PHYSICAL REVIEW E VOLUME 55, NUMBER 5 MAY 1997

Period-doubling cascade to chaotic phase dynamics in Taylor vortex flow
with hourglass geometry
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We report on an experimental investigation of a ramp-induced Eckhaus instability, a mechanism which
creates a period-doubling cascade to spatiotemporal chaos in a quasi-one-dimensional pattern-forming system.
This previously experimentally unexplored mechanism for the generation of chaos involves the phase diffusion
of a cellular pattern, resulting from a subcritical spatial ramp. If the subcritical ramp selects an Eckhaus-
unstable wave number, diffusion toward this wave number triggers persistent phase slips thatocreate
destroy cellular structures. Using a nonlinear phase equation to model ramp-induced Eckhaus instabilities,
Riecke and Paap predicted richer-than-periodic dynamics, including spatiotemporal chaos for systems with
subcritical ramps satisfying certain general conditions. The specific system that we investigated is a variation
of Taylor vortex flow, with the inner cylinder replaced by an hourglass geometry, which satisfies the model
conditions for a subcritical ramp that generates chaos. We observed a period-doubling cascade to chaotic phase
slips, in qualitative agreement with the predictions of Riecke and H&4063-651X97)01005-3

PACS numbes): 47.54:4r, 47.52:+], 47.20.Ky

I. INTRODUCTION numbers in subcritically ramped systef@9].
The particular forced dissipative system investigated by
Since Pomeau and Manneville first proposed using @&ominguez-Lerma and co-workers is Taylor-Couette flow,
phase equation to model the dynamics of patterns in forcethe flow of fluid between concentric rotating cylinders. This
dissipative systems, the phase-dynamics approach has nfiw is a structureless shear flow, referred tamsular Cou-
with impressive succegd]. The underlying basis for phase ette flow (CCP, when the inner cylinder rotates at small
dynamics is that diffusive behavior for the phase of a spavalues of the Reynolds numb& (the system’s control pa-
tially varying pattern is characteristic of a variety of pattern-rametey and the outer cylinder is stationary. R=R, the
forming systems. An example is the diffusive propagation ofsystem undergoes a steady supercritical bifurcation from pat-
a phase modulation at one boundary through the interior of gernless CCF to a spatially periodic quasi-one-dimensional
one-dimensional patterf?,3]. Phase equations can be usedpattern of toroidal vortices, known aBaylor vortex flow
to describe the dynamics of phase diffusion and such equaTVF) [10,11]. This pattern has a finite band of stable wave
tions are an important example of reduced nonlinear equaaumbers that varies in width witR. At the boundaries of
tions, which are simpler than and systematically derivablghis band, the wave numbear becomes unstable to long
from more fundamentale.g., Navier-Stokesequationg4]. wavelength modulations and this instability, known as the
A particularly intriguing example of phase dynamics is its Eckhaus instability, is a generic feature of stationary patterns
application to spatially inhomogeneous quasi-one- [12]. If the wavelength of Taylor vortex pairs is either com-
dimensional systems, where a control param&efwhich  pressed or stretched beyond the Eckhaus-stable liphaae
determines the strength of the external driviig varied in  slip occurs, in which there is a loss or gain of a vortex pair,
space so that part of the system is subcritié&R., a  which is one wavelength of the pattern. The phase slip re-
so-called subcritical ramp. Kramest al. showed theoreti- stores the pattern to within the Eckhaus-stable band of wave
cally and Dominguez-Lerma and co-workers confirmed exnumbers.
perimentally that subcritical ramps select unique patterns in The spatial homogeneity of the Taylor-Couette system
quasi-one-dimensional systems; a distinct wave numlder  can be broken by replacing the inner or outer cylingar
a spatially periodic pattern results from a specific spatiaboth) with a “cylinder” which has a straight section and a
variation of R [5—7]. This contrasts with patterns in systems ramped section over which its radius varies. This creates a
with no spatial variation irR, for which there always exists spatial variation inR, sinceR depends on the radii of the
a stableband of wave numbers at a giveR. Thus nonu- inner and outer cylinders. For particular spatial ramps there
niqueness of patterns, which is a distinct feature of homogeis a range of driving over which it is possible to have TVF in
neous nonlinear systems, is no longer characteristic of inhathe straight section and in part of the ramped section and
mogeneous systems. Riecke and Paap demonstrated t8€F in the rest of the ramped section, i.e., a subcritical
