Section
IV presents results of an analysis of the statistical geometry

The formation, characterization, and utilization of meta-of the shifted-force Lennard-Jones liquid, examined in both
stable forms of matter present challenges and opportunitigge equilibrium region of its phase-plane, as well as in the
throughout science and technology. All phases are involvedNetastable extension regime into the region of equilibrium
solid, liquid, and vapor. The usefulness of a metastable sutiquid-vapor coexistence. Void distributions have been ob-
stance in any given application normally depends on the abiltained for all of these states, both_ for the liquid itself, as well
ity to frustrate kinetic processes of phase change that cau@$ for the corresponding sets of inherent structures obtained
reversion to thermal equilibrium. The phenomenologicalPy Mapping particle configurations onto potential energy
classical nucleation theory has enjoyed substantial success finima. The final section, Sec. V, summarizes our resdults,
predicting such rates of phase change under many circun$fates our conclusmns, and attempts to predict the most pro-
stances of intere$tL,2,3, but its connection to the rigorous ductive directions for further study.
molecular theory of matter remains incomplete. Indeed,
many basic questions also remain about the nature of meta- Il. CONSTRAINTS AND THEIR EEFECTS
stable states themselvgs.

The present paper reports results of a theoretical study Under conditions of strict thermal equilibrium, the prop-
designed to enrich fundamental understanding of liquids thagrties of arN-body system can be represented by the canoni-
are superheate(.e., metastable with respect to nucleation cal ensemble. It suffices for present purposes to suppose that
and growth of the vapor phaseReal-world connections in- the system comprises point particle® internal degrees of
volve explosive boiling5], cavitation in turbulent flow}5,6],  freedom), and that the classical limit applies. Consequently,
bubble-chamber detectors for elementary parti¢l@s and  the canonical partition functio® in the following form pro-
the tensile behavior of sap rising in trd&3. The initial stage vides the thermodynamic properties at temperaflirand
of sonoluminescence experiments also involves cavitatiornyolumeV [12]:
owing to ultrasonic excitatiofi9].

Section Il below discusses the general theoretical strategy
of imposition of constraints designed to prevent vapor nucle- Q(N,V,T):(N!A?’N)*lf f e APNdry---dry. (1)
ation in a superheated and/or stretched liquid and the influ-
ence of those constraints on measurable properties of the
liquid. Primary interest in the present study focuses on sponHere A is the mean thermal deBroglie wavelengiB;is
taneously formed voids in the liquid medium, the largest ofl/kT, k being Boltzmann’s constant; awely(r,---ry) is the
which must be prevented to frustrate nucleation. Section Ilinteraction potential for thé&l particles located at;---ry.
shows how void-size constraints, both before and after confhe integrals in Eq(1) are restricted to the interior of vol-
figuration mapping to “inherent structured’10,11], can be umeV. The pressure equation of state emerges as a volume
employed to effect the desired metastable extensions; condlerivative,
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1(0InQ The metastable-state pressure correspondir@*tonvolves
=5\ v N T? (2)  the direct analog of Eq2):
in particular, this expression correctly captures the break in 1/{dInQ*
the pressure isotherms as the system crosses an equilibrium p* = B ( N ) )
N, T

phase transition curve in th&/(T) plane.
Nucleating and growing a new phase at a first-order phase

E;e:ir;sllt:lonndgfr;?fgy Iiz Ig:';tlnczlllr)]/ ddﬁ'ggrl]térﬁ)ircc;\ﬂdegng}gﬂ:?; dThis constrained-ensemble pressure contains an ideal gas
y y contribution, as well as contributions from the interparticle

Consequently, metastable extensions beyond the trans'tlolﬂteractions ©,) and from the constrainty,).

point, in temperature or density, are commonplace. The pres- Most statistical-mechanical modeling of liquidsiclud-
ence of a kinetic barrier to first-order phase change is tanta-

mount to bimodality of the canonical probability distribution N9 the_ present stu_dyassume thaby consists only of a_dd"
exp(~ Bdy), corresponding to virtually distinct and nonover- tive pair terms, which for structureless particles requires
lapping contributions that reside in different regions of the

N-body configuration space. The “bottleneck” region be- N-1
tween them has a low probability of occupation, at least for O =

- - - ' = rii), 6
modest extensions into metastability. N .2, le ¢(rij) ©®

In order to achieve a reformulation of the canonical en-
semble that accords with experimental observation of meta-
stability, a mathematical device must be provided to closavherer;; is the distance separating the centers of particles
the bottleneck, thereby trapping the system’s configuration ih and j. For some applications one might wish to assign a
the appropriate one-phase region even as the location of s@imilar form toWy. But as indicated above, attaining meta-
equilibrium phase change is passed. This constraint can a$tability generally require$Vy to realize a specific pattern-
ways be attained in principle by imposing an additional po-recognition capacity in much larger groups of particles than
tential on theN-body systemWy(r;---ry), that vanishes in  just pairs.
the desired one-phase region of the configuration space, but The volume derivative appearing in E@5) can be
is positive and arbitrarily large in the region that displays athandled by the same volume scaling tactic that has become
least some portion of the alternative and thermodynamicallytandard practice for the unconstrained canonical ensemble
favored phase. The discontinuity locus faWy in the [16]. Presuming that the volumé is cubical, the coordinate
3N-dimensional configuration space is a N31)- transformation
dimensional hypersurface that dynamically acts as a reflect-
ing boundary for the system point, returning it to the interior
of the one-phase region. r=Vv%¥%s (7)

The choice of specific form for the constraint potential
Wy will be dictated by the metastable phase of interest. Su-
percooled liquids and the glasses they form must be free dfauses the integrations @*, Eg.(3), to span a unit cube in
all but the smallest recognizable crystallites, &g, must S space, while permitting the volume derivative t(_) be carried
become large whenever any substantial local set of particle@Ut by the chain rule. The result of these operations may be
displays crystalline ordei11,13. Supersaturated vapors re- expressed in the following way:
quire Wy to be large if any substantial clustétrople) of
particles appearf2]. Superheated liquids, or liquids under 5
tension, must be free of substantial voids or cavities, so P*—B— A P *(Ndr—C 8
Wy must become large if such patterns exist anywhere in the B 3 0 ¢’ (rg*(rydr=C. (8)
liquid medium[14,15. This last case is the one examined in
the following sections of this paper.

