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Extracting unstable periodic orbits from chaotic time series data
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A general nonlinear method to extract unstable periodic orbits from chaotic time series is proposed. By
utilizing the estimated local dynamics along a trajectory, we devise a transformation of the time series data
such that the transformed data are concentrated on the periodic orbits. Thus, one can extract unstable periodic
orbits from a chaotic time series by simply looking for peaks in a finite grid approximation of the distribution
function of the transformed data. Our method is demonstrated using data from both numerical and experimen-
tal examples, including neuronal ensemble data from mammalian brain slices. The statistical significance of the
results in the presence of noise is assessed using surrogate data.@S1063-651X~97!15205-9#
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I. INTRODUCTION

Unstable periodic orbits embedded in chaotic attract
are fundamental to an understanding of chaotic dynam
@1,2#. For example, basic ergodic properties such as dim
sion, Lyapunov exponents, and topological entropy can
determined from periodic orbits. Moreover, the detection
a periodic orbit from experimental data is a test for the pr
ence of determinism. A particularly important application
in the control of chaotic systems@2,3# where the first essen
tial step is often the determination of periodic orbits@4#. For
these reasons, detection of periodic orbits in experime
data has become a central issue@4–9#.

So et al. in Ref. @9# introduced a new method to addre
this problem. The basic strategy of their method was to tra
form the experimental time series data by using informat
of the local linear dynamics along a trajectory such that
transformed data in a suitable phase space~e.g., delay coor-
dinate space! are concentrated on the periodic orbits@10#.
Periodic orbits can then be extracted by looking for peaks
a finite grid approximation to the distribution function of th
transformed data. In the implementation and examples of
periodic orbit detection method in Ref.@9#, only a brief ex-
position of the theory limited to the problem of extractin
period 1 orbits~fixed points! from chaotic time series wa
presented. In this paper, we elaborate further on the ext
tion of fixed points, providing detailed derivations and jus
fications for the method and presenting several variations
it. As in @9#, we consider discrete time dynamical syste
~maps!. We also discuss the extraction of periodic orbits w
period greater than 1 and present extensive illustrative
amples.

*Also at Department of Physics and Electrical Engineering a
Institute for Systems Research, University of Maryland, Colle
Park, MD 20742.
†Also at Department of Mathematics and Institute for Physi

Science and Technology, University of Maryland, College Pa
MD 20742.
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The paper is organized as follows. In Sec. II, we introdu
the transform for the case of fixed points, and we prov
detailed analytical arguments for the existence of singul
ties at fixed points in the distribution function of the tran
formed data. We also discuss various ways of implemen
the procedure, as well as the possibility of enhancing
accuracy by use of a nonlinear version of the transformat
Periodic orbits with periodsp.1 can in principle be ex-
tracted by considering fixed points of thepth iterated dynam-
ics, i.e., everypth iterate of the time series. However, to b
effective, such a treatment of periodic orbits withp.1 re-
quires a dynamical correlation among a relatively lo
stretch of data points. In the presence of noise or in syst
with large Lyapunov exponents, this method would co
monly fail. In Sec. III, we introduce a variant of our fixe
point detection method suitable to periodic orbits of peri
greater than 1 such that the method utilizes every iterate
the time series. This method pieces together differentshort
portions of the periodic orbits fromnonconsecutivesections
of the data. In Sec. IV, we examine the robustness of
method in the presence of both observational and dynam
noise. The reliability of the method can be objectively a
sessed by testing the statistical significance of the obse
peaks against shuffled surrogate data which approximate
power spectra of the original data@11#. We demonstrate the
method by using both numerical examples with added sim
lated noise and real experimental data collected from a m
netoelastic ribbon system. Lastly, in Sec. V, the possibility
using our method to track periodic orbits in systems w
slowly varying parameters is discussed. Again, we use
magnetoelastic ribbon system with changing parameter
our first demonstration. Then, we apply this tracking meth
to the analysis of a sequence of interburst time intervals
lected from a brain slice of the rat hippocampus. In the A
pendix, a geometric interpretation and a supplemental an
sis of our periodic orbit transform are provided in the spec
case when the dynamics is described by a one-dimensi
map.
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II. EXTRACTING PERIOD 1 FIXED POINTS

