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Parametric forcing of waves with a nonmonotonic dispersion relation:
Domain structures in ferrofluids
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Surface waves on ferrofluids exposed to a dc magnetic field exhibit a nonmonotonic dispersion relation. The
effect of a parametric driving on such waves is studied within suitable coupled Ginzburg-Landau equations.
Due to the nonmonotonicity the neutral curve for the excitation of standing waves can have up to three minima.
The stability of the waves with respect to long-wave perturbations is determinedv ia a phase-diffusion equa-
tion. It shows that the band of stable wave numbers can split up into two or three subbands. The resulting
competition between the wave numbers corresponding to the respective subbands leads quite naturally to
patterns consisting of multiple domains of standing waves which differ in their wave number. The coarsening
dynamics of such domain structures is addressed.@S1063-651X~97!12201-2#

PACS number~s!: 47.20.2k, 05.45.1b, 05.90.1m
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I. INTRODUCTION

Spatial patterns have been studied extensively over
past years, the classic examples being Rayleigh-Be´nard con-
vection, Taylor vortex flow, and structures arising in dire
tional solidification @1#. It has been well established th
long-wavelength perturbations of such steady patterns
hibit diffusive phase dynamics@2# with the phase-diffusion
coefficient changing sign at the Eckhaus instability@3,4#.
Thus, after the decay of transients, one-dimensional ste
patterns usually relax to a strictly periodic pattern.

It has been pointed out, however, that this need not be
case in general; there are situations in which the final s
consists of a number of domains with different wave nu
bers@5–9#. This can occur if the phase-diffusion coefficie
becomes negative such that the band of stable wave num
is split into two parts. Within each domain the wave numb
is then in one of the two stable subbands. Experimenta
such domain structures have been observed in Rayle
Bénard convection in a narrow channel@10#. However, so far
it has not been firmly established whether the origin of th
states is in fact due to a splitting of the stable band since
phase-diffusion coefficient has not been measured in this
gime. From a theoretical point of view this experiment
difficult to analyze, since the domain structures arise only
very large Rayleigh numbers which require full numeric
simulations of the three-dimensional Navier-Stokes eq
tions.

Very recently, two-dimensional domain structures ha
been observed in experiments on optical beams in a
cavity @11#. In certain parameter regimes the light intens
in the cross section of the beam was found to exhibit co
isting stripes and hexagonal patterns with clearly disti
wave numbers. The precise origin of these domain struct
has not yet been established.

Domain structures can be viewed as arising from the co
petition between different wave numbers. For their inve
gation it is therefore natural to turn to pattern-forming sy
tems which have a neutral curve, with two or more minim
551063-651X/97/55~5!/5448~7!/$10.00
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corresponding to the competing wave numbers. Dom
structures are then expected to arise close to threshold, w
they may be described analytically within a small-amplitu
theory @6,9,12,13#. In addition, in this regime interesting
locking @14# and coarsening phenomena are possible wh
are not expected at large amplitudes@12,13,15–17#.

So far, not many physical systems have been identi
which exhibit a neutral curve with two minima. Note th
within the framework of Ginzburg-Landau equations it is n
sufficient if two different modes with different wave num
bers go unstable at the same value of the control param
Since the stability of the domain structures relies either
phase conservation@8,6,13# or on a locking-in of interacting
fronts @13# ~see also below!, both minima have to correspon
to the same mode.

For traveling waves a neutral curve with a double mi
mum has recently been identified in convection of a condu
ing fluid in a rotating annulus in the presence of a magne
field @18#. This system is, however, not easily accessible
experiments.

