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Period-doubling cascade to chaotic phase dynamics in Taylor vortex flow
with hourglass geometry
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We report on an experimental investigation of a ramp-induced Eckhaus instability, a mechanism which
creates a period-doubling cascade to spatiotemporal chaos in a quasi-one-dimensional pattern-forming system.
This previously experimentally unexplored mechanism for the generation of chaos involves the phase diffusion
of a cellular pattern, resulting from a subcritical spatial ramp. If the subcritical ramp selects an Eckhaus-
unstable wave number, diffusion toward this wave number triggers persistent phase slips that create~or
destroy! cellular structures. Using a nonlinear phase equation to model ramp-induced Eckhaus instabilities,
Riecke and Paap predicted richer-than-periodic dynamics, including spatiotemporal chaos for systems with
subcritical ramps satisfying certain general conditions. The specific system that we investigated is a variation
of Taylor vortex flow, with the inner cylinder replaced by an hourglass geometry, which satisfies the model
conditions for a subcritical ramp that generates chaos. We observed a period-doubling cascade to chaotic phase
slips, in qualitative agreement with the predictions of Riecke and Paap.@S1063-651X~97!01005-2#

PACS number~s!: 47.54.1r, 47.52.1j, 47.20.Ky
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I. INTRODUCTION

Since Pomeau and Manneville first proposed using
phase equation to model the dynamics of patterns in for
dissipative systems, the phase-dynamics approach has
with impressive success@1#. The underlying basis for phas
dynamics is that diffusive behavior for the phase of a s
tially varying pattern is characteristic of a variety of patter
forming systems. An example is the diffusive propagation
a phase modulation at one boundary through the interior
one-dimensional pattern@2,3#. Phase equations can be us
to describe the dynamics of phase diffusion and such eq
tions are an important example of reduced nonlinear eq
tions, which are simpler than and systematically deriva
from more fundamental~e.g., Navier-Stokes! equations@4#.

A particularly intriguing example of phase dynamics is
application to spatially inhomogeneous quasi-one-
dimensional systems, where a control parameterR ~which
determines the strength of the external driving! is varied in
space so that part of the system is subcritical,R,Rc , a
so-called subcritical ramp. Krameret al. showed theoreti-
cally and Dominguez-Lerma and co-workers confirmed
perimentally that subcritical ramps select unique pattern
quasi-one-dimensional systems; a distinct wave numberq for
a spatially periodic pattern results from a specific spa
variation ofR @5–7#. This contrasts with patterns in system
with no spatial variation inR, for which there always exists
a stableband of wave numbers at a givenR. Thus nonu-
niqueness of patterns, which is a distinct feature of homo
neous nonlinear systems, is no longer characteristic of in
mogeneous systems. Riecke and Paap demonstrated
strength of the phase-dynamics approach by using a p
equation to quantitatively calculate uniquely selected w
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numbers in subcritically ramped systems@8,9#.
The particular forced dissipative system investigated

Dominguez-Lerma and co-workers is Taylor-Couette flo
the flow of fluid between concentric rotating cylinders. Th
flow is a structureless shear flow, referred to ascircular Cou-
ette flow ~CCF!, when the inner cylinder rotates at sma
values of the Reynolds numberR ~the system’s control pa
rameter! and the outer cylinder is stationary. AtR5Rc the
system undergoes a steady supercritical bifurcation from
ternless CCF to a spatially periodic quasi-one-dimensio
pattern of toroidal vortices, known asTaylor vortex flow
~TVF! @10,11#. This pattern has a finite band of stable wa
numbers that varies in width withR. At the boundaries of
this band, the wave numberq becomes unstable to lon
wavelength modulations and this instability, known as t
Eckhaus instability, is a generic feature of stationary patte
@12#. If the wavelength of Taylor vortex pairs is either com
pressed or stretched beyond the Eckhaus-stable limit, aphase
slip occurs, in which there is a loss or gain of a vortex pa
which is one wavelength of the pattern. The phase slip
stores the pattern to within the Eckhaus-stable band of w
numbers.

