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Constraints, metastability, and inherent structures in liquids
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Void-size distributions have been calculated for the shifted-force Lennard-Jones fluid over substantial tem-
perature and density ranges, both for the liquid-state configurations themselves, as well as for their inherent
structures~local potential energy minima!. The latter distribution is far more structured than the former,
displaying fcc-like short-range order, and a large-void tail due to system-spanning cavities. Either void distri-
bution can serve as the basis for constraints that retain the liquid in metastable states of superheating or
stretching by eliminating configurations that contain voids beyond an adjustable cutoff size. While acceptable
cutoff sizes differ substantially in the two versions, ranges of choices have been identified yielding metastable
equations of state that agree between the two approaches. Our results suggest that the structure-magnifying
character of configuration mapping to inherent structures may be a useful theoretical and computational tool to
identify the low-temperature mechanisms through which liquids and glasses lose their mechanical strength.
@S1063-651X~97!03805-1#

PACS number~s!: 61.20.Gy, 64.60.My, 64.70.Fx, 05.70.2a
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I. INTRODUCTION

The formation, characterization, and utilization of me
stable forms of matter present challenges and opportun
throughout science and technology. All phases are involv
solid, liquid, and vapor. The usefulness of a metastable s
stance in any given application normally depends on the a
ity to frustrate kinetic processes of phase change that c
reversion to thermal equilibrium. The phenomenologi
classical nucleation theory has enjoyed substantial succe
predicting such rates of phase change under many circ
stances of interest@1,2,3#, but its connection to the rigorou
molecular theory of matter remains incomplete. Inde
many basic questions also remain about the nature of m
stable states themselves@4#.

The present paper reports results of a theoretical st
designed to enrich fundamental understanding of liquids
are superheated~i.e., metastable with respect to nucleati
and growth of the vapor phase!. Real-world connections in
volve explosive boiling@5#, cavitation in turbulent flow@5,6#,
bubble-chamber detectors for elementary particles@7#, and
the tensile behavior of sap rising in trees@8#. The initial stage
of sonoluminescence experiments also involves cavitat
owing to ultrasonic excitation@9#.

Section II below discusses the general theoretical stra
of imposition of constraints designed to prevent vapor nuc
ation in a superheated and/or stretched liquid and the in
ence of those constraints on measurable properties of
liquid. Primary interest in the present study focuses on sp
taneously formed voids in the liquid medium, the largest
which must be prevented to frustrate nucleation. Section
shows how void-size constraints, both before and after c
figuration mapping to ‘‘inherent structures’’@10,11#, can be
employed to effect the desired metastable extensions; c
551063-651X/97/55~5!/5522~13!/$10.00
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parisons of the two constraint versions are provided. Sec
IV presents results of an analysis of the statistical geom
of the shifted-force Lennard-Jones liquid, examined in b
the equilibrium region of its phase-plane, as well as in
metastable extension regime into the region of equilibri
liquid-vapor coexistence. Void distributions have been o
tained for all of these states, both for the liquid itself, as w
as for the corresponding sets of inherent structures obta
by mapping particle configurations onto potential ener
minima. The final section, Sec. V, summarizes our resu
states our conclusions, and attempts to predict the most
ductive directions for further study.

II. CONSTRAINTS AND THEIR EFFECTS

Under conditions of strict thermal equilibrium, the pro
erties of anN-body system can be represented by the cano
cal ensemble. It suffices for present purposes to suppose
the system comprises point particles~no internal degrees o
freedom!, and that the classical limit applies. Consequen
the canonical partition functionQ in the following form pro-
vides the thermodynamic properties at temperatureT and
volumeV @12#:

Q~N,V,T!5~N!L3N!21E •••E e2bFNdr1•••drN . ~1!

Here L is the mean thermal deBroglie wavelength;b is
1/kT, k being Boltzmann’s constant; andFN(r1•••rN) is the
interaction potential for theN particles located atr1•••rN .
The integrals in Eq.~1! are restricted to the interior of vol
umeV. The pressure equation of state emerges as a vol
derivative,
5522 © 1997 The American Physical Society
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P5
1

b S ] ln Q

]V D
N,T

; ~2!

in particular, this expression correctly captures the brea
the pressure isotherms as the system crosses an equilib
phase transition curve in the (V,T) plane.

Nucleating and growing a new phase at a first-order ph
transition normally is kinetically difficult, provided the ma
terial under study is clean and mechanically undisturb
Consequently, metastable extensions beyond the trans
point, in temperature or density, are commonplace. The p
ence of a kinetic barrier to first-order phase change is ta
mount to bimodality of the canonical probability distributio
exp(2bFN), corresponding to virtually distinct and nonove
lapping contributions that reside in different regions of t
N-body configuration space. The ‘‘bottleneck’’ region b
tween them has a low probability of occupation, at least
modest extensions into metastability.

In order to achieve a reformulation of the canonical e
semble that accords with experimental observation of m
stability, a mathematical device must be provided to clo
the bottleneck, thereby trapping the system’s configuratio
the appropriate one-phase region even as the location o
equilibrium phase change is passed. This constraint can
ways be attained in principle by imposing an additional p
tential on theN-body system,WN(r1•••rN), that vanishes in
the desired one-phase region of the configuration space
is positive and arbitrarily large in the region that displays
least some portion of the alternative and thermodynamic
favored phase. The discontinuity locus forWN in the
3N-dimensional configuration space is a (3N21)-
dimensional hypersurface that dynamically acts as a refl
ing boundary for the system point, returning it to the inter
of the one-phase region.

The choice of specific form for the constraint potent
WN will be dictated by the metastable phase of interest.
percooled liquids and the glasses they form must be fre
all but the smallest recognizable crystallites, soWN must
become large whenever any substantial local set of parti
displays crystalline order@11,13#. Supersaturated vapors re
quireWN to be large if any substantial cluster~droplet! of
particles appears@2#. Superheated liquids, or liquids und
tension, must be free of substantial voids or cavities,
WN must become large if such patterns exist anywhere in
liquid medium@14,15#. This last case is the one examined
the following sections of this paper.

Having selectedWN for the application of interest, the
modified canonical partition functionQ* has the obvious
form

Q* ~N,V,T!5~N!L3N!21E •••E e2b~FN1WN!dr1•••drN ,

~3!

with the same integration limits as before. BecauseWN has
been chosen to be large and positive somewhere in the
figuration space, but is non-negative everywhere, we ha

0,Q*,Q. ~4!
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The metastable-state pressure corresponding toQ* involves
the direct analog of Eq.~2!:

P*5
1

b S ] ln Q*

]V D
N,T

. ~5!