strength of the phase-dynamics approach by using a phasemp. The wave numbeq of the pattern varies over the
equation to quantitatively calculate uniquely selected wavesupercritical region of the ramped section and is constant
over the supercritical interiofexcept near the rampwhere
R does not vary spatially. Subcritical ramps create nearly
*Electronic address: wienerr@pacificu.edu unique patterns and in the limit of infinitesimal ramp angles
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more complicated dynamics, the phase slips need to occur at
multiple locations. Thus, a setup with continuously smooth
ramps(with no sharp cornejswhich creates a supercritical
region bounded by subcritical regions, might lead to richer
dynamics, including low-dimensional spatiotemporal chaos.
As a first step toward verifying this conjecture, Riecke and
Paap numerically investigated the slow dynamics of a non-
L oas linear reaction-diffusion model that can be described by a
b one-dimensional phase equatiplb,16. Since phase diffu-
] sion and the Eckhaus instability are characteristic of steady
patterns, this model is meant to elucidate the generic dynam-
ics in quasi-one-dimensional pattern-forming systems that
have a smooth subcritical ramp that triggers phase slips. The
condition for a phase slip to occur at a particular location is
a single wave number is selected for the interior of the systhat the spatially dependent diffusion coefficient in the phase
tem. The particulag which is selected depends on the de-equation goes to zero at that location. Riecke and Paap used
tails of the ramp and on the spatially varying control param-smooth reflection-symmetric parabolic ramps, with no homo-
eterR [6-9]. geneous section, in two control parameters in the model.
Remarkably, it is possible to construct particular subcriti-This would correspond to ramping both “cylinders” in the
cal ramps that select uniquenstablewave numbers, i.e., Taylor-Couette system. The reason for reflection symmetry
wave numbers which lieutsidethe Eckhaus-stable band for (i.e., z— —z, wherez corresponds to the axial direction and
the homogeneous system. Riecke and Paap used the phage-0 to the axial midpointis to prevent a drift in the pattern
dynamics approach to predict that the ramp-induced seleghat would arise from asymmetrical ramps selecting different
tion of an Eckhaus-unstable wave number creates a pattestablewave numbers at the two boundaries of the supercriti-
with persistent dynamics, rather than a stationary pattergal region[5,17]. Such a drift might preempt a ramp-induced
[8,9,13. Ning, Ahlers, and Cannell confirmed this prediction Eckhaus instability. Riecke and Paap found that their ramps
experimentally by showing that the selection of an unstablean indeed destabilize the model pattern over several wave-
state by a subcritical ramp leads to periodic phase slips in thengths, thereby allowing phase slips to occur at different
homogeneous interior of the syste4]. In their experi- locations. This additional freedom in the model system leads
ment, a vortex pair is periodically destroyed in the interiorto a period-doubling cascade culminating in phase slips that
and replenished by axially drifting vortices that move occur chaotically in both time and space. The richer-than-
through the ramped section toward the interior. The meaperiodic dynamics result from an interaction between com-
sured drift frequency agrees quantitatively with the predicpeting phase-slip processgis,16.
tions made by Riecke and Paap, using a phase equation with Can the period-doubling cascade predicted by this simple
no adjustable parametef8,9,14. one-dimensional model be found in a real physical system,
At the Seventh International Couette-Taylor Workshop that includes the main ingredients that lead to chaos, smooth
Riecke and Paap raised the following intriguing questiongeflection-symmetric subcritical ramps that induce phase dif-
[15]: Why are the dynamics in the experiment of Ning, Ahl- fusion and an Eckhaus instability? In order to answer this
ers, and Cannell periodic? Could one set up a system iguestion we designed perhaps the simplest geometry for the
which the dynamics become more complicated and evefaylor-Couette system that satisfies these conditions. We
chaotic? Riecke and Paap conjectured that the sharp cornelhose to replace only the inner cylinder with a spatially
between the ramped and interior sections of the experimentahmped geometry. This geometry, which we refer to as an
system singles out a preferred location that constrains phasener hourglass consists of two linear ramps connected
slips at the same place and, periodically, in time. To obtairsmoothly at the symmetry center. The hourglass geometry is