The spatial homogeneity of the Taylor-Couette syst
can be broken by replacing the inner or outer cylinder~or
both! with a ‘‘cylinder’’ which has a straight section and
ramped section over which its radius varies. This create
spatial variation inR, sinceR depends on the radii of the
inner and outer cylinders. For particular spatial ramps th
is a range of driving over which it is possible to have TVF
the straight section and in part of the ramped section
CCF in the rest of the ramped section, i.e., a subcriti
ramp. The wave numberq of the pattern varies over th
supercritical region of the ramped section and is cons
over the supercritical interior~except near the ramp!, where
R does not vary spatially. Subcritical ramps create nea
unique patterns and in the limit of infinitesimal ramp ang
5489 © 1997 The American Physical Society
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a single wave number is selected for the interior of the s
tem. The particularq which is selected depends on the d
tails of the ramp and on the spatially varying control para
eterR @6–9#.

Remarkably, it is possible to construct particular subcr
cal ramps that select uniqueunstablewave numbers, i.e.
wave numbers which lieoutsidethe Eckhaus-stable band fo
the homogeneous system. Riecke and Paap used the p
dynamics approach to predict that the ramp-induced se
tion of an Eckhaus-unstable wave number creates a pa
with persistent dynamics, rather than a stationary pat
@8,9,13#. Ning, Ahlers, and Cannell confirmed this predictio
experimentally by showing that the selection of an unsta
state by a subcritical ramp leads to periodic phase slips in
homogeneous interior of the system@14#. In their experi-
ment, a vortex pair is periodically destroyed in the inter
and replenished by axially drifting vortices that mo
through the ramped section toward the interior. The m
sured drift frequency agrees quantitatively with the pred
tions made by Riecke and Paap, using a phase equation
no adjustable parameters@8,9,14#.

At the Seventh International Couette-Taylor Worksho,
Riecke and Paap raised the following intriguing questio
@15#: Why are the dynamics in the experiment of Ning, Ah
ers, and Cannell periodic? Could one set up a system
which the dynamics become more complicated and e
chaotic? Riecke and Paap conjectured that the sharp co
between the ramped and interior sections of the experime
system singles out a preferred location that constrains p
slips at the same place and, periodically, in time. To obt

FIG. 1. Schematic cross section of the hourglass geometr
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more complicated dynamics, the phase slips need to occ
multiple locations. Thus, a setup with continuously smoo
ramps~with no sharp corners!, which creates a supercritica
region bounded by subcritical regions, might lead to rich
dynamics, including low-dimensional spatiotemporal cha
As a first step toward verifying this conjecture, Riecke a
Paap numerically investigated the slow dynamics of a n
linear reaction-diffusion model that can be described b
one-dimensional phase equation@15,16#. Since phase diffu-
sion and the Eckhaus instability are characteristic of ste
patterns, this model is meant to elucidate the generic dyn
ics in quasi-one-dimensional pattern-forming systems t
have a smooth subcritical ramp that triggers phase slips.
condition for a phase slip to occur at a particular location
that the spatially dependent diffusion coefficient in the ph
equation goes to zero at that location. Riecke and Paap
smooth reflection-symmetric parabolic ramps, with no hom
geneous section, in two control parameters in the mo
This would correspond to ramping both ‘‘cylinders’’ in th
Taylor-Couette system. The reason for reflection symme
~i.e., z→2z, wherez corresponds to the axial direction an
z50 to the axial midpoint! is to prevent a drift in the pattern
that would arise from asymmetrical ramps selecting differ
stablewave numbers at the two boundaries of the superc
cal region@5,17#. Such a drift might preempt a ramp-induce
Eckhaus instability. Riecke and Paap found that their ram
can indeed destabilize the model pattern over several w
lengths, thereby allowing phase slips to occur at differ
locations. This additional freedom in the model system le
to a period-doubling cascade culminating in phase slips
occur chaotically in both time and space. The richer-th
periodic dynamics result from an interaction between co
peting phase-slip processes@15,16#.

Can the period-doubling cascade predicted by this sim
one-dimensional model be found in a real physical syste
that includes the main ingredients that lead to chaos, smo
reflection-symmetric subcritical ramps that induce phase
fusion and an Eckhaus instability? In order to answer t
question we designed perhaps the simplest geometry for
Taylor-Couette system that satisfies these conditions.
chose to replace only the inner cylinder with a spatia
ramped geometry. This geometry, which we refer to as
inner hourglass, consists of two linear ramps connecte
smoothly at the symmetry center. The hourglass geometr

FIG. 2. Schematic transition diagram as a function of the
duced Reynolds number«.
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55 5491PERIOD-DOUBLING CASCADE TO CHAOTIC PHASE . . .
reflection-symmetric with no homogeneous section and it
lows for a range of driving over which there is TVF in th
middle, bounded by subcritical flow at both ends.