In this paper we show that neutral curves with multip
minima, and the resulting domain structures, may be
tained quite naturally by a parametric driving of waves w
nonmonotonicdispersion relation. Then there exists a ran
of frequencies in which modes with different wave numbe
resonate simultaneously with the driving. The dispersion
lation becomes nonmonotonic when the group veloc
changes sign. This is the case in spiral vortex flow betw
counter-rotating cylinders in certain parameter regimes@19#.
However, the parametric forcing of spiral vortex flow h
turned out to be nontrivial due to the appearance of Sto
layers @20#. If the parametric driving can be appliedv ia a
bulk forcing ~e.g., using electric or magnetic fields! its effect
is considerably stronger. For instance, standing waves
excited very efficiently by an ac electric field in electroh
drodynamic convection in nematic liquid crystals@21,22#.
This suggests considering the effect of an ac magnetic fi
on surface waves on ferrofluids. They exhibit a nonmon
tonic dispersion relation if they are exposed to a sufficien
5448 © 1997 The American Physical Society
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55 5449PARAMETRIC FORCING OF WAVES WITHA . . .
strong dc magnetic field@23#. In fact, the nonmonotonicity is
a precursor of the Rosensweig instability@24,25#. Quite
analogously, surface waves on conducting and dielectric
ids in the presence of an electric field exhibit a nonmo
tonic dispersion relation leading to an instability for larg
fields @26–29#.

The organization of the paper is as follows. To descr
parametrically driven waves for small amplitudes, in Sec
we introduce in suitable coupled complex Ginzburg-Land
equations. In Sec. III we study analytically the long-wa
stability of standing waves which are parametrically exci
by a periodic forcing~e.g., by an ac magnetic or ac electr
field!. In the expected parameter regime the band of sta
wave numbers separates into three subbands. The nume
simulations presented in Sec. IV confirm the existence
stability of structures consisting of domains with differe
wave number. In addition, we present numerical results
the coarsening of arrays of domains within a single, four
order Ginzburg-Landau equation which can be derived fr
the coupled Ginzburg-Landau equations under suitable c
ditions.

II. MODEL

For small amplitudes and small damping parametrica
driven waves can be described by coupled Ginzburg-Lan
equations@30–32#. A crucial ingredient for determining the
linear part of these equations is the dispersion relation of
waves. For surface waves on an inviscid ferrofluid of infin
depth in the presence of a dc magnetic field, it is given
@24#

v2~q!5gq1
s

r
q32

1

r~1/m011/m!
M0

2q2. ~1!

Here g is the gravitational acceleration,s the surface ten-
sion,r the density of the fluid,m the permeability, andM0

the magnetization of the fluid. WhenM0
2 is increased beyond

Mc
2[A3gsr(1/m011/m) the dispersion relation become

nonmonotonic and is given by a cubic polynomial in t
vicinity of the inflection point. To capture this cubic dispe
sion relation third spatial derivatives are retained in
Ginzburg-Landau equations,

] tA1v]xA5d]x
2A1 f ]x

3A1aA1bB1cAuAu2

1~n2c!uBu2A, ~2!

] tB2v]xB5d* ]x
2B1 f * ]x

3B1a*B1bA1c*BuBu2

1~n*2c* !uBu2B. ~3!

Physical quantities like the surface heighth are described in
terms of the complex amplitudes as

h5deiq0x̂„A~x,t !e2ve/2t̂1B~x,t !eve/2t̂
…1c.c.1 h.o.t.,

d!1, ~4!

where the amplitudesA and B depend on slow space an
time coordinates,t5d2t̂, x5d x̂, and h.o.t. stands for higher
order terms. The parametric driving, which can be achie
with an additional ac magnetic field, enters the equationsvia
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the linear coupling termsbA and bB, respectively. Its
strength is proportional to the coefficientb @30,31#, which
can be chosen real. All other coefficients are in general co
plex. The second control parameter is the detuning betw
the frequencyve of the external driving and the natural fre
quency v0 of waves with wave number q0,
v05ve/21ai2aar with a being anO(1) quantity and
a[ar1 iai . The carrier wave numberq0 is chosen to be tha
wave number for which the dispersion relation~1! has an
inflection point with zero slope. This occurs forM05Mc . At
this point the linear group velocityv r and as the quadratic
dispersion termdi vanish. As long asM0 is close toMc
these dispersive terms are therefore small, and it is consis
to keep also the third-order term which gives the cubic d
persion relation. In all of the following we assume that t
viscosity of the fluid is low. The dissipative terms are th
small with the leading order term beingar , allowing us to
neglect the imaginary part off . However, we keepv i and
dr , which give the linear and quadratic dependence of
damping on the wave number, although they are also
higher order thanar . In this paper we do not attempt t