Having selected/Vy for the application of interest, the Herep is the number densitil/V andg* is the pair corre-
modified canonical partition functio®* has the obvious lation function for the constrained system,
form

= B(PN+WY)
Q*(N’V,T):(N!ABN)—lf f e_ﬁ(®N+WN)dr1"'drN, ) f J’ e N N dr3 drN
p°9*(riz) =N(N—-1) :
(3) J ...J efﬁ(¢N+WN)drl...drN

with the same integration limits as before. BecaMgg has ©)
been chosen to be large and positive somewhere in the con-

figuration space, but is non-negative everywhere, we have and generallyg* will differ from the unconstrained-system

pair correlation functiorg. The constraint also affects the
0<Q*<Q. (4) pressure by generating the new te@m
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1 1
fo dspc - fo dsye™ PN (9 V) Wiy (Vs - Vs,
C= - - . (10)
f dSlX.”J' dSNZefﬁ(q)N+WN)
0 0

If Wy(rqi---ry) depends on the relative positions of the average interparticle separation, it was found that the system
N particles, but has no explicit dependence on volihe was overconstrained and artificially high tensions resulted
then the integrand in the numerator of expresgip® for  (i.e., the pressure was a function of the severity of the con-
C will vanish everywhere except at the discontinuity hyper-straind; if larger voids were allowed to develop, then the
surface oWy . Consequently, the numerator integral reducesequation of state was found to be essentially independent of
to an integral over that (8—1)-dimensional hypersurface the constraint. Overconstrained systems were found to be
of the N-particle probability function weighted by an amount easily identified by analyzing the distribution of void sizes
determined by the specific form &%y . When this type of within the superheated liquid. As long as the void distribu-
cons_trajnt is applied to the metastable-state problem,_ the dision had a well-developed, large void taile., sampling of
continuity hypersurface should occur where Meparticle  configurations that contain voids in excess of an average in-
prob_gblllty is small, at least for the modest_extent of meta‘terparticle separationthe pressure was independent of the
stability, as argued above. Then the contributerio the  consiraint. In contrast, artificially high tensions were pro-
pressure shou_Id likewise be small_. . duced when the constraint yielded abruptly interrupted void

An alterngtlve cla_sg of constraint functiokiéy ha_s_ vol- distributions, in which the second inflection point in the void
ume appearing explicitly as a scaling factor. Specifically, size distribution, associated with the appearance of the large

Wy=F (VY3 v 1), (11  Vvoid tail was absent.

Clearly, the use of the void-constrained ensemble is not
and in this event the key factor in the numerator integrand ofthe only means by which one can eliminate bottelnecks to
Eqg. (10) is the vapor phase in a superheated liquid. Recently, it has been

suggested that a constrained form of the inherent structure
9 (s, -5)=0 (12) formalism can be used to obtain the equilibrium properties of
oV ' superheated liquiddl5]. Stillinger and Webefr10] discussed
the separation of the dynamics of liquids into two distinct
ConsequentlyC vanishes identically for this class of con- contributions: sampling of various local minima of the po-
straints and it is only the difference betwegh andg that  tential energy hypersurface and thermal vibrations about
reflects the presence of the constraint. In the following secthese minima. The mechanically stable configurations of par-
tions we consider special choices for each of these tweicles at the local minima are called inherent structures and

classes of constraints. correspond to those states in which the net force on each
particle is zero. In fact, the potential energy hypersurface can

Ill. EQUATION OF STATE be divided into “basins,” which surround each inherent

IN THE INHERENT-STRUCTURE structure. At a given instant, the configuration of particles
VOID-CONSTRAINED ENSEMBLE can be uniquely assigned to a given basin by following a

steepest-descent trajectory and, hence, mapping the configu-
ration to the corresponding local potential energy minimum.
The determination of the equilibrium properties of a su-As the system evolves, the system configuration will sample
perheated liquid requires that void formation be suppressedarious basins along the potential energy hypersurface.
Therefore, the constraindVy should be chosen such that While in the basin, if the system is not found at the local
bubbles of some critical sizg.e., large enough to allow for minimum, the displacement from the minimum is simply re-
the spontaneous formation of the vapor pheme discour- garded as a “vibrational” displacement, most likely anhar-
aged from developing, a method quite analogous to the exmonic in character. In other words, at any given instant the
perimental techniques used to study superheated liquids. Yetystem is vibrating about a local potential energy minimum.
the rigorous evaluation of the constrained partition functionTherefore, the properties of the liquid are completely deter-
[Eg. (3)] using the above definition dfVy is, in general, mined in principle by the sampling of successive local en-
impossible for nontrivial systems. Fortunately, while mostergy minima plus contributions due to the anharmonic vibra-
constraints are difficult to apply analytically, they are easilytions about these minima.
imposed in computer simulations. In Ref.[15] constraints were applied to the inherent struc-
Previous computer simulation studigk4,17 have ana- tures in order to study metastability. Considering the one-
lyzed the effect of one such constraint, the void-constrainedimensional Lennard-Jones fluid, it was noticed that for den-
ensemble, on the equation of state of the superheatedties greater than a certain valpg(wherep=N/L, L being
Lennard-Jones liquid. In this ensemble, limits are placed othe system lengjh the system possessed only a single type
the maximum size of voids that are allowed to form in theof potential energy minimum, namely, the regular and peri-
liquid. If the largest such void was less than 1.5 times theodic arrangement of particles that spanned the system length.

A. Inherent structures
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For densities less thap,, however, two types of inherent wheres=0 is a progress variable indicating the extent to
structures were possible. The periodic arrangement of pawhich the descent trajectory has been followed. Starting
ticles can be maintained belowy,, causing the potential en- from an initial configuration §=0), a positive value ot
ergy local minimum to rise in value as the system isdisplaces the configuration along the direction of the nega-
stretched. However, another configuration of particles at dive of the potential energy gradient until it comes to rest
local energy minimum can be formed, corresponding to af{s—) at the appropriate minimum. Given an initial con-
arrangement of broken chains. The broken chains yield atfiguration of N particles, the simultaneous solution of the
solute minima, while the unbroken periodic arrays yieldN equations in Eq(14) quenches the system into a potential
higher-lying relative potential-energy minima. The stretchedenergy minimum, yielding the appropriate inherent structure.
periodic array loses its mechanical stability at a dengity, Steepest-descent trajectorig€qg. (14)] of the shifted-
<p,. Hence, the one-dimensional Lennard-Jones fluid foforce Lennard-Jones flui@iscussed beloywvere generated
pP1=<p<p, that has an unbroken periodic inherent structureusing a conjugate gradient meth{#D]. The conjugate gra-

