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Parametric forcing of waves with a nonmonotonic dispersion relation:
Domain structures in ferrofluids
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Surface waves on ferrofluids exposed to a dc magnetic field exhibit a nonmonotonic dispersion relation. The
effect of a parametric driving on such waves is studied within suitable coupled Ginzburg-Landau equations.
Due to the nonmonotonicity the neutral curve for the excitation of standing waves can have up to three minima.
The stability of the waves with respect to long-wave perturbations is deternited phase-diffusion equa-
tion. It shows that the band of stable wave numbers can split up into two or three subbands. The resulting
competition between the wave numbers corresponding to the respective subbands leads quite naturally to
patterns consisting of multiple domains of standing waves which differ in their wave number. The coarsening
dynamics of such domain structures is addresgeti063-651X97)12201-3

PACS numbdps): 47.20—k, 05.45:+b, 05.90:+m

[. INTRODUCTION corresponding to the competing wave numbers. Domain
structures are then expected to arise close to threshold, where
Spatial patterns have been studied extensively over ththey may be described analytically within a small-amplitude
past years, the classic examples being RayleighaBecon- theory [6,9,12,13. In addition, in this regime interesting
vection, Taylor vortex flow, and structures arising in direc-locking [14] and coarsening phenomena are possible which
tional solidification[1]. It has been well established that are not expected at large amplitudd®,13,15-17.
long-wavelength perturbations of such steady patterns ex- So far, not many physical systems have been identified
hibit diffusive phase dynamics] with the phase-diffusion which exhibit a neutral curve with two minima. Note that
coefficient changing sign at the Eckhaus instabili8/4].  within the framework of Ginzburg-Landau equations it is not
Thus, after the decay of transients, one-dimensional steadsufficient if two different modes with different wave num-
patterns usually relax to a strictly periodic pattern. bers go unstable at the same value of the control parameter.
It has been pointed out, however, that this need not be th8ince the stability of the domain structures relies either on
case in general; there are situations in which the final statphase conservatidi8,6,13 or on a locking-in of interacting
consists of a number of domains with different wave num-fronts[13] (see also beloyy both minima have to correspond
bers[5-9]. This can occur if the phase-diffusion coefficient to the same mode.
becomes negative such that the band of stable wave numbers For traveling waves a neutral curve with a double mini-
is split into two parts. Within each domain the wave numbermum has recently been identified in convection of a conduct-
is then in one of the two stable subbands. Experimentallying fluid in a rotating annulus in the presence of a magnetic
such domain structures have been observed in Rayleigtield [18]. This system is, however, not easily accessible in
Benard convection in a narrow chanr&D]. However, so far  experiments.
it has not been firmly established whether the origin of these In this paper we show that neutral curves with multiple
states is in fact due to a splitting of the stable band since thminima, and the resulting domain structures, may be ob-
phase-diffusion coefficient has not been measured in this rdained quite naturally by a parametric driving of waves with
gime. From a theoretical point of view this experiment is nonmonotoniaispersion relation. Then there exists a range
difficult to analyze, since the domain structures arise only aof frequencies in which modes with different wave numbers
very large Rayleigh numbers which require full numericalresonate simultaneously with the driving. The dispersion re-
simulations of the three-dimensional Navier-Stokes equalation becomes nonmonotonic when the group velocity
tions. changes sign. This is the case in spiral vortex flow between
Very recently, two-dimensional domain structures havecounter-rotating cylinders in certain parameter regifi€s.
been observed in experiments on optical beams in a ringlowever, the parametric forcing of spiral vortex flow has
cavity [11]. In certain parameter regimes the light intensityturned out to be nontrivial due to the appearance of Stokes
in the cross section of the beam was found to exhibit coexlayers[20]. If the parametric driving can be applieda a
isting stripes and hexagonal patterns with clearly distincbulk forcing (e.g., using electric or magnetic fie)dss effect
wave numbers. The precise origin of these domain structureés considerably stronger. For instance, standing waves are
has not yet been established. excited very efficiently by an ac electric field in electrohy-
Domain structures can be viewed as arising from the comdrodynamic convection in nematic liquid crystd®1,22.
petition between different wave numbers. For their investi-This suggests considering the effect of an ac magnetic field
gation it is therefore natural to turn to pattern-forming sys-on surface waves on ferrofluids. They exhibit a nonmono-
tems which have a neutral curve, with two or more minimatonic dispersion relation if they are exposed to a sufficiently
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strong dc magnetic fielf23]. In fact, the nonmonotonicity is 3
a precursor of the Rosensweig instabilit24,25. Quite
analogously, surface waves on conducting and dielectric flu-
ids in the presence of an electric field exhibit a nonmono-
tonic dispersion relation leading to an instability for larger
fields[26—29.