In this paper we present an experimental study of
different dynamics that can be found in Taylor-Couette fl
with the hourglass geometry. We concentrate on aspec
the dynamics that can be compared to predictions from
one-dimensional phase equation. We find that the hourg
ramp generates diffusive drifting of vortices and selects
Eckhaus-unstable wave number that triggers persistent p
slips. The dynamics, which are axisymmetric and, therefo
quasi-one-dimensional, can occur periodically or aperio
cally and there is a sequence of period doublings~period four
is the highest periodicity observed! which leads to chaotic
phase slips. Thus, the selection of anunstablestate in a
pattern-forming system can create period-doubling and c
otic dynamics. Although the locations of the phase slips
chaotic in both time and space, the pattern remains spat
organized. We also find that, for a range of external drivi
the system becomes unstable to spiral vortices rather
axisymmetric phase slips. This flow is interesting in tha
involves intermittent axisymmetry breaking; a spiral exci

FIG. 3. Position-time diagrams of pixel intensities displaced
time at 1-s intervals:~a! periodic pattern just above onset and~b!
period-two pattern at small«.
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tion dies out until axisymmetric vortex drifting triggers
new excitation. The relationship of this flow to the chao
dynamics and to the truncation of the period-doubling c
cade at period four is discussed.

II. EXPERIMENTAL SETUP

The modified Taylor-Couette apparatus used in our
periment consists of a rotating inner hourglass made of D
rin plastic, a stationary outer cylinder made from precisio
bore glass with a radiusb52.54 cm, stationary Delrin
plastic endcaps, and a glass temperature control jacke
Fig. 1 we show a schematic cross section of the concen
inner hourglass and outer cylinder. Their mutual axis, tak
as thez axis, is the axis of rotation of the inner hourglas
The inner hourglass itself consists of two linear ramps join
parabolically in the middle to form a symmetry center, d
fined as thez50 plane. There is no discontinuity in the slop
of the hourglass radiusa(z), which varies from 2.41 cm a
the ends toa051.78 cm at the symmetry center. Thus, t
radius ratioh(z)5a(z)/b also varies, from 0.950 at the end
to 0.700 at z50. The angle of the linear rampsa
50.057 rad. The lengthL of the hourglass between the en
caps in the axial direction is 22.1 cm. The gap size at
symmetry center, where it is greatest, isd05b2a0
50.760 cm. This gives a dimensionless length ofG5L/d0
529.1. The axial coordinatez is also scaled in terms o
d0 . The strength of the external driving is determined by t
Reynolds numberR(z)5a(z)vd(z)/n, wherev is the an-
gular speed of the inner hourglass andn is the kinematic
viscosity of the experimental fluid. The inner hourglass
driven by a computer-controlled stepper motor which is p
cise to 0.001 Hz. The experimental fluid is a water-glyce
mixture with a 1.5%, by volume, Kalliroscope suspension
polymeric flakes, added for flow visualization@18#. In order
to maintain constant viscosity, the temperature of the fluid
regulated to within 0.1 K by circulating thermostatically co
trolled water through the temperature control jacket s
rounding the outer cylinder. Data acquisition is achieved
gathering light reflected off Kalliroscope flakes onto
charge-coupled-device camera which is connected to

FIG. 4. Difference in intensity versus time, for a period-tw
regime. The maximum of a sharp peak indicates a phase slip.
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FIG. 5. Dimensionless periodT for the time between thenth11 andnth phase slips plotted againstn for ~a! periodic,~b! period-two,
~c! period-four, and~d! chaotic dynamics. See text for meaning of symbols.
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computer-controlled frame grabber with a grabbing reso
tion of 5123486 pixels and a gray-scale resolution of 8 b
~256 shades!.

Since the transition to time-dependent phase slips is
cisely detectable, unlike the transition to TVF~see Sec. III!,
we chose to define a reduced Reynolds number« in terms of
vps, the critical angular speed for the onset of phase sl
«5(v/vps)21. Note that this expression for« is valid only
if the viscosity-dependentvps is held constant. In order to
guarantee this condition, our protocol was to determ
vps/2p to within at least60.01 Hz, sometimes to within
60.002 Hz, by direct observation, while making small a
justments tov. Then we quasistatically changedv to a de-
sired«, waited for at least a dozen phase slips~usually many
more!, and then acquired data using the camera and fra
grabber. After data acquisition at a particular«, which might
last several hours, we again determinedvps/2p by direct
observation. For all experimental data reported below,
foundvps/2p before and after data acquisition to change
no more than 0.01 Hz and this translates to an uncertaint
« of less than 1%.