FIG. 1. The neutral-stability~solid line! and Eckhaus~dashed
line! curves for Eqs. ~2! and ~3! for ar520.5, d50.1,
v5110.2i , c52120.5i , n52312i , f523, and various values
of the detuningai as indicated. The dotted line in~c! indicates the
wave-number distribution of the structure shown in Fig. 2.
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5450 55DAVID RAITT AND HERMANN RIECKE
make quantitative predictions for a specific experimental s
tem. Therefore we do not calculate the coefficients of E
~2! and~3!. Instead we present results that should be typ
of the parametric driving of waves with the nonmonoton
dispersion relation.

The neutral-stability curve, at which the basic state~with
flat surface! becomes unstable, is given by

b25uRu2 with R5a2 ivq2dq22 i f q3. ~5!

The resulting neutral-stability curve is sixth order inq, and
can therefore have up to three minima. Depending on
parameters, the absolute minimum of the neutral-stab
curve can be any one of the three. Of course, the situa
with a single minimum can be recovered as well. Examp
of neutral curves with multiple minima are given by the so
lines in Figs. 1~a!–1~c!. There the effect of changing th
driving frequency, i.e., the detuningai , is demonstrated. The
difference between half the external frequency and the
quency of a wave with wave numberq is indicated by the
dotted line. The damping is also taken to be wave num
dependent (v i and dr nonzero!. As expected, the neutra
curve exhibits local minima at the resonance wave numb
As the detuning is changed from negative to positive valu
the absolute minimum shifts from the resonance at h
wave number to that at low wave number.

It should be noted that neutral curves with double mini
can also be obtained if the dispersion relation has asingle
of
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extremum. Near that extrememv r is small butdi is not, and
small-amplitude waves can be described using Eqs.~2! and
~3! without the third-derivative term@6#.

III. LINEAR STABILITY AND PHASE DIFFUSION

The multiple wells in the neutral curve suggest that t
band of stable wave numbers also splits into separate
bands. This is a prerequisite for stable domain structure
exist. We therefore determine the linear stability of the no
linear waves with respect to long-wave perturbations. Thi
done most efficiently by deriving the phase-diffusion equ
tion @2,6#

]Tf~X,T!5D~q!]X
2f~X,T!. ~6!

In this description the amplitudesA andB are proportional to
S(q)eif/e1O(e), where the amplitudeS of the wave satis-
fies

b25unu2S412n*RS21uRu2, ~7!

andX5ex and T5e2t are superslow scales. The phasef
gives the local wave number viaq5]Xf. In order to sim-
plify the expression forD(q), the following notation is in-
troduced:

a* b5arbr1aibi , a•b5arbi1aibr ~8!

The phase diffusion coefficientD(q) can then be written as
D(q)/t(q) with
D~q!52$4~3ci f q1c* d!unu2%S62$218c* n* f 2q4124„Im~d* cn!…f q31@212„Re~v* cn!…f

18~d* d* c* n*12drdic•n!#q21@6~Ri unu212cin*R! f18„Im~cd* nv* !…#q12@d*Runu212n*Rc* d

2v* v* c* n*22v rv ic•n#%S42$9@2R* n*12Rici # f
2q4112@cidrRr1~cidi1c* d!Ri1Im~Rnd* !# f q3

1@6„2civ iRr1~civ r1c•v* !Ri2Re~Rnv* !…f18c* dd*R14d* d* n*R*18drdin•R#q21@4~v* •Rd* n

1v*Rd* •n1c* dv* •R1d*Rv* •c!16Ri f n*R#q1@2~drnrRr
21diniRi

21d•nRrRi !22~c1n!•Rv rv i

1~2ciRi2n*R* !v r
21~2crRr1n*R* !v i

2#%S22$9Ri
2f 2q4112d*RRi f q

31@6R•v*Ri f14~d*R!2#q2

14d*RR•v* q1~R•v* !2% ~9!
ffi-

ds

up
nset

or
and

t~q!524cr unu2S62~4crn*R12Rr unu2!S422Rrn*RS
2.

