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Extracting unstable periodic orbits from chaotic time series data
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A general nonlinear method to extract unstable periodic orbits from chaotic time series is proposed. By
utilizing the estimated local dynamics along a trajectory, we devise a transformation of the time series data
such that the transformed data are concentrated on the periodic orbits. Thus, one can extract unstable periodic
orbits from a chaotic time series by simply looking for peaks in a finite grid approximation of the distribution
function of the transformed data. Our method is demonstrated using data from both numerical and experimen-
tal examples, including neuronal ensemble data from mammalian brain slices. The statistical significance of the
results in the presence of noise is assessed using surrogat€Si4163-651X%97)15205-9

PACS numbegs): 05.45+b, 87.10+€

I. INTRODUCTION The paper is organized as follows. In Sec. Il, we introduce

the transform for the case of fixed points, and we provide

Unstable periodic orbits embedded in chaotic attractorgietailed analytical arguments for the existence of singulari-
are fundamental to an understanding of chaotic dynamicges at fixed points in the distribution function of the trans-

[1,2]. For example, basic ergodic properties such as dimenyyrmed data. We also discuss various ways of implementing

sion, Lyapunov exponents, and topological entropy can bg,e nrocedure, as well as the possibility of enhancing the

determined from periodic orbits. Moreover, the detection of .., -acv 1y use of a nonlinear version of the transformation.
a periodic orbit from experimental data is a test for the pres-

ence of determinism. A particularly important application is Periodic orbits ,W'th pe-r|od5p>.1 can In prmmple be ex-

in the control of chaotic systenig,3] where the first essen- (racted by considering fixed points of théh iterated dynam-

tial step is often the determination of periodic orljdg. For  ICS. i.e., evenypth iterate of the time series. However, to be

these reasons, detection of periodic orbits in experimentaffective, such a treatment of periodic orbits with»1 re-

data has become a central is§de-9). quires a dynamical correlation among a relatively long
Soet al. in Ref.[9] introduced a new method to address stretch of data points. In the presence of noise or in systems

this problem. The basic strategy of their method was to transwith large Lyapunov exponents, this method would com-

form the experimental time series data by using informatiormonly fail. In Sec. Ill, we introduce a variant of our fixed

of the local linear dynamics along a trajectory such that thepoint detection method suitable to periodic orbits of period

transformed data in a suitable phase sp@ce., delay coor- greater than 1 such that the method utilizes every iterate of

dinate spaceare concentrated on the periodic orbii0].  the time series. This method pieces together diffesdrt

Periodic orbits can then be extracted by looking for peaks irportions of the periodic orbits fromonconsecutiveections

a finite grid approximation to the distribution function of the of the data. In Sec. IV, we examine the robustness of our

transformed data. In the implementation and examples of thigyethod in the presence of both observational and dynamical

periodic orbit detection method in Re], only a brief ex-  pgise. The reliability of the method can be objectively as-

position of the theory limited to the problem of extracting segsed by testing the statistical significance of the observed

period 1dorbits£]f_ixed pointsg frolmbchaoti;: tirrre serierz]s Was heaks against shuffled surrogate data which approximate the
presented. In this paper, we elaborate further on the 9Xtr.a€'ower spectra of the original dafal]. We demonstrate the
tion of fixed points, providing detailed derivations and justi-

L ) . method by using both numerical examples with added simu-
fications for the method and presenting several variations o . .

) : . . . . ated noise and real experimental data collected from a mag-
it. As in [9], we consider discrete time dynamical systems

(maps. We also discuss the extraction of periodic orbits with netoelastic ribbon system. Lastly, in Sec. V, the possibility of

period greater than 1 and present extensive illustrative exSing our 'T‘eth"d o track .per|_od|c orbits in systems with
amples, slowly varying parameters is discussed. Again, we use the

magnetoelastic ribbon system with changing parameters as
our first demonstration. Then, we apply this tracking method
*Also at Department of Physics and Electrical Engineering and© the analysis of.a sequence of inte'rburst time intervals col-
Institute for Systems Research, University of Maryland, Collegelec'[e(Fi from a bra'f‘ S'lCe of the' rat hippocampus. In the Ap-
Park, MD 20742. pendix, a geometric interpretation and a supplemental analy-
TAlso at Department of Mathematics and Institute for PhysicalSis Of our periodic orbit_transform are provided in the spe(_:ial
Science and Technology, University of Maryland, College Park,case when the dynamics is described by a one-dimensional
MD 20742. map.
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Il. EXTRACTING PERIOD 1 FIXED POINTS F(2)=2*+VF(2)-(z-2*)+0((z-2")?), )

To begin, assume we are given a finite length time series
{x(n)} from a discrete time dynamical systdi3]. With a  whereVF(z) is thedxd Jacobian matrix of(z). In index
properly chosen embedding dimensidnone can uniquely notation, theijth component ofVF(z) is d;Fj=dF;/dz

represent the state of the system at timby a delay coor- with i,j=1,...d and we useVF-(z—Zz*) to denote the
dinate vectorz(n)=(z,(n),zx(n), . ..,zq(n))'=(x(n),x(n  vector whosdth component i (9F;/9z;)(z;—Z"). [Note
—1), ... x(n—d+1))" [14,15. Here, z(n) is a column that this notation is somewhat unconventional since this vec-

vector andz' is the transpose af. With this notation, the tor would usually be written—z*)'- VF.] Conversely, one
evolution of the system state froafn) to z(n+1) can in  can solve forz* in terms ofz from Eq.(2) and consider the
general be expressed bydadimensional nonlinear mapin  resultant equation as a transformation which takes paints
the following form: from the trajectory to a new set of transformed variatdes
(with z=27* wheneverz=z*).
z;(n+1) Fi(z(n)) With this motivation, we define our fixed point transform
z,(n+1) F,(z(n)) z=G(z,R) as

z(n+1)=| z3(n+1) | =F(z(n))=| Fa(z(n)) R ~[-SZR) - [F2-S2R-2. (3
: : z=G(z,R)=[1—-Y(z, ‘[F(2)—S(z,R)-Zz],
za(n+1) Fa(2(n) wherel is the dxd identity matrix, andS(z,R) is adxd
f(z(n)) matrix function of z and an adjustableixdxd tensoral
z,(n) quantity R,
= = @) S(zR)=VF(2)+R [F(2)-2]. @
Zg-1(N) In the caseR=0, Eq. (3) together with Eq(4) is simply the

solution of Eq. (2) for z* in terms of z with order
Then we ask the following question: without furtheepriori O((z—z*)?) terms neglected. We want to emphasize that
knowledge of the underlying maB, how can we estimate local approximations to all terms on the right-hand side of
the locations of unstable periqa orbits, z* =FP(z*), from  Eq. (3) can be obtained experimentally from time series data
the chaotic time series? In this section, we discuss detectingee Sec. IIE for details The inclusion of the additional
period 1 orbits p=1), also called fixed points. We will tensorial parameteR in the fixed point transform might
extend our discussion fo>1 in the section that follows. seem arbitrary at this point, but the role Bfwill become

One simple approach, as used previously by others, foiransparent in the following subsections. At this point, we
addressing this guestion is based on the idea of recurrene@nsiderR as a fixed tensor with constant elements.

(see Refs[4-8]). In these recurrence based methods, one In the special case in whidk(z) is a linear function, i.e.,
looks for close encountefwvithin a ballB, of a given radius F(z)=z* + a-(z—z*) with & being a constant matrix, and
€) of delay vectors reconstructed from time series. There ar&=0, we haveS(z,0) = a, and

various implementations of this idea with different discrimi-

nating criteria based on the expected dynamical behaviors I -1, _ .

near fixed points. Fundamentally, the effectiveness of these G(z0)=[1-20]""[F2)~Sz0)-2]

recurrence based methods depends on the relative frequency =[l—a] Y [Z*+a (z2-2Z°)— a-Z]=7",

that a typical chaotic trajectory visits the b&l(z*) cen-
tered around the fixed poir*. Assuming that the chaotic
attractor has a natural invariant measyrethis relative fre-
guency is given by the natural measure of the ball
n(B(Z*)), which can be small.

In the following, we first introduce our fixed point trans- A ] .
form. Then, in the next subsection we describe its functionajr@nsformatioz=G(z,R). In this case, even with(z) be-
behaviors and its measure-enhancing effect. By concentraf?d @& nonlinear function, all points in the-dimensional de-
ing the natural measure of a chaotic attractor around its fixeffY SPace are mapped to a one-dimensional subspace defined

independenof the values of. In other wordsall points on
the trajectory will be mapped b€ (z,0) to the fixed point
z*.

The case withR=0 is a special degenerate case for the

points, one can extract these fixed points by simply lookingdy the line 2_1=22= e =24 [16]. In the following discus- _
for peaks in a finite-grid approximation to the distribution sions, we will consider only the nondegenerate cases with
function of the transformed data. R#0.

In the case of a general nonlindafz) andR+ 0, most of
the points in the linear region around a fixed pattit will
still be mapped to the vicinity of*. Specifically, we will
Consider a small neighborhood around a fixed pointshow that the fixed point transfor@(z,R) dramatically en-
z*=(z*, ...,z*)". We can describe the local dynamics by ahances the clustering of the transformed data around the
Taylor series expansion &f(z*) aroundz, fixed pointz*.

A. The fixed point transform
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B. The stationary points of the fixed point transform matrix of the transformationVG(zR) [4,Gi(z,R) with

Before describing the effect of the fixed point transformi.j=1, ... d] will have the following form near the fixed
on the natural probability measure on a given attractor, wdoint z*:
first examine the functional behavior @&(z,R) near the
fixed pointz*. There are two main properties 6{(z,R).