FIG. 1. Schematic cross section of the hourglass geometry.
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FIG. 4. Difference in intensity versus time, for a period-two

(b) regime. The maximum of a sharp peak indicates a phase slip.

tion dies out until axisymmetric vortex drifting triggers a
new excitation. The relationship of this flow to the chaotic
dynamics and to the truncation of the period-doubling cas-
cade at period four is discussed.

Il. EXPERIMENTAL SETUP

TIME

The modified Taylor-Couette apparatus used in our ex-
periment consists of a rotating inner hourglass made of Del-
rin plastic, a stationary outer cylinder made from precision-
bore glass with a radiub=2.54 cm, stationary Delrin
plastic endcaps, and a glass temperature control jacket. In
Fig. 1 we show a schematic cross section of the concentric
inner hourglass and outer cylinder. Their mutual axis, taken
as thez axis, is the axis of rotation of the inner hourglass.
The inner hourglass itself consists of two linear ramps joined
parabolically in the middle to form a symmetry center, de-
fined as the=0 plane. There is no discontinuity in the slope
of the hourglass radiua(z), which varies from 2.41 cm at
reflection-symmetric with no homogeneous section and it althe ends taa,=1.78 cm at the symmetry center. Thus, the
lows for a range of driving over which there is TVF in the radius ration(z)=a(z)/b also varies, from 0.950 at the ends
middle, bounded by subcritical flow at both ends. to 0.700 atz=0. The angle of the linear ramps

In this paper we present an experimental study of the=0.057 rad. The length of the hourglass between the end-
different dynamics that can be found in Taylor-Couette flowcaps in the axial direction is 22.1 cm. The gap size at the
with the hourglass geometry. We concentrate on aspects symmetry center, where it is greatest, ph=b—a,
the dynamics that can be compared to predictions from the=0.760 cm. This gives a dimensionless lengthl'cf L/d,
one-dimensional phase equation. We find that the hourglass29.1. The axial coordinate is also scaled in terms of
ramp generates diffusive drifting of vortices and selects anly. The strength of the external driving is determined by the
Eckhaus-unstable wave number that triggers persistent pha®ynolds numbeR(z) =a(z) wd(z)/v, wherew is the an-
slips. The dynamics, which are axisymmetric and, thereforegular speed of the inner hourglass ands the kinematic
quasi-one-dimensional, can occur periodically or aperiodiviscosity of the experimental fluid. The inner hourglass is
cally and there is a sequence of period doublifmgsiod four  driven by a computer-controlled stepper motor which is pre-
is the highest periodicity observeavhich leads to chaotic cise to 0.001 Hz. The experimental fluid is a water-glycerol
phase slips. Thus, the selection of anstablestate in a mixture with a 1.5%, by volume, Kalliroscope suspension of
pattern-forming system can create period-doubling and chagolymeric flakes, added for flow visualizati¢h8]. In order
otic dynamics. Although the locations of the phase slips aréo maintain constant viscosity, the temperature of the fluid is
chaotic in both time and space, the pattern remains spatiallgegulated to within 0.1 K by circulating thermostatically con-
organized. We also find that, for a range of external drivingtrolled water through the temperature control jacket sur-
the system becomes unstable to spiral vortices rather thanwunding the outer cylinder. Data acquisition is achieved by
axisymmetric phase slips. This flow is interesting in that itgathering light reflected off Kalliroscope flakes onto a
involves intermittent axisymmetry breaking; a spiral excita-charge-coupled-device camera which is connected to a