The organization of the paper is as follows. To describe
parametrically driven waves for small amplitudes, in Sec. Il
we introduce in suitable coupled complex Ginzburg-Landau 1 L i
equations. In Sec. Il we study analytically the long-wave A5 10 05 00 05 10 15
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field). In the expected parameter regime the band of stable
wave numbers separates into three subbands. The numerical
simulations presented in Sec. IV confirm the existence and
stability of structures consisting of domains with different
wave number. In addition, we present numerical results for
the coarsening of arrays of domains within a single, fourth-
order Ginzburg-Landau equation which can be derived from
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1. MODEL 3

For small amplitudes and small damping parametrically
driven waves can be described by coupled Ginzburg-Landau
equationg30—33. A crucial ingredient for determining the
linear part of these equations is the dispersion relation of the
waves. For surface waves on an inviscid ferrofluid of infinite
depth in the presence of a dc magnetic field, it is given by
[24]
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FIG. 1. The neutral-stabilitysolid line) and Eckhaugdashed

Here g is the gravitational acceleratiow; the surface ten-
line) curves for Egs.(2) and (3) for a,=—0.5, d=0.1,

o e o 13103 G105, n= 3121 . o s
9 ) 0 y of the detuningg; as indicated. The dotted line i) indicates the

Mc=3gop(Lliuo+1iu) the dispersion relation becomes \yqye-number distribution of the structure shown in Fig. 2.
nonmonotonic and is given by a cubic polynomial in the

vicinity of the inflection point. To capture this cubic disper- the linear coupling termsbA and bB, respectively. Its

sion relation third spat_lal derivatives are retained in theStrength is proportional to the coefficient[30,31, which
Ginzburg-Landau equations,

can be chosen real. All other coefficients are in general com-
plex. The second control parameter is the detuning between

A+, A=do2A+ foSA+aA+bB+cA|A|? g
LA X X Al the frequencyw,, of the external driving and the natural fre-

+(n—c)|BJ?A, (20 quency w, of waves with wave number g,
wo=w/2+a;— aa, with a being anO(1) quantity and
#B—va,B=d*92B+f*93B+a*B+bA+c*B|B|? a=a,+ia;. The carrier wave numbey, is chosen to be that
wave number for which the dispersion relati6h) has an

+(n*—c*)[B|’B. (3 inflection point with zero slope. This occurs fietg=M_.. At

this point the linear group velocity, and as the quadratic
dispersion termd; vanish. As long aV, is close toM.
these dispersive terms are therefore small, and it is consistent
g w3t 0.3 to keep also the third-order term which gives the cubic dis-
h=ge Y A(x De” "%+ B(x,ne?) +c.c.+ hod, persion relation. In all of the following we assume that the
5<1, (4)  Viscosity of the fluid is low. The dissipative terms are then
small with the leading order term beirgy, allowing us to
where the amplitude# and B depend on slow space and neglect the imaginary part df. However, we keep; and
time coordinates,= §°t, x= 6%, and h.o.t. stands for higher- d,, which give the linear and quadratic dependence of the
order terms. The parametric driving, which can be achievedlamping on the wave number, although they are also of
with an additional ac magnetic field, enters the equatioas higher order thara,. In this paper we do not attempt to