(i) G(z*,R)=z*: If z* is a fixed point of the underlying
dynamics, i.e., ifF(z¥)=2z*, thenz* will also be a fixed
point of the transformatios(z,R).

By construction, the matri§(z*,R) in Eq. (3) evaluated
at the fixed point is simply the Jacobian matWE(z*) in-
dependent of the value &, i.e.,

9;Gi(zZ,R)~2Biji(z—Z ). (10)

We also note that to the lowest order im+(z*) near a fixed
point, bothG(z,R) andVG(z,R) areindependenbdf R.

C. Probability measures on the attractor
and the fixed point transform

One way to characterize the clustering of points on an
S(z",R)=VF(z*). () attractor is by its pointwise dimensidd,(z), which is de-
fined by the following limit[17]:
With the above expression f@(z*,R), the transformation
G(z*,R) evaluated at the fixed point is Inu(B.(z

Dp(z)=limM, (11
G(Z*,R)ZU—S(Z*,R)]_1~[F(Z*)—S(Z*,R)~Z*] e—0 Ne

=[I-VF(z*)] Y [z* - VF(z*) - z*]=7*, whereB (2) is ad-dimensional ball centered around a point
zin RY and « is the natural measure of the attractor. If the

© distribution of points is uniform around, the measure
independenbf R. m(B.(2)) (or the fraction of points inside the ball,) will
(i) Generically,VG(z*,R)=0. That is,z* is a stationary scale ag! (i._e., the pointwise dimension is fche dimension.of
point of the transformatioG(z,R). the embedding spaah. On the other hand, if the attractor is

Multiplying Eg. (3) by the facto[l — S(z,R)], we have @ stable fixed point, then all data points arezaand the
measureu(B(2)) is one independent of the ball sizeThis

[1-S(z,R)]-G(z,R)=F(2)—S(z,R) - z, gives a pointwise dimension of zero, which is the dimension
of a point. The pointwise dimension of a fractal object em-
which when differentiated gives bedded inRY typically falls somewhere in between, with the
smaller values oD (2) indicating a higher degree of clus-
—VS(z,R)°[G(z,R)—z]+[I-S(z,R)]-VG(zR) tering around the poir.
~VF(2)-S(zR). @) The measure enhancing property of the transformation de-

fined in Eq.(3) with R#0 can be stated in the following

Here, VS is a dxdxd tensor with itsijkth component ~claim: o . .
given by 9S;;/dz, and we useVSG to denote thedxd Let the pointwise dimension of the attractor atbe
matrix obtained by the contraction of the outer product bePp(2). Then, under the transformatioB(z,R), the point-
tween the tensoV S and the vectoG, i.e., theijth compo- ~ Wise dimension of the transformed attractor will be un-
nent of this matrix is given b, (39S /9z) Gy cha_nged at t_yp|cal points put it will typically be halved at
Evaluating the above expression zt and substituting Stationary points of5(z,R) [i.e., VG(z,R)=0]:
Eq.(6) [G(Z*,R)=7z*] and Eq.5 z*,R)=VF(z*)]into ~ ) )
Eg ((7))[W‘(3 hav?e ! a® [ ) ()] Dp(2)=Dy(2) at z, where VG(zR) is nonsingulay
o (12
[I-VF(z*)]-VG(z*,R)=0. o
D,(2)=Dy(2)/2 at z, where VG(z,R)=0, (13
The matrixl — VF(z*) is nonsingular for a typical nonlinear o
map F(z) except forz* precisely at a bifurcation point. where D,(2) is the pointwise dimension of the transformed

Thus, generically attractor atz. (We define what we mean by the word “typi-
. oo cally,” used above, later.)
VG(z*.R)=0. 8 The first part of the claim, Eq(12), can be illustrated
using the following argument. For simplicity, say that the

both a fixed poinfEq. (6)] and a stationary poidEqg. (8)] of ovrgug) R'S a regular' pollnt OLS(Z'R).' h"e" theh matnr)](

the transformatiorG(z,R) independent oR. In particular, . E R) s nonsingusar. € W'_S to_ show that

by Taylor expansion, one arrives at the following form for Pp(Z(0))=Dy(0), wherez(0)=G(0,R) is the image of the

G(z,R) near the fixed poing*: origin underG andD(2) denotes the pointwise dimension
of the measure in the transformed space. Given a small ball

ii_zi*EGi(z,R)_zi*mgijk(zj_zr)(zk—z’k‘), (9) B.(0) around the origin, the transformatida(z,R) is ap-

proximately given by the following Taylor expansion of

wherei,j,k=1, ... d, the coefficientss;; are invariantto G(zR) around the origin:

interchange of andk, and summing of repeated indices is R

implied. Moreover, by differentiating Eq9), the Jacobian G(z,R)=~z(0)+VG(O,R)-z

In summary, ifz* is a fixed point of the majp(2), it is
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(t, 8) 0]

FIG. 2. Schematic illustration showing the action of the qua-
dratic mapQ(z) on a ballB,. The two circlesC, and C,, with

FIG. 1. Schematic illustration showing the action of the fixed € <€ are mapped by(z) as shown. Because of nonlinearity, the
singular. The imag&(B,) of a ball, B, , is an ellipsoid centered C.. However, sincg—0, Q(2) -0, the imageQ(B,) of B, will be
around 2(0). There exist two ballsB, . and B, . such that a wedged structure as indicated by the shaded region.

B\ <CO(BICE) .. Now, for ease of visualization, we will examine the effect
. . . : of this quadratic transform in two dimensions. Using polar
.GeometrlcaIIAy G(B(0)) wil approxmately be an ellip- coordinatez=(r, #), the transformatio®(z) can be written
soid centered a(0) and one can find two constariNs and 44

\_ and two small ball,  .(z(0)) andB, .(z(0)) such that
Ql(l’ , 0) = (ﬁ11100§0+ ﬁ1228|r]20+ 2B112COSZ0Sin20)I’2

B\ _(2(0))CG(B.0))CB,  (z(0)) (14) =g (O)r2,
uniformly in € (see Fig. 1 for an illustration of these covering ~ Qa(r, 6) = (82110 0+ By Sin? 6+ 2 31,0 Sir? ) r?

balls in two dimensions In terms of the natural probability —aa(0)r2
measureu, Eq. (14) yields =0(0)r°,

~ ~ A or, equivalently, the transformed coordinatesd) are given
w(By_ (2(0)))=u(G(BL0)))=u(B0)) a y A g

by
<u(B, L2(0))). a9 F= QI+ Q2 =r?VaZ(6) + a(0),
Then, by utilizing the definition for the pointwise dimension ~ Q, 06
[see Eq(11)], we arrive at the following relations: tan(0) = 0, (0
InL(G(B(0)) . Inu(B.(0) The form factorsy;(6) andg,(#) are functions independent
N, o) " hne =Dp(0), of the radiusr and are functions od only.
e—0 +,—- e—0 -
The transformatioi@(z) is degenerate if is independent
R - of @ [i.e., the ratiog,(6)/q,(6) is independent of]. In this
i Inu(By, (2(0))) 560 case, all points in the plane will be mapped bQ(z) to a
G'LTI) In(\; _e) =Dp(=(0)). line going through the origin with an inclinatiofy [19]. We

have said that Eq(13) applied “typically,” by which we
mean thatq,(6)/q,(6) is not independent of and that
q.A6)#0.

Generically, the transformatio®(z) will map a circle
C. of radiuse around the origin to an ellips®(C,) in the

The inequality in Eq(15) then gives

D,(2(0))<D,(0)=<D,(2(0)),

which yields the desired result E(L2) [18], (Fz,b) plane. The ellipse has major and minor rad_ii of order
€“ and may or may notdepending on th¢s;;,) encircle of
If)p(i(O))= D,(0). the origin =0). A case where it does not encircle the ori-

gin is shown schematically in Fig. 2, and though the follow-
ing discussion is restricted to this case, the case where

We now turn to the second part of the clajiiaqg. (13)]. ; o L
W S P 8. (13)] Q(C,) encircles the origin can be similarly treated. For a

Let the origin be a stationary point o6(z,R), i.e.,

- value of €’ <e, the circleC,, becomes an ellips&®(C..
VG(O.R)=0. Then, near the origin, by Eq9), we have with the same shape and orientation Q&C,) brijtéi?s( nO\)N
Gi(z,R)—Gi(0,R) ~Qi(2) = Bijz;z, clqser to the origin and smaller. In parfticular, for fixed
points onQ(C,/) are obtained from points o@(C,) by
wherei,j,k=1, ... d and summing over repeated indices is multiplying r by (e'le)? [this follows because

assumed. Q1Ar,0)=q:A0)r?]. As e—0, the limit of Q(C,) ap-
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. mension[Eq. (13)] at stationary points, one should expect
N strong clusteringsharp peaKsat fixed pointsz* in a finite
grid approximation of the probability measure of the trans-
formed data. In practice, the degree of clustering around
fixed points in the transformed data depends on the size of
the local regions where E@2) is a good approximation to
the dynamics, on how often a typical trajectory visits these
local regions, on the accuracy and resolution of the time
series data, and on noise. We also find that, since the method
samples the local dynamics near a fixed point, it is also pos-
sible that fixed points that are very close but not actually on
the attractor can be detected from the probability measure of
. the transformed dati@21].
While fixed points of F(z) are stationary points of the
fixed point transformG(z,R), there exist other pointg®
FIG. 3. Illugtration of the bounding balls with radii, and € #7* that are not fixed points such th&tG(z%,R) =0. With
forthe.quadratlcally tran§formed b&I(B.(0)). Note that the entire a given fixed value ofR, the probability measure of the
plane is mapped b®(z) into the wedged region between the two - . .
dashed lines. transformed data will have spurious peaks at the images of
these stationary points as well as at true fixed points. How-

proaches the origin. As a result, the image of a dskinder ~ €ver, in thez space of the transformed data, the locations of
the transformationQ(z) will be a wedgelike object com- these spurious peaks given 8yz°,R) will depend upon the