AXIAL POSITION (z/d,)

FIG. 3. Position-time diagrams of pixel intensities displaced in
time at 1-s intervals(a) periodic pattern just above onset afi)
period-two pattern at smadl.
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FIG. 5. Dimensionless perio@l for the time between thath+1 andnth phase slips plotted againstfor (a) periodic,(b) period-two,
(c) period-four, andd) chaotic dynamics. See text for meaning of symbols.

computer-controlled frame grabber with a grabbing resoluduced Reynolds numbes is varied. The inner-hourglass
tion of 512x 486 pixels and a gray-scale resolution of 8 bitsbase flow, like CCF is primarily azimuthal. However, the
(256 shades hourglass slightly modifies CCF by inducing a weak large-
Since the transition to time-dependent phase slips is prescale vortex pair, with each vortex filling half the system,
Cisely detectablg, unlike the transition to T\(fee Sec. |D|, and an inflow boundary a=0. As the external driving is
we chose to define a reduced Reynolds nunatierterms of  jncreased, two stationagairs of Taylor vortices, reflection-
wps, the critical angular speed for the onset of phase slipsgymmetrically located abowt=0, gradually appear.(Since
e =(w/wpd — 1. Note that this expression feris valid only  j"is equivalent to think of the pattern as consisting of a
if the viscosity-dependenb,, is held constant. In order 10 coqa) vortex pair bounded by single vortices, we will some-
guarantee t.h's. condltlon,+ our protocol was to dEt.e”,n'netimes refer to the central vortex paiSince there is no ho-
wpd2 10 Within at Ieast_0.0l_ Hz, sometimes to within mogeneous section in the hourglass geometry, it is difficult
;0'002 Hz, by direct observ§t|0n_, while making small ad'to determine precisely the onset of TVF, which may well be
justments tow. Then we quasistatically changedto a de- 5 i\ herfect bifurcation given the presence of the large-scale
sirede, waited for at least a dozen phase skipsually many qices[19]. The Taylor vortices are only strongly present
more, and then acquweq .d.ata using th_e camera anq fram?ﬁ/hen a region of the hourglass approximately, 2vide is
grabber. After data acqwsmqn ata partlcuéafwmch m|ght supercritical. The Taylor vortex pairs are axisymmetric, and
last several hours, we again determinegy2z by direct s the pattern which they form is quasi-one-dimensional.
observation. For all experimental data reported below, We\q 1he angular speed of the hourglass is increased, additional
found w,427 before and after data acquisition to change bYTaonr vortex pairs appear symmetrically abat0, i.e.,

no more than 0.01 Hz and this translates to an uncertainty ithe supercritical region widens. The wavelength of vortex

¢ of less than 1%. pairs decreases for pairs further fraw 0, which is consis-
tent with the decrease in gap size at gregagin the hour-
glass geometry. The width of individual vortices alternates as
Figure 2 is a schematic transition diagram for the differenthe wavelength of pairs decreases, an effect observed by
flow regimes observed for the hourglass geometry as the reNing, Ahlers, and Cannell in the ramped region of their sys-