To begin, assume we are given a finite length time se
$x(n)% from a discrete time dynamical system@13#. With a
properly chosen embedding dimensiond, one can uniquely
represent the state of the system at timen by a delay coor-
dinate vectorz(n)5„z1(n),z2(n), . . . ,zd(n)…

†[„x(n),x(n
21), . . . ,x(n2d11)…† @14,15#. Here, z(n) is a column
vector andz† is the transpose ofz. With this notation, the
evolution of the system state fromz(n) to z(n11) can in
general be expressed by ad-dimensional nonlinear mapF in
the following form:

z~n11![S z1~n11!

z2~n11!

z3~n11!

A

zd~n11!

D 5F„z~n!…5S F1„z~n!…

F2„z~n!…

F3„z~n!…

A

Fd„z~n!…

D
5S f „z~n!…

z1~n!

z2~n!

A

zd21~n!

D . ~1!

Then we ask the following question: without furthera priori
knowledge of the underlying mapF, how can we estimate
the locations of unstable periodp orbits, z*5Fp(z* ), from
the chaotic time series? In this section, we discuss detec
period 1 orbits (p51), also called fixed points. We wil
extend our discussion top.1 in the section that follows.

One simple approach, as used previously by others,
addressing this question is based on the idea of recurr
~see Refs.@4–8#!. In these recurrence based methods, o
looks for close encounters~within a ballBe of a given radius
e) of delay vectors reconstructed from time series. There
various implementations of this idea with different discrim
nating criteria based on the expected dynamical behav
near fixed points. Fundamentally, the effectiveness of th
recurrence based methods depends on the relative frequ
that a typical chaotic trajectory visits the ballBe(z* ) cen-
tered around the fixed pointz* . Assuming that the chaotic
attractor has a natural invariant measurem, this relative fre-
quency is given by the natural measure of the b
m„Be(z* )…, which can be small.

In the following, we first introduce our fixed point trans
form. Then, in the next subsection we describe its functio
behaviors and its measure-enhancing effect. By concen
ing the natural measure of a chaotic attractor around its fi
points, one can extract these fixed points by simply look
for peaks in a finite-grid approximation to the distributio
function of the transformed data.

A. The fixed point transform

Consider a small neighborhood around a fixed po
z*[(z* , . . . ,z* )†. We can describe the local dynamics by
Taylor series expansion ofF(z* ) aroundz,
s
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F~z!5z*1“F~z!•~z2z* !1O„~z2z* !2…, ~2!

where“F(z) is thed3d Jacobian matrix ofF(z). In index
notation, thei j th component of“F(z) is ] jFi[]Fi /]zj
with i , j51, . . . ,d and we use“F•(z2z* ) to denote the
vector whosei th component is( j (]Fi /]zj )(zj2zj* ). @Note
that this notation is somewhat unconventional since this v
tor would usually be written (z2z* )†•“F.# Conversely, one
can solve forz* in terms ofz from Eq. ~2! and consider the
resultant equation as a transformation which takes poinz
from the trajectory to a new set of transformed variableẑ
~with ẑ5z* wheneverz5z* ).

With this motivation, we define our fixed point transfor
ẑ5G(z,R) as

ẑ[G~z,R!5@ I2S~z,R!#21
•@F~z!2S~z,R!•z#, ~3!

where I is the d3d identity matrix, andS(z,R) is a d3d
matrix function of z and an adjustabled3d3d tensoral
quantityR,

S~z,R!5“F~z!1R•@F~z!2z#. ~4!

In the caseR50, Eq. ~3! together with Eq.~4! is simply the
solution of Eq. ~2! for z* in terms of z with order
O„(z2z* )2… terms neglected. We want to emphasize th
local approximations to all terms on the right-hand side
Eq. ~3! can be obtained experimentally from time series d
~see Sec. II E for details!. The inclusion of the additiona
tensorial parameterR in the fixed point transform migh
seem arbitrary at this point, but the role ofR will become
transparent in the following subsections. At this point, w
considerR as a fixed tensor with constant elements.