This constrained-ensemble pressure contains an ideal
contribution, as well as contributions from the interpartic
interactions (FN) and from the constraint (WN).

Most statistical-mechanical modeling of liquids~includ-
ing the present study! assume thatFN consists only of addi-
tive pair terms, which for structureless particles requires

FN5(
i. j

(
j51

N21

f~r i j !, ~6!

where r i j is the distance separating the centers of partic
i and j . For some applications one might wish to assign
similar form toWN . But as indicated above, attaining met
stability generally requiresWN to realize a specific pattern
recognition capacity in much larger groups of particles th
just pairs.

The volume derivative appearing in Eq.~5! can be
handled by the same volume scaling tactic that has bec
standard practice for the unconstrained canonical ensem
@16#. Presuming that the volumeV is cubical, the coordinate
transformation

r5V1/3s ~7!

causes the integrations inQ* , Eq. ~3!, to span a unit cube in
s space, while permitting the volume derivative to be carr
out by the chain rule. The result of these operations may
expressed in the following way:

P*5
r

b
2
2pr2

3 E
0

`

r 3f8~r !g* ~r !dr2C. ~8!

Herer is the number densityN/V andg* is the pair corre-
lation function for the constrained system,

r2g* ~r 12!5N~N21!
E •••E e2b~FN1WN!dr3•••drN

E •••E e2b~FN1WN!dr1•••drN

,

~9!

and generallyg* will differ from the unconstrained-system
pair correlation functiong. The constraint also affects th
pressure by generating the new termC,
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C5

E
0

1

ds1x•••E
0

1

dsNze
2b~FN1WN!~]/]V!WN~V1/3s1x•••V

1/3sNz!

E
0

1

ds1x•••E
0

1

dsNze
2b~FN1WN!

. ~10!
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If WN(r1•••rN) depends on the relative positions of th
N particles, but has no explicit dependence on volumeV,
then the integrand in the numerator of expression~10! for
C will vanish everywhere except at the discontinuity hyp
surface ofWN . Consequently, the numerator integral reduc
to an integral over that (3N21)-dimensional hypersurfac
of theN-particle probability function weighted by an amou
determined by the specific form ofWN . When this type of
constraint is applied to the metastable-state problem, the
continuity hypersurface should occur where theN-particle
probability is small, at least for the modest extent of me
stability, as argued above. Then the contributionC to the
pressure should likewise be small.

An alternative class of constraint functionsWN has vol-
ume appearing explicitly as a scaling factor. Specifically,

WN[F~V21/3r1•••V
21/3rN!, ~11!

and in this event the key factor in the numerator integrand
Eq. ~10! is

]

]V
F~s1•••sN![0. ~12!

Consequently,C vanishes identically for this class of con
straints and it is only the difference betweeng* andg that
reflects the presence of the constraint. In the following s
tions we consider special choices for each of these
classes of constraints.

III. EQUATION OF STATE
IN THE INHERENT-STRUCTURE
VOID-CONSTRAINED ENSEMBLE

A. Inherent structures

The determination of the equilibrium properties of a s
perheated liquid requires that void formation be suppres
Therefore, the constraintWN should be chosen such th
bubbles of some critical size~i.e., large enough to allow fo
the spontaneous formation of the vapor phase! are discour-
aged from developing, a method quite analogous to the
perimental techniques used to study superheated liquids.
the rigorous evaluation of the constrained partition funct
@Eq. ~3!# using the above definition ofWN is, in general,
impossible for nontrivial systems. Fortunately, while mo
constraints are difficult to apply analytically, they are eas
imposed in computer simulations.

Previous computer simulation studies@14,17# have ana-
lyzed the effect of one such constraint, the void-constrai
ensemble, on the equation of state of the superhe
Lennard-Jones liquid. In this ensemble, limits are placed
the maximum size of voids that are allowed to form in t
liquid. If the largest such void was less than 1.5 times
-
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average interparticle separation, it was found that the sys
was overconstrained and artificially high tensions resul
~i.e., the pressure was a function of the severity of the c
straint!; if larger voids were allowed to develop, then th
equation of state was found to be essentially independen
the constraint. Overconstrained systems were found to
easily identified by analyzing the distribution of void siz
within the superheated liquid. As long as the void distrib
tion had a well-developed, large void tail~i.e., sampling of
configurations that contain voids in excess of an average
terparticle separation!, the pressure was independent of t
constraint. In contrast, artificially high tensions were pr
duced when the constraint yielded abruptly interrupted v
distributions, in which the second inflection point in the vo
size distribution, associated with the appearance of the la
void tail was absent.

Clearly, the use of the void-constrained ensemble is
the only means by which one can eliminate bottelnecks
the vapor phase in a superheated liquid. Recently, it has b
suggested that a constrained form of the inherent struc
formalism can be used to obtain the equilibrium properties
superheated liquids@15#. Stillinger and Weber@10# discussed
the separation of the dynamics of liquids into two distin
contributions: sampling of various local minima of the p
tential energy hypersurface and thermal vibrations ab
these minima. The mechanically stable configurations of p
ticles at the local minima are called inherent structures
correspond to those states in which the net force on e
particle is zero. In fact, the potential energy hypersurface
be divided into ‘‘basins,’’ which surround each inhere
structure. At a given instant, the configuration of partic
can be uniquely assigned to a given basin by following
steepest-descent trajectory and, hence, mapping the con
ration to the corresponding local potential energy minimu
As the system evolves, the system configuration will sam
various basins along the potential energy hypersurfa
While in the basin, if the system is not found at the loc
minimum, the displacement from the minimum is simply r
garded as a ‘‘vibrational’’ displacement, most likely anha
monic in character. In other words, at any given instant
system is vibrating about a local potential energy minimu
Therefore, the properties of the liquid are completely det
mined in principle by the sampling of successive local e
ergy minima plus contributions due to the anharmonic vib
tions about these minima.