~10!

Here Re(a) and Im(a) denote the real and imaginary part
a, respectively.

The stability limit ~Eckhaus boundary! of the spatially
periodic waves is given byD(q)50 and is denoted by the
dashed lines in Figs. 1~a!–1~c!. From Eqs.~5!, ~9!, and~10!
one can see that if the imaginary parts of the various par
eters are zero, then the neutral-stability and Eckhaus cu
are symmetric aroundq50. Even if the neutral curve ha
multiple minima, and consequently the band of stable w
numbers is separated into subbands, these subbands m
for large forcing. This can be seen directly from Eqs.~9! and
-
es

e
rge

~10! by considering the limitS→`. For ci50 the leading-
order term $24(3ci f q1c* d)unu2%S6 of D(q) is positive
sincecr,0 anddr.0. ThusD becomes positive for large
S, independent of the other coefficients, sincet.0 for large
S.

The same consideration shows that for general coe
cients, i.e., forciÞ0 and fÞ0, the diffusion coefficientD
always becomes negative for largeS for some range ofq.
For the parameters chosen in Figs. 1~a!–1~c!, this occurs for
q.0. Thus forai520.7 one obtains two stable subban
which do not merge for large forcing. With increasingai two
additional resonances arise for smallerq, leading to a quite
flat neutral curve. Strikingly, the left stable subband splits
into two bands leading to three separate bands right at o
@Fig. 1~b!#. Upon a further increase toai50.5 the large-q
subband merges with the central one for small forcing. F
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55 5451PARAMETRIC FORCING OF WAVES WITHA . . .
large forcing they remain separated. The merging of the c
tral band with the left band occurs now only at larger valu
of the forcingb @Fig. 1~c!#.

IV. NUMERICAL SIMULATIONS

To show that the complex stability regions shown in Fig
1~a!–1~c! indeed lead to stable domain structures consis
of domains with large and small wave numbers, we solv
Eqs. ~2! and ~3! with periodic boundary conditions numer
cally using a finite-difference code with Crank-Nicholso
time-stepping. A typical domain structure is shown in Fig.
It was obtained for parameter values that correspond to
1~c! ~with b51.3) and the location of this domain structu
in (q,b) space is indicated by the dotted line on that figu
The domain structure itself consists of a region w
q'0.19 in the center of the figure andq'20.72 at the
boundaries~thick line!. These wave numbers correspond
the two Eckhaus-stable wells for the selected parameter
ues. Between the two domains there is a sharp transi
This domain structure is numerically stable. The thin li
gives Re„exp(iqcx)$A1B%… with qc51.5, and is intended to
give an impression of a typical surface deformation in t
regime. The broken lines give the real and imaginary par
A. The dots in Fig. 1~c! give the wave number distribution o
the solution shown in Fig. 2. The higher density of dots n
q520.7 and 0.2 shows that over most of the system
local wave number is within one of the two stable regime

From an experimental point of view an important quest
is how one obtains these domain structures. Clearly, an a
batic increase of the periodic forcing in the frequency regi
in which the neutral curve has two different minima will n
be successful since the emerging pattern will always be
riodic with the wave number corresponding to the dee
minimum. Instead, one has to increase the forcing sudd
from values below threshold to a value for which the wav
number band consists of at least two subbands. Even
one may still predominantly obtain patterns with the wa
number corresponding to the deeper minimum. Alter
tively, one can change the forcing frequency at a fixed
percritical forcing amplitude in the regime in which th
stable band is split. The change in frequency shifts the b
of stable wave numbers, and eventually the initially sta
wave becomes unstable. If its wave number hits the par

FIG. 2. A typical domain structure arising from Eqs.~2! and
~3! for ar520.510.5i , b51.3, d50.1, v5110.2i , f523,
c52120.5i , n52312i @cf. Fig. 1~c!#. The thin solid line gives
Re„eiqcx(A1B)…, with qc51.5. The short and long dashed line
indicate the real and imaginary parts ofA, respectively.
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the stability boundary which faces the other subband@as
marked by the open square in Fig. 1~c!# it is expected that the
instability will not lead to a phase slip but to domain stru
tures.