is equivalent to a stretched metastable state. Therefore, it dient method is highly efficient during the initial part of the
reasonable to assume that removing from the partition funcguench, rapidly decreasing the potential energy to within 5%
tion configurations that have inherent structures containingf the true minimum. At this point, however, a large compu-
large voids, for systems capable of exhibiting a first-ordertational effort is required to further decrease the potential
liquid-vapor phase transition, should allow one to rigorouslyenergy towards its value at the local minimum. Fortunately,
obtain the properties of the metastable ligLid]. Disallow-  an important simplification results over the range of densities
ing the liquid to sample those configurations that map ontexplored in this work, once the potential energy is quenched
inherent structures that contain voids larger than some spedie within approximately 2% of the true local minimum. Un-
fied size serves to suppress the vaporization transition ander these conditions, we found that the configuration of par-
keep the liquid homogeneous within the metastable regiorticles is essentially identical to the inherent structure. The
Therefore, following the suggestion outlined[it6], we uti-  remainder of the descent trajectory involves only minor ad-
lize the inherent structure formalism to obtain the equilib-justments of particle positions so that the force on each par-
rium properties of a model superheated liquid and analyzéicle vanishes exactly. Over the range of densities explored
the effect of the severity of the constraint, consisting of sup-in this work, we found that stopping the quench via the con-
pressing the formation of voids in the inherent structure, orjugate gradient method when the potential energy was within

its equation of state. 1-2% of the true potential energy minimum yielded
Mathematically, the various local potential energy quenched configurations that were virtually indistinguishable
minima, or inherent structures, are solutiong 16]: from the inherent structures. Each iteration of the conjugate
gradient method causes a decrease in the potential energy.
V(ri--ry) =0, (13)  The quench was terminated when a new iteration yielded a

decrease in the potential energy of less than 0.001%. At this

ULJ(r)=4E y (15)

whereV®,, is the gradient of the potential ener@y,. Each ~ Point, the energy was within 1-2 % of the true local mini-

inherent structure is included in the set of stable packinggUm- Using this approach, the time required to converge to

within which the force on every particle vanishgiote that @ local minimum for a system composed of 256 particles was

saddle points and potential-energy maxima are also solutior®S Short as 20 min on a HP715 workstation.

to Eq.(13).] The number of distinc®, minima is enormous, The computer S|_mulat|on s_tudles discussed in this paper

of the order ofN!eN distinguishable particle packingas].  Were performed using the shifted-force L_ennard-Jpnes 12-6

N! accounts for particle permutations that yield minima of Poténtial. The Lennard-Jones 12-6 potential is defined by

identical potential energyeN estimates the number of dis- 1 6

tinct ways of arranging particles in mechanically stable pack- (S) _ (f)

ings. Most of these packings are amorphous; others will cor- r r

respond to defective crystals at slightly lower values of

@\ . Those inherent structures that are perfect crystals willvherer is the distance between two particlesthe distance

be the absolute minima in the potential energy. at which the potential is zero, andthe well depth. Nor-
Each configuration ofN particles can be assigned mally, the Lennard-Jones 12-6 potential is truncated beyond

uniquely (mappedl to its own inherent structure. The proce- a given cutoff distance.. Numerical instabilities, however,

dure for finding the proper local minimum is to move the are introduced during a descent trajectory using the truncated

particles along the steepest direction ondhg hypersurface Lennard-Jones potential, since the force between two par-

until the forces on each particle vanish. This procedure isicles changes discontinuouslymt. To avoid this problem,

equivalent to quenching the system Mfparticles from an  we instead simulated a fluid whose particles interact via the

initial temperatureT to a final value ofT=0. As a result, all ~ shifted-force Lennard-Jones potentigl(r), in which [28]

kinetic energy is removed, leaving the system at rest at a

@ minimum. In the case of identical structureless spherical Us(r) —uy(re) — (r=roul(re), r=<ry

particles, the appropriate mapping is generated by the folug(r)= (19

lowing steepest-descent equations for each pariticl]: 0, r>re

and u| ,(r.) is the value of the derivative of the Lennard-
dri(s) — VD[ry(S) - T(S)] (14) Jones 12-6 potential,; at r [Eq. (15)]. The shifted-force
ds N1 A=/ potential is now such that the potential and force both go
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TABLE |. Comparison of the critical and triple-point parameters
of the r.=2.5¢0 shifted-force Lennard-Jones fluitBP and the
Lennard-Jones fluiLJ). The triple-point parameters were obtained
using the solid-liquid phase equilibrium data of Kof&5]. py; 4 is
the density of the liquid at the triple point* =po*, T*=kT/e,
andP* =Po¢?/e. The numbers in parentheses indicate the error in
the last one or two digits of the data.

SF LJ
P 0.247 0.3046)
T* 1.16 1.3164)
p* 0.109 0.13010)
T 0.687 0.6883)
P g 0.670 0.852)

smoothly to zero at the cutoff;, eliminating any problems

in the convergence towards the appropriate inherent struc-
ture. Of course, the properties of the shifted-force Lennard-
Jones fluid are different from the Lennard-Jones fluid. For
example, since the well depth of the shifted-force potential is

shifted slightly upwards to._ 0'936_(as opposed to- e for FIG. 1. (top) Two-dimensional illustration of the Voronoi-
the Lennard-Jc_)nes potentidbr r.=2.50, one expects the Delaunay dual construction. The central atoris surrounded by
value of the critical temperature to be lower than that of theyiomsj. The solid lines form the Voronoi polygon about atém
Lennard-Jones fluid. Table | compares the critical and triplethe gashed lines form the Delaunay triangles whose circumspheres

point parameters of the shifted-force fluid with=2.50 0 are centered at the corresponding vertices of the Voronoi polygon.
those of the Lennard-Jones fluid. The equation of state of thﬂ)otton') The determination of the siza&liametey of “void par-

shifted-force Lennard-Jones fluid was estimated using a praicles” about a Lennard-Jones particle in the superheated liquid.
cedure suggested elsewhdil]: if one assumes that the The Lennard-Jones particles lie on the vertices of the Delaunay
radial distribution functions of the shifted-force and triangles(smaller shaded circlesThe void-particles are centered
Lennard-Jones fluid are identical, then the pressure of then the vertices of the Voronoi polygon. For clarity, only one void
shifted-force fluidP is equal to[22] particle is showr(larger shaded circjelts diameter equals that of
the sphere circumscribing the Delaunay triangle and centered on the

_ 77'p2 fe o dug vertex of the Voronoi polygon, minus the Lennard-Jones diameter
Ps=pkT— 3 Jo " dr g(r)dr, 4 (Figure taken fronf14].)