In the special case in whichF(z) is a linear function, i.e.,
F(z)5z*1a•(z2z* ) with a being a constant matrix, an
R50, we haveS(z,0)5a, and

G~z,0!5@ I2S~z,0!#21
•@F~z!2S~z,0!•z#

5@ I2a#21
•@z*1a•~z2z* !2a•z#5z* ,

independentof the values ofz. In other words,all points on
the trajectory will be mapped byG(z,0) to the fixed point
z* .

The case withR50 is a special degenerate case for t
transformationẑ5G(z,R). In this case, even withF(z) be-
ing a nonlinear function, all points in thed-dimensional de-
lay space are mapped to a one-dimensional subspace de
by the line ẑ15 ẑ25•••5 ẑd @16#. In the following discus-
sions, we will consider only the nondegenerate cases w
RÞ0.

In the case of a general nonlinearF(z) andRÞ0, most of
the points in the linear region around a fixed pointz* will
still be mapped to the vicinity ofz* . Specifically, we will
show that the fixed point transformG(z,R) dramatically en-
hances the clustering of the transformed data around
fixed pointz* .
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B. The stationary points of the fixed point transform

Before describing the effect of the fixed point transfo
on the natural probability measure on a given attractor,
first examine the functional behavior ofG(z,R) near the
fixed pointz* . There are two main properties ofG(z,R).

~i! G(z* ,R)5z* : If z* is a fixed point of the underlying
dynamics, i.e., ifF(z* )5z* , then z* will also be a fixed
point of the transformationG(z,R).

By construction, the matrixS(z* ,R) in Eq. ~3! evaluated
at the fixed point is simply the Jacobian matrix“F(z* ) in-
dependent of the value ofR, i.e.,

S~z* ,R!5“F~z* !. ~5!

With the above expression forS(z* ,R), the transformation
G(z* ,R) evaluated at the fixed point is

G~z* ,R!5@ I2S~z* ,R!#21
•@F~z* !2S~z* ,R!•z* #

5@ I2“F~z* !#21
•@z*2“F~z* !•z* #5z* ,

~6!

independentof R.
~ii ! Generically,“G(z* ,R)50. That is,z* is a stationary

point of the transformationG(z,R).
Multiplying Eq. ~3! by the factor@ I2S(z,R)#, we have

@ I2S~z,R!#•G~z,R!5F~z!2S~z,R!•z,

which when differentiated gives

2“S~z,R!+@G~z,R!2z#1@ I2S~z,R!#•“G~z,R!

5“F~z!2S~z,R!. ~7!

Here, “S is a d3d3d tensor with its i jk th component
given by ]Si j /]zk and we use“S+G to denote thed3d
matrix obtained by the contraction of the outer product
tween the tensor“S and the vectorG, i.e., thei j th compo-
nent of this matrix is given by(k(]Sik /]zj )Gk .

Evaluating the above expression atz* and substituting
Eq. ~6! @G(z* ,R)5z* # and Eq.~5! @S(z* ,R)5“F(z* )# into
Eq. ~7!, we have

@ I2“F~z* !#•“G~z* ,R!50.

The matrixI2“F(z* ) is nonsingular for a typical nonlinea
map F(z) except for z* precisely at a bifurcation point
Thus, generically

“G~z* ,R!50. ~8!

In summary, ifz* is a fixed point of the mapF(z), it is
both a fixed point@Eq. ~6!# and a stationary point@Eq. ~8!# of
the transformationG(z,R) independent ofR. In particular,
by Taylor expansion, one arrives at the following form f
G(z,R) near the fixed pointz* :

ẑi2zi*[Gi~z,R!2zi*'b i jk~zj2zj* !~zk2zk* !, ~9!

where i , j ,k51, . . . ,d, the coefficientsb i jk are invariant to
interchange ofj andk, and summing of repeated indices
implied. Moreover, by differentiating Eq.~9!, the Jacobian
e

-

matrix of the transformation“G(z,R) @] jGi(z,R) with
i , j51, . . . ,d# will have the following form near the fixed
point z* :

] jGi~z,R!'2b i jk~zk2zk* !. ~10!