Ill. FLOW REGIMES AT SMALL &
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T T T T T T T constant, since its crests change direction.
I i R L At £=0.036 there is a period-doubling transition to
T T el Ceeen > : period-two dynamics in which the flow remains axisymmet-
ric. An example of this pattern is shown in Figb3 which
includes a wider region of the system than Figa)3The
phase slips in the period-two regime alternate alwsD,
et et e 0 e e e oo 1 with slightly different periods between right and left slips
Lo o T ) B and broken reflection symmetry, as in the model of Riecke
T . . . and Paap. Although the average time between phase slips in
oalb T % . 2 ww &= =« 1 Fig. 3b) is much smaller than in Fig.(8), there is no abrupt
et e T e e el e T e D change in this time at the transition to period-two dynamics.
The period has already decreased significantly between
=0 ande=0.036 and the average period continues to de-
crease slightly ag is increased through the period-two re-
! 1 L 1 1 1 L gime. This suggests that the average drift frequency is both
0 50 100 150 200 250 300 N - . . .
n increasing as sma#l increases and approaching a maximum,
which is consistent with the periodic dynamics in the ramped
FIG. 6. X+, Versusn with x=3.6, for the logistic-mapx,,;  System of Ning, Ahlers, and Cann¢il4].
= uXn(Xn—1); Xp€ [0,1]. Note the similarity in the chevron pat- The next transition, at=0.125, is to a flow regime in
terns in this figure and in Fig.(8). which the quasi-one-dimensionality of the pattern is intermit-
tently broken. The flow still includes diffusive axisymmetric
tem, which they attributed to large-scale flow caused by thdlrifting of vortices. However, rather than a rapid phase slip,
ramp[14]. _the sl_ow drn‘tlng_ triggers a process of vortex pair creation
At a value ofs =0, for which the external driving is 10— [nvolving an excitation of spirali.e., nonaxisymmetricvor-
15 % stronger than at the onset of TVF, there is a Sha”gces. Wlmmgr has observed.splral vortices in _th(_a flow be-
transition to time-dependent periodic dynamics. This flow!€€n & rotating cone and cylinder, which is a similar geom-
consists of diffusive axisymmetric drifting of vortices, dur- €try to the hourglass geomeff90]. The spiral excitations in
ing which the wavelength of vortex pairs expands. When th@Ur €xperiment are transient and their lifetimes irregular,
central vortex pair is stretched beyond the Eckhaus-stablg®Metimes an excitation dies out quickly and at other times it
limit, a phase slip is triggered that creates a new vortex pair@Sts on the same time scale as vortex drifting. Occasionally,
thereby restoring the pattern to Eckhaus stability. The entir&1€re is an axisymmetric phase slip rather than a spiral exci-
process of diffusion and subsequent phase slip repeats itsdftion- After the spiral vortices die out, axisymmetric drifting
periodically and involves the same Eckhaus-instability?€9ins anew, but the drifting time between excitations is also
mechanism responsible for the period dynamics observed pgPeriodic Thus, the dynamics of this regime are temporally
Ning, Ahlers, and Canne[l14]. As ¢ increases in the peri- Chaotic, but intrinsically greater th.an one—_dlmensmnal. So
odic regime, the period decreases sharply. Figue 8 a they cannot be the chao_tlc dynamlcs predicted by_the one-
position-time diagram of the pattern just above the transitiorfiimensional phase equation used in the model of Riecke and
to periodic phase slips. The diagram is constructed, usinfj@ap- Instead, a spiral mode preempts the axisymmetric Eck-
256 successive time frames set one second apart, of a colurRgus instability. The chaotic dynamics involving intermittent
of pixels along the direction, on which the intensity of light SPiral excitations exist over a wide range of driving, ustil
reflected off Kalliroscope flakes has been recorded. Only &€&rs 0.50.
portion of the system frorm=—4.0 to 4.0, which includes
the supercritic_al region, is shown, whereas 'ghe entire length IV. PERIOD-DOUBLING CASCADE TO CHAOS
of the system is fronz= —14.5 to 14.5. The diagram shows
that the time-dependent pattern breaks reflection symmetry, Chaotic dynamics can also be approached by decreasing
with the new vortex pair drifting to the right, and that the from a regime of stationary Taylor vortices which exists
periodic phase slips occur each time at the same axial locabovee =0.78 (Fig. 2). At this highere, the Taylor vortices
tion near the midpoint of the system. To see this, note thanearly fill the hourglass in the axial direction, but they are
the crests of the new vortex pair always emerge from thestill bounded by subcritical regions. In the spatially ramped
same respective locations. This pattern is similar to thesystem used by Ning, Ahlers, and Cannell, there is also a
model pattern of Riecke and Paap, in which periodic phaseestabilization of stationary Taylor vortices at highetafter
slips always occur less than one wavelength, and the santbe drift frequency of vortices between periodic phase slips
distance from, the symmetry centdor a givene), but con- reaches a maximum, it decreases to 4ddj. However, in
trast with their results since the model’s periodic dynamicgheir experiment the ramp fills with vortices and there is no
are reflection-symmetri@phase slips alternate symmetrically longer any subcritical region, prior to restabilization. This
aboutz=0) [16]. One possible explanation for broken sym- suggests that a different mechanism is responsible for resta-
metry in the physical system is the presence of finite endbilization in our experiment than the one discussed by Paap
which perturb the perfect symmetry of the model systemand Rieckd9] to explain the data of Ning, Ahlers, and Can-
Figure 3a) also shows that vortex pair creation occurs on anell [21].
fast time scale compared to the time scale for vortex drifting Below ¢=0.78, the flow is time dependent. As can be
and that the drift frequency of the new vortex pair is notseen in Fig. 2, there is a sequence of transitions from peri-
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FIG. 7. Fast Fourier transforms from time series collected simultaneously with data for Fig. 5.