Q(Be(0))

posed of the union of all the ellipses withsx' <, tensorial parameteR while the peaks at true fixed points
G(z*,R)=Zz* will be independenof R [recall property(i) of
QBJ= U Q(C.) the fixed point transform in the previous subsection, Sec.
0<e'<e IIB]. Thus, one way to remove these spurious peaks is to

T pick many randonR’s for the calculation of the fixed point
(as shown by the shaded region in Fig. 2 transformG(z,R) at each point of the data set. While the

Definee, ande_ as shown in Fig. 3. From the homoge- . , : A )
. - images of the spurious stationary pointszirspace will be
neous quadratic nature 6, andQ,, we have thak, and  yigly scattered by different choices @&, the true fixed

e_ are of the form points atz* will not be affected. Thus, we remove the clus-
~ tering around spurious stationary points by smearing them,
€=\, €% (16)  while preserving the measure enhancing effect around true
A fixed points.
e_=\_€, a7 In practice, to extract unstable fixed points from the set of

transformed data, one could simply look for sharp peaks in a

wherex _ <\ . are positive constants. Since all points in theisite grig approximation to the distribution functign(2) of

gﬁggﬁflr;%gd"?iTgo ;navsetc;lgzee\;vﬁaige between the dashedi If the dimension of the embedding space is small, it is

computationally simple to look for sharp peaks in the bins of
a d-dimensional grid. On the other hand, df is large, it
might be preferable to reduce thdsdimensional distribution
function to a one-dimensional histogrartz) with the scalar
Z being a function of thel-dimensional vector.

One simple reduction procedure is to utilize the cyclic
symmetry in the coordinates of delay time embeddisee
Eq. (1)]. With this cyclic symmetry, all fixed points must lie

1(B;,(0)=w(Q(BL0))=u(B.0)), (18)

©(B: (0)<u(Q(B.(0))=pu(B0)). (19

Inserting Eqs(16)—(19) into the definition of the pointwise
dimension and proceeding as in the steps following (E§),
we obtain the previously claimed result, E43) [20],

on the diagonal line defined by, =---=2z4. This allows
If)p(i(O))= D,(0)/2. one to construct a one-dimensional histogr,%\(rﬁ) from the

. . , , ___ d-dimensional distribution functionu(z) by considering
Although, for illustration, we have restricted consideration to v 3 within mall cross-section tube about the lin
two dimensions, the same reasoning carries over to higheﬂny a small cross-section tube about the line

dimensionality, and Eq(13) still applies. z=--- =_2d. The relative sharpness of the peaks at fixed
points will remain if the width of the cross section of the

tube is chosen to be sufficiently small.
In the special case when the pointwise dimension of the
. . _ attractor at fixed points is not too lard® (z*)<2], an
From our previous discussion, we have seen that by coneven simpler procedure is possiblélere, the restriction is
struction, fixed points* of the discrete dynamical system on the pointwise dimensiob ,(z*) of the attractor at fixed
F(2) are automatically stationary points of the fixed pointpoints, while the actual dimensionisneeded for time delay
transformz=G(z,R). Thus, by the lowered pointwise di- embedding can be lardeln this case, one can construct a

D. Extracting peaks from the distribution function
of the transformed data
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one-dimensional histogram by considering all values ofrepresent states with different system parameters. To par-
z=7 (i=1,...d) for all transformed datz. Since this tially deal with time series from slowly drifting nonstation-

procedure involves projecting tiedimensional distribution ~a@ry processes, one can alternatively define the collection of
function (z) onto a one-dimensional set, the relative sharp- Mneighbors forz(n) to be its nextM/2 iterates together with
ness of the peaks at fixed points will be reduced. its M/2 preimages[Whenz(n) is very near a fixed point,
Proiecti f the data f the-di ional ‘ these temporal neighbors are also spatial neighp®hsis, in
rojection ot the data from Imensionalz Space 10 s case, the transformati@(z(n)) is solelydefined within
the one- d|menS|0nai line preserves the po|ntW|S€ dimen- a Sma” W|nd0W Of t|me nean, |e within the Short se-
S|0n Dp(z(z)) if p(z(z))<1 (see [22]), while if  quence of points{z(n—M/2), ... z(n+M/2)}. By assum-
p(z(z))>1 pro]ecuon y|e|ds a po|ntW|Se dimension of 1 at |ng that the typlcal time scale Of the parametrlc variations is
2. Forz=27*, a fixed point,2(z*), has been made to have a much larger thaiM, the choice of temporal neighbors might
low pointvwse dlmenS|onDp(z(z))<1, while, in contrast, at give a better estimate of the local dynamics ngar) than

woical pointsz. th ntwise di . ¢ the t ¢ dthe choice of spatial neighbors for nonstationary processes.
ypical pointsz, the pointwise dimension of the transtorme Obviously, all points in the temporal sequence,

data Dp(z(z)) D,(2) exceeds 1 for a chaotic attractor. {z(n—M/2), ... zZ(n+M/2)}, have to be in the local region
Thus, if we form the density(z) from the projected data, of z(n) in order for the linear approximation to the local
this density has a singularitp(z)~|z—2z(z*)| ", where dynamicsVF(z(n)) [see Eq.(20)] to be meaningful. This
v=[1-D,(z*)/2]>0. That is,p(2) has a singularity at the will ce_rtalnly not be true for all points on the trajectory,
location of the fixed point. We find that such singularities @SPecially for points far away from the fixed point. On the

can often be easily picked out from a histogram plot ofother hand, near a fixed point, trajectories stay near it for a
53 [9] short period of time. These short sequences of points in the

local region of the fixed points are exactly those which will
o . . satisfy the fixed point criterion given by E() and be trans-
E. Obtaining S(z,R) from time series data formed to the singularity at the fixed point.
In the definition of the fixed point transform Eg3),
S(z,R) is a sum of two terms with the first term given by the F. A Simple numerical example: Skewed logistic map
derivative ofF(z), VF(z), and the second perturbative term
given by R-[F(2) —z]. The value ofR is chosen such that
for a typicalz, R-[F(2) —z] is roughly comparable in order
of magnitude tdv F(z). While F(z) is simply the next iterate
of z in the delay embedded spacéF(z) can be estimated
using a least square fit procedure.
In delay coordinatesVF(z) has d free parameters,
namely,d,f(2), . .. ,d4f(2) [see Eq(1) for the special struc-
ture of F(2) in delay coordinatds

As a simple example illustrating the singularities in

p(Z), we generate a time series from the skewed logistic
map, f(z) = ue ?z(1—z), with w=6.1[see the inset of Fig.
4(a) for a graph off(z)]. The exponential factoe ™%, intro-
duces higher order nonlinearities to the dynamics so that the
Taylor series expansion 6¢{z) will not be a trivial quadratic
polynomial. A histogram approximation to the distri-
bution functionp(z) of the untransformed data is plotted in

Fig. 4(a) using 8192 iterates of(z). We see that most of

nhf(z) - dq_1f(2) 94f(2) the 8192 data points are primarily clustered around the first
1 0 0 and second iterates of the critical point 6f[z°=0.382;
VF(z)= _ f(z°)=0.983; f?(z°)=0.0385. This one-dimensional map
: s i : has one fixed pointZ* =0.667) on the attractor and a second
0 1 0 fixed point z*=0 off the attractor. From the distribution
functionp(z), we also observe that the probability for a typi-
By considering a collectiofw}, k=1,... M(=d) of M cal orbit to visit the region near the fixed point at

VF(z(n)) can be solved by fitting the following linear equa- Sizé ~1% of the radius of the attractors relatively low
tion to the data: (=80 counts/8192 counts1%). This should later be com-

pared with the much enhanced clustering n&a+=0.667 in

w(n+1)—z;(n+1)=Vf(z(n))-[w—2z(n)], (200 the distribution functiorp(z) of the transformed datausing
G(2)=z [see Fig. 4)].

where V{(2)=(d:f(2), . .. ,d4f(2)) is the gradient of the Using temporal neighbors witM=d=1, we can write

scalar functionf(z). down the fixed point transfor®(z(n),R) in one dimension
Two types of neighbors are considered in our methodexplicitly,

First, since we are interested in capturing the local dynamical

behavior near(n), the natural choice is thiel closest points - z(n+1)—S(z(n),R)z(n)
in the d-dimensional reconstructed phase space. We refer to G(z(n),R)=z(n)= 1-S(z(n),R) '
points whose phase space locations are mfay as “spa-

tial” neighbors ofz(n). In the case, however, when the sys- where

tem parameters are not stationary in time, especially in bio-

logical s.ystemsz the choice of spa.tial neighbors mig_ht not be S(z(n),R)= z(n+2)—z(n+1) +R[zZ(N+1)—2(n)],
appropriate. This is because spatial nearby points in general z(n+1)—2z(n)

are not necessarily close in time and therefore they might (22

(21)
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transformationG(z,0) that is not due to a fixed point. Com-
paring Fig. 4c) with the previous result with+ 0, all spu-

rious peaks are eliminated frop(z) in Fig. 4b) and a true
fixed point peak az=0.677 remains.