In Ref. @15# constraints were applied to the inherent stru
tures in order to study metastability. Considering the o
dimensional Lennard-Jones fluid, it was noticed that for d
sities greater than a certain valuero ~wherer5N/L, L being
the system length!, the system possessed only a single ty
of potential energy minimum, namely, the regular and pe
odic arrangement of particles that spanned the system len
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For densities less thanro , however, two types of inheren
structures were possible. The periodic arrangement of
ticles can be maintained belowro , causing the potential en
ergy local minimum to rise in value as the system
stretched. However, another configuration of particles a
local energy minimum can be formed, corresponding to
arrangement of broken chains. The broken chains yield
solute minima, while the unbroken periodic arrays yie
higher-lying relative potential-energy minima. The stretch
periodic array loses its mechanical stability at a density,r1
,ro . Hence, the one-dimensional Lennard-Jones fluid
r1<r<ro that has an unbroken periodic inherent struct
is equivalent to a stretched metastable state. Therefore,
reasonable to assume that removing from the partition fu
tion configurations that have inherent structures contain
large voids, for systems capable of exhibiting a first-ord
liquid-vapor phase transition, should allow one to rigorou
obtain the properties of the metastable liquid@15#. Disallow-
ing the liquid to sample those configurations that map o
inherent structures that contain voids larger than some sp
fied size serves to suppress the vaporization transition
keep the liquid homogeneous within the metastable reg
Therefore, following the suggestion outlined in@15#, we uti-
lize the inherent structure formalism to obtain the equil
rium properties of a model superheated liquid and anal
the effect of the severity of the constraint, consisting of s
pressing the formation of voids in the inherent structure,
its equation of state.

Mathematically, the various local potential ener
minima, or inherent structures, are solutions to@10#:

¹FN~r1•••rN!50, ~13!

where¹FN is the gradient of the potential energyFN . Each
inherent structure is included in the set of stable packin
within which the force on every particle vanishes.@Note that
saddle points and potential-energy maxima are also solut
to Eq.~13!.# The number of distinctFN minima is enormous,
of the order ofN!eN distinguishable particle packings@18#.
N! accounts for particle permutations that yield minima
identical potential energy;eN estimates the number of dis
tinct ways of arranging particles in mechanically stable pa
ings. Most of these packings are amorphous; others will c
respond to defective crystals at slightly lower values
FN . Those inherent structures that are perfect crystals
be the absolute minima in the potential energy.

Each configuration ofN particles can be assigne
uniquely ~mapped! to its own inherent structure. The proc
dure for finding the proper local minimum is to move th
particles along the steepest direction on theFN hypersurface
until the forces on each particle vanish. This procedure
equivalent to quenching the system ofN particles from an
initial temperatureT to a final value ofT50. As a result, all
kinetic energy is removed, leaving the system at rest a
FN minimum. In the case of identical structureless spher
particles, the appropriate mapping is generated by the
lowing steepest-descent equations for each particlei @19#:

dr i~s!

ds
52¹FN@r1~s!•••rN~s!#, ~14!
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where s>0 is a progress variable indicating the extent
which the descent trajectory has been followed. Start
from an initial configuration (s50), a positive value ofs
displaces the configuration along the direction of the ne
tive of the potential energy gradient until it comes to re
(s→`) at the appropriate minimum. Given an initial con
figuration of N particles, the simultaneous solution of th
N equations in Eq.~14! quenches the system into a potent
energy minimum, yielding the appropriate inherent structu

Steepest-descent trajectories@Eq. ~14!# of the shifted-
force Lennard-Jones fluid~discussed below! were generated
using a conjugate gradient method@20#. The conjugate gra-
dient method is highly efficient during the initial part of th
quench, rapidly decreasing the potential energy to within
of the true minimum. At this point, however, a large comp
tational effort is required to further decrease the poten
energy towards its value at the local minimum. Fortunate
an important simplification results over the range of densi
explored in this work, once the potential energy is quench
to within approximately 2% of the true local minimum. Un
der these conditions, we found that the configuration of p
ticles is essentially identical to the inherent structure. T
remainder of the descent trajectory involves only minor a
justments of particle positions so that the force on each p
ticle vanishes exactly. Over the range of densities explo
in this work, we found that stopping the quench via the co
jugate gradient method when the potential energy was wi
1–2 % of the true potential energy minimum yielde
quenched configurations that were virtually indistinguisha
from the inherent structures. Each iteration of the conjug
gradient method causes a decrease in the potential en
The quench was terminated when a new iteration yielde
decrease in the potential energy of less than 0.001%. At
point, the energy was within 1–2 % of the true local min
mum. Using this approach, the time required to converge
a local minimum for a system composed of 256 particles w
as short as 20 min on a HP715 workstation.

The computer simulation studies discussed in this pa
were performed using the shifted-force Lennard-Jones 1
potential. The Lennard-Jones 12-6 potential is defined by

uLJ~r !54eF S s

r D
12

2S s

r D
6G , ~15!

wherer is the distance between two particles,s the distance
at which the potential is zero, ande the well depth. Nor-
mally, the Lennard-Jones 12-6 potential is truncated bey
a given cutoff distancer c . Numerical instabilities, however
are introduced during a descent trajectory using the trunc
Lennard-Jones potential, since the force between two
ticles changes discontinuously atr c . To avoid this problem,
we instead simulated a fluid whose particles interact via
shifted-force Lennard-Jones potentialusf(r ), in which @28#

usf~r !5H uLJ~r !2uLJ~r c!2~r2r c!uLJ8 ~r c!, r<r c

0, r.r c
~16!

and uLJ8 (r c) is the value of the derivative of the Lennard
Jones 12-6 potentialuLJ at r c @Eq. ~15!#. The shifted-force
potential is now such that the potential and force both
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smoothly to zero at the cutoffr c , eliminating any problems
in the convergence towards the appropriate inherent st
ture. Of course, the properties of the shifted-force Lenna
Jones fluid are different from the Lennard-Jones fluid. F
example, since the well depth of the shifted-force potentia
shifted slightly upwards to20.93e ~as opposed to2e for
the Lennard-Jones potential! for r c52.5s, one expects the
value of the critical temperature to be lower than that of
Lennard-Jones fluid. Table I compares the critical and trip
point parameters of the shifted-force fluid withr c52.5s to
those of the Lennard-Jones fluid. The equation of state of
shifted-force Lennard-Jones fluid was estimated using a
cedure suggested elsewhere@21#: if one assumes that th
radial distribution functions of the shifted-force an
Lennard-Jones fluid are identical, then the pressure of
shifted-force fluidPsf is equal to@22#

Psf5rkT2
2pr2

3 E
0

r c
r 3

dusf
dr

g~r !dr, ~17!

whereg(r ) is the radial distribution function of the Lennard
Jones, calculated by using perturbation theory@23,24#.
Vapor-liquid equilibrium properties were obtained by equ
ing pressures and chemical potentials, the latter calculate
integration of Eq.~17!. Triple-point parameters were ob
tained from Eq.~17! and a pressure-temperature express
of the liquid-solid coexistence curve determined from sim
lation @25#.