The best approach is presumably to prepare a perio
pattern in the single-well regime, i.e. forM,Mc , with the
wave number~i.e. the frequency! chosen such that it falls
into the unstable region between two subbands once the
magnetic field is suddenly increased to reachM.Mc . The
numerical result of such a protocol is shown in Fig. 3. Th
gives the space-time diagram for the local wave number, a
clearly shows how the pattern separates into domains w
different wave numbers after a jump fromv r.0 to v r,0,
which renders the initial wave number in the region of inst
bility between the left two subbands of Fig. 1~b! (b51.7). In
the simulation the initial condition was perturbed with
long-wave modulation of the wave number in order to trigg
the long-wave Eckhaus instability. Note that the initial co
dition was placed very close to the top of the hump of t
Eckhaus curve in order to insure that the fastest grow
mode has a long wavelength leading to a single low-wa
number domain. Thus the diffusion coefficient is on
weakly negative, and the evolution is extremely slow.

A second simulation is shown in Fig. 4. Here the initia

FIG. 3. Temporal evolution of the local wave number. The in
tial wave number isq'20.34. The forcing isb51.7. The remain-
ing parameters are a520.510.1i , d50.1, v5110.2i ,
c52120.5i , n52312i , and f523 @cf. Fig. 1~b!#.

FIG. 4. Temporal evolution of the local wave number. The in
tial wave number isq50.28, andb52 @cf. Fig. 1~b!#. The remain-
ing parameters are as in Fig. 3. The fastest growing mode ha
short wavelength, and leads to a large number of small doma
which then undergo a coarsening process.
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5452 55DAVID RAITT AND HERMANN RIECKE
wave number isq50.28 andb52, i.e., the wave numbe
falls between two subbands which are completely separ
from each other. The evolution of the wave number is str
ingly different from Fig. 3. Although the initial perturbatio
was the same as in Fig. 3, large oscillations in the w
number arise after a short time. Apparently, in this regi
the fastest growing mode has a short wavelength. Pres
ably, this represents the usual shift to shorter waveleng
when the Eckhaus boundary is exceeded substantially
principle it could, however, also indicate an additional sho
wavelength instability not captured in the phase equation~6!.

Figure 4 shows that the sideband instability can lead —
least initially — to quite complex arrays of domains. As c
be seen in that figure, the domains evolve slowly over ti
in a coarsening process in which adjacent domain w
~fronts! annihilate each other, thereby reducing the num
of domains. Thus the interaction between the domain w
plays a crucial role in determining whether the coarsen
will continue and eventually will lead to a state consisti
only of two large domains of different wave numbers,
whether the coarsening comes to a halt leading to a com
structure like that shown in Fig. 4 at large times. The latte
expected if the interaction between the domain walls is
cillatory in space. This would allow a discrete set of equil
rium distances between the domain walls@14#. Oscillations
in the wave number — as apparent in Fig. 2 — suggest that
the interaction could indeed be oscillatory. A detailed stu
of this issue is, however, beyond the scope of this pa
Here we will present only simulations of a simpler mod
which can be derived from Eqs.~2! and~3! in a special case

The locking of adjacent fronts in the wave number h
been discussed in detail within the framework of a sin
Ginzburg-Landau equation with fourth-order spatial deriv
tives, which models a neutral curve with two equal minim
@15,17,12,13#,

]A
]T̃

5D2

]2A
]X̃2

2D4

]4A
]X̃4

1SA2GuAu2A. ~11!