Physical quantities like the surface heidghare described in
terms of the complex amplitudes as
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make quantitative predictions for a specific experimental sysextremum. Near that extremem is small butd; is not, and
tem. Therefore we do not calculate the coefficients of Egssmall-amplitude waves can be described using Ezjsand

(2) and(3). Instead we present results that should be typical3) without the third-derivative terrf6].
of the parametric driving of waves with the nonmonotonic

dispersion relation. lll. LINEAR STABILITY AND PHASE DIFFUSION
The neutral-stability curve, at which the basic statéth The multiple wells in the neutral curve suggest that the
flat surface becomes unstable, is given by band of stable wave numbers also splits into separate sub-

bands. This is a prerequisite for stable domain structures to
exist. We therefore determine the linear stability of the non-
linear waves with respect to long-wave perturbations. This is

can therefore have up to three minima. Depending on th one most efficiently by deriving the phase-diffusion equa-

parameters, the absolute minimum of the neutral—stabilityIon [2.6]
curve can be any one of the three. Of course, the situation d1d(X, T)=D(q)dxp(X,T). (6)
with a single minimum can be recovered as well. Examples o ) _
of neutral curves with multiple minima are given by the solid In this description the amplitudésandB are proportional to
lines in Figs. 1a)—1(c). There the effect of changing the S,(Q)el¢ +0(e), where the amplituds of the wave satis-
driving frequency, i.e., the detunirgy, is demonstrated. The "€S
difference between half the external frequency and the fre- b2=|n|2S*+ 2n* RS+ |R/?, 7
guency of a wave with wave numberis indicated by the
dotted line. The damping is also taken to be wave numbe®nd X=ex and T=¢’t are superslow scales. The phase
dependent ; and d, nonzerd. As expected, the neutral gives the local wave number vig=dy¢. In order to sim-
curve exhibits local minima at the resonance wave numberdlify the expression foD(q), the following notation is in-
As the detuning is changed from negative to positive valuesroduced:
the absolute minimum shifts from the resonance at high a*b=ab,+ab,, asb=ab;+ab, ®)
wave number to that at low wave number.

It should be noted that neutral curves with double minimaThe phase diffusion coefficieri?(q) can then be written as
can also be obtained if the dispersion relation hasngle  D(q)/7(q) with

b2=|R|?2 with R=a—ivq—dg?—ifq>. (5)

The resulting neutral-stability curve is sixth ordergnand

D(q)=—{4(3c;fq+c*d)|n|?}S*—{—18c* n* f2q*+ 24(Im(d*cn))f g3+ [ — 12(Re(v* cn))f
+8(d*d* c*n* +2d,d;cen) ]2+ [6(R;|n|?+ 2¢c;n* R) f + 8(Im(cd* nv*))]q+ 2[ d* R|n|2+ 2n* Rcx d
—v*v*crn* —2u,v;con]}S*—{9[ —R*n* + 2R¢;1f%q*+ 1 ¢;d, R, + (¢;d; + c*d)R; + Im(Rnd* ) ]fg>
+[6(—civiR,+(civ,+cov*)R —Re(Rmv*))f +8crdd* R+ 4d* d* n* R* + 8d,din*R]g?+[4(v**Rd*n
+v*Rd*en+cxdv* *R+d*Ro*ec)+6R;fn*R]q+[2(d,n,R?+ d;in;R?+ d*nR,R;) —2(c+n)*Rv,v;
+(2¢iRi—n*R*)u?+ (2¢,R, + n* R* v 2]} 2 — {9R?F2q*+ 12d* RR fg°+ [6Rev* R f + 4(d* R)?]g?

+4d*RRv*gq+(Rev*)?} (9)

|

and (10) by considering the limiS—«. For ¢c;=0 the leading-
order term{—4(3c;fq+c*d)|n|%S® of D(q) is positive

7(q) = — 4¢,|n|?S— (4c,n* R+ 2R;|n|?)S*—2Rn* RS sincec,<0 andd,>0. ThusD becomes positive for large
(10 S, independent of the other coefficients, since0 for large

S.