III. FLOW REGIMES AT SMALL «

Figure 2 is a schematic transition diagram for the differ
flow regimes observed for the hourglass geometry as the
-

e-

s:

e

-

e-

e
y
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t
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duced Reynolds number« is varied. The inner-hourglas
base flow, like CCF is primarily azimuthal. However, th
hourglass slightly modifies CCF by inducing a weak larg
scale vortex pair, with each vortex filling half the syste
and an inflow boundary atz50. As the external driving is
increased, two stationarypairs of Taylor vortices, reflection-
symmetrically located aboutz50, gradually appear.~Since
it is equivalent to think of the pattern as consisting of
central vortex pair bounded by single vortices, we will som
times refer to the central vortex pair.! Since there is no ho-
mogeneous section in the hourglass geometry, it is diffic
to determine precisely the onset of TVF, which may well
an imperfect bifurcation given the presence of the large-sc
vortices@19#. The Taylor vortices are only strongly prese
when a region of the hourglass approximately 2d0 wide is
supercritical. The Taylor vortex pairs are axisymmetric, a
thus the pattern which they form is quasi-one-dimension
As the angular speed of the hourglass is increased, additi
Taylor vortex pairs appear symmetrically aboutz50, i.e.,
the supercritical region widens. The wavelength of vort
pairs decreases for pairs further fromz50, which is consis-
tent with the decrease in gap size at greateruzu in the hour-
glass geometry. The width of individual vortices alternates
the wavelength of pairs decreases, an effect observed
Ning, Ahlers, and Cannell in the ramped region of their s
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55 5493PERIOD-DOUBLING CASCADE TO CHAOTIC PHASE . . .
tem, which they attributed to large-scale flow caused by th
ramp @14#.

At a value of«50, for which the external driving is 10–
15 % stronger than at the onset of TVF, there is a sha
transition to time-dependent periodic dynamics. This flow
consists of diffusive axisymmetric drifting of vortices, dur-
ing which the wavelength of vortex pairs expands. When th
central vortex pair is stretched beyond the Eckhaus-stab
limit, a phase slip is triggered that creates a new vortex pa
thereby restoring the pattern to Eckhaus stability. The ent
process of diffusion and subsequent phase slip repeats its
periodically and involves the same Eckhaus-instabilit
mechanism responsible for the period dynamics observed
Ning, Ahlers, and Cannell@14#. As « increases in the peri-
odic regime, the period decreases sharply. Figure 3~a! is a
position-time diagram of the pattern just above the transitio
to periodic phase slips. The diagram is constructed, usi
256 successive time frames set one second apart, of a colu
of pixels along thez direction, on which the intensity of light
reflected off Kalliroscope flakes has been recorded. Only
portion of the system fromz524.0 to 4.0, which includes
the supercritical region, is shown, whereas the entire leng
of the system is fromz5214.5 to 14.5. The diagram shows
that the time-dependent pattern breaks reflection symmet
with the new vortex pair drifting to the right, and that the
periodic phase slips occur each time at the same axial loc
tion near the midpoint of the system. To see this, note th
the crests of the new vortex pair always emerge from th
same respective locations. This pattern is similar to th
model pattern of Riecke and Paap, in which periodic pha
slips always occur less than one wavelength, and the sa
distance from, the symmetry center~for a given«!, but con-
trast with their results since the model’s periodic dynamic
are reflection-symmetric~phase slips alternate symmetrically
aboutz50! @16#. One possible explanation for broken sym
metry in the physical system is the presence of finite en
which perturb the perfect symmetry of the model system
Figure 3~a! also shows that vortex pair creation occurs on
fast time scale compared to the time scale for vortex driftin
and that the drift frequency of the new vortex pair is no