G. Fixed point transform revisited: Second order

p(z) (Arbitrary Units)

In our previous discussion on the fixed point transform
(Sec. Il A), one needs to estimate the linearized local dynam-
ics along the reconstructed trajectdis(n)} in delay space.

In principle, one can extend this discussion to include higher
order approximations to the local dynamics along the trajec-
tory by considering successively higher order derivatives in
] the Taylor series expansion B{z) [see Eq.{2)]. These de-
100 rivative terms can again be estimated from time series data
A P N by a least square fit technique using a collection of neighbor-
ing points in the embedding space.
500 - z With a sufficiently large data set, one should expect the
© sensitivity of our method in detecting fixed points to improve
as we include higher ordered terms in our series approxima-
tion of the local dynamics. In other words, the effective size
2004 of the local region which will be mapped by the fixed point
1004 transform to a cluster at the fixed point should increase.

] /A As a simple example to illustrate the possible advantage
O e of utilizing the higher order estimates to the local dynamics,

’ ' A ’ ' we again consider our previous one-dimensional skewed lo-
gistic mapf(z)=ue ?z(1—z). To approximatef(z) by a

FIG. 4. () A histogram approximation to the distribution func- Taylor series expansion and neglect all terms with
tion of the time series dat@(n)} from a one-dimensional chaotic O((z—z*)?), the local dynamics near a fixed point is
map(see Sec. II F for a description of this maft has a fixed point ~approximately given by,
on the attractor at* =0.6777. Using 8192 data points, the number
of points that fall within a small intervalindicated by a pair of
dotted line$ centered around the fixed poirt is approximately
80. Inset is a graphical representation of the rhaf) A histogram
plot of p(z) averaged over 32 values & with =10 using 1hen, we defined our “second-order” fixed point transform
G(z). The number of time series points used here was 256. Th&,(z,R,R’) =z implicitly by
parameters are chosen so that the total number of points in the
histogram is the same as(a). (c) A histogram plot ofp(z) without
randomization, i.e.«=0. In this case, 8192 data points were used.

p(z) (Arbitrary Units)
=
=
=
o
=}
~
=
2N
o
o]
=

AA

f(z):z*+f’(z)(z—z*)—%f”(z)(z—z*)2. (23

f(2)=G,+S(z,R)(z— Gz)—%P(Z,R')(Z—Gz)Z,

(24)
with z(n+1) being a temporal neighbor afn).
We applied the transformation Eq@1) and (22) to 256  Where
iterates of our time series with 32 random realization&of e 2
for each data pointz(n). Here, we letR=«#, where S(zR)=t"(2)+R[1(2)-z], (25
x=10 and# is a uniformly distributed random variable in P(z,R')="(2)+ R'[f(2)—2]2. 26)

the interval[ —1,1]. A histogram approximation to the re-

sultant distribution fUnCtiOlﬁ)(i) of the transformed daﬁiis Here, the adjustab|e parametaﬁnd R’ have a similar role
plotted in Fig. 4b). In this graph, the singular peak corre- to the one which we introduced earlier in the “first-order”
sponding to the true fixed point at=0.677 can be clearly fixed point transform, Eq(3). It may be shown for one-
identified. dimensional dynamical systems, such as the skewed logistic
As a demonstrative comparison illustrating the efficacy ofmap treated here, that the density singularity,
including the random ternR in the transformation, we re- ;(z)~|z—z(z*)| ", is stronger forG, than for G with
calculated the distribution functiop(z) for z with k=0 in  »=[1—D,(z*)/3] as compared to=[1— D ,(z*)/2].
Flg 4(0) In this case, we need a much Iarger amount of data Figure 5is a histogram approximation Ap(%) using the
points (8192 to resolve the peaks. In addition to the true “second-order” fixed point transform. All other parameters
fixed point atz* =0.677, there are three additional spuriousgre the same as in Fig(). As compared to the first order
peaks. Two of them are from strong singularitiespd)  result, G, approximately doubled the number of points
located at the first and second iterates of the critical poinfhapped to the vicinity near the fixed point zit=0.667.

z% E(f(ZC))ZO-lﬁg andz(f?(z°))= —0.0344, and the third Furthermore, the histograp(2) in Fig. 5 also indicates the
spurious peak at=0.568 is from a stationary point of the existence of a secondary peak located slightly left of the
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FIG. 5. A histogram plot of(z) using the second-order fixed

point transformG,(z). All parameters are kept the same as in Fig.
4(b).

origin. This secondary peak is due to the existence of anothe

unstable fixed point at=0. The estimated location of this
unstable fixed point is shifted and the strength of the ob
served peak is weak because the actual fixed point is located f|g g A schematic representation of three short pieces of
outside the attractor and the trajectory only makes infrequentajectories{z,(n,),zy(n;+ 1)}, {z(n,),zo(no+ 1)}, and{zs(ny),
visits to its local region. As a comparison, by using the “first ,(n,+1)}, visiting the local regions of a period 3 orbit,
order” transformG(z) as in our previous examp[see Fig. {z*(1),z*(2),z*(3)}, at three nonconsecutive times ,n,, and
4(b)], the peak near* =0 is more difficult to distinguish n,.

from the background. In other words, the effectiMteear

region of the fixed point az* =0 is not large enough to |ghe| asz*(k), wherek=1,...p. In delay coordinates,
include much of its natural measure on the attractor. thesepd-dimensional vectors have onfyindependent com-
ponents{z1*,z2*, ... ,zp*}, and eacle* (k) along the pe-
Ill. EXTRACTING UNSTABLE PERIODIC ORBITS WITH riodic orbit is structured in the following cyclic fashion:
PERIOD HIGHER THAN 1

In the preceding section, we described a method to extratZ*(k‘) = (ZL Zayees Z;)T
period 1 fixed points from a finite length discrete time series (27)
In principle, one can simply extend this fixed point detection = (217, 22%,23", ..., 2p", 217, .. )T’
method to look for periodic orbits with periog>1 by ap- y

plying the method to everpth iterate of the time series. In
effect, this corresponds to looking for period 1 fixed pointswith
of the pth iterated mapFP(z*)=z*. Recall that the fixed

point transformG(z(n)) will map z(n) to the vicinity of a z(k+ 1) = (2p*, 21%,22%, ..., zp*, 217, .. )T
period 1 fixed pointz* only if both z(n) and its next iterate

z(n+1) lie in the local region of*. In the case of a period d (28)
p periodic orbit, if we use the fixed point method in the
preceding section, then we need to have bnfh) and
z(n+ p) lie in the local region of* . In the presence of noise
or when the largest Lyapunov exponent of the system i
large, the likelihood of finding an appropriate sequence o
points which satisfy this requirement is small, especially if
p is large. Thus, in many situations, this will not work.

In this section, we introduce a detection method for find-
ing periodp periodic orbits withp>1 which will take every
iterate instead of everpth iterate into consideration. In par-
ticular, we describe a technique which utilizes short se
guences of points that visit only portions of the desired pe
riodic orbit (see Fig. 6. In the following discussion, we
simply refer to this variant method as the “periodic orbit
method and th@th iterated extension of the method in Sec.
Il as the “fixed point” method.

4—|ere, we arbitrarily associate the first componentzbfk)
1vvith z1. At each pointz* (k) on the periodic orbit, we can
again approximate its local dynamics by the following Tay-
lor series expansion:

F(2)=2*(k+1)+ VF(2)-[z—z* (k) ]+ O(|z— z* (k) |?).

Using a collection of temporal or spatial neighborszofs
described in the preceding sectisee Sec. Il E the Jaco-
bian termVF(2) can again be calculated using least square
» fit methods.

To get the full description of the local dynamics along the
entire periodic orbit, we consider a set gf points

{z}, k=1, ... p, chosen from the delay reconstructed data
. _ _ set{z(n)}. These points are chosen to be close to the peri-
A. Periodic orbit transform with p>1 odic orbit, i.e.,|z,—z* (k)| is small. Note that the points
To be concrete, assume that we are given a periodic orb{z,} are not assumed to be consecutive in time. By going
of periodp, {z* (1), ...,2°(p)}, with FP(z*(1))=z*(p)=  through one cycle along the periodic orbit and neglecting

z*(1). There arep elements of this periodic orbit which we termsO(|z,— z* (k)|?), we then have
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F(z)=2*(2)+VF(zy)-[z,— 2" (1)], can be viewed ap simultaneous matrix equations for the
periodic orbit z* (1),z*(2),...,z*(p). All collections of
F(z,)=7"(3)+VF(z,) - [2,— 2 (2)], points {z}y—1, . p Sufficiently close to the periodic orbit
. . will satisfy Eq. (29) to linear order.