Here Ref) and Im@) denote the real and imaginary part of The same consideration shows that for general coeffi-

a, respectively. cients, i.e., forc;#0 andf+#0, the diffusion coefficienD

The stability limit (Eckhaus boundajyof the spatially always becomes negative for lar§efor some range of.
periodic waves is given bf(q)=0 and is denoted by the For the parameters chosen in Fig&)%1(c), this occurs for
dashed lines in Figs.(8—1(c). From Eqgs.(5), (9), and(10) g>0. Thus fora;=—0.7 one obtains two stable subbands
one can see that if the imaginary parts of the various paramwhich do not merge for large forcing. With increasiagiwo
eters are zero, then the neutral-stability and Eckhaus curveslditional resonances arise for smaligrieading to a quite
are symmetric around=0. Even if the neutral curve has flat neutral curve. Strikingly, the left stable subband splits up
multiple minima, and consequently the band of stable wavénto two bands leading to three separate bands right at onset
numbers is separated into subbands, these subbands meffég. 1(b)]. Upon a further increase ta;=0.5 the largey
for large forcing. This can be seen directly from E¢®.and  subband merges with the central one for small forcing. For
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FIG. 2. A typical domain structure arising from Eqs) and FIG. 3. Temporal evolution of the local wave number. The ini-

(3 for a,=—05+05, b=13, d=01, v=140.2, f=-3, 45 yave number ig]~ —0.34. The forcing i9=1.7. The remain-
c=—1-0.5, n=—3+2i [cf. Fig. X(c)]. The thin solid line gives ing parameters area=-05+0.1i, d=0.1, v=1+0.2
Re(e'%*(A+B)), with q.=1.5. The short and long dashed lines .= 1 55 1= _342i andf=—3 [;:f Fig 1(5)] '

indicate the real and imaginary parts A&f respectively.

the stability boundary which faces the other subbgas

large forcing they remain separated. The merging of the cens orked by the open square in Figcl it is expected that the

tral band with the left band occurs now only at larger values o : . : i
of the forcingb [Fig. 1(0)]. instability will not lead to a phase slip but to domain struc

tures.
The best approach is presumably to prepare a periodic
IV. NUMERICAL SIMULATIONS pattern in the single-well regime, i.e. fod <M, with the

To show that the complex stability regions shown in Figs.W‘"“’e number(i.e. the frequencychosen such that it falls

1(a)—-1(c) indeed lead to stable domain structures consistinggto thet_ u?stlzb_le reg:jon Ibe_tween tv‘éotSUbgiE?:A ongrehthe de
of domains with large and small wave numbers, we solve agnetic field 1s suddenly increased to re c- 'Ne

Egs. (2) and (3) with periodic boundary conditions numeri- ngmerical result Qf suqh a protocol is shown in Fig. 3. This
cally using a finite-difference code with Crank-Nicholson gives the space-time diagram for the local wave number, and

time-stepping. A typical domain structure is shown in Fig. 2_clearly shows how the pattern separates into domains with

It was obtained for parameter values that correspond to Fi ifferent wave numbers after a jump from>0 to v, <0,

- ; ; ; vhich renders the initial wave number in the region of insta-
1(c) (with b=1.3) and the location of this domain structure | . . . 2
in (gq,b) space is indicated by the dotted line on that figure.bIIIty between the left two subbands of Fighl (b=1.7). In

The domain structure itseif consists of a region Withthe simulation the initial condition was perturbed with a

q~0.19 in the center of the figure arg~—0.72 at the long-wave modulation of the wave number in order to trigger

boundariegqthick line). These wave numbers correspond tothg long-wave Eckhaus instability. Note that the initial con-
ition was placed very close to the top of the hump of the

the two Eckhaus-stable wells for the selected parameter vaj: : . .
ues. Between the two domains there is a sharp transitio _ckhaus curve in order to insure that the fastest growing