odic to period-two dynamics at=0.515, to period-four dy- 0.1 s for the time each slip occurred. Note that in Fig. 4 the
namics ate =0.499, to chaotic phase slips@t0.493. The period between phase slips alternates between two values,
flow in each of these regimes is axisymmetric and thuswhich is indicative of period-two dynamics. The periods are
quasi-one-dimensiondWith the exception of rare spiral ex- on the order of 20 s, i.e., 100 grabs, which was typical
citations in the chaotic regime, to be discussed bgldwis throughout our experiment.
sequence qualitatively agrees with the model results of |y Fig. 5 we plot the dimensionless peridd representing
Riecke and Paap, which show that a one-dimensional systefie time between theth+ 1 andnth phase slips versusfor
with a reflection-symmetric ramp, which selects an ECkhaUSperiodic, period-two, period-four, and chaotic dynamikss
unstable state, can undergo a period-doubling cascade to sRg:|aq by 2r/w, wherew is the angular speed of the hour-
tiotemporal chaos. In this section, we present the details (Ecass at which :che data was acquired. Periodic dynamics are
our experimentally observed period-doubling cascade. evident in Fig. %a), in which data collected at=0.553

Our technique to Qetermine y\{hen a phase slip occurred iShow a mean 'periéd of 100.79 and a standard de\'/iation of
to grab a column of pixel intensities every 0.2 s and then surrti1e meano,—0.03. In Fig. b), with data taken ate

the pixel by pixel difference in intensity between columns
P y P y =0.509, there is a period doubling ih, which alternates

separated by one second, so that we only save one number, ) X
representing the total difference, each fifth of a second. ThBetween two values. The filled circles represent even events

reason for comparing time frames separated by one second¥4th @ mean of 89.25 and,=0.04 and the open circles
to allow enough time for a phase slip to occur betweerfeépresent odd events with a mean of 102.20 apg-0.09.
frames. Figure 4 is an example of this difference in intensityAnother doubling to period four is shown in Fig(c}, for
plotted against time. We identify when the phase slips ocwhich e=0.494 and each different symbol indicatésfor
curred by the maximum of the peaks, which are typicallyevery fourth event: open squares with mean 107.06 apd
four to five grabs wide and indicate a strong phase shift ir=0.13; filled squares with 100.51 ana,,=0.13; open
the pattern. We repeatedly checked our method of determirzircles with 88.38 ands,,=0.05; and filled circles with
ing phase slips by comparing to a time series of phase slip87.87 ando,,=0.06. The plot shows a consistent sequence
recorded using direct observation, with typical agreement t@f four different periods. The split in the lesser two periods is
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dynamics at

0.491.