whereg(r) is the radial distribution function of the Lennard- Delaunay tessellation is defined as follows: a poittivhere
Jones, calculated by using perturbation thed@s,24. X IS @ vector denoting location in space with respect to some
Vapor-liquid equilibrium properties were obtained by equat-Origin) belongs to the Voronoi cell of atomlocated at po-

ing pressures and chemical potentials, the latter calculated Bjtion X if it is closer tox; than to any other poin; of the
integration of Eq.(17). Triple-point parameters were ob- System. Mathematically, this can be representedy

tained from Eq.(17) and a pressure-temperature expression

of the liquid-solid coexistence curve determined from simu- xeVie|x=x|<[x=xl, V], (18
lation [25]. whereV, denotes the Voronoi polyhedron which surrounds
_ _ atomi. The dual Delaunay construction is a tiling of space

B. Simulation method by simplices(d-dimensional tetrahedra whetkis the sys-

We now compare the results of applying the void con-tem’s dimensioh whose vertices are the atom positiogs
straint on the unquenched and quenched configurations dfhile the centers of the spheres circumscribing these sim-
the superheated shifted-force Lennard-Jones liquinid- plices are the Voronoi vertices. The diameter of the circum-
constrained and inherent-structure void-constrained ersPhere minus the Lennard-Jones diametds taken as the
sembles, respectively In the former, voids exceeding a effective size of a void about a Lennard-Jones particle. For
given size are prevented from forming within any instanta-convenience, these voids were visualized as spherical par-
neous configuration of the liquid. In the latter, the liquid is ticles with diameters equal to their effective lengths. Figure 1
prevented from sampling those configurations that arél[ustrates the dual tessellation and the definition of a void
mapped to inherent structures containing voids that excee#lZ€- . _
some specified size. The success of both sets of simulations N both constrained ensembles, the relevant parameter is
hinges upon the development of an efficient void-countinghe diameter of the maximum allowed voit; .= a0 It
algorithm. As described in an earlier study4], we quantify ~ is convenient to reference},, to the average interparticle
the size of voids within a given configuration by performing separation £*) 3= (po®) ~1° to obtain the dimensionless
a Voronoi-Delaunay tessellatiofi26,27. The Voronoi- variableb=d,0". The parameteb simply quantifies the
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severity of the constraint; the smaller the valuelpfthe  every 50 MCS. The results were statistically indistinguish-
more severely constrained is the superheated liquid. An adable. Simulations at a higher frequency of quenches than 50
ditional advantage is gained by expressing the constraint iMCS were not performed, since, as we will discuss in the
terms ofb rather thard? ,,. Sinceb scales with p*)~%3 or  following subsection, pressures obtained while quenching
equivalentlyV*3, the nonstructural contribution to the pres- every 100 MCS within the inherent-structure void-
sure arising from the application of the constrdithtat is to  constrained ensemble were consistent with pressures ob-
say, the quantityC in Eq. (10)] is identically zero. The void tained in the void-constrained ensemble for appropriate
constraint applied to inherent structures, however, is nothoices of the severity of the constraint.
strictly of the form shown in Eq(10), since its position Simulations within the inherent-structure void-constrained
variables are not those of the canonical distribution that isnsemble are performed with a Monte Carlo simulation al-
used to derive the equation of state, but rather a function ofjorithm. The simulation begins with an initial configuration
the mapped position variables. Consequently, one cannot righat is mapped to an inherent structure that has no voids
orously appeal to E10) to argue that the terr®@ vanishes exceeding some specified size. For 100 MCS, configurations
identically. Yet, it is not unreasonable to assume, as a firstf the liquid are sampled according to normal Metropolis
approximation, that the mean linear dimension of theguidelines. At the end of the 100-MCS block, the liquid is
steepest-descent basins scale¥4% therefore the inherent- quenched to its inherent structure. A Voronoi-Delaunay tes-
structure void constrainfwhich eliminates entire basins sellation indicates the largest void size within the inherent
should involve a negligibly small terr@ in the equation of structure. If the maximum void is less than the specified
state [Eqg. (8)]. In what follows, we calculate inherent- value, then the properties of the liquid.g., pressure and
structure void constraint pressures using E8). with C  configurational energy accumulated over the 100-MCS
=0; the effect of the constraint should only be felt throughblock are counted towards the simulation’s ensemble aver-
the virial, since this term is a function of the radial distribu- ages. If the void exceeds the given size, then the accumulated
tion function of the constrained liquid. averages are discarded. The simulation proceeds with an-
Simulations of the superheated shifted-force Lennardother 100 MCS but starts with the initial configuration of
Jones liquid in both the void-constrained and inherentparticles used at the beginning of the previous 100-MCS
structure void-constrained ensembles were performed usinglock. Each simulation began with 1000 MCS of equilibra-
the canonical Monte Carlo algorith28] (constantN, V, tion followed by 3000 MCS of ensemble averaging. Thus, 30
and T). The equation of state was determined in both enguenches were performed in determining the equilibrium
sembles for a system size bf=256 and for two subcritical Properties of the constrained superheated liquid. During
temperatures: T*=0.70 and T*=0.90. In the void- equilibration, the total number of MCS was increased if
constrained ensemble, normal Monte Carlo procedures wef@ore than half of the quenches yielded rejections. Therefore,
followed except that a particle move was rejected if thatwe were assured that at least 500 MCS were used to reach
move created a void larger than some specified size. Erfquilibration. After equilibration, we found that, for loosely
semble averages were calculated over 4000 Monte Carlgonstrained systemighe diameter of voids allowed to form
steps per particléMCS) after an initial equilibration period in inherent structures was equal to five or six interparticle
of 1000 MCS. distancey on the order of 0—2 quenches resulted in a viola-
In the inherent-structure void-constrained ensemble, pretion of the constraintonly a small fraction of 100-MCS
venting the sampling of liquid configurations having inherentblocks were rejected When the liquid was severely con-
structures containing large voids requires that the liquid bétrained(the diameter of voids was less than or equal to four
frequently quenched to the local potential energy minima. Idnterparticle distancesat most ten quenches resulted in a
principle, that would require that, after each particle move violation of the constraint.e., twenty 100-MCS blocks were
the inherent structure of the new liquid configuration and itscounted towards the system’s ensemble avejages
maximum void size be determined. Such a large number of Since both constrained ensembles are concerned with the
quenches, even for a system size\of 256, is computation- Prevention of voids of appreciable size, it is useful to analyze
ally prohibitive. Fortunately, there is no need to performthe distribution of void sizes in both the unquenched and
quenches so frequently. The dynamics of transitions betweefiienched liquids. Figure 2 displays the void-size distribution
substantially different inherent structures is relatively slow.0f the unquenched and quenched superheated shifted-force
During a molecular-dynamics simulation of a 32-particle Lennard-Jones liquid g* =0.70 andT* =0.70. Although
system, Stillinger and Web¢18] found that the number of Our approximate equation of stdtéq. (17)] predicts that the
transitions between distinct potential energy minima was apdensity of the liquid at the triple point ip*=0.670 (Tg
proximately 250 out of a total run of #Qtime steps at a =0.687), we obtained a slightly negative pressure for simu-
temperature 50% greater than the melting temperaturdations atT* =0.7 andp* =0.725. From simulation data, we
Though they simulated systems at high densitasor near  estimate that the density of the liquid at the triple point
the liquid-solid transitioh it is not unreasonable to assume (T* =0.687) is closer tgp* =0.730. Voids forming within
that the dynamics of transitions between inherent structurethe liquid (unquencheyrarely exceed two particle diameters;
of superheated liquids, at densities lower than the triple-pointurthermore, the distribution is unimodal and almost sym-
density of the liquid and at subcritical temperatures, is alsanetrical about the most probable void diametapproxi-
sluggish. Therefore, during a Monte Carlo simulation,mately 0.%). In contrast, the void-size distribution of the
guenches were performed every 100 MCS. To check the vasorresponding inherent structure exhibits three distinct fea-
lidity of the proposed simulation results, we calculated thetures: two sharp peaks at small void sizesl(0c), a broad
pressure for simulations in which quenches were performedhoulder spanning intermediate void siZea. 1.0r—2.5),
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TABLE lll. Pressure and configurational energy per particle of
the shifted-force Lennard-Jones liquid within the inherent-structure
40 1 1 void-constrained ensemble for various valueshofat T* =0.9.
| From Eg. (17), the density of the liquid at coexistence j§
| =0.545; the density of the liquid at the spinodapis=0.427. The