This domain structure is numerically stable. The thin IinemOOle has a Io_ng wavelength I_ead|_ng toa s_ln_gle I(_)W-Wave
number domain. Thus the diffusion coefficient is only

gives Réexp(qo9{A+B}) with g,=1.5, and is intended to weakly negative, and the evolution is extremely slow.

give an impression of a typical surface deformation in this . S - -
regime. The broken lines give the real and imaginary part of A second simulation is shown in Fig. 4. Here the initial

A. The dots in Fig. (c) give the wave number distribution of
the solution shown in Fig. 2. The higher density of dots near
g=—0.7 and 0.2 shows that over most of the system the
local wave number is within one of the two stable regimes.
From an experimental point of view an important question
is how one obtains these domain structures. Clearly, an adia-
batic increase of the periodic forcing in the frequency regime
in which the neutral curve has two different minima will not
be successful since the emerging pattern will always be pe-
riodic with the wave number corresponding to the deeper
minimum. Instead, one has to increase the forcing suddenly
from values below threshold to a value for which the wave-
number band consists of at least two subbands. Even then
one may still predominantly obtain patterns with the wave
number corresponding to the deeper minimum. Alterna-

tively, one can change the forcing frequency at a fixed su- FiG. 4. Temporal evolution of the local wave number. The ini-
percritical forcing amplitude in the regime in which the tial wave number i5j=0.28, andb=2 [cf. Fig. 1(b)]. The remain-
stable band is split. The change in frequency shifts the banghg parameters are as in Fig. 3. The fastest growing mode has a
of stable wave numbers, and eventually the initially stableshort wavelength, and leads to a large number of small domains
wave becomes unstable. If its wave number hits the part ofvhich then undergo a coarsening process.

Wave Number q

Position
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wave number igy=0.28 andb=2, i.e., the wave number 15 , ‘ ‘

falls between two subbands which are completely separated ? ALY AL AR

from each other. The evolution of the wave number is strik- ""‘”””””~y"'”””(y"‘4”””””"v

ingly different from Fig. 3. Although the initial perturbation L * : ‘

was the same as in Fig. 3, large oscillations in the wave b) J L ‘ J L
\ £

number arise after a short time. Apparently, in this regime 25t
the fastest growing mode has a short wavelength. Presum-
ably, this represents the usual shift to shorter wavelengths 1s 5 ; ‘ ; ’ ;
when the Eckhaus boundary is exceeded substantially. In I T m e (O e
principle it could, however, also indicate an additional short- o v‘v“”””””‘v'” J””\‘v’”””\v ”'”&
wavelength instability not captured in the phase equaon L3 ‘ ‘ ‘
Figure 4 shows that the sideband instability can lead — at
least initially — to quite complex arrays of domains. As can
be seen in that figure, the domains evolve slowly over time
in a coarsening process in which adjacent domain walls
(fronts annihilate each other, thereby reducing the number
of domains. Thus the interaction between the domain walls
plays a crucial role in determining whether the coarsening
will continue and eventually will lead to a state consisting
only of two large domains of different wave numbers, or j ]
whether the coarsening comes to a halt leading to a complex o
structure like that shown in Fig. 4 at large times. The latter is
expected if the interaction between the domain walls is os-
cillatory in space. This would allow a discrete set of equilib- ] .
rium distances between the domain wallgl]. Oscillations 0 L/ L2 3L/4 L
in the wave number — as apparent in Fig— suggest that Position
the interaction could indeed be oscillatory. A detailed study
of this issue is, however, beyond the scope of this papet, .

Here we will pre;ent only simulations qf a S|mpler mOdeIParts(a), (©), (e), and(g) show the wave numbethick line) and
which can b_e derlved_ from Eq&2) and(S) in a special case. Re(A4e%0%) (thin line), while (b), (d), and (f) plot the positions of
The locking of adjacent fronts in the wave number has,eros of the wave number as a function of titnenning upwardl
been discussed in detail within the framework of a singlepor ail figures,>=1.0, D,=1, andL=217.36, and for(a)—(c)
Ginzburg-Landau equation with fourth-order spatial deriva-p,= —0.72, (d) and (¢) D,=—0.7; and(f) and (g) D,= —0.58.
tives, which models a neutral curve with two equal minimaThe times indicated irib), (d), and(f) are time/10 000.