B. Simulation method

We now compare the results of applying the void co
straint on the unquenched and quenched configuration
the superheated shifted-force Lennard-Jones liquid~void-
constrained and inherent-structure void-constrained
sembles, respectively!. In the former, voids exceeding
given size are prevented from forming within any instan
neous configuration of the liquid. In the latter, the liquid
prevented from sampling those configurations that
mapped to inherent structures containing voids that exc
some specified size. The success of both sets of simula
hinges upon the development of an efficient void-count
algorithm. As described in an earlier study@14#, we quantify
the size of voids within a given configuration by performin
a Voronoi-Delaunay tessellation@26,27#. The Voronoi-

TABLE I. Comparison of the critical and triple-point paramete
of the r c52.5s shifted-force Lennard-Jones fluid~SF! and the
Lennard-Jones fluid~LJ!. The triple-point parameters were obtaine
using the solid-liquid phase equilibrium data of Kofke@25#. r tr, liq* is
the density of the liquid at the triple point.r*5rs3, T*5kT/e,
andP*5Ps3/e. The numbers in parentheses indicate the erro
the last one or two digits of the data.

SF LJ

rc* 0.247 0.304~6!

Tc* 1.16 1.316~4!

Pc* 0.109 0.130~10!

Ttr* 0.687 0.685~3!

r tr, liq* 0.670 0.85~2!
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Delaunay tessellation is defined as follows: a pointx ~where
x is a vector denoting location in space with respect to so
origin! belongs to the Voronoi cell of atomi located at po-
sition xi if it is closer toxi than to any other pointxj of the
system. Mathematically, this can be represented by@27#

xPVi⇔ux2xi u<ux2xj u, ; j , ~18!

whereVi denotes the Voronoi polyhedron which surroun
atom i . The dual Delaunay construction is a tiling of spa
by simplices~d-dimensional tetrahedra whered is the sys-
tem’s dimension!, whose vertices are the atom positionsxi ,
while the centers of the spheres circumscribing these s
plices are the Voronoi vertices. The diameter of the circu
sphere minus the Lennard-Jones diameters is taken as the
effective size of a void about a Lennard-Jones particle.
convenience, these voids were visualized as spherical
ticles with diameters equal to their effective lengths. Figur
illustrates the dual tessellation and the definition of a v
size.

In both constrained ensembles, the relevant paramet
the diameter of the maximum allowed void,dmax* 5dmax/s. It
is convenient to referencedmax* to the average interparticle
separation (r* )21/35(rs3)21/3 to obtain the dimensionles
variableb5dmaxr

1/3. The parameterb simply quantifies the

FIG. 1. ~top! Two-dimensional illustration of the Voronoi
Delaunay dual construction. The central atomi is surrounded by
atoms j . The solid lines form the Voronoi polygon about atomi .
The dashed lines form the Delaunay triangles whose circumsph
are centered at the corresponding vertices of the Voronoi polyg
~bottom! The determination of the size~diameter! of ‘‘void par-
ticles’’ about a Lennard-Jones particle in the superheated liq
The Lennard-Jones particles lie on the vertices of the Delau
triangles~smaller shaded circles!. The void-particles are centere
on the vertices of the Voronoi polygon. For clarity, only one vo
particle is shown~larger shaded circle!. Its diameter equals that o
the sphere circumscribing the Delaunay triangle and centered on
vertex of the Voronoi polygon, minus the Lennard-Jones diame
s. ~Figure taken from@14#.!
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severity of the constraint; the smaller the value ofb, the
more severely constrained is the superheated liquid. An
ditional advantage is gained by expressing the constrain
terms ofb rather thandmax* . Sinceb scales with (r* )21/3, or
equivalentlyV1/3, the nonstructural contribution to the pre
sure arising from the application of the constraint@that is to
say, the quantityC in Eq. ~10!# is identically zero. The void
constraint applied to inherent structures, however, is
strictly of the form shown in Eq.~10!, since its position
variables are not those of the canonical distribution tha
used to derive the equation of state, but rather a function
the mapped position variables. Consequently, one cannot
orously appeal to Eq.~10! to argue that the termC vanishes
identically. Yet, it is not unreasonable to assume, as a
approximation, that the mean linear dimension of t
steepest-descent basins scales asV1/3; therefore the inherent
structure void constraint~which eliminates entire basins!
should involve a negligibly small termC in the equation of
state @Eq. ~8!#. In what follows, we calculate inheren
structure void constraint pressures using Eq.~8! with C
50; the effect of the constraint should only be felt throu
the virial, since this term is a function of the radial distrib
tion function of the constrained liquid.

Simulations of the superheated shifted-force Lenna
Jones liquid in both the void-constrained and inhere
structure void-constrained ensembles were performed u
the canonical Monte Carlo algorithm@28# ~constantN, V,
and T!. The equation of state was determined in both
sembles for a system size ofN5256 and for two subcritica
temperatures: T*50.70 and T*50.90. In the void-
constrained ensemble, normal Monte Carlo procedures w
followed except that a particle move was rejected if th
move created a void larger than some specified size.
semble averages were calculated over 4000 Monte C
steps per particle~MCS! after an initial equilibration period
of 1000 MCS.

In the inherent-structure void-constrained ensemble, p
venting the sampling of liquid configurations having inhere
structures containing large voids requires that the liquid
frequently quenched to the local potential energy minima
principle, that would require that, after each particle mo
the inherent structure of the new liquid configuration and
maximum void size be determined. Such a large numbe
quenches, even for a system size ofN5256, is computation-
ally prohibitive. Fortunately, there is no need to perfo
quenches so frequently. The dynamics of transitions betw
substantially different inherent structures is relatively slo
During a molecular-dynamics simulation of a 32-partic
system, Stillinger and Weber@18# found that the number o
transitions between distinct potential energy minima was
proximately 250 out of a total run of 104 time steps at a
temperature 50% greater than the melting temperat
Though they simulated systems at high densities~at or near
the liquid-solid transition!, it is not unreasonable to assum
that the dynamics of transitions between inherent structu
of superheated liquids, at densities lower than the triple-p
density of the liquid and at subcritical temperatures, is a
sluggish. Therefore, during a Monte Carlo simulatio
quenches were performed every 100 MCS. To check the
lidity of the proposed simulation results, we calculated
pressure for simulations in which quenches were perform
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every 50 MCS. The results were statistically indistinguis
able. Simulations at a higher frequency of quenches than
MCS were not performed, since, as we will discuss in
following subsection, pressures obtained while quench
every 100 MCS within the inherent-structure voi
constrained ensemble were consistent with pressures
tained in the void-constrained ensemble for appropri
choices of the severity of the constraint.