Now, we wish to define our “periodic orbit” transform
g(z,R)Eé as a mapping which takes dyp-dimensional
One should note the cyclic relation in this setmpfmatrix ~ vector defined by Z=(z,...,z) into another
equations. As in Eq(2) of the fixed point method, Eq29)  dp-dimensional vectoiZ,

F(z,)=2"(1)+ VF(zy)-[2,—Z* (p)]. (29

-9(2,,2,,R;) | o ... 0 -1 | K(z1)=$(21,2,,Ry) - 74
~ 0 -Sz,,z3,Ry) | --- 0 F(z2)—S(2,23,Ry) 2,
Z=g(2R)= . . : : ,
I 0 0 -+ —S(z,7.,Rp) F(zp) = S(2,21,Rp)
(30)
|
wherel is thedxd identity matrix, R={Ry, ... ,Rp} isa  With a total of N delay vectors in our data set, this gives a

collection of p adjustabled X dX d tensors which serves the total of Hip;ol(N—i) permutations. Even for a moderate
same role as the ones in our fixed point transfésee Sec. value of N~1000 with N>p, the number of computations

IIA), and thedxd matrix §(z,z',R) is defined as needed to form the distribution functiqa(Z) can be very
large, i.e.,~NP. In some experimental situations, this rela-
S(z,z/,R)=VF(2)+R-[F(2)—2']. tively heavy computation load for periodic orbits with high
periods might not be desirable.
Under the mapg(2,R), each of thep elements of the pe- An alternative grouping scheme, which we will refer to as

riodic orbit are mapped to themselves. In other words, ifthe “short” scheme, with a smaller computational load, is
Z*=(z*(1),2°(2), ...,2*(p)), we haveG(Z* ,R)=Z* possible. First, we begin with a temporally consecutive se-
independentf R. quence ofp data points as our backbone. Then, for each
Furthermore, foiZ* not exactly at a bifurcation point, we POint on the backbone, we find it closest spatial neigh-
can show thaV G(2*,R) =0 independenbf R [compare bors. These give clusters of test points witk +1 members
with Eq. (8)]. With a similar argument as in our fixed point in each consisting of the bapkbone |§self and alktseigh-
transform, the transformed data cluster around the periodif0S: We then apply the periodic orbit transfog(2, R) to

. o . A all combinations ofz},-, ., constructed from the clus-
orbit in the distribution function forZ. Therefore, an ap- ters. By sliding the backbong af consecutive points along

proximation to the periodic orbit can be found frorrj trle datathe whole data set, the total number of possible sets
set by looking for peaks in the distribution functiei( Z). {Zdk=1, ... p Of test points is~N(K+1)P. For small values
As in the preceding section, the degree of clustering aroung K, the computation time in this “short” scheme is much
the periodic orbit in the transformed daf depends on the less than the exhaustive grouping scheme stated earlier. One
effective size of the local region around the periodic orbitregains the exhaustive grouping scheme by increasing the
and on the frequency with which the periodic orbit is visited. number of neighborK in each cluster. In the “short”
The issue of spurious peaks due to stationary pafits scheme, if the sequence pftest points on the backbone is
which are not periodic orbit&€* of F(z) are handled as in good(i.e., all p points on the backbone stay close to a par-
our fixed point methodsee Sec. I In brief, since the ticular periodic orbil, then all sequences formed by their
locations of the spurious peakg(Z°R), will depend on closestneighbors will also be good and all combinations of
the set of parametef® andG(Z*,R) = Z* independendf  {z},_,  , formed from thep clusters will be mapped by
R, we can eliminate spurious peaks due &+ Z* by G(Z,R) to the vicinity near the periodic orbit. Furthermore,
smearing using many different randdfhfor eachZ in our  even if only a subsequence of the points on the backbone
transformation. stays close to the periodic orbit, other sequences of test
So far, we have not specified how to choose the collectiopoints formed by their neighbors might be close enough to
of the p test points{z},—1, ., for our periodic orbit trans- the periodic orbit for the entire cycle to be mapped by
form. Note that{z},—, ., need not be @onsecutivese-  G(Z,R) to the vicinity of the periodic orbit. This situation is
guence of points from the original data set. In fact, any comillustrated in Fig. 6 for a period three orbit. Intuitively, in-
bination of p points in the data set approximately satisfying stead of blindly picking some random collection pftest
the periodic orbit condition given by E9) will be mapped points for the calculation, the “short” scheme selectively
to the vicinity near the periodic orbit. This suggests an ex-chooses the set g test points that are most likely to be
haustive way to generate the periodic orbit density by cone¢lose to the periodic orbit. In the following calculations, we
sideringall combinations ofp delay vectors in the data set. use the “short” scheme.
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B. Extracting periodic orbits from the transformed data

As in the discussions of our fixed point extraction tech-
nigue, different variant methods can be applied to the trans-

formed dataZ to extract the periodic orbits. Recall that the
transformed dat& are in a special formz, . . . ,z,), where

z(1<k=p) is ad-dimensional vector representing tkth
element of the candidate periodic orbit. Here, we will again

look for peaks in the distribution functio;ﬁe(Z) for the
transformed data.
As in our fixed point method, a reduction procedure is

possible for simplifying the distribution functior/fL(Z).
Since our analysis is in delay coordinates, the periodic orbits -
satisfy the cyclic symmetry given by EqR7) and(28). For u

a periodic orbit with periog, the cyclic symmetry defines a

p-dimensional hyperplane  which contains  the FIG. 7. A picture of the attractor for the skewednda map Eq.
pd-dimensional vectorZ*. As a specific example with (31) with 8;,=0.965 andB,=0.25. The attractor has a Lyapunov
p=2 and d=3, Z* is a six-dimensional vector and dimension of 1.261. The five circles denote the “almost” periodic
ZF=(z"(1),2°(2))=(z1* ,z2* ,z1* ,z2* ,z1* ,z2*). The  regions and the arrows indicate the order in which these regions are
two-dimensional hyperplane with the given cyclic symmetryvisited.

defined by Eqs(27) and (28) is spanned by the following

two vectors: (1,0,1,0,1,0) and (0,1,0,1,0,1). Numerically, for [u’ f(u,v) BePY(1.4—u?)+ 0.3
a given pointz, we can calculate its perpendicular distance ( ) = F(u,v)=( ) =( u

from this hyperplane. If this distance is within a given toler- (31)
ance, we consider it as a candidate period 2 periodic orbit.

[Recall that in the case with period 1 fixed points, the reducwith g,=0.965 ands,=0.25. Again, the exponential term,
tion of u(Z2) is to restrict data to a small cross section tubeef2!, is introduced so that the highest nonlinearity will not be
along the diagonal with a given widfhin general for a pe- trivially quadratic. The skewed Hen system illustrated in
riod p orbit, we have g-dimensional hyperplane within the Fig. 7 has a chaotic attractor with a Lyapunov dimension of
pd-dimensional space and we consider data falling within a1 261. Using the periodic orbit detection method described

v

’ ’

thin slab with a given thickness about this hyperplane.  apove, we found all the periodic orbits on the attractor with
These candidate periodic orbits in principle will hape periodsp=1 to 7.

independent components, andpadimensional distribution Note that a complete set of periodic orbits with a given

function %(z) can be constructed by considering  aperiod p contains all cycles with periogp and all other

p-dimensional vector in the fornz=(z,(1),....2:(P)).  cycles with periods which are integral factors pf As an

where Z=(z,, ... ,z,) is a point in the thinp dimensional  example, a complete set of period 4 periodic orbits will con-

slab described above arig(k) denotes the first component tain all orbits with exactly four cycles, all orbits with exactly
of the vectorz,. Again, we have arbitrary chosen the first twcé)cycles, Ia”d all period 1 f');e_d p_l?'rg)tls- Cinth el
component of, in this construction oF; other choices can i ur resu t? are jl:rr]nman.zed. n b'{f[‘t € .fng’;nese t(':a cula-
be made. The sharpness of the peak in this reduced distrip®"s: We periormed the periodic orbit transtogmon a ime

tion function is enhanced as the thickness of the slab is madee"i€s {x(n)} constructed from 1024 iterates of

smaller. However, smaller width requires a larger data set s6(U(n),v(n)) with x(n)=u(n). In the “short” scheme, the
that enough points fall in the slab. number of test points used in each cluster, including the

To uniquely identify a periodic orbit, one needs to deter-backbone and its closest neighbors, was 2. Other operational
mine the values of itsp independent components, parameters are as follows: the embedding dimension was 2;
{z1*, ... zp*} and the correct sequential ordering of thesethe number of randork used was 100; the magnitude of
p elements. To simply look for peaks in the-dimen- randomizatiork was set at 3; and two spatial neighbors were
sional distribution functionu(z) will serve both of these used in estimating the Jacobian matridé&(z). In noisy
purposes since the correct ordering of fheequential pieces Situations, more neighbors would be needed. One can see
of the periodic orbit is preserved in the reduced vezt@®ne from the table that results obtained using the periodic orbit
can alternatively form a one-dimensional histogré;rﬁ) transform compared well with “exact” valuekcalculated
with 7 being a scalar anz=%, (k=1, . .. p) for all reduced USNg Newton's method on the analytically given map

dataz. Peaks in this histogram give all possible values of theF(u’U) [23]]. The discrepancy between our numerical results

p components of the periodic orbit. To infer the correct or-and the “exact” values is less than 0.2%. N
dering of thesgp components, one can use the subset of . AFlgures 8a)-8(f) show the histogram approximations to

. p(2) used in extracting the periodic orbits for Table I. They
with R=0. correspond, respectively, to the cases with2,3,4,5,6,7. As
an example, Fig. & has four peaks in the histogram ap-
proximation to p(z) corresponding to the four identified

To demonstrate our detection method for unstable perieycle points of the periodic orbits. With=2, there is only
odic orbit withp>1, we use the skewed Hen map: one orbit with exactly two cycles, and two period 1 fixed

C. Numerical example: Skewed Haon map
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TABLE |. Table of periodic orbits found from a scalar time series generated by the skeivemh Heap.