[15,17,12,13

FIG. 5. Simulations of Eq(11). Positions of domain walls as
y evolve, and the domain structures observed at various times.

interest is in the behavior of long systems containing many
dA A a*A ) domains. In particular, we are interested in the interaction
F =D ﬁ_ D4W +3A-T| AP A 11 between adjacent domain walls. [[b3] a discrete set of so-
lutions has been found, in which the fronts are locked into
, , i each other due to the oscillatory behavior of the local wave
Such a neutral curve is obtained for E@®) and(3) in the  \,mper similar to that of the structure shown in Fig(s2e
special case where=0 andf=0. If in addition the two 556 [17]). The oscillations lead to a discretization of the
minima are not too deep, the Ginzburg-Landau equatidn  gjowed domain widths, such that the domains can be char-
can be derived from Eq¢2) and (3) near thres?olg, and3 ON€ acterized by the number of oscillations contained in them.
obtains D,=d,+ad/a,, D,=—df|al/(2a’),  They disappear wheB, is raised from negative values to-
3=—lal(b—|a])/a;, andI'=(n,a, +nja;)/(2a;) [6]. The  ward 0. The dependence of the range of existence of a do-
complex amplitudeA is proportional to the amplitude&  main on the number of oscillations has been studiefd. 8}
andB of the left- and I’ight-traveling wave Components Qf thefor domains ranging from 1 to 9 extrema in the wave num-
standing wavgA|=|B|. The slowness of the slow scal¥s ber. It was found that among these domains those with five
andT is related to the distance from threshold. Equatibh extrema exist over the largest rangef.
has also been studied in the context of two-dimensional zig- In Figs. 5g)-5(@ we present the typical evolution of a
zag patterns. There the locking discussed below has bedarge array of domains for periodic boundary conditions
identified previoushf15-17. As discussed ifil3], no lock-  when the coefficienD, is increased from negative values.
ing is possible within the phase equati). Locking can  The initial condition[Fig. 5(g)] consists of an arbitrarily cho-
therefore arise only in regimes in which the phase equatiosen sequence of domains of different sizes. Figufeshows
breaks down, as is, for instance, the case very close to threstite temporal evolution of the zero crossings of the wave
old. Thus, Eq(11) is expected to capture some aspects of theaumber at fixedd =0.72; clearly, domains that do not have
dynamics of fronts in Eq92) and (3). the appropriate width become either wider or narrower in
Numerical simulations of Eq(11) yield a surprisingly order to lock the domain walls at an appropriate distance.
rich behavior for small domain structures which consist onlyThe resulting stat¢Fig. 5e)] is stable. In analogy to the
of two domains. This is discussed in detail[8]. Here our  analysis of spatial chaos in a Ginzburg-Landau equation with
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real amplitudg 14], it is expected that in very long arrays of plied to waves which are Benjamin-Feir unstaf8d] in the

the type shown in Fig. @) the sequences of domain lengths absence of forcing. This can be seen from E). In the

can be chaoti¢16,17. limit of large amplitudes the diffusion coefficient becomes
If D, is changed fronD,=—0.72 toD,=—0.7, states negative in the band center éd,+c;d;>0, which is the

which have only one extremum between adjacent walls ceasgyndition for Benjamin-Feir instability of the unforced

to exist, and the adjacent domain walls annihilate each othefyayves[35]. This implies that either the parametrically forced

Such a situation is shown in the sequence Fide)-8(C).  \aves become unstable at all wave numbers, or that the

The single-extremum states disappear very soon after thgaple band has split into subbands. In the latter case domain
control parameter is changed. The remaining states then regctures should arise.