Simulations within the inherent-structure void-constrain
ensemble are performed with a Monte Carlo simulation
gorithm. The simulation begins with an initial configuratio
that is mapped to an inherent structure that has no vo
exceeding some specified size. For 100 MCS, configurat
of the liquid are sampled according to normal Metropo
guidelines. At the end of the 100-MCS block, the liquid
quenched to its inherent structure. A Voronoi-Delaunay t
sellation indicates the largest void size within the inher
structure. If the maximum void is less than the specifi
value, then the properties of the liquid~e.g., pressure and
configurational energy! accumulated over the 100-MC
block are counted towards the simulation’s ensemble a
ages. If the void exceeds the given size, then the accumul
averages are discarded. The simulation proceeds with
other 100 MCS but starts with the initial configuration
particles used at the beginning of the previous 100-M
block. Each simulation began with 1000 MCS of equilibr
tion followed by 3000 MCS of ensemble averaging. Thus,
quenches were performed in determining the equilibri
properties of the constrained superheated liquid. Dur
equilibration, the total number of MCS was increased
more than half of the quenches yielded rejections. Theref
we were assured that at least 500 MCS were used to re
equilibration. After equilibration, we found that, for loose
constrained systems~the diameter of voids allowed to form
in inherent structures was equal to five or six interparti
distances!, on the order of 0–2 quenches resulted in a vio
tion of the constraint~only a small fraction of 100-MCS
blocks were rejected!. When the liquid was severely con
strained~the diameter of voids was less than or equal to fo
interparticle distances!, at most ten quenches resulted in
violation of the constraint~i.e., twenty 100-MCS blocks were
counted towards the system’s ensemble averages!.

Since both constrained ensembles are concerned with
prevention of voids of appreciable size, it is useful to analy
the distribution of void sizes in both the unquenched a
quenched liquids. Figure 2 displays the void-size distribut
of the unquenched and quenched superheated shifted-
Lennard-Jones liquid atr*50.70 andT*50.70. Although
our approximate equation of state@Eq. ~17!# predicts that the
density of the liquid at the triple point isr*50.670 (Tcr*
50.687), we obtained a slightly negative pressure for sim
lations atT*50.7 andr*50.725. From simulation data, w
estimate that the density of the liquid at the triple po
(T*50.687) is closer tor*50.730. Voids forming within
the liquid~unquenched! rarely exceed two particle diameter
furthermore, the distribution is unimodal and almost sy
metrical about the most probable void diameter~approxi-
mately 0.7s!. In contrast, the void-size distribution of th
corresponding inherent structure exhibits three distinct f
tures: two sharp peaks at small void sizes (,1.0s), a broad
shoulder spanning intermediate void sizes~ca. 1.0s–2.5s!,
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5528 55CORTI, DEBENEDETTI, SASTRY, AND STILLINGER
and a slowly decaying large-void-size tail (.2.5s). The in-
herent structures of a superheated liquid contain voids wh
sizes exceed that of the largest voids seen within the u
quenched liquid. Therefore, the sizes of voids that must
prevented from forming within inherent structures of the s
perheated liquid will greatly exceed the sizes of voids pr
hibited from developing within the unquenched liquid.

FIG. 2. Probability density of the diameter of voids found in th
inherent structure and unquenched liquid of the shifted-for
Lennard-Jones fluid atT*50.7 andr*50.7. The dashed line is the
density distribution function of the unquenched liquid.

TABLE II. Pressure and configurational energy per particle
the shifted-force Lennard-Jones liquid within the inherent-structu
void-constrained ensemble for various values ofb at T*50.7.
From Eq. ~17!, the density of the liquid at coexistence isr*
50.663; the density of the liquid at the spinodal is approximate
r*50.506. The numbers in parentheses indicate the error in the
two or three decimal places.

r* b P* U* /N

0.55 4.0 20.5429(478) 23.528(167)
0.55 5.0 20.2376(424) 23.117(52)
0.55 6.0 20.2772(504) 23.194(49)

0.60 4.0a 21.897(888) 21.956(241)
0.60 5.0 20.2370(444) 23.407(68)
0.60 6.0 20.2451(429) 23.387(48)

0.65 4.0 20.3966(638) 23.602(58)
0.65 5.0 20.2723(489) 23.575(37)
0.65 6.0 20.2711(467) 23.577(39)

0.70 4.0 20.3792(463) 23.859(39)
0.70 5.0 20.1385(223) 23.848(40)
0.70 6.0 20.1880(497) 23.843(38)

0.725 4.0 20.06983(472) 23.977(39)
0.725 5.0 20.01233(465) 23.982(37)
0.725 6.0 20.01619(471) 23.969(31)

aLess than ten 100-MCS blocks used to calculate ensemble a
ages, due to frequent violation of the constraint.
se
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C. Results

Simulations at two subcritical temperatures~T*50.7 and
0.9! were performed at various densities forb51.0, 1.5, 2.0
within the void-constrained ensemble and forb54.0, 5.0,
6.0 within the inherent-structure void-constrained ensem
Values of the pressureP* and configurational energy pe
particleU* /N were determined at each density and seve
of the constraintb. Simulations atT*50.9 were performed
for densities well within the metastable region and for de
sities just below that of the liquid at the triple point. Sim
lations atT*50.7 were performed within the metastable r
gion and for some densities inside the unstable region.

At each temperature studied, the pressure within
inherent-structure void-constrained ensemble is extrem
sensitive to the severity of the constraintb ~see Tables II and
III !. For most densities simulated, pressures obtained fob
55.0 andb56.0 are statistically indistinguishable. Howeve
whenb54.0 the pressure is drastically reduced, the cha
being dependent upon the proximity to the superheated
uid spinodal. For example, atT*50.9 andr*50.55, a state
point within the predicted metastable region, the artificia
high tension produced forb54.0 is almost two orders o
magnitude larger than the pressures obtained forb55.0 and
b56.0. Similar trends, though not as pronounced, are s
for the configurational energy per particle. This extreme s
sitivity of the thermophysical properties of the stable a
metastable liquid is quite remarkable, given the fact that
are preventing infrequently visited configurations with lar
voids in the inherent structures. Thus, we see that large v
in inherent structures are extremely important in determin
the correct equilibrium properties of the liquid state.
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TABLE III. Pressure and configurational energy per particle
the shifted-force Lennard-Jones liquid within the inherent-struct
void-constrained ensemble for various values ofb at T*50.9.
From Eq. ~17!, the density of the liquid at coexistence isr*
50.545; the density of the liquid at the spinodal isr*50.427. The
numbers in parentheses indicate the error in the last two or t
decimal places.

r* b P* U* /N

0.55 4.0 215.19(39) 27.968(47)
0.55 5.0 0.06622~5091! 22.934(44)
0.55 6.0 0.06555~4939! 22.931(46)