FIG. 6. xn11 versusn with m53.6, for the logistic-mapxn11

5mxn(xn21); xne @0,1#. Note the similarity in the chevron pat-
terns in this figure and in Fig. 5~d!.
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constant, since its crests change direction.
At «50.036 there is a period-doubling transition

period-two dynamics in which the flow remains axisymm
ric. An example of this pattern is shown in Fig. 3~b!, which
includes a wider region of the system than Fig. 3~a!. The
phase slips in the period-two regime alternate aboutz50,
with slightly different periods between right and left slip
and broken reflection symmetry, as in the model of Riec
and Paap. Although the average time between phase slip
Fig. 3~b! is much smaller than in Fig. 3~a!, there is no abrupt
change in this time at the transition to period-two dynami
The period has already decreased significantly betwee«
50 and«50.036 and the average period continues to
crease slightly as« is increased through the period-two r
gime. This suggests that the average drift frequency is b
increasing as small« increases and approaching a maximu
which is consistent with the periodic dynamics in the ramp
system of Ning, Ahlers, and Cannell@14#.

The next transition, at«50.125, is to a flow regime in
which the quasi-one-dimensionality of the pattern is interm
tently broken. The flow still includes diffusive axisymmetr
drifting of vortices. However, rather than a rapid phase s
the slow drifting triggers a process of vortex pair creati
involving an excitation of spiral~i.e., nonaxisymmetric! vor-
tices. Wimmer has observed spiral vortices in the flow b
tween a rotating cone and cylinder, which is a similar geo
etry to the hourglass geometry@20#. The spiral excitations in
our experiment are transient and their lifetimes irregul
sometimes an excitation dies out quickly and at other time
lasts on the same time scale as vortex drifting. Occasiona
there is an axisymmetric phase slip rather than a spiral e
tation. After the spiral vortices die out, axisymmetric driftin
begins anew, but the drifting time between excitations is a
aperiodic. Thus, the dynamics of this regime are tempora
chaotic, but intrinsically greater than one-dimensional.
they cannot be the chaotic dynamics predicted by the o
dimensional phase equation used in the model of Riecke
Paap. Instead, a spiral mode preempts the axisymmetric
haus instability. The chaotic dynamics involving intermitte
spiral excitations exist over a wide range of driving, until«
nears 0.50.

IV. PERIOD-DOUBLING CASCADE TO CHAOS

Chaotic dynamics can also be approached by decreasi«
from a regime of stationary Taylor vortices which exis
above«50.78 ~Fig. 2!. At this higher«, the Taylor vortices
nearly fill the hourglass in the axial direction, but they a
still bounded by subcritical regions. In the spatially ramp
system used by Ning, Ahlers, and Cannell, there is als
restabilization of stationary Taylor vortices at higher«: after
the drift frequency of vortices between periodic phase s
reaches a maximum, it decreases to zero@14#. However, in
their experiment the ramp fills with vortices and there is
longer any subcritical region, prior to restabilization. Th
suggests that a different mechanism is responsible for re
bilization in our experiment than the one discussed by P
and Riecke@9# to explain the data of Ning, Ahlers, and Ca
nell @21#.

Below «50.78, the flow is time dependent. As can b
seen in Fig. 2, there is a sequence of transitions from p
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FIG. 7. Fast Fourier transforms from time series collected simultaneously with data for Fig. 5.
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odic to period-two dynamics at«50.515, to period-four dy-
namics at«50.499, to chaotic phase slips at«50.493. The
flow in each of these regimes is axisymmetric and th
quasi-one-dimensional~with the exception of rare spiral ex
citations in the chaotic regime, to be discussed below!. This
sequence qualitatively agrees with the model results
Riecke and Paap, which show that a one-dimensional sys
with a reflection-symmetric ramp, which selects an Eckha
unstable state, can undergo a period-doubling cascade to
tiotemporal chaos. In this section, we present the detail
our experimentally observed period-doubling cascade.

Our technique to determine when a phase slip occurre
to grab a column of pixel intensities every 0.2 s and then s
the pixel by pixel difference in intensity between colum
separated by one second, so that we only save one num
representing the total difference, each fifth of a second.
reason for comparing time frames separated by one seco
to allow enough time for a phase slip to occur betwe
frames. Figure 4 is an example of this difference in intens
plotted against time. We identify when the phase slips
curred by the maximum of the peaks, which are typica
four to five grabs wide and indicate a strong phase shif
the pattern. We repeatedly checked our method of determ
ing phase slips by comparing to a time series of phase s
recorded using direct observation, with typical agreemen
s

f
m
s-
pa-
of

is
m

er,
e
is

n
y
-

n
n-
s,
to

0.1 s for the time each slip occurred. Note that in Fig. 4
period between phase slips alternates between two va
which is indicative of period-two dynamics. The periods a
on the order of 20 s, i.e., 100 grabs, which was typi
throughout our experiment.