order themselves to retain their desired spacing. A similar
process is observed in the sequence Figl-5a) when the main structures in two dimensions. If the wave numbers in

cor_1tro| parameter is changed ©,=—0.58, a value_ at the different domains differ only in their orientation but not

which the three-extrema states no longer exist. Again, th? their magnitude, one obtains zigzag structures. In isotropic

domain walls annihilate each other and a stable state consisg 9 . : 9zag ' P
ystems they arise generically due to the annular shape of the

ing only of very wide domains is reached. In the numerical® ¢ stabl b | ll S OtroD; ‘
simulations such states with more than nine extrema werE9€ Of Stable wave humbers. In axially anisolropic systems

not found to be stable. On an exponentially long time scaldn€y appear when the instability of the strqcturgless state is

the state depicted in Fig# is therefore expected to coarsen to .roIIs or waves oblique to the preferred _dwec;tmn. The sta-

to a state with only one domain with large wave number an llity of zigzag structures has been S.’tUd'Gd. N some detail

one domain with small wave number 13,36, in particular in systems with axial anisotropy
We expect that Eq92) and (3) possess stable solutions [15,17. . _ .

similar to those shown in Fig. 5, which consist of arrays of. Neutr_al Stap'“ty sur_faces f_or parametrically drlyen waves

domains of different widths and which undergo coarsenin n two-dimensional anisotropic systems were studied in some

transitions when parameters are changed. The main differqetail in [32]. There, interesting situations with multiple
ence between Eq¢l11) and (2) and (3) seems to be that, in minima at different orientations as well as different magni-
the general case, Eq2) and (3) are not even in the w:;we tudes of the wave number have been found, suggesting the

number. Therefore domains with positive and negative wavé’O?S'b"'ty of a patchwork .Of two-d|men_5|onal_ dor_nams_ n
which the wave numbers differ not only in their orientation

numbers are not equivalent. In preliminary simulations of i - -
Egs. (2) and (3) for parameters as in Fig. 1 €lb<2), do- but also in their magnitude. Can such structures be stable?
: | ' b§é)me impression can be gained from a simulation presented

mains with negative wave numbers appeared to be less stal X
than those with positive wave numbers, which often lead to ey [37] (see alsq11]). Figure. 3b) of [37] shows the result

merging of the latter. There seemed to be only a weak lock?f @ two-dimensional simulation of the coupled Ginzburg-
ing of the respective fronts, if any. For small asymmetry,I‘and":.lu equations for parametrically driven waveith nor-
however, the dynamics as shown in Fig. 5 should still be:maI dispersiopin an anisotropic system. The pattern shown
possible in the full equations. The effect of an asymmetryS clearly characterized by domains or patches with large and

can also be studied by simulations of Egi1) with an addi- small wavelengths. Although the authors attribute the result
tional third derivative[33] to a Benjamin-Feir instability of the waves, i.e., a situation in

which waves ofall wave numbers become unstable, a com-
parison with Eq(9) shows that for the parameters chosen in
that simulation the stable band is split into two subbands
with the critical wave numbeg=0 lying in the unstable

In this paper we investigated the stability of parametri-region between. Only the stability of that latter wave number
cally driven waves in systems in which the dispersion relawas studied if37]. A better understanding of such complex
tion for unforced waves is nonmonotonic. We studiedtwo-dimensional domain structures is clearly desirable.
coupled Ginzburg-Landau equations which are valid for Finally, an extension to traveling waves is also of interest.
small amplitudes and in the V|C|n|ty of the inflection point in So far' domain structures of trave"ng waves have been in-
the dispersion relation. As expected the neutral curves for th?estigated only within a suitable phase equatjéB]. The

excitation of the waves exhibit multiple minima in this re- possibility of a locking of the domain walls has, however,
gime, and consequently the band of stable wave numbers st been addressed.

split up into three subbands. Numerical simulations show

that under these conditions patterns consisting of an array of

domains with different wave n_umbers can be stable. Ou_r ACKNOWLEDGMENTS
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V. CONCLUSION
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