0.60 4.0 24.825(458) 24.465(127)
0.60 5.0 0.1483~516! 23.181(42)
0.60 6.0 0.1505~531! 23.179(44)

0.65 4.0 0.1114~792! 23.426(59)
0.65 5.0 0.2951~555! 23.431(45)
0.65 6.0 0.3038~514! 23.433(43)

0.70 4.0 0.4349~568! 23.750(55)
0.70 5.0 0.5530~514! 23.688(44)
0.70 6.0 0.5547~548! 23.694(58)

0.725 4.0 0.7121~542! 23.831(47)
0.725 5.0 0.7498~544! 23.820(46)
0.725 6.0 0.7403~567! 23.821(54)
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As found for the Lennard-Jones liquid in a previous stud
@14#, the equation of state of the superheated shifted-for
Lennard-Jones fluid within the void-constrained ensemb
was insensitive to values ofb.1.5, but yielded artificial
tensions whenb,1.5. Figure 3 compares the equation o
state of the shifted-force liquid forb52.0 ~prevention of
voids in the instantaneous configurations! with the equation
of state forb56.0 ~prevention of voids in the corresponding
inherent structures!. We see that the two sets of simulations
within error bars, yield similar results. Though pressures f
b55.0 are not shown in Figure 3, we conclude, sinceb
55.0 andb56.0 produce statistically indistinguishable re
sults ~see Tables II and III!, that in order to obtain the true
equation of state of the superheated liquid, voids of at lea
five interparticle separations (b.5.0) must be allowed to
form in the inherent structure. In addition, we obtain consi
tency between two different kinds of constraints: preventio
of voids within the liquid and within the corresponding in
herent structures serve to suppress cavitation and allow
superheated liquid to reach equilibrium.

In @14#, the distribution of voids within the instantaneous
unquenched superheated liquid provided a way in which o
could objectively determine whether a system was overco
strained~i.e., yielded artificially high tensions!. As long as
the void distribution has a well-developed large-void ta
~i.e., the liquid is able to sample those configurations th
have voids with diameters greater than the average interp
ticle distance!, the pressure is independent of the constrain
Constraints that result in abruptly interrupted void distribu
tions, in which the second inflection point associated wi
the tail of the distribution is absent, lead to artificially high
tensions. The appearance or disappearance of the secon
flection point of the void-size distribution provides a clea
geometric criterion for determining whether a constraint
unphysical. Unfortunately, there is no corresponding
simple criterion for simulations in the inherent-structur

FIG. 3. Comparison of the equation of state of shifted-forc
Lennard-Jones fluid in both the void-constrained and inhere
structure void-constrained ensembles. The solid lines~filled circles!
are the equation of state within the void-constrained ensemble
b52.0. The dashed lines~filled squares! are the equation of state
within the inherent-structure void-constrained ensemble forb
56.0.
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void-constrained ensemble. Simulations forb54.0 produce
artificially low pressures, whileb55.0 andb56.0 yield sta-
tistically indistinguishable results. Yet, simulations withb
54.0 do not prevent the formation of a well-develop
large-void tail~see Fig. 2!. Except for the largest void size
sampled, the void-size distributions for all choices ofb are
equivalent. Thus, there does not appear to be a simple
metric criterion for determininga priori whether the super-
heated liquid within the inherent-structure void-constrain
ensemble is overconstrained.

IV. STATISTICAL GEOMETRY OF INHERENT
STRUCTURES

The distribution of void sizes within inherent structures
quite different from that of the instantaneous, unquench
liquid ~see Fig. 2!. Inherent structures contain large void
that never form within the unquenched liquid. The narro
double-peaked profile at small void sizes, along with t
broad shoulder spanning moderate void diameters, is cle
not seen in the unquenched system. Yet, the sampling
local potential energy minima containing large voids~in ex-
cess of five average interparticle separations! is important in
determining the equilibrium properties of both stable a
superheated liquids. We are therefore interested in stud
the statistical geometry of voids within inherent structures
both stable and metastable liquids. Consequently, we add
several questions: Is the void-size distribution a function
the temperature~particularly as one moves, at constant de
sity, from a point within the metastable region to one lying
the stable region of the phase diagram!, in addition to den-
sity? Do the large voids disappear as the range of the in
molecular potential is increased? Are the large voids wit
inherent structures isolated, or are they connected? In in
tigating these questions, we analyze the importance of lo
potential energy minima in determining the equilibriu
properties of both stable and metastable liquids for dens
up to the density of the liquid at the triple point.

Inherent structures~which are equivalent to infinitely
rapid quenches of the system toT50! in Lennard-Jones-like
systems have been found to be substantially invariant w
respect to the starting temperature@10#. To confirm this, we
calculated the distribution of void sizes for several st
points along an isochore, increasing the temperature from
initial point within the metastable region towards a fin
point well above the critical temperature of the liquid. Figu
4 shows the void-size distribution of inherent structures
r*50.725~a density just below that of the liquid at the trip
point! for several values of the temperature, ranging fro
just above the triple-point temperature to approximat
twice the critical temperature. We clearly see that the dis
bution of void sizes is independent of temperature. Nevert
less, what is remarkable about Fig. 4 is that forT*50.7 the
system is metastable and atT*50.9 and 1.84 the system i
in the one-phase region. Therefore, we find that a stable
uid, slightly below its triple-point density, has inherent stru
tures that contain extremely large voids. The appearanc
large cavities in the inherent structure of a highly metasta
liquid ~high tension! might be expected, since a stretch
liquid relieves tension by forming cavities~i.e., the meta-
stable liquid phase-separates via cavitation!. Yet, it is sur-
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5530 55CORTI, DEBENEDETTI, SASTRY, AND STILLINGER
prising to find that a thermodynamically stable liquid, whe
quenched, contains the same large cavities as a metast
system. In other words, a stable liquid samples potentia
energy basins that contain voids in excess of several mole
lar diameters.

The void-size distributions of inherent structures in Fig.
provide no information on the spatial distribution of cavities
Hence, we are interested in understanding how the lar
voids are arranged: are they isolated or connected, possi
spanning the length of the simulation cell? Figure 5 shows

FIG. 4. Void-size distribution of the inherent structures of th
shifted-force Lennard-Jones liquid for three temperatures at a de
sity of r*50.725. The solid line is the distribution atT*50.7; the
open circles are forT*50.9; the open squares are forT*51.84.