Order of PO Total number Number of orbits Extracted values Exact numerical
(p) of orbits with exact cycle  of z* (1) from p(2) values[23]
(+0.002) (*0.0001)
1 2 2 (0.929,0.92% (0.9302,0.930p
(—1.899,~1.899) (~1.9030;-1.9030)

2 3 1 (1.300;-0.561) (1.3014-0.5604)

3 2 0

4 3 1 (1.478,0.53p (1.4785,0.5388

5 2 0

6 6 4 (—1.078,1.512 (—1.0780,1.5125
(—1.924,1.66Y (—1.9240,1.6681
(—1.689,1.62% (—1.6886,1.629p
(—0.959,1.411 (—0.9579,1.411p

7 7 6 (—2.158,1.70% (—2.1580,1.706p
(—2.103,1.698 (—2.1034,1.698p
(—1.539,1.602 (—1.5386,1.6025
(—1.447,1.53p (—1.4466,1.532p
(—1.156,1.527 (—1.1551,1.528B
(—0.412,1.362 (—0.4124,1.3618

points. These give a total of42+1X2 peaks in the histo- periodic humps appear in Fig(d. These regions of close
gram approximation t@(Z). The second fixed point peak at encounter between the two solution curves are indications of
f coming saddle-node bifurcation as one or more parameters
fof the system are varied. A typical trajectory visiting near
such “almost” periodic regions, nonetheless, for a short
while behaves as if there were a periodic orbit. In fact, as the
parameterB; is increased from 0.965 to 1.0, two period 5
rbits are born through a saddle-node bifurcation. Figure
(b) is a graph of the two solution curvds(u,v)=u (thin-
ner curve and f,(u,v)=v (thicker curve near the bifurca-
tion point at3,;=0.9871. In addition to the two already ex-
0itsting period 1 fixed points, now there are five other regions
where the two solution curves tougkee regions indicated
by gray ovalg. Finally, Fig. 9c) shows the crossing of the
D. Detection of “almost” periodic orbit two solution curves ajB;=1.0 after the bifurcation. Two

In Fig. 8(d) (p=5), there is one strong peak correspond-peric’d 5 orbits are present and the total number of intersec-

ing to the period 1 fixed point a=0.929 and there are six tion points becomes 1@wo period 1 fixed points and two

additional broad humps in the histogram indicated by sixorb'ts with exactly five cycles

arrows. The one near= —1.903 is again the period 1 fixed
point located off the attractor. The remaining five humps

z=—1.903 is small because it is not part of the attractor an
a typical chaotic trajectory only intersects a small portion o
its effective local region. There are two peaks in Fig)8or
the casep=3 indicating the existence of the two period 1
fixed points and the absence of period 3 orbits. Figum® 8
(p=4) has seven peaks corresponding to one orbit of perio
1, one orbit of period 2, and one orbit of period 4:
7=1+1X2+1X4. The period 1 in Fig. & occurs at

z=0.929 and the second fixed point off the attractor does n
show up in this graph.

IV. NOISY TIME SERIES

correspond to an “almost” period 5 orbit with From our noiseless numerical examples in the preceding
J f(U0)—U 0 two sections, we have seen that one should expect singulari-

F5(u,v)— ) :( o )m( ) i ties inz at the locations of the unstable periodic orbits. How-
v fa(uv)—v 0 ever, in a real experimental setting, time series are usually

contaminated by dynamical and/or observational noise. In
Geometrically, all period 5 orbits correspond to the intersecthese cases, the observed singularities are blurred by small
tion points of the two solution curves defined by npojse into maxima, and can even be completely washed out
f1(u,v)=u andf,(u,v)=v in the two-dimensional{—v) by large noise.
plane. With3,=0.965, Fig. 9a) is a graph of the two solu-  The technique of surrogate ddtel] can be used to assess
tion curves fi(u,v)=u (thinner curve¢ and fy(u,v)=v the reliability of the observed peaks. In this procedure, we
(thicker curve. They intersect at the two period 1 fixed produce a truly stochastic time series, surrogate data, with
points of the map at=0.929 and-1.903 indicated by open similar statistical properties to the original supposedly deter-
circles in Fig. 9. Although the skewed Hen map does not ministic data. We then compare the results of applying our
possess a true period 5 orbit, the two solution curves nearlperiodic orbit detection method to both the original data set
touch[see regions indicated by gray ovals in Figa)d near and to the surrogate. In particular, we employGaussian
the locations(denoted by arrowswhere the five “almost”  scaled phase shuff[@4] to produce the surrogate data. This
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FIG. 8. Histogram plots 0p(z) for the skewed Heon map with(a) p=2, (b) p=3, (c) p=4, (d) p=5, (€) p=6, and(f) p=7. These
plots are obtained using the second-order periodic orbit transfegnwith the “short” grouping scheme=1). Other operational
parameters are as follows: the embedding dimension was 2, the number of rBndaloes used was 100, and the magnitude of random-
ization k=3.

technique assumes that the surrogate data arise from a linea(,qp, surrogate by W(2)=pe(2)—pelz) and let
stochastic process with the same amplitude distribution an
approximately the same power spectrum as the original dat?h
Since the surrogate data are stochastic, we do not expect a

unstable periodic orbit structure that may be present in th . ,
original data set to survive. Most importantly, using manyproaches the probability thalt exceedsV” as the number of

different realizations of the surrogate data, we can estimatERndom surrogates increases. Since we use a large but finite

the statistical probability that the observed peaks in our exPUmber of surrogates, the actual deviation of the observed
perimentalf»(i) could be modeled by the surrogates peak for a true periodic orbit might fall outside the range of

Numerically, for each realization of the surrogate data, wenaximum deviations calculated frqm the surrog'ates. 'In this
o~ a case, one can say that the probability in observing this peak
apply the same procedure for calculatipg,(z) as for our from the surrogates is “unobservably” sméibr the number

experimental data. Then, from this collection 9f.{2)},  of surrogates testedind we can quantify the distance of this
we can estimate the ensemble averagg(z) for eachz.  exceptionally large deviation away from the bulk of the dis-
Similar to our noisy experimental datpg,(z) from each tribution (W) by the ratio,r==W/W,, whereW is the
individual realization of the surrogates will fluctuate, and maximum deviation observed in the data ang is a mea-
will consequently have fluctuation peaks which deviate fromsyre of the width of the distribution functioR (W) with
the mearpg,(z). Denote the deviation from the mean for a = (W,)=0.5.

=ma>§(w(2)). Using many surrogates we can determine
e fraction= (W’) of surrogates with maximum deviations
exceedingW’. The numerically determined fraction ap-
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To demonstrate the robustness of our method in a noisy
situation, we use the noisy lkeda map as our numerical ex-
ample,
u(n+1)
v(n+1)

1.0+afu(n)cost(n)—uv(n)sint(n)]+ eqdy(n)
afu(n)sint(n)+wv(n)cost(n)]+ eqd4(Nn)

where t(n) =0.4—b/[1+u?(n)+v3(n)], €4 is the magni-
tude of the internal dynamical noise, afidy(n)} is a uni-
formly distributed random variable ih—1,1]. To keep our
presentation simple, we will focus only on the detection of
period 1 fixed points using the first-order fixed point trans-
form. The noiseless Ikeda mapy=0) describes the dynam-
ics of a nonlinear optical cavity and the magnitude and angle
of the complex quantityi(n) +iv(n) is related to the ampli-
tude and phase of the magnetic field of thih light pulse
inside the cavity[25]. With a=0.75, b=9.0, ande4=0,
this system has a chaotic attractor with a Lyapunov dimen-
sion of approximately 1.488, and it has an unstable fixed
point at U*,v*)=(0.658,0.537). Furthermore, to simulate
the effect of external observational noise, we choose
o(n)=v(n)+e€y85(n) to be our observed scalar output,
where ¢, is the magnitude of the external noise and
{8p(n)} is a uniformly distributed random variable in
[ —1,1]. The delay coordinate vector thdimensions is then
given by z(n)=(o(n),o(n—1), ... 0(n—(d—1)))". The
total length of the time series used for this numerical experi-
ments is 2048. A picture of the noiseless lkeda attractor re-
constructed from the delay vectefn) in two dimensions is
given in Fig. 1Qa) along with plots(b) and(c) showing the
attractor with two different levels of internal dynamical
noise.

In noisy situations, one can often fine tune the statistical

significance of the observed peakj(z) with respect to the
surrogates by adjusting the embedding dimensipnthe
number of random tensoRs used, the magnitude of random-
ization k, the number of nearest neighbdvs used, and the
number of surrogates used. In general, one expects improved
statistics by using a larger number of random tengbend
more surrogates.