We also note that to the lowest order in (z2z* ) near a fixed
point, bothG(z,R) and“G(z,R) are independentof R.

C. Probability measures on the attractor
and the fixed point transform

One way to characterize the clustering of points on
attractor is by its pointwise dimensionDp(z), which is de-
fined by the following limit@17#:

Dp~z!5 lim
e→0

lnm„Be~z!…

lne
, ~11!

whereBe(z) is ad-dimensional ball centered around a poi
z in Rd andm is the natural measure of the attractor. If th
distribution of points is uniform aroundz, the measure
m„Be(z)… ~or the fraction of points inside the ballBe) will
scale ased ~i.e., the pointwise dimension is the dimension
the embedding spaced). On the other hand, if the attractor
a stable fixed point, then all data points are atz and the
measurem„Be(z)… is one independent of the ball sizee. This
gives a pointwise dimension of zero, which is the dimens
of a point. The pointwise dimension of a fractal object e
bedded inRd typically falls somewhere in between, with th
smaller values ofDp(z) indicating a higher degree of clus
tering around the pointz.

The measure enhancing property of the transformation
fined in Eq. ~3! with RÞ0 can be stated in the following
claim:

Let the pointwise dimension of the attractor atz be
Dp(z). Then, under the transformationG(z,R), the point-
wise dimension of the transformed attractor will be u
changed at typical points but it will typically be halved
stationary points ofG(z,R) @i.e.,“G(z,R)50#:

D̂p~ ẑ!5Dp~z! at z, where“G~z,R! is nonsingular,
~12!

D̂p~ ẑ!5Dp~z!/2 at z, where “G~z,R!50, ~13!

where D̂p( ẑ) is the pointwise dimension of the transform

attractor at ẑ. (We define what we mean by the word ‘‘typ
cally,’’ used above, later.)

The first part of the claim, Eq.~12!, can be illustrated
using the following argument. For simplicity, say that th
origin is a regular point ofG(z,R), i.e., the matrix
“G(0,R) is nonsingular. We wish to show tha
D̂p„ẑ(0)…5Dp(0), whereẑ(0)[G(0,R) is the image of the
origin underG and D̂p( ẑ) denotes the pointwise dimensio
of the measure in the transformed space. Given a small
Be(0) around the origin, the transformationG(z,R) is ap-
proximately given by the following Taylor expansion o
G(z,R) around the origin:

G~z,R!' ẑ~0!1“G~0,R!•z.
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Geometrically,G„Be(0)… will approximately be an ellip-
soid centered atẑ(0) and one can find two constantsl1 and
l2 and two small ballsBl1e„ẑ(0)… andBl2e„ẑ(0)… such that

Bl2e„ẑ~0!…,G„Be~0!…,Bl1e„ẑ~0!… ~14!

uniformly in e ~see Fig. 1 for an illustration of these coverin
balls in two dimensions!. In terms of the natural probability
measurem, Eq. ~14! yields

m̂~Bl2e„ẑ~0!…!<m̂~G„Be~0!…!5m„Be~0!…

<m̂~Bl1e„ẑ~0!…!. ~15!

Then, by utilizing the definition for the pointwise dimensio
@see Eq.~11!#, we arrive at the following relations:

lim
e→0

lnm̂~G„Be~0!…!

ln~l1,2e!
5 lim

e→0

lnm„Be~0!…

lne
5Dp~0!,

lim
e→0

lnm̂~Bl1,2e„ẑ~0!…!

ln~l1,2e!
5D̂p„ẑ~0!….

The inequality in Eq.~15! then gives

D̂p„ẑ~0!…<Dp~0!<D̂p„ẑ~0!…,

which yields the desired result Eq.~12! @18#,

D̂p„ẑ~0!…5Dp~0!.