FIG. 5. Snapshot of a configuration ofN5256 particles inter-
acting via the shifted-force Lennard-Jones intermolecular potent
quenched to the potential energy minimum forT*50.9 andr*
50.725. For clarity, particles adjacent to a void exceeding 1.0s are
shaded darker; the remaining particles are lighter. The solid lin
indicate the edges of the simulation cell.
ble
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a
configuration of particles quenched to a potential-ene
minimum forN5256 andr*50.725. In the figure, particles
that are adjacent to a void exceeding 1.0s in diameter are
colored dark grey. We clearly see that forN5256, taking
into account the periodic boundary conditions, there is
single nonconvex cavity that spans the entire simulation c
The dark particles form an interface, dividing the system in
a compact region~dark and light particles! and a void region
~empty space!. Due to the appearance of the void, the co
pact region has a higher density than the original system
is solely responsible for the narrow double peak found in
void-size distributions~Fig. 4!.

The compact region is a dense amorphous arrangeme
particles exhibiting a narrow bimodal distribution of vo
sizes. The origin of this double-peaked structure can
found in the distribution of voids of the face-centered-cub
~fcc! crystal, since the shifted-force Lennard-Jones liqu
crystallizes into an fcc arrangement@25#. In other words, the
inherent structure located at the global minimum of t
potential-energy hypersurface is a fcc crystal. Figure 6 co
pares the void-size distribution of the fcc crystal at a dens
of r*51.0577 with the void-size distribution of an inhere
structure atr*50.725. The shifted-force Lennard-Jones f
crystal exhibits its lowest potential energy per particle
r*51.0577. The void-size distribution of the fcc crystal e
hibits only two spikes at void sizes ofd/s50.35 and 0.55.
These spikes correspond to the presence of tetrahedra
octahedral voids, respectively@29#, in the fcc crystal. A tet-
rahedral void is formed when four particles are arranged
the corners of a tetrahedron. An octahedral void is s
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FIG. 6. Void-size distribution of the inherent structure atr*
50.725 and of the face-centered-cubic crystal atr*51.0577 for
the shifted-force Lennard-Jones potential. The two spikes atd/s
50.35 andd/s50.55 constitute the void-size distribution of th
face-centered-cubic crystal. They are scaled by a factor of 4.
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55 5531CONSTRAINTS, METASTABILITY, AND INHERENT . . .
rounded by six spheres, located at the corners of an oct
dron. Though the first and second peaks of the distributio
the liquid’s inherent structure are not aligned exactly w
the fcc crystal’s void-size distribution~indicating some pack-
ing disorder, and that the density of the compact region
different from the chosen density of the fcc crystal!, it is
clear that the inherent structure’s bimodal distribution is
lated to the voids in the fcc crystal. In fact, the doub
peaked distribution is caused by the formation of distor
tetrahedra and octahedra. Using the algorithm of Sastryet al.
@30# to calculate the volume of the void regions in the inh
ent structures for a bulk density ofr*50.725, we find that
the density of the compact region of inherent structures
r*50.83860.034. Although it is still less dense than th
crystal at the global minimum, the compact region exhib
particle arrangements similar to those found in the fcc cr
tal. Of course, the tetrahedra and octahedra comprising
compact region show continuously varying degrees of dis
tion. This is an expected result of dense amorphous pack
where short-range order is present but long-range orde
absent.

It is interesting to note that the characteristic double p
found in the void-size distributions of inherent structures w
also seen by Finney and Wallace@31# in a study of dense
random packings of soft spheres. Finney and Wallace a
lyzed the size of voids within a dense arrangement of h
spheres near random close packing. The distribution of v
sizes for this system was unimodal. However, as this
rangement was allowed to relax under a soft potentia
distinct bimodality developed at small void sizes. Th
double-peaked structure is very similar to ours, in which
first peak is larger than the second, indicating that the co
pact region is forming an amorphous structure.

We have seen that a single large void, spanning the si
lation cell, is found forN5256. It is not known whether
system-spanning voids persist for largerN values. To ad-
dress this question, we performed two separate quenches
system composed ofN51372 particles, equilibrated atT*
50.9 andr*50.725. The resulting void-size distribution
shown in Fig. 7. Also included, for comparison, is the dist
bution forN5256 at the same density. The void-size dist
butions both display the same characteristic form: a nar
double peak at small void sizes, a broad shoulder at inter
diate void diameters, and a slowly decaying large-void t
In fact, the void-size distribution is approximately syste
size independent; minor deviations between the two distr
tions are found only at small void sizes. The inherent str
ture of a single quench forN51372 is shown in Fig. 8. As
before, particles adjacent to a void greater than 1.0s are
shaded dark grey and the remaining particles are light g
We again see, accounting for periodic boundary conditio
that the cavities are indeed connected, forming a single ch
nel that percolates throughout the entire simulation cell.
definition, the dark particles again separate the inhe
structure into two distinct regions: a compact region~light
and dark! and a void, separated by an interface~dark!. The
compact and interfacial regions are solely responsible for
double peak of the void-size distribution. The dark partic
completely enclose the void region, which gives rise to
broad shoulder and slowly decaying large-void tail.

Figures 5 and 8 have interesting implications. The pr
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ence of large voids in the inherent structure means that, fro
a strictly energetic viewpoint, a thermodynamically stab
liquid, even at its triple point, is unstable with respect to th
appearance of large voids~‘‘boiling’’ !. Thermal motion pre-
vents the stable fluid from phase-separating. Nevertheless
low enough temperatures, inherent structures should begin
dominate the properties of the liquid, becoming ultimate
responsible for the mechanical weakness of liquids. The p

FIG. 7. Void-size distribution of the inherent structure of th
shifted-force Lennard-Jones fluid for bothN5256 andN51372 at
r*50.725. Solid line is the distribution forN5256; open circles
describe the distribution, obtained from two separate quenches,
N51372.

FIG. 8. Snapshot of a configuration ofN51372 particles inter-
acting via the shifted-force Lennard-Jones intermolecular poten
quenched to the potential energy minimum forT*50.9 andr*
50.725. For clarity, particles adjacent to a void exceeding 1.0s are
shaded darker; the remaining particles are lighter. The solid lin
indicate the edges of the simulation cell.
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5532 55CORTI, DEBENEDETTI, SASTRY, AND STILLINGER
sibility that ‘‘weak spots’’~small voids! in the instantaneous
unquenched liquid are related to the large cavities seen
inherent structures may, if confirmed, shed light on the ro
of the potential energy hypersurface in determining the te
sile strength of liquids at low enough temperatures.