First, we will examine the effect of internal dynamical
noise (4#0 ande,=0). Figure 11 corresponds to our re-
sults with four different observational noise level&)
€4=0; () €4~5% of the radius of the attractorie)
€4~ 10% of the radius of the attractor; afg) e;~30% of
FIG. 9. Solution curves of F>(u,v)—(u,v)=(fi(uv)—  the radius of the attractor. The thin solid curves give the

u,fo(u,v)—v)=(0,0), whereF(u,v) is the skewed Heon map ; : : ~ :
given by Eq.(31) for the casesa) B,—0.965,(b) B, 0.9871, and histogram approximations tp(z) and the thick curves are

(c) By=1.0. The thinner curve denotes the set of points on thdh€ corresponding surrogate averageg(z). To quantify the
(u,v) plane which satisfies the equatibr{u,v)=u and the thicker statistical significance of the deviations between t_he dz_ita _and
curve denotes the set of points on they) plane which satisfies the surrogate mean, we plotted the corresponding distribu-
the equatiorf,(u,v)=v. The two period 1 fixed points of the map tion functions= (W) in Figs. 11b), 11(d), 11(f), and 11h)

are labeled by the two white circles. The five gray oval¢gnand ~ With the arrows indicating the locations of the observed
(b) indicate the region where the two solution cunfg$u,v)=u maximum deviationdV found in Figs. 11a), 11(c), 11(e),
andf,(u,v)=v nearly touch and the five arrows indicate the loca- and 11g). In all these calculations, the time series data were
tions where the five “almost” periodic humps appear in Figd)8  delay embedded in a four-dimensional space. A collection of
In (c), the functionF>(u,v) had passed through a saddle-node bi- M =7 spatial neighbors were used for estimatWig(z) and
furcation and two period 5 orbits were created. 50 Gaussian scaled phase shuffled surrogates were em-
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FIG. 10. Ikeda attractor in time delay
coordinates(a) with no noise;(b) with
€4=10%X (radius of attractor (c) with

05 €4=30%X (radius of attractor

004"
u(n)

-0.54

-1.0

T — I.' T T T
-1.5 -1.0 -05 00 05 1.0
u(n-1)

ployed. Furthermore, in the process of randomization, we The last example in this section is from an experiment of
have used 500 different randoRiin Eq. (4) for each data a gravitationally buckled, amorphous magnetoelastic ribbon
point andx was set at 8. In Fig. 14), the fixed point at (see Ref[26] for a detailed description of the experimental

z=0.54 has a strong peak rising sharply above the surrogaﬁﬁtup- In this. ex_periment, the ribbon was periodically driven
mean. As indicated by the arrow in Fig.(b], the probabil- Py @ magnetic fieldH(t),

ity for observing such a large deviatio(~2300) from the

50 surrogates is “unobservably” smalt £=60.1). As the H(t) =Hgct Hacog 2mot).

amount of noise was increased t65% [Figs. 1Xc) and

11(d)], the peak at the fixed point broadened. NonethelessThe time series was obtained optically by measuring the po-
the deviation of the peak above the surrogate mean witition of the ribbon near its base sampled at a constant phase
W~ 713 is still significant. The probability of finding such a of the periodic drive. A total of 1024 time series points were
peak with the same large deviation in the surrogates is “uncollected and a section of the time series is graphed in Fig.
observably” small withr == 13.2. With a substantial amount 13(c). The dimension of the experimental attractor is ap-
of internal noise {10%) [see Figs. 1(e) and 11f)], the  Proximately 1.2 but in order to unfold all the crossings, delay
probability of finding the fixed point peak is still somewhat coordinate data have to be embedded in a three-dimensional
significant with= (W) ~6%. In the last case with 30% noise delay space. With the following operational parameters:
[Figs. 11g) and 11h)], the indication of the fixed point at 500 different randonR, =5, and 50 surrogates, the histo-

z=0.54 disappeared and the maximum deviation observed iéiram for the first-order fixed point densip(2) is plotted in
the data has an approximately 60% probability to be found ifFig- 13@ as a thin solid curve and the surrogate mean
the surrogates. psul2) is plotted as a thicker curve. Six spatial neighbors
The performance of our periodic orbit detection method iswere used to estimate the Jacobian matri€é€z) at each
similar in situations with only external observational noisepointz. The dominant fixed point is located at approximately
(eg=0 ande,#0). A similar sequence of eight graphs rep- 5.40. Again, using 50 surrogates, we calculated the distribu-
resenting our results with four different observational noisetion, (W), and we plotted its histogram approximation in
levels: (a) eg=0; (c) ,~5% of the radius of the attractor; Fig. 13b). The arrow indicates the location of the maximum
(& €~10% of the radius of the attractor, anf) deviation calculated at the fixed point and the probability for
€9~30% of the radius of the attractor, are given in Figs.observing this value in the surrogates is “unobservably”
12(a), 12(c), 12(e), and 12g). Figures 12b), 12(d), 12(f), small (rz=17.9). Thus, the observed fixed point structure in
and 12h) are the corresponding plots of the distributionsthe experimental data is highly unlikely to have resulted
E(W) for each cases. All operational parameters are thérom a linear stochastic process modeled by the surrogates.
same as in the previous lkeda example with internal dynami-
cal noise. The observed peaks in the midnoise lei@land
(e) are statistically significant with “unobservably” small
probabilities] r z=3.90 for (d) andrz=2.96 for(f)] in find- With experimental time series, in addition to the compli-
ing the same large peaks in the 50 random surrogates. In ttoation of noise contamination, the problem of dealing with
last set of our graphfFigs. 12g) and 12Zh)], we demon- nonstationary system parameters is also important. This is
strated that the location of the fixed point can again be comespecially true for biological time series where living tissues
pletely washed out by large external noisg-30%). are constantly changing and global parameters are difficult to

V. QUASISTATIONARY DYNAMICS



5412 SO, OTT, SAUER, GLUCKMAN, GREBOGI, AND SCHIFF 55

_ (@) ~ 500+ ©)
£ 2000 2 4
= 1500 5 0
g 2 3004
£ 1000 £
£ £ 2004
< 500 2
3 <z 100
< 0 LR T T T <& 0 L =< 7 T
-0 05 00 05 1.0 .10 05 00 05 1.0
z z
300
1.0 2000 (b) 1.0 4 200.] @
0.8 W 1000 0.8 4 WY 0o
I~ o 064
g 06 1 I ek . 3
o 04 -1.0 A 00 1.0 m 044
2 ]
0.2 0.2
0-0|' T 1 LN MU 0~0."|" T T LA B B T
0 500 1000 1500 2000 0 100 20 300
w w
- (©) - 100§ (2)
E 600+ g 50
g 400- g 60
£ 1 £ 40
§ 200 g ]
<E </;]\ 20-
<Q e
0 IIHA‘_ATII << O_v—u—r—|—|—|—v—|—|—r—|—|—r—v—|—r—1—v—v—|—|—r—r—v—|—|
-0 05 00 05 1.0 1.0 05 00 0.5 1.0
z z
@ 1.0 4 40 ()
0.8 20
04
g E 06_: -20 4
i -1.0 0.0 10 S04 -0 05 00 05 10
/Z\ 11 A
0.2 z
N BEABNEEEL S n e 11X = ESSEE—SSS_———-—--SSS
0 200 400 600 0 100 200 300 400
w w

FIG. 11. Histogram plots gb(Zz) (thin curves for time series generated from the Ikeda map with internal dynamical ri@jsej=0; (c)
€4=0.05% (radius of attractor (e) eq=0.1X (radius of attractor and (g) e4=0.3X (radius of attractor The thicker curves are the corre-
sponding surrogate means. 2048 data points were used, 500 different r&hd@re used for each data point, 50 surrogates were used,
M=7, and k=8. (b), (d), (f), and (h) are histogram plots o (W) in the four cases. Insets are the four corresponding plots of

[p(2) = paul2)] Vs z. Arrows indicate the values of maximum deviations betwpéz) and the surrogate means.

control. In general, changes in system parameters are r&ecause of their constantly shifting locatidi2¥]. A simple
flected in changes in the unstable periodic orbits. Here, waolution in dealing with this problem is to divide the entire
assume that the set of system parameters is slowly changingne series into smaller windows and to perform the periodic
in time with respect to the natural time scale of the dynam-orbit transform in each of the windows. The periodic orbit
ics. In this quasistationary condition, one typically expectspeaks in the histograms from each window should sharpen as
the periodic orbit structure of the underlining dynamics tothe parametric changes within each time slice become small
vary continuously as a function of time. Obviously, when agng therefore quasistatic. However, there will be a trade off
system is operating near its bifurcation values, its periodiGyitn the number of data points available in each window;
orbit structure might experience sudden changes. Near thegga: s the decreased number of data points in each slice, as
bifurcation points, periodic orbits might be created or de-y,o gjice duration is decreased, might lower the statistical

stroyed. Furthermore, for existing periodic orbits, their |°Ca|signiﬁcance of the observed peaks. We find for the examples

stability and their associated manifold structures usually gQqiow that a good compromise between these factors is pos-
through topological changes in bifurcations. If one blindly sible such that useful results are obtainable

bins theentire transformed time serigiz(n)} into the peri- As stated earlier, as parameters are varied, the system
odic orbit densityp(z), real periodic orbits might be missed might undergo topological changes through different bifur-
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FIG. 12. Histogram plots op(z) (thinner curvesfor time series generated from the lkeda map with external observational f@ise:
€0=0; (c) ,=0.05X (radius of attractor (e) e;=0.1X (radius of attractgr and(g) €,= 0.3X (radius of attractgr The thicker curves are the
corresponding surrogate means. 2048 data points were used, 500 different Rgene used for each data point, 50 surrogates were used,
M=7, and k=8. (b), (d), (f), and (h) are histogram plots oE (W) in the four cases. Insets are the four corresponding graphs of
[p(2) = paul2)] vs z. Arrows indicate the values of maximum deviations betwpéz) and the surrogate means.

cations. A knowledge of how the structure of periodic OrbitScycles of the ac drive using 500 randdwith k=5 and 50
changes as a function of system parameters provides drrogates for the entire time series. A section of the time
clearer picture on the possible dynamical ranges of the Sysseries is plotted in Fig. 14). As in the preceding section, the
tem. Furthermore, from a practical point of view, the ability tjme series was embedded in a three-dimensional delay
to characterize and to track a moving periodic orbit in time isspace. A collection oM =3 temporal neighbors was used to

critical in developing a successful control algorithm for thedetermine the Jacobian matric§s=(z). Again, the thicker
system[28]. ) '