We now turn to the second part of the claim@Eq. ~13!#.
Let the origin be a stationary point ofG(z,R), i.e.,
“G(0,R)50. Then, near the origin, by Eq.~9!, we have

Gi~z,R!2Gi~0,R!'Qi~z!5b i jkzjzk ,

wherei , j ,k51, . . . ,d and summing over repeated indices
assumed.

FIG. 1. Schematic illustration showing the action of the fixe
point transformG(z,R) near the origin with“G(0,R) being non-
singular. The imageG(Be) of a ball,Be , is an ellipsoid centered

around ẑ(0). There exist two ballsBl1e and Bl2e such that
Bl2e,G(Be),Bl1e .
 Now, for ease of visualization, we will examine the effe

of this quadratic transform in two dimensions. Using po
coordinatesz5(r ,u), the transformationQ(z) can be written
as

Q1~r ,u!5~b111cos
2u1b122sin

2u12b112cos
2usin2u!r 2

5q1~u!r 2,

Q2~r ,u!5~b211cos
2u1b222sin

2u12b212cos
2usin2u!r 2

5q2~u!r 2,

or, equivalently, the transformed coordinates (r̂ ,û) are given
by

r̂5AQ1
21Q2

25r 2Aq12~u!1q2
2~u!,

tan~ û !5
Q2

Q1
5
q2~u!

q1~u!
.

The form factorsq1(u) andq2(u) are functions independen
of the radiusr and are functions ofu only.

The transformationQ(z) is degenerate ifû is independent
of u @i.e., the ratioq2(u)/q1(u) is independent ofu#. In this
case, all points in thez plane will be mapped byQ(z) to a
line going through the origin with an inclinationu0 @19#. We
have said that Eq.~13! applied ‘‘typically,’’ by which we
mean thatq2(u)/q1(u) is not independent ofu and that
q1,2(u)Þ0.

Generically, the transformationQ(z) will map a circle
Ce of radiuse around the origin to an ellipseQ(Ce) in the
( r̂ ,û) plane. The ellipse has major and minor radii of ord
e2 and may or may not~depending on theb i jk) encircle of
the origin (r̂50). A case where it does not encircle the o
gin is shown schematically in Fig. 2, and though the follo
ing discussion is restricted to this case, the case wh
Q(Ce) encircles the origin can be similarly treated. For
value of e8,e, the circleCe8 becomes an ellipseQ(Ce8)
with the same shape and orientation asQ(Ce) but is now
closer to the origin and smaller. In particular, for fixedû,
points onQ(Ce8) are obtained from points onQ(Ce) by
multiplying r̂ by (e8/e)2 @this follows because
Q1,2(r ,u)5q1,2(u)r

2#. As e→0, the limit of Q(Ce) ap-

FIG. 2. Schematic illustration showing the action of the qu
dratic mapQ(z) on a ballBe . The two circlesCe andCe8 with
e8,e are mapped byQ(z) as shown. Because of nonlinearity, th
imageCe8 is not necessarily entirely contained within the ima
Ce . However, sincez→0, Q(z)→0, the imageQ(Be) of Be will be
a wedged structure as indicated by the shaded region.
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proaches the origin. As a result, the image of a diskBe under
the transformationQ(z) will be a wedgelike object com
posed of the union of all the ellipses with 0<e8,e,

Q~Be!5 ø
0<e8,e

Q~Ce8!

~as shown by the shaded region in Fig. 2!.
Define ê1 and ê2 as shown in Fig. 3. From the homog

neous quadratic nature ofQ1 andQ2, we have thatê1 and
ê2 are of the form

ê15l1e2, ~16!

ê25l2e2, ~17!

wherel2,l1 are positive constants. Since all points in t
neighborhood ofz50map to the wedge between the dash
straight lines in Fig. 3, we have that

m̂„Bê1
~0!…>m̂~Q„Be~0!…!5m„Be~0!…, ~18!

m̂„Bê2
~0!…<m̂~Q„Be~0!…!5m„Be~0!…. ~19!