In Fig. 5 we plot the dimensionless periodT, representing
the time between thenth11 andnth phase slips versusn for
periodic, period-two, period-four, and chaotic dynamics.T is
scaled by 2p/v, wherev is the angular speed of the hou
glass at which the data was acquired. Periodic dynamics
evident in Fig. 5~a!, in which data collected at«50.553
show a mean period of 100.79 and a standard deviation
the meansm50.03. In Fig. 5~b!, with data taken at«
50.509, there is a period doubling inT, which alternates
between two values. The filled circles represent even ev
with a mean of 89.25 andsm50.04 and the open circle
represent odd events with a mean of 102.20 andsm50.09.
Another doubling to period four is shown in Fig. 5~c!, for
which «50.494 and each different symbol indicatesT for
every fourth event: open squares with mean 107.06 andsm
50.13; filled squares with 100.51 andsm50.13; open
circles with 88.38 andsm50.05; and filled circles with
87.87 andsm50.06. The plot shows a consistent sequen
of four different periods. The split in the lesser two periods
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FIG. 8. Position-time diagrams, as in Fig. 3, for~a! periodic dynamics at«50.708,~b! period-two dynamics at«50.508,~c! period-four
dynamics at«50.495, and~d! chaotic dynamics at«50.491.
ta

iod

ch

p
s
im
T

re
els

e
h
re
he
b
-

a
cy
s

ic-

in
em
in
.

ew
ir,
the
rn
small but discernible, with mean periods separated by a s
dard deviation~s50.5 for both lesser periods! and open
circles almost always occurring with a slightly greater per
than a neighboring, subsequent filled circle. Figure 5~d! with
«50.490 shows temporally chaotic dynamics for whi
there is no periodicity and a large variation inT from less
than 80 to almost 160. Remarkably, the noticeable v-sha
chevron pattern in Fig. 5~d!, in which successive period
tend to get farther apart, is also found in the chaotic reg
of the logistic map just after a period-doubling cascade.
illustrate this point, in Fig. 6 we plotxn11 versusn for the
logistic map in such a chaotic regime.

We also acquired time series of the intensity of light
flected off Kalliroscope flakes over a small area of pix
nearz50 at the same time data for determiningT was ac-
quired. In Fig. 7 we show the fast Fourier transforms of tim
series collected simultaneously with the data in Fig. 5. T
time series consist of 8,192 points with an acquisition f
quency of 1.36 Hz, for a total acquisition time of 1.67 h. T
dimensionless frequency in the transforms is scaled
v/2p. Figure 7~a! shows periodic dynamics with a funda
n-

ed

e
o

-

e
-

y

mental frequency of 9.9431023, which corresponds to the
period in Fig. 5~a!. In Fig. 7~b! there is the appearance of
subharmonic, indicating a period doubling, with a frequen
of 5.2331023, which is the inverse of the sum of the period
in Fig. 5~b!, as expected. Similarly, in Fig. 7~c! there is an
additional subharmonic at 2.6031023, which corresponds to
the sum of the four periods in Fig. 5~c!, giving further evi-
dence of period-four dynamics. Figure 7~d! shows the noisy
spectrum with no harmonics characteristic of chaot
dynamics.