1 numbers in parentheses indicate the error in the last two or three

w
=3
T

= i
z L decimal places.
hs il
E ! » * * *
Z 20| i ] p b P U*/N
F=] i
E 1 0.55 40  —15.19(39) —7.968(47)
A 0.55 5.0 0.06625091) —2.934(44)
or ‘\ // Lo ] 0.55 6.0 0.0655@939 —2.931(46)
Y \
{I/ RN 0.60 4.0 —4.825(458) —4.465(127)
(YR AE—— - L = 0.60 5.0 0.148%16) —3.181(42)
0.0 1.0 2.0 3.0 4.0
d/c 0.60 6.0 0.1508631) —3.179(44)
0.65 4.0 0.111&92 —3.426(59)
FIG. 2. Probability density of the diameter of voids found in the 0.65 5.0 0.295(655 —3.431(45)
inherent structure and unquenched liquid of the shifted-force 0.65 6.0 0.303614) —3.433(43)
Lennard-Jones fluid &t* =0.7 andp* =0.7. The dashed line is the 0.70 4.0 0.434%69 —3.750(55)
density distribution function of the unquenched liquid. 0.70 5.0 0.553(514) —3.688(44)
0.70 6.0 0.554{648 —3.694(58)
and a slowly decaying large-void-size tait@.50). The in-
y ying 'arg €.50) 0.725 4.0 0.712642 —3.831(47)

herent structures of a superheated liquid contain voids whose
sizes exceed that of the largest voids seen within the un-
guenched liquid. Therefore, the sizes of voids that must be
prevented from forming within inherent structures of the su-
perheated liquid will greatly exceed the sizes of voids pro-
hibited from developing within the unquenched liquid.

0.725 5.0 0.749844) —3.820(46)
0.725 6.0 0.740367) —3.821(54)

C. Results

Simulations at two subcritical temperaturds =0.7 and
TABLE II. Pressure and configurational energy per particle of0-9 were performed at various densities fo 1.0, 1.5, 2.0
the shifted-force Lennard-Jones liquid within the inherent-structurgvithin the void-constrained ensemble and fo+4.0, 5.0,
void-constrained ensemble for various valuesbofat T*=0.7. 6.0 within the inherent-structure void-constrained ensemble.
From Eq.(17), the density of the liquid at coexistence @&  Values of the pressur®* and configurational energy per
=0.663; the density of the liquid at the spinodal is approximatelyparticle U* /N were determined at each density and severity
p* =0.506. The numbers in parentheses indicate the error in the lagjf the constrainb. Simulations afi* =0.9 were performed
two or three decimal places. for densities well within the metastable region and for den-
sities just below that of the liquid at the triple point. Simu-

p* b p* U*/N . N .

lations atT* =0.7 were performed within the metastable re-
0.55 4.0 —0.5429(478) —3.528(167) gion and for some densities inside the unstable region.
0.55 5.0 —0.2376(424) —-3.117(52) At each temperature studied, the pressure within the
0.55 6.0 —0.2772(504) —3.194(49) inherent-structure void-constrained ensemble is extremely
0.60 46 —1.897(888) —1.956(241) sensitive to the seve_zrlty of the constralin{see Tables_ Il'and

lII'). For most densities simulated, pressures obtained for
0.60 5.0 —0.2370(444) —3.407(68) D NS

=5.0 andb=6.0 are statistically indistinguishable. However,
0.60 6.0 —0.2451(429) —3.387(48) . :

whenb=4.0 the pressure is drastically reduced, the change
0.65 4.0 —0.3966(638) —3.602(58) being dependent upon the proximity to the superheated lig-
0.65 5.0 —0.2723(489) —3.575(37) uid spinodal. For example, at* =0.9 andp* =0.55, a state
0.65 6.0 —0.2711(467) —3.577(39) point within the predicted metastable region, the artificially

high tension produced fob=4.0 is almost two orders of
0.70 4.0 —0.3792(463) —3.859(39) magnitude larger than the pressures obtainedfeb.0 and
0.70 .0 —0.1385(223) —3.848(40) b=6.0. Similar trends, though not as pronounced, are seen
0.70 6.0 —0.1880(497) —3.843(38) for the configurational energy per particle. This extreme sen-
0.725 4.0 —0.06983(472) —3.977(39) sitivity of the thermophysical properties of the stable and
0.725 5.0 —0.01233(465) —3.982(37) metastable _I|qu!d is quite rerr_]a_rkable, given t_he fac_t that we
0.725 6.0 —0.01619(471) ~3.969(31) are preventing infrequently visited configurations with large

voids in the inherent structures. Thus, we see that large voids
4 ess than ten 100-MCS blocks used to calculate ensemble avein inherent structures are extremely important in determining
ages, due to frequent violation of the constraint. the correct equilibrium properties of the liquid state.
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void-constrained ensemble. Simulations for 4.0 produce