Inserting Eqs.~16!–~19! into the definition of the pointwise
dimension and proceeding as in the steps following Eq.~15!,
we obtain the previously claimed result, Eq.~13! @20#,

D̂p„ẑ~0!…5Dp~0!/2.

Although, for illustration, we have restricted consideration
two dimensions, the same reasoning carries over to hig
dimensionality, and Eq.~13! still applies.

D. Extracting peaks from the distribution function
of the transformed data

From our previous discussion, we have seen that by c
struction, fixed pointsz* of the discrete dynamical system
F(z) are automatically stationary points of the fixed po
transform ẑ5G(z,R). Thus, by the lowered pointwise d

FIG. 3. Illustration of the bounding balls with radiie1 ande2

for the quadratically transformed ballQ„Be(0)…. Note that the entire
plane is mapped byQ(z) into the wedged region between the tw
dashed lines.
d

er

n-

t

mension@Eq. ~13!# at stationary points, one should expe
strong clustering~sharp peaks! at fixed pointsz* in a finite
grid approximation of the probability measure of the tran
formed data. In practice, the degree of clustering arou
fixed points in the transformed data depends on the siz
the local regions where Eq.~2! is a good approximation to
the dynamics, on how often a typical trajectory visits the
local regions, on the accuracy and resolution of the ti
series data, and on noise. We also find that, since the me
samples the local dynamics near a fixed point, it is also p
sible that fixed points that are very close but not actually
the attractor can be detected from the probability measur
the transformed data@21#.

While fixed points ofF(z) are stationary points of the
fixed point transformG(z,R), there exist other pointszs

Þz* that are not fixed points such that“G(zs,R)50. With
a given fixed value ofR, the probability measure of the
transformed data will have spurious peaks at the image
these stationary points as well as at true fixed points. Ho

ever, in theẑ space of the transformed data, the locations
these spurious peaks given byG(zs,R) will depend upon the
tensorial parameterR while the peaks at true fixed point
G(z* ,R)5z* will be independentof R @recall property~i! of
the fixed point transform in the previous subsection, S
IIB #. Thus, one way to remove these spurious peaks is
pick many randomR’s for the calculation of the fixed poin
transformG(z,R) at each pointz of the data set. While the
images of the spurious stationary points inẑ space will be
wildly scattered by different choices ofR, the true fixed
points atz* will not be affected. Thus, we remove the clu
tering around spurious stationary points by smearing th
while preserving the measure enhancing effect around
fixed points.

In practice, to extract unstable fixed points from the set
transformed data, one could simply look for sharp peaks
finite grid approximation to the distribution functionm̂( ẑ) of
ẑ. If the dimension of the embedding space is small, it
computationally simple to look for sharp peaks in the bins
a d-dimensional grid. On the other hand, ifd is large, it
might be preferable to reduce thisd-dimensional distribution
function to a one-dimensional histogramr̂( ẑ) with the scalar
ẑ being a function of thed-dimensional vectorẑ.

One simple reduction procedure is to utilize the cyc
symmetry in the coordinates of delay time embedding@see
Eq. ~1!#. With this cyclic symmetry, all fixed points must li
on the diagonal line defined byẑ15•••5 ẑd . This allows
one to construct a one-dimensional histogramr̂( ẑ) from the
d-dimensional distribution functionm̂( ẑ) by considering
only ẑ within a small cross-section tube about the li
ẑ15•••5 ẑd . The relative sharpness of the peaks at fix
points will remain if the width of the cross section of th
tube is chosen to be sufficiently small.

In the special case when the pointwise dimension of
attractor at fixed points is not too large@Dp(z* ),2#, an
even simpler procedure is possible.@Here, the restriction is
on the pointwise dimensionDp(z* ) of the attractor at fixed
points, while the actual dimensionsd needed for time delay
embedding can be large.# In this case, one can construct
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one-dimensional histogram by considering all values
ẑ5 ẑi ( i51, . . . ,d) for all transformed dataẑ. Since this
procedure involves projecting thed-dimensional distribution
function m̂( ẑ) onto a one-dimensional set, the relative sha
ness of the peaks at fixed points will be reduced.