Such a neutral curve is obtained for Eqs.~2! and ~3! in the
special case wherev50 and f50. If in addition the two
minima are not too deep, the Ginzburg-Landau equation~11!
can be derived from Eqs.~2! and~3! near threshold, and on
obtains D25dr1aidi /ar , D452di

2uau2/(2ar
3),

S52uau(b2uau)/ar , andG5(nrar1niai)/(2ar) @6#. The
complex amplitudeA is proportional to the amplitudesA
andB of the left- and right-traveling wave components of t
standing waveuAu5uBu. The slowness of the slow scalesX̃
andT̃ is related to the distance from threshold. Equation~11!
has also been studied in the context of two-dimensional
zag patterns. There the locking discussed below has b
identified previously@15–17#. As discussed in@13#, no lock-
ing is possible within the phase equation~6!. Locking can
therefore arise only in regimes in which the phase equa
breaks down, as is, for instance, the case very close to thr
old. Thus, Eq.~11! is expected to capture some aspects of
dynamics of fronts in Eqs.~2! and ~3!.

Numerical simulations of Eq.~11! yield a surprisingly
rich behavior for small domain structures which consist o
of two domains. This is discussed in detail in@13#. Here our
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interest is in the behavior of long systems containing ma
domains. In particular, we are interested in the interact
between adjacent domain walls. In@13# a discrete set of so
lutions has been found, in which the fronts are locked in
each other due to the oscillatory behavior of the local wa
number similar to that of the structure shown in Fig. 2~see
also @17#!. The oscillations lead to a discretization of th
allowed domain widths, such that the domains can be ch
acterized by the number of oscillations contained in the
They disappear whenD2 is raised from negative values to
ward 0. The dependence of the range of existence of a
main on the number of oscillations has been studied in@13#
for domains ranging from 1 to 9 extrema in the wave nu
ber. It was found that among these domains those with
extrema exist over the largest range ofD2.

In Figs. 5~g!–5~a! we present the typical evolution of
large array of domains for periodic boundary conditio
when the coefficientD2 is increased from negative value
The initial condition@Fig. 5~g!# consists of an arbitrarily cho
sen sequence of domains of different sizes. Figure 5~f! shows
the temporal evolution of the zero crossings of the wa
number at fixedD50.72; clearly, domains that do not hav
the appropriate width become either wider or narrower
order to lock the domain walls at an appropriate distan
The resulting state@Fig. 5~e!# is stable. In analogy to the
analysis of spatial chaos in a Ginzburg-Landau equation w

FIG. 5. Simulations of Eq.~11!. Positions of domain walls as
they evolve, and the domain structures observed at various tim
Parts~a!, ~c!, ~e!, and ~g! show the wave number~thick line! and
Re(Aeiq0x) ~thin line!, while ~b!, ~d!, and ~f! plot the positions of
zeros of the wave number as a function of time~running upward!.
For all figures,S51.0, D451, and L5217.36, and for~a!–~c!
D2520.72, ~d! and ~e! D2520.7; and~f! and ~g! D2520.58.
The times indicated in~b!, ~d!, and~f! are time/10 000.
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55 5453PARAMETRIC FORCING OF WAVES WITHA . . .
real amplitude@14#, it is expected that in very long arrays o
the type shown in Fig. 5~d! the sequences of domain lengt
can be chaotic@16,17#.

If D2 is changed fromD2520.72 toD2520.7, states
which have only one extremum between adjacent walls ce
to exist, and the adjacent domain walls annihilate each ot
Such a situation is shown in the sequence Figs. 5~e!–5~c!.
The single-extremum states disappear very soon after
control parameter is changed. The remaining states then
order themselves to retain their desired spacing. A sim
process is observed in the sequence Fig. 5~c!–5~a! when the
control parameter is changed toD2520.58, a value at
which the three-extrema states no longer exist. Again,
domain walls annihilate each other and a stable state con
ing only of very wide domains is reached. In the numeri
simulations such states with more than nine extrema w
not found to be stable. On an exponentially long time sc
the state depicted in Fig.5~a! is therefore expected to coarse
to a state with only one domain with large wave number a
one domain with small wave number.