1or o 1 artificially low pressures, whil®=5.0 andb=6.0 yield sta-
08 | il 1 tistically indistinguishable results. Yet, simulations with
TA =4.0 do not prevent the formation of a well-developed
06 1 P ] large-void tail(see Fig. 2 Except for the largest void sizes
oal T* 05 7 o sampled, the void-size distributions for all choicesbofire
) /5;?/ equivalent. Thus, there does not appear to be a simple geo-
= o2t I__%/ 1 metric criterion for determinin@ priori whether the super-
00 - v - 1 heated liquid within the inherent-structure void-constrained
. /t ensemble is overconstrained.
02 - T if;;:/f»f
aat + T, T IV. STATISTICAL GEOMETRY OF INHERENT
: STRUCTURES
0 0.55 0.60 0.65 070 0.75 0.80 The distribution of void sizes within inherent structures is

quite different from that of the instantaneous, unquenched
liquid (see Fig. 2 Inherent structures contain large voids
FIG. 3. Comparison of the equation of state of shifted-forcethat never form within the unquenched liquid. The narrow
Lennard-Jones fluid in both the void-constrained and inherentdouble-peaked profile at small void sizes, along with the
structure void-constrained ensembles. The solid lifited circley ~ broad shoulder spanning moderate void diameters, is clearly
are the equation of state within the void-constrained ensemble fofot seen in the unquenched system. Yet, the sampling of
b=2.0. The dashed linedilled squaresare the equation of state local potential energy minima containing large voids ex-
within the inherent-structure void-constrained ensemble for cess of five average interparticle separatiogsmportant in
=6.0. determining the equilibrium properties of both stable and
superheated liquids. We are therefore interested in studying
As found for the Lennard-Jones liquid in a previous studythe statistical geometry of voids within inherent structures of
[14], the equation of state of the superheated shifted-forceéoth stable and metastable liquids. Consequently, we address
Lennard-Jones fluid within the void-constrained ensembleseveral questions: Is the void-size distribution a function of
was insensitive to values di>1.5, but yielded artificial the temperaturé¢particularly as one moves, at constant den-
tensions wherb<<1.5. Figure 3 compares the equation of sity, from a point within the metastable region to one lying in
state of the shifted-force liquid fob=2.0 (prevention of the stable region of the phase diagjain addition to den-
voids in the instantaneous configuratipmath the equation sity? Do the large voids disappear as the range of the inter-
of state forb= 6.0 (prevention of voids in the corresponding molecular potential is increased? Are the large voids within
inherent structurgsWe see that the two sets of simulations, inherent structures isolated, or are they connected? In inves-
within error bars, yield similar results. Though pressures foitigating these questions, we analyze the importance of local
b=5.0 are not shown in Figure 3, we conclude, sidce potential energy minima in determining the equilibrium
=5.0 andb=6.0 produce statistically indistinguishable re- properties of both stable and metastable liquids for densities
sults (see Tables Il and 1)) that in order to obtain the true up to the density of the liquid at the triple point.
equation of state of the superheated liquid, voids of at least Inherent structuregwhich are equivalent to infinitely
five interparticle separationsb5.0) must be allowed to rapid quenches of the systemTe-0) in Lennard-Jones-like
form in the inherent structure. In addition, we obtain consis-systems have been found to be substantially invariant with
tency between two different kinds of constraints: preventiomrespect to the starting temperatlii®]. To confirm this, we
of voids within the liquid and within the corresponding in- calculated the distribution of void sizes for several state
herent structures serve to suppress cavitation and allow thegpints along an isochore, increasing the temperature from an
superheated liquid to reach equilibrium. initial point within the metastable region towards a final
In [14], the distribution of voids within the instantaneous, point well above the critical temperature of the liquid. Figure
unguenched superheated liquid provided a way in which oné shows the void-size distribution of inherent structures at
could objectively determine whether a system was overcong™ =0.725(a density just below that of the liquid at the triple
strained(i.e., yielded artificially high tensionsAs long as  point) for several values of the temperature, ranging from
the void distribution has a well-developed large-void tailjust above the triple-point temperature to approximately
(i.e., the liquid is able to sample those configurations thatwice the critical temperature. We clearly see that the distri-
have voids with diameters greater than the average interpabution of void sizes is independent of temperature. Neverthe-
ticle distancg, the pressure is independent of the constraintless, what is remarkable about Fig. 4 is that T6r=0.7 the
Constraints that result in abruptly interrupted void distribu-system is metastable and Bt =0.9 and 1.84 the system is
tions, in which the second inflection point associated within the one-phase region. Therefore, we find that a stable lig-
the tail of the distribution is absent, lead to artificially high uid, slightly below its triple-point density, has inherent struc-
tensions. The appearance or disappearance of the second fares that contain extremely large voids. The appearance of
flection point of the void-size distribution provides a clearlarge cavities in the inherent structure of a highly metastable
geometric criterion for determining whether a constraint isliquid (high tension might be expected, since a stretched
unphysical. Unfortunately, there is no correspondinglyliquid relieves tension by forming cavitieg.e., the meta-
simple criterion for simulations in the inherent-structure stable liquid phase-separates via cavitatioret, it is sur-
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dic
prising to find that a thermodynamically stable liquid, when
guenched, contains the same large cavities as a metastable
system. In other words, a stable liquid samples potential- FIG. 6. Void-size distribution of the inherent structure gt
energy basins that contain voids in excess of several moleci=0.725 and of the face-centered-cubic crystapat=1.0577 for
lar diameters. the shifted-force Lennard-Jones potential. The two spiked/at

The void-size distributions of inherent structures in Fig. 4=0.35 andd/a:0:55 constitute the void-size distribution of the
provide no information on the spatial distribution of cavities. face-centered-cubic crystal. They are scaled by a factor of 4.
Hence, we are interested in understanding how the large
voids are arranged: are they isolated or connected, possibionfiguration of particles quenched to a potential-energy
spanning the length of the simulation cell? Figure 5 shows @ninimum forN=256 andp* =0.725. In the figure, particles
that are adjacent to a void exceedingd i@ diameter are
colored dark grey. We clearly see that fdi=256, taking
into account the periodic boundary conditions, there is a
single nonconvex cavity that spans the entire simulation cell.
The dark patrticles form an interface, dividing the system into
a compact regiofidark and light particlgsand a void region
(empty space Due to the appearance of the void, the com-
pact region has a higher density than the original system and
is solely responsible for the narrow double peak found in the
void-size distributiongFig. 4).