In Fig. 8 we show position-time diagrams of patterns
each of the four dynamic regimes, for a portion of the syst
from z526.4 to 6.4. The pattern for periodic dynamics
Fig. 8~a!, at «50.708, is very similar to the pattern in Fig
3~a! for periodic dynamics at small«. Phase slips in the
periodic regime always occur at the same location, with n
vortex pairs always emerging from the central vortex pa
similar to the model results of Riecke and Paap. But
pattern is not reflection-symmetric, unlike the model patte
for periodic dynamics. The period-two pattern in Fig. 8~b! at
«50.508, closely resembles the small« period-two pattern
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in Fig. 3~b!, with broken reflection symmetry and alternating
location and drifting direction for phase slips, as in th
model. This supports one of the main conjectures of Riec
and Paap that a spatial ramp must induce an Eckhaus ins
bility at multiple locations for period doublings, or chaos, to
occur@15,16#. The period-four pattern shown for«50.495 in
Fig. 8~c! is quite intriguing in that phase slips no longe
alternate in direction but, instead, newly created vortex pa
always drift to the left~which is opposite to the direction for
periodic patterns!. However, the location of the phase slips
still alternates, as can easily be seen in Fig. 8~c!. It is likely
that there is a further small split in location for even and od
phase slips, respectively, indicative of period four, but the
additional splittings cannot be resolved on the space and tim
scales of the diagram. The position-time diagram for«
50.491 in Fig. 8~d! shows spatially chaotic phase dynamics
since there is no periodicity in the location or direction o
phase slips. However, the chaos is confined to the phase
the pattern and does not effect the underlying spatial orga
zation of TVF. We even observed rare phase slips in th
chaotic regime that emerge from a vortex pair neighborin
the central vortex pair@this does not occur in Fig. 8~d!#.
Apparently, the pattern has been Echkhaus destabilized o
several wavelengths and there is a competition betwe
phase slip processes that generates chaos, as in the mod

Figure 9 is a bifurcation diagram in which we plot mean
T versus« between 0.553 and 0.494~this includes the peri-
odic, period-two, and period-four, but not chaotic, regimes!.
The error bars indicate plus or minus one standard deviati
of the mean. Mean periods were calculated for each differe
period at a particular«. For example, we calculated four
means, associated with the four periods in Fig. 5~c!, at «
50.494. At each« there were at least 75 phase slips re
corded, and sometimes more than 300. The diagram sho
two period-doubling bifurcations.

Figures 5 and 7–9 paint a picture of a period-doublin
cascade to spatiotemporal chaotic phase dynamics. The p
odic and period-doubled patterns are each quasi-on

FIG. 9. Bifurcation diagram showing mean periods as a functio
of «. Error bars indicate one standard deviation of the meansm .
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dimensional, with axisymmetric vortex drifting and axisym
metric phase slips. In the chaotic regime, however, j
beyond the transition from period-four phase slips, we o
served occasional, brief spiral excitations temporally int
spersed between axisymmetric phase slips. For exam
seven of the 339 phase slips in Fig. 5~d! involved nonaxi-
symmetric excitations lasting about three seconds@22#. Since
these departures from axisymmetry are rare and brief,
plausible that this regime involves chaotic dynamics res
ing from one-dimensional mechanisms and predicted by
phase equation used by Riecke and Paap. Indeed, this re
is qualitatively different from the chaotic dynamics in whic
spiral excitations are dominant and usually long-lived, wh
occurs at lower«, although there is no sharp boundary b
tween these two types of chaos. As indicated in Fig. 2, if« is
decreased below about 0.480, spiral excitations dominat
spiral mode is competing with the Eckhaus instability and
appears that, at the transition to chaos dominated by axis
metric phase slips~at «50.493 just below the period
doubling cascade!, the spiral mode is nearly equally un
stable. It is the presence of an additional frequen
associated with the spiral mode that possibly truncates
cascade at period four. There is theoretical evidence fr
Horner that a periodic perturbation eliminates the higher
furcations of a period-doubling sequence in a on
dimensional map@23#. In the regime from«50.125 to 0.480
dominated by intermittent spiral excitations, the spiral mo
preempts the axisymmetric Eckhaus instability.

V. CONCLUSIONS

We have presented experimental evidence of a mec
nism for the generation of chaos in a pattern-forming syste
Our data demonstrate a sequence of period-doubling bifu
tions leading to spatiotemporally chaotic phase dynamic
Taylor vortex flow with hourglass geometry, a subcritica
ramped quasi-one-dimensional system, in qualitative ag
ment with the theoretical model of Riecke and Paap@15,16#.
The hourglass geometry was chosen in order to fulfill
general conditions underlying the phase equation used in
model. The mechanism that generates chaotic phase dyn
ics is phase diffusion together with a ramp-induced Eckh
instability, for which the pattern is destabilized over seve
wavelengths. The flow remains spatially organized even
the chaotic regime. Since phase diffusion and Eckhaus in
bility are features of many pattern-forming systems, it sho
be possible to observe chaotic phase dynamics in other
tems ~e.g., Rayleigh-Benard convection and viscous fing
ing! with appropriately chosen subcritical ramps. We a
observed an intriguing chaotic regime, dominated by sp
excitations, in which axisymmetry is broken only interm
tently.
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