0.495,

small but discernible, with mean periods separated by a stamental frequency of 9.9410 3, which corresponds to the

dard deviation(o

period in Fig. %a). In Fig. 7(b) there is the appearance of a

0.5 for both lesser periofisand open

circles almost always occurring with a slightly greater periodsubharmonic, indicating a period doubling, with a frequency

which is the inverse of the sum of the periods

3

of 5.23x 10"

subsequent filled circle. Figui@ Bvith

than a neighboring,

in Fig.(@ there is an
which corresponds to

the noticeable v-shapetthe sum of the four periods in Fig(&

in which successive periods dence of period

as expected. Similarly
3

additional subharmonic at 2.60L0

0.490 shows temporally chaotic dynamics for whichin Fig. 5b)

there is no periodicity and a large variation Tnfrom less

than 80 to almost 160. Remarkably,

&

giving further evi-

four dynamics. Figurédy shows the noisy

in Fig. (8)

chevron pattern

is also found in the chaotic regimepectrum with no harmonics characteristic of chaotic-

tend to get farther apart

doubling cascade. Talynamics.

of the logistic map just after a period

illustrate this point

time diagrams of patterns in

each of the four dynamic regimes

In Fig. 8 we show position

in Fig. 6 we plat,. ; versusn for the

for a portion of the system

logistic map in such a chaotic regime.

—6.4 to 6.4. The pattern for periodic dynamics in

from z

flected off Kalliroscope flakes over a small area of pixelsFig. 8a)

We also acquired time series of the intensity of light re

is very similar to the pattern in Fig.

3(a) for periodic dynamics at smak. Phase slips in the

In Fig. 7 we show the fast Fourier transforms of timeperiodic regime always occur at the same location, with new

0.708

ate=

0 at the same time data for determinifigwas ac-

nearz

quired.

series collected simultaneously with the data in Fig. 5. Thesortex pairs always emerging from the central vortex pair,

results of Riecke and Paap. But the

guency of 1.36 Hz, for a total acquisition time of 1.67 h. Thepattern is not reflection-symmetric, unlike the model pattern
dimensionless frequency in the transforms is scaled byor periodic dynamics. The period-two pattern in Figb)Bat

w/27. Figure Ta) shows periodic dynamics with a funda- £=0.508, closely resembles the smalperiod-two pattern

,192 points with an acquisition fre-similar to the model

time series consist of 8
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T T T ; T T T dimensional, with axisymmetric vortex drifting and axisym-

metric phase slips. In the chaotic regime, however, just
beyond the transition from period-four phase slips, we ob-
served occasional, brief spiral excitations temporally inter-

=
T
1

" : spersed between axisymmetric phase slips. For example,
: =z = _ seven of the 339 phase slips in Figdbinvolved nonaxi-
L - 91 symmetric excitations lasting about three secdi2®. Since
= = these departures from axisymmetry are rare and brief, it is

plausible that this regime involves chaotic dynamics result-
ing from one-dimensional mechanisms and predicted by the
- phase equation used by Riecke and Paap. Indeed, this regime
- 7 is qualitatively different from the chaotic dynamics in which
spiral excitations are dominant and usually long-lived, which
ssk 4 occurs at lower, although there is no sharp boundary be-
! L L L L L | tween these two types of chaos. As indicated in Fig. 2,i¢f
049 0Seest 08 088 08 088 decreased below about 0.480, spiral excitations dominate. A
REDUGED REYNOLDS NUMBER & spiral mode is competing with the Eckhaus instability and it
appears that, at the transition to chaos dominated by axisym-

FIG. 9. Bifurcation diagram showing mean periods as afunctionmetrlc phase slips(at £=0.493 just below the period-

of e. Error bars indicate one standard deviation of the mean doubling ca}scade the spiral mode is ne«’:.lr_ly equally un-
stable. It is the presence of an additional frequency

associated with the spiral mode that possibly truncates the
cascade at period four. There is theoretical evidence from

in Fig. 3(b), with broken reflection symmetry and alternating Horne_r that a periodic_perturbat_ion eliminates th_e higher bi-
location and drifting direction for phase slips, as in thefurcations of a period-doubling sequence in a one-
model. This supports one of the main conjectures of Rieck&imensional map23]. In the regime froms =0.125 to 0.480
and Paap that a spatial ramp must induce an Eckhaus instdominated by mt_ermlttent_splral excitations, fche spiral mode
bility at multiple locations for period doublings, or chaos, to Préempts the axisymmetric Eckhaus instability.
occur[15,16. The period-four pattern shown fer=0.495 in