The compact region is a dense amorphous arrangement of
particles exhibiting a narrow bimodal distribution of void
sizes. The origin of this double-peaked structure can be
found in the distribution of voids of the face-centered-cubic
(fcc) crystal, since the shifted-force Lennard-Jones liquid
crystallizes into an fcc arrangemd25]. In other words, the
inherent structure located at the global minimum of the
potential-energy hypersurface is a fcc crystal. Figure 6 com-
pares the void-size distribution of the fcc crystal at a density
of p* =1.0577 with the void-size distribution of an inherent
structure afp* =0.725. The shifted-force Lennard-Jones fcc
crystal exhibits its lowest potential energy per particle at

FIG. 5. Snapshot of a configuration bf=256 particles inter- P~ =1.0577. The void-size distribution of the fcc crystal ex-
acting via the shifted-force Lennard-Jones intermolecular potentialibits only two spikes at void sizes o o=0.35 and 0.55.
quenched to the potential energy minimum f6f=0.9 andp* These spikes correspond to the presence of tetrahedral and
=0.725. For clarity, particles adjacent to a void exceedinga@  OcCtahedral voids, respective[29], in the fcc crystal. A tet-
shaded darker; the remaining particles are lighter. The solid linesahedral void is formed when four particles are arranged at
indicate the edges of the simulation cell. the corners of a tetrahedron. An octahedral void is sur-
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rounded by six spheres, located at the corners of an octahe- 5, ‘
dron. Though the first and second peaks of the distribution of o
the liquid’s inherent structure are not aligned exactly with  *° |
the fcc crystal’s void-size distributiofindicating some pack-
ing disorder, and that the density of the compact region is
different from the chosen density of the fcc crygtat is
clear that the inherent structure’s bimodal distribution is re-
lated to the voids in the fcc crystal. In fact, the double-
peaked distribution is caused by the formation of distorted £ , ,
tetrahedra and octahedra. Using the algorithm of Satay.

[30] to calculate the volume of the void regions in the inher- 15t
ent structures for a bulk density pff =0.725, we find that 10}
the density of the compact region of inherent structures is
p*=0.838+0.034. Although it is still less dense than the
crystal at the global minimum, the compact region exhibits 0.0 - e e )
particle arrangements similar to those found in the fcc crys- dic

tal. Of course, the tetrahedra and octahedra comprising the

compact region show continuously varying degrees of distor FIG. 7. Void-size distribution of the inherent structure of the

tion. This is an expected result of dense amorphous packin hifted-force Lennard-Jones fluid for bdth=256 andN=1372 at

‘;"S:éﬁtsr'ort'range order is present but long-range order is, _ 755" oiq fine is the distribution fok—256: open circles

o . L. describe the distribution, obtained from two separate quenches, for
Itis interesting to note that the characteristic double peak,_ 3, P q

found in the void-size distributions of inherent structures was

also seen by Finney and Wallaf8l] in a study of dense gnce of large voids in the inherent structure means that, from
random packings of soft spheres. Finney and Wallace ana; syrictly energetic viewpoint, a thermodynamically stable
lyzed the size of voids within a dense arrangement of harglq,iq, even at its triple point, is unstable with respect to the
spheres near random close pa_ckmg. The distribution o_f VO'%ppearance of large voidéboiling” ). Thermal motion pre-
sizes for this system was unimodal. However, as this aryens the stable fluid from phase-separating. Nevertheless, at
rangement was allowed to relax under a soft potential, g,y enough temperatures, inherent structures should begin to
distinct bimodality developed at small void sizes. Their yominate the properties of the liquid, becoming ultimately

double-peaked structure is very similar to ours, in which thgesponsible for the mechanical weakness of liquids. The pos-
first peak is larger than the second, indicating that the com-

pact region is forming an amorphous structure.

We have seen that a single large void, spanning the simu-
lation cell, is found forN=256. It is not known whether
system-spanning voids persist for largérvalues. To ad-
dress this question, we performed two separate quenches of a
system composed dfi=1372 particles, equilibrated at*
=0.9 andp* =0.725. The resulting void-size distribution is
shown in Fig. 7. Also included, for comparison, is the distri-
bution forN=256 at the same density. The void-size distri-
butions both display the same characteristic form: a narrow
double peak at small void sizes, a broad shoulder at interme-
diate void diameters, and a slowly decaying large-void tail.
In fact, the void-size distribution is approximately system-
size independent; minor deviations between the two distribu-
tions are found only at small void sizes. The inherent struc-
ture of a single quench fdl=1372 is shown in Fig. 8. As
before, particles adjacent to a void greater thanslabe
shaded dark grey and the remaining particles are light grey.
We again see, accounting for periodic boundary conditions,
that the cavities are indeed connected, forming a single chan-
nel that percolates throughout the entire simulation cell. By
definition, the dark particles again separate the inherent
structure into two distinct regions: a compact regitight
and dark and a void, separated by an interfacirk. The FIG. 8. Snapshot of a configuration Nf=1372 particles inter-
compact and interfacial regions are solely responsible for th@cting via the shifted-force Lennard-Jones intermolecular potential
double peak of the void-size distribution. The dark partiCleSquenched to the potential energy minimum fbt=0.9 andp*
completely enclose the void region, which gives rise to the=0.725. For clarity, particles adjacent to a void exceeding h@
broad shoulder and slowly decaying large-void tail. shaded darker; the remaining particles are lighter. The solid lines

Figures 5 and 8 have interesting implications. The presindicate the edges of the simulation cell.
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force Lennard-Jones liquid for various values of the density. force Lennard-Jones potential @t =0.55 for various values of the
cutoff r.. L is the length of the simulation box.

sibility that “weak spots” (small voids in the instantaneous . - L
jpotential energy minima may offer insight into the effect of

unquenched liquid are related to the large cavities seen : _ -
ttractive forces on the properties of liqguids and amorphous

inherent structures may, if confirmed, shed light on the rol X . Y ;
of the potential energy hypersurface in determining the ten[naterlals. The attractive potential is responsible for the ten-

sile strength of liquids at low enough temperatures. sile strength of liquids, providing the cohesion necessary to