To illustrate the functionality of our method in tracking CUrve is a histogram of the surrogate meaj)(z). From this
unstable periodic orbits in an experimental setting, we agaif'aPh, one can see a broad peak with a few sharper features
used the magnetoelastic ribbon system. In this case, the maggsing above the surrogate mean. The largest peaks near
nitude of the dc magnetic field 4. was slowly varied sinu- z=5.40 and 5.36 are labeled as | and I, respectively, in Fig.
soidally through one complete cycle during the whole lengthl4(a). From the probability distribution functio& (W), Fig.
of the experiment which consisted of approximately 100014(b), one can see that these two largest peaks are significant
cycles of the ac periodic drive. Figure (&tis the histogram  with “unobservably” small probability[r==4.61 for the
approximation th(E) (thin solid curve over the entire 1000 one at 5.4Q1) andr z = 3.54 for the one at 5.361)] for them
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FIG. 13. (a) A histogram plot ofp(z) (thinner curve for the FIG. 14. (a) A histogram plot ofp(z) (thinner curve for the
magnetoelastic ribbon data. 1024 data points were used, 500 diffefdagnetoelastic ribbon data with varyihty,.. 977 data points were
ent randomR were used for each data point, 50 surrogates weré!Sed, 500 different randorR were used for each data point, 50
used,M=6, andx=5. The thicker curve correspondsﬁu,(i). surrogateiwgre usetl) =3, andx=5. The thicker curve corre-
(b) is a histogram plot o (W). Inset is the corresponding graphs SPONdS topg,(2). (b) is & histogram plot o (W) and the inset is
of [p(2)—psul2)] Vs z. Arrow indicates the value of maximum the corresponding graphs 9(2) — psu(2)] vs z. Arrows (1 and 1)
deviation betweerp(z) and pg,(2). (c) is a section of the actual indicate the value of maximum deviations betwep(z) and
time series data. Eu,(i) at the two dominant sharp features on the broad p&ks

a section of the actual time series data.

to be found in the 50 surrogates. However, the broadness of
the background feature prevents one from resolving the tru&he peaks in Fig. 14) evidently come from averaging the
locations of the fixed points further. drifting result(Fig. 15 over time. We emphasize, however,
In Fig. 15, the whole time series was divided up into athat the time plot, Fig. 15, shows that there is onhe(drift-
sequence of 107 overlapping windows with 128 data pointsng) peak.
in each and the fixed point transfoi@(z) was performed on As another example application to real data, we consider a
the 128 data points in each time slice. All of the operationakequence of interburst time intervg9] obtained from a rat
parameters were the same as in Fig. 14. Using the probabilityippocampal slicésee Ref[30] for a detailed description of
distribution function= calculated from the 50 surrogates, we the experiment (A detailed report on the first identification
assigned a probability to each of the values of the histogransf periodic orbit structures in the rat hippocampus slice and
p(2). These probabilities are represented by a gray scale im electroencephalogram signals from a human epileptic fo-
Fig. 15 with black corresponding to “unobservably” small cus will appear in Refl31].) The 1834 data points collected
probability of observing that histogram value in the surro-were obtained during a 25 min recording. The environmental
gates as the maximal value among all the bins, and whitgariables such as temperature, oxygen level, potassium con-
corresponding to probability near 1 of observing that histocentration, etc. were kept constant. As we will see later from
gram value as the maximal value in the surrogates. In thisur results, even with all environmental variables being kept
density plot, one can clearly see the track of the period Tonstant, the dynamics in this neural ensemble demonstrated
fixed point, indicated by the nearly black streak in the figure both spontaneous changes and slow drifts within the 25 min
As the dc magnetic field went through one sinusoidal cyclgime span of the experiment. In constructing Fig. 16, we
during the experiment, the location of the fixed point sweptsubdivided the entire data set into 54 overlapping windows
through the range from 5.35 to 5.45 also approximately in avith 128 data points in each. For each time slice, the 128
sinusoidal fashion. In most of the time slices, the observedlata points were delay embedded in a two-dimensional delay
deviations between the peaks and the surrogate mean aspace. Using the fixed point transfor@(z) with 300 ran-
significant with an “unobservably” small value ¢&(W). domR tensorsM =2, andx=0.05, we generated 54 histo-
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FIG. 15. Results for partitioned time series. The time series was FIG. 16. Results for partitioned time series. The sequence of
from the magnetoelastic ribbon data with varyidg, (the same as data points consists of 1834 interburst time intervals collected from
in the previous figurebut we partitioned the entire time series up a rat hippocampal slice. We partitioned the entire data set up into 54
into 107 overlapping time slices with 128 data points in each. Theoverlapping time slices with 128 data points in each. The graph is a
graph is a gray scaled density plot showing the probabilities ofgray scaled density plot showing the probabilities of finding the
finding the observed deviations in the experimeftéd) in each  observed deviations in the experimentdl) in each time slice.
time slice. All operational parameters were the same as in Fig. 14Vithin each time slice, the fixed point transform was used with the
The black color corresponds to near zero probability in observindollowing operational parameters: 300 randd®y 50 surrogates,
that value as the maximum deviation in the surrogates and the whit¥ =2, andx=0.05. The black color corresponds to near zero prob-
color corresponds to probability near 1 in observing that value agbility of observing that value as the maximum deviation in the
the maximum deviation in the surrogates. The black streak in theurrogates and the white color corresponds to probability near 1 in
figure indicates the track of the period 1 fixed pointhg varies in ~ observing that value as the maximum deviation in the surrogates.
time. The two black streak$one continuous and one discontinupus

the figure correspond to the tracks of two possible period 1 fixed
gram approximations tp(z) as a function of the experimen- points.
tal time. Furthermore, in each time slice, with 50 Gaussian
scaled surrogates, we calculated the distribution function VI. CONCLUSION
2 (W) which characterized the probability of observing a

particular maximum deviatiolV betweenf)(i) and the sur- In summary, we have presented a general method to ex-

rogate mean. Then, we us&{W) to assign a probability to tract ungtable periodic orbits from phaotic time series. The
: . method is based on a transformation such that the natural
each value of the histogram(z). Figure 16 shows a gray

scaled density plot of these probabilities as a function of théneasure in the transformed space is enhanced near the un-

experimental time with black corresponding to near Zerostable_pe_r|0d|c_orb|t_s. . . . .
Periodic orbits with high periods were found in numeri-

probability and white corresponding to probability near 1. X . )
From the density plot in Fig. 16, one can clearly identify acally generated time series. Much to our surprise, the method
was able to detect “almost” periodic regions in phase space

prominent period 1 fixed point near-0.60 sec. During the which are precursors to true periodic orbits created by a tan-

entire duration of the experiment, this period 1 fixed point

- gent bifurcation.
slowty ”?OV.ed downward f“’?“ a burst rate o 0.75 sec at The effectiveness of our method in noisy environments
the beginning of the experiment to a lower burst rate of

- ) ) s was demonstrated using both numerically generated time se-
z~0.55 sec at the end. Biologically, it is reasonable s and actual experimental data. In the case of the noisy

.Spe.cu'?‘te that the slow drift tovyard a slower burst rate iyeq, system, the method was able to statistically identify
indicative of a gradually depolarizing neural ensemble. eriodic orbits with a noise leveldynamical or observa-

Another interesting feature of this d(::\ta set was the appeal fonal) that was approximately 10% of the size of the attrac-
ance of a hint of a secondary peak near1.20 at approxi- tor.

mately 11 min into the experiment. This peak was less well  |astly, the method was shown to be able to find and track
defined than the one at=0.60 but persisted for the remain- unstable periodic orbits in quasistationary systems. By parti-
ing duration of the experiment. tioning the time series into smaller overlapping windows, we
There is no surprise that biological systems are nonstawere able to identify dynamical changes characterized by
tionary. However, as in the case when system-wide parandifferent periodic orbit structures in neural activity from the
eters are varying slowly, we have demonstrated that, usingat hippocampus. While the identification and characteriza-
our method, it is still possible to obtain useful structural in-tion of unstable periodic orbits in chaotic systems provides a
formation on dynamics through their time varying periodic method to analyze their dynamical behaviors, the ability to
orbit structure. track unstable periodic orbits in time is an essential step to
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f(z) N ) z(n+1)="f(z(n)) (see Fig. 1ywith xk=0. Starting from the
Y . i value z(n—1) on the horizontal axis, one can obtain the
) iterates of the magz(n—1),z(n),z(n+1)} by following

+* Line of Fixed Points

z(n+1) f(2) = 2* the straight arrows in Fig. 17. On this graph, the locations of
the fixed points are at the intersections of the thick solid line
2m) with the diagonal, i.e.f(z*)=2z*.
D) —— Our fixed point transfornG(z(n)) consists of two parts.
e First, at a given point in the time seriegn),S(z(n)) (with
/ . Kk=0),
/4\450 l
// z(n) z(n-1) T

z(n+1)—2z(n)
z(n)—z(n—-1)’

S(z(n))=

FIG. 17. Geometric interpretation &(z(n)) in one dimension
for the casex=0.
gives the slope of the line segmeptin Fig. 17, which is an
control nonstationary chaotic systems with time varying sysestimate of the slope of the functidifz(n)) at z(n). Here,
tem parameters. we have used a temporal neightafn—1) of z(n) to esti-
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