We expect that Eqs.~2! and ~3! possess stable solution
similar to those shown in Fig. 5, which consist of arrays
domains of different widths and which undergo coarsen
transitions when parameters are changed. The main di
ence between Eqs.~11! and ~2! and ~3! seems to be that, in
the general case, Eqs.~2! and ~3! are not even in the wave
number. Therefore domains with positive and negative w
numbers are not equivalent. In preliminary simulations
Eqs.~2! and ~3! for parameters as in Fig. 1 (1,b,2), do-
mains with negative wave numbers appeared to be less s
than those with positive wave numbers, which often lead
merging of the latter. There seemed to be only a weak lo
ing of the respective fronts, if any. For small asymmet
however, the dynamics as shown in Fig. 5 should still
possible in the full equations. The effect of an asymme
can also be studied by simulations of Eq.~11! with an addi-
tional third derivative@33#.

V. CONCLUSION

In this paper we investigated the stability of parame
cally driven waves in systems in which the dispersion re
tion for unforced waves is nonmonotonic. We studi
coupled Ginzburg-Landau equations which are valid
small amplitudes and in the vicinity of the inflection point
the dispersion relation. As expected the neutral curves for
excitation of the waves exhibit multiple minima in this r
gime, and consequently the band of stable wave numbe
split up into three subbands. Numerical simulations sh
that under these conditions patterns consisting of an arra
domains with different wave numbers can be stable. O
results suggest that such domain structures should be re
accessible experimentally. Particularly suitable experime
on surface waves in ferrofluids appear in the presence
static and time-periodic magnetic fields. There the nonmo
tonic dispersion relation is a precursor of the Rosensw
instability @24,25#. Analogous experiments with conductin
or dielectric fluids in the presence of the corresponding e
tric fields are expected to give similar results@26–29#.

It has been pointed out previously@6,9# that domain struc-
tures are also likely to occur if a parametric forcing is a
se
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plied to waves which are Benjamin-Feir unstable@34# in the
absence of forcing. This can be seen from Eq.~9!. In the
limit of large amplitudes the diffusion coefficient becom
negative in the band center ifcrdr1cidi.0, which is the
condition for Benjamin-Feir instability of the unforce
waves@35#. This implies that either the parametrically force
waves become unstable at all wave numbers, or that
stable band has split into subbands. In the latter case dom
structures should arise.

An interesting open question concerns the stability of d
main structures in two dimensions. If the wave numbers
the different domains differ only in their orientation but n
in their magnitude, one obtains zigzag structures. In isotro
systems they arise generically due to the annular shape o
range of stable wave numbers. In axially anisotropic syste
they appear when the instability of the structureless stat
to rolls or waves oblique to the preferred direction. The s
bility of zigzag structures has been studied in some de
@13,36#, in particular in systems with axial anisotrop
@15,17#.

Neutral stability surfaces for parametrically driven wav
in two-dimensional anisotropic systems were studied in so
detail in @32#. There, interesting situations with multipl
minima at different orientations as well as different mag
tudes of the wave number have been found, suggesting
possibility of a patchwork of two-dimensional domains
which the wave numbers differ not only in their orientatio
but also in their magnitude. Can such structures be sta
Some impression can be gained from a simulation prese
in @37# ~see also@11#!. Figure. 3~b! of @37# shows the result
of a two-dimensional simulation of the coupled Ginzbur
Landau equations for parametrically driven waves~with nor-
mal dispersion! in an anisotropic system. The pattern show
is clearly characterized by domains or patches with large
small wavelengths. Although the authors attribute the re
to a Benjamin-Feir instability of the waves, i.e., a situation
which waves ofall wave numbers become unstable, a co
parison with Eq.~9! shows that for the parameters chosen
that simulation the stable band is split into two subban
with the critical wave numberq50 lying in the unstable
region between. Only the stability of that latter wave numb
was studied in@37#. A better understanding of such comple
two-dimensional domain structures is clearly desirable.

Finally, an extension to traveling waves is also of intere
So far, domain structures of traveling waves have been
vestigated only within a suitable phase equation@38#. The
possibility of a locking of the domain walls has, howeve
not been addressed.
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