Figure 4 shows that inherent structures are independent i?SiSt stretchingnegative pressures cannot be attained in a

temperature. We now investigate the effect of density on th l.Uid whosq constituent molgcules interact via a pure!y repul-
void-size distribution of inherent structures. Figure 9 dis-S'V€ potential. At the same time, however, the attractive part

plays void-size distributions for various densities, rangingOf the po'ge_nua_l 1S solely responsible for the appearance of
from approximately twice the critical density to just below large gawues in inherent structures, possibly an |mportqnt
the triple-point density. The distribution of voids is sensitivefaCtor n the Iqw-tempe_rature fracture of mgt_er!als. To gain
to the system density. The large-void tail decays more slowl);urther insight into this interesting concept, it is important to
as the density is decreasé@e., larger voids appear at lower _study the effect of th_e well depth_ an_d thE.’ curvature of the
densities. The distribution of’voids within the compact re- intermolecular potential on the void-size distribution in both

gion is also affected by the density. The location and heighlﬁhe instantaneous and quenched configurations of model lig-

of the first peak remains invariant to changes in density, butids:
the second peak clearly decreases with a decrease in density.
Since the first peak’s location does not change, the decrease
in the height of the second peak upon decreasing the bulk
density indicates a corresponding decrease in the number of The inherent structure formalism is a useful way of de-
octahedral voids in the compact region. In contrast, the numscribing molecular dynamics in liquids. The properties of the
ber of tetrahedral voids is independent of density. The feweliquid phase are determined by the sampling of various local
appearances of octahedral voids, along with a decrease in tipatential energy minimamechanically stable particle pack-
decay rate of the large-void tail, suggests that the density ahgs) and anharmonic thermal vibrations about these minima.
the compact region is increasing as the system density ikherent structures also provide a means by which unwanted
decreased. configurations can be removed from the partition function
The above discussion pertains to a system with a potentiglmposition of a constraint Here, we have studied one such
range ofr .=2.5c¢. In principle, the range of the intermolecu- constraint: the inherent-structure void-constrained ensemble.
lar potentialr. should affect the void-size distribution. To In this constrained ensemble, limits are placed on the maxi-
investigate this effect, we performed several simulations irmum size of voids allowed to form in the inherent structures
which the value ofr, was increased from 2d5to one-half  of the superheated liquid. The equation of state of the stable
the simulation box length. During each simulation severaland superheated shifted-force Lennard-Jones liquid is ex-
guenches were performed. Figure 10 displays the resultingemely sensitive to the severity of the constraint. However,
distribution of void sizes in the inherent structures. As withas long as the corresponding inherent structures contain
changes in density, the height of the first peak is independenids in excess of five average interparticle separations, the
of the range of the potential but the second peak increasegsulting equation of state is consistent with simulation re-
with r. In addition, the large-void tail decays more slowly sults in the void-constrained ensemble, in which voids
asr. is increased; a longer-ranged intermolecular potentiagreater than 1.5 times the average interparticle separation are
allows for the formation of larger cavities. The effect of the not allowed to form within the instantaneous unquenched
range of the intermolecular potential on the structure of localiquid. Therefore, the sampling of potential energy basins

V. CONCLUSIONS
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that have inherent structures containing voids greater than 5 The inherent structures of liquids above the triple-point
average interparticle separations is important in determiningemperature and below their triple-point density are sepa-
the equilibrium properties of liquids near the triple point.  rated into two distinct regions: a compact region, containing
The distribution of voids within inherent structures wasall the particles at a density higher than the mean system
analyzed to determine whether there is an objective criteriodlensity, and the void regiofa single, particle-free cavity,
to determine when the system is overconstrained. For theercolating throughout the systgnThe compact region is
void-constrained ensemble, where voids are prevented frokgsponsible for the bimodal distribution of voids at small
forming within the unquenched liquid, the pressure is inde-V(_)'d sizes, caused by the formation of d|storted_tetrahedra
pendent of the constraint if the void distribution has a well-{firSt peak and octahedrasecond peak found undistorted

developed large-void tail. The void-size distribution must in-N the fCC. crystal._ The \.’Oid region accounts fqr the broad
clude a second inflection point, sampling the infrequentl houlder in the distribution, at intermediate void sizes, and

L : P L the slowly decaying large-void tail. The void-size distribu-
visited yet important large cavities, in order for the liquid to tion is a function of the system density and the range of the

be “naturally” constrained. Within the inherent-structure . ; lecul tential. The first K of the distribution i
void-constrained ensemble, there is no corresponding geén ermolecu’ar potential. The first peak ot the distribution 1S

metric criterion to determine if the liquid is overconstrained, varnant with changes in the density and the range of the

For all severities of constraint studied, the slowly decayinngtent'al; the second peak and large-void tail are sensitive to

PO i : : ._-changes in these variables.
large-void tail is always present; the second inflection point, I .
g ys P ' b The present work offers insight into the dual role of at-

a prerequisite for the development of the large-void tail, oc—t tive f in determining th ® £ liquid q
curs at void sizes well below that of the maximum-allowed'ac!Ve forces in determining the properties of iquids an

void diameter(even for the most severely constrained Sys_amorphou_s materials. A‘”.aCt.'Ve forces are re_sponS|bIe for
tem). the cohesive strength of liquids. _Yet, paradoxm_ally, attrac-
Even at the triple-point density, the presence of larg tions are alsaand solely responsible for the existence of

voids (in excess of five average interparticle separafions arge voids in configurations corresponding to potential

within the liquid’s inherent structures is necessary for theSNeray minima. Clearly, mapping the range of temperature

properties of the liquid to attain their true equilibrium values.fand tensions where attraction is stabilizing or destabilizing is
We therefore analyzed the statistical geometry of voids iHmF,i/?rtant' v this stud ints to the | N f
inherent structures for stable and superheated liquids at den- d Orf gg_nera yéj IS StL.J yt'pO":hs 0 " N tlmpolr etl_ncebo

sities between the critical and triple points. The distributiontm erstan tm% S.T.t mvzs Iga "19 . te |rsl_|ma| et' relation tﬁ'
of voids within inherent structures of both the stable and V€€ Metastabiiity and constraints. simulations are the

metastable liquids are identical; a thermodynamically stablé“"‘tur.al method for studying the effects of constraints micro-
liquid, even at its triple-point density, samples local scopically and hence should become a basic tool in the fun-

: . : o damental investigation of metastability. We believe that
otential-energy minima that contain very large cavities. We o
P 9y y arg uch can be learned about the liquid state of matter under

found that these large cavities are connected, spanning t o . )
length of the simulation cell. Hence, strictly from an ener—vggt]igsézglr? and metastable conditions from this type of in-

getic viewpoint, even a thermodynamically stable liquid is
u_nstgble With respect to boiling. This res'ult.has potential ACKNOWLEDGMENT
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