Fig. 8(c) is quite intriguing in that phase slips no longer

alternate in direction but, instead, newly created vortex pairs V. CONCLUSIONS

always drift to the leftwhich is opposite to the direction for

periadic patterrs However, the location of the phase slips nism for the generation of chaos in a pattern-forming system.

tsrtlgllt?rl]tgg?;e: ’fl?rsthza:nsrizsllllg tl)i(taiielgzall'tri]oi(}gg}aet\/irrl;ilg oddOur data demonstrate a sequence of period-doubling bifurca-
) : ! SPILI : tions leading to spatiotemporally chaotic phase dynamics in
phase slips, respectively, indicative of period four, but thes

- L -~ Taylor vortex flow with hourglass geometry, a subcritically
additional spllttmgs cannot be reso!\{ed on the space and t'ml%mped quasi-one-dimensional system, in qualitative agree-
scales c_>f the diagram. The _position-time diagram t;o_r ment with the theoretical model of Riecke and PaHp,16.
:.0'491 In F'.g‘ &d) sh(_)ws_ ;pa_tlally chaot|<_: phase .dym.im'cs'The hourglass geometry was chosen in order to fulfill the
since thgre IS no periodicity in th? Iocatl|on or direction of neral conditions underlying the phase equation used in the
phase slips. However, the chaos is confmgd to th? phase odel. The mechanism that generates chaotic phase dynam-
the' pattern and does not effect the underlying spat'lal organyeq js phase diffusion together with a ramp-induced Eckhaus
zatlon_ of T.VF' We even observed rare phas_e sll_ps In .themstability, for which the pattern is destabilized over several
chaotic regime that emerge from a vortex pair neighborin

el . E1/vavelengths. The flow remains spatially organized even in
X]e cent;lal ;/r:)rtexttpalftrr]us (E)oes Eothlfhccur ('jn Tgbl(a)]d the chaotic regime. Since phase diffusion and Eckhaus insta-
pparently, the pattern has been tchkhaus destabilize Ovﬁflity are features of many pattern-forming systems, it should

Sﬁveral I;Navrelengths t{;n? thr?r? t'S ahcompetltilr?r;hberawze e possible to observe chaotic phase dynamics in other sys-
P ;a:?e? pgpi ocesi?ers tianggi eraﬁsiﬁv?rﬁsh?/\s/ | tem 0 N ems (e.g., Rayleigh-Benard convection and viscous finger-
gure = 1S a biturcation diagra ¢ch we plot mea ing) with appropriately chosen subcritical ramps. We also

Tdyersus:a getfl\\//veen 3'553. %n? 0'4%41'3 'TCIEdeff the PEM"  shserved an intriguing chaotic regime, dominated by spiral
odic, period-iwo, and perlod-Tour, but not chaotic, reg"‘?es. excitations, in which axisymmetry is broken only intermit-
The error bars indicate plus or minus one standard dev'at'ofbntly

of the mean. Mean periods were calculated for each different
period at a particulag. For example, we calculated four
means, associated with the four periods in Fi¢g)5at ¢
=0.494. At eache there were at least 75 phase slips re-
corded, and sometimes more than 300. The diagram shows We wish to thank Professor Hermann Riecke and Profes-
two period-doubling bifurcations. sor Randall Tagg for useful discussions on this research. We
Figures 5 and 7-9 paint a picture of a period-doublingalso wish to thank Steve Attanasi for constructing the hour-
cascade to spatiotemporal chaotic phase dynamics. The peglass apparatus. This research was supported by Research
odic and period-doubled patterns are each quasi-onecorporation and by the Murdock Charitable Trust.
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We have presented experimental evidence of a mecha-
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