Figure 4 shows that inherent structures are independen
temperature. We now investigate the effect of density on t
void-size distribution of inherent structures. Figure 9 di
plays void-size distributions for various densities, rangin
from approximately twice the critical density to just below
the triple-point density. The distribution of voids is sensitiv
to the system density. The large-void tail decays more slow
as the density is decreased~i.e., larger voids appear at lower
densities!. The distribution of voids within the compact re
gion is also affected by the density. The location and heig
of the first peak remains invariant to changes in density, b
the second peak clearly decreases with a decrease in den
Since the first peak’s location does not change, the decre
in the height of the second peak upon decreasing the b
density indicates a corresponding decrease in the numbe
octahedral voids in the compact region. In contrast, the nu
ber of tetrahedral voids is independent of density. The few
appearances of octahedral voids, along with a decrease in
decay rate of the large-void tail, suggests that the density
the compact region is increasing as the system density
decreased.

The above discussion pertains to a system with a poten
range ofr c52.5s. In principle, the range of the intermolecu
lar potentialr c should affect the void-size distribution. To
investigate this effect, we performed several simulations
which the value ofr c was increased from 2.5s to one-half
the simulation box length. During each simulation sever
quenches were performed. Figure 10 displays the result
distribution of void sizes in the inherent structures. As wit
changes in density, the height of the first peak is independ
of the range of the potential but the second peak increa
with r c . In addition, the large-void tail decays more slowl
as r c is increased; a longer-ranged intermolecular potent
allows for the formation of larger cavities. The effect of th
range of the intermolecular potential on the structure of loc

FIG. 9. Inherent-structure void-size distribution of the shifted
force Lennard-Jones liquid for various values of the density.
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potential energy minima may offer insight into the effect o
attractive forces on the properties of liquids and amorpho
materials. The attractive potential is responsible for the te
sile strength of liquids, providing the cohesion necessary
resist stretching~negative pressures cannot be attained in
fluid whose constituent molecules interact via a purely repu
sive potential!. At the same time, however, the attractive par
of the potential is solely responsible for the appearance
large cavities in inherent structures, possibly an importa
factor in the low-temperature fracture of materials. To gai
further insight into this interesting concept, it is important to
study the effect of the well depth and the curvature of th
intermolecular potential on the void-size distribution in both
the instantaneous and quenched configurations of model l
uids.

V. CONCLUSIONS

The inherent structure formalism is a useful way of de
scribing molecular dynamics in liquids. The properties of th
liquid phase are determined by the sampling of various loc
potential energy minima~mechanically stable particle pack-
ings! and anharmonic thermal vibrations about these minim
Inherent structures also provide a means by which unwant
configurations can be removed from the partition functio
~imposition of a constraint!. Here, we have studied one such
constraint: the inherent-structure void-constrained ensemb
In this constrained ensemble, limits are placed on the ma
mum size of voids allowed to form in the inherent structure
of the superheated liquid. The equation of state of the stab
and superheated shifted-force Lennard-Jones liquid is e
tremely sensitive to the severity of the constraint. Howeve
as long as the corresponding inherent structures conta
voids in excess of five average interparticle separations, t
resulting equation of state is consistent with simulation re
sults in the void-constrained ensemble, in which void
greater than 1.5 times the average interparticle separation
not allowed to form within the instantaneous unquenche
liquid. Therefore, the sampling of potential energy basin

- FIG. 10. Inherent-structure void-size distribution of the shifted
force Lennard-Jones potential atr*50.55 for various values of the
cutoff r c . L is the length of the simulation box.
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that have inherent structures containing voids greater tha
average interparticle separations is important in determin
the equilibrium properties of liquids near the triple point.

The distribution of voids within inherent structures w
analyzed to determine whether there is an objective crite
to determine when the system is overconstrained. For
void-constrained ensemble, where voids are prevented f
forming within the unquenched liquid, the pressure is ind
pendent of the constraint if the void distribution has a we
developed large-void tail. The void-size distribution must
clude a second inflection point, sampling the infrequen
visited yet important large cavities, in order for the liquid
be ‘‘naturally’’ constrained. Within the inherent-structu
void-constrained ensemble, there is no corresponding g
metric criterion to determine if the liquid is overconstraine
For all severities of constraint studied, the slowly decay
large-void tail is always present; the second inflection po
a prerequisite for the development of the large-void tail,
curs at void sizes well below that of the maximum-allow
void diameter~even for the most severely constrained s
tem!.

Even at the triple-point density, the presence of la
voids ~in excess of five average interparticle separatio!
within the liquid’s inherent structures is necessary for
properties of the liquid to attain their true equilibrium value
We therefore analyzed the statistical geometry of voids
inherent structures for stable and superheated liquids at
sities between the critical and triple points. The distributi
of voids within inherent structures of both the stable a
metastable liquids are identical; a thermodynamically sta
liquid, even at its triple-point density, samples loc
potential-energy minima that contain very large cavities. W
found that these large cavities are connected, spanning
length of the simulation cell. Hence, strictly from an ene
getic viewpoint, even a thermodynamically stable liquid
unstable with respect to boiling. This result has poten
significance in the study of the fracture of liquids and am
phous solids at low temperatures. In order to investigate
connection, a useful starting point is to study the tempera
and tension-dependent correspondence between inh
structure cavities and voids in the unquenched fluid.
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The inherent structures of liquids above the triple-po
temperature and below their triple-point density are se
rated into two distinct regions: a compact region, contain
all the particles at a density higher than the mean sys
density, and the void region~a single, particle-free cavity
percolating throughout the system!. The compact region is
responsible for the bimodal distribution of voids at sm
void sizes, caused by the formation of distorted tetrahe
~first peak! and octahedra~second peak!, found undistorted
in the fcc crystal. The void region accounts for the bro
shoulder in the distribution, at intermediate void sizes, a
the slowly decaying large-void tail. The void-size distrib
tion is a function of the system density and the range of
intermolecular potential. The first peak of the distribution
invariant with changes in the density and the range of
potential; the second peak and large-void tail are sensitiv
changes in these variables.

The present work offers insight into the dual role of a
tractive forces in determining the properties of liquids a
amorphous materials. Attractive forces are responsible
the cohesive strength of liquids. Yet, paradoxically, attra
tions are also~and solely! responsible for the existence o
large voids in configurations corresponding to potenti
energy minima. Clearly, mapping the range of temperat
and tensions where attraction is stabilizing or destabilizing
important.

More generally, this study points to the importance
understanding and investigating the intimate relation
tween metastability and constraints. Simulations are
natural method for studying the effects of constraints mic
scopically and hence should become a basic tool in the
damental investigation of metastability. We believe th
much can be learned about the liquid state of matter un
both stable and metastable conditions from this type of
vestigation.
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