Projection of the data from thed-dimensionalẑ space to
the one-dimensionalẑ line preserves the pointwise dimen
sion D̂p„ẑ(z)… if D̂p„ẑ(z)…,1 ~see @22#!, while if
D̂p„ẑ(z)…>1, projection yields a pointwise dimension of 1
ẑ. For z5z* , a fixed point,ẑ(z* ), has been made to have
low pointwise dimension,D̂p„ẑ(z)…,1, while, in contrast, at
typical pointsz, the pointwise dimension of the transforme
data D̂p„ẑ(z)…5Dp(z) exceeds 1 for a chaotic attracto
Thus, if we form the densityr̂( ẑ) from the projected data
this density has a singularityr̂( ẑ);uẑ2 ẑ(z* )u2n, where
n5@12Dp(z* )/2#.0. That is,r̂( ẑ) has a singularity at the
location of the fixed point. We find that such singulariti
can often be easily picked out from a histogram plot
r̂( ẑ) @9#.

E. Obtaining S„z,R… from time series data

In the definition of the fixed point transform Eq.~3!,
S(z,R) is a sum of two terms with the first term given by th
derivative ofF(z), “F(z), and the second perturbative ter
given byR•@F(z)2z#. The value ofR is chosen such tha
for a typicalz, R•@F(z)2z# is roughly comparable in orde
of magnitude to“F(z). WhileF(z) is simply the next iterate
of z in the delay embedded space,“F(z) can be estimated
using a least square fit procedure.

In delay coordinates,“F(z) has d free parameters
namely,]1f (z), . . . ,]df (z) @see Eq.~1! for the special struc-
ture ofF(z) in delay coordinates#,

“F~z!5S ]1f ~z! ••• ]d21f ~z! ]df ~z!

1 ••• 0 0

A ••• A A

0 ••• 1 0

D .
By considering a collection$wk%, k51, . . . ,M (>d) of M
points which are neighbors ofz, the d parameters of
“F„z(n)… can be solved by fitting the following linear equ
tion to the data:

w1
k~n11!2z1~n11!5“ f „z~n!…•@wk2z~n!#, ~20!

where“ f (z)5„]1f (z), . . . ,]df (z)… is the gradient of the
scalar functionf (z).

Two types of neighbors are considered in our meth
First, since we are interested in capturing the local dynam
behavior nearz(n), the natural choice is theM closest points
in thed-dimensional reconstructed phase space. We refe
points whose phase space locations are nearz(n) as ‘‘spa-
tial’’ neighbors ofz(n). In the case, however, when the sy
tem parameters are not stationary in time, especially in b
logical systems, the choice of spatial neighbors might no
appropriate. This is because spatial nearby points in gen
are not necessarily close in time and therefore they m
f

-

f

.
al

to

-
e
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represent states with different system parameters. To
tially deal with time series from slowly drifting nonstation
ary processes, one can alternatively define the collectio
neighbors forz(n) to be its nextM /2 iterates together with
its M /2 preimages.@When z(n) is very near a fixed point,
these temporal neighbors are also spatial neighbors.# Thus, in
this case, the transformationG„z(n)… is solelydefined within
a small window of time nearn, i.e., within the short se-
quence of points:$z(n2M /2), . . . ,z(n1M /2)%. By assum-
ing that the typical time scale of the parametric variations
much larger thanM , the choice of temporal neighbors migh
give a better estimate of the local dynamics nearz(n) than
the choice of spatial neighbors for nonstationary process

Obviously, all points in the temporal sequenc
$z(n2M /2), . . . ,z(n1M /2)%, have to be in the local region
of z(n) in order for the linear approximation to the loc
dynamics“F„z(n)… @see Eq.~20!# to be meaningful. This
will certainly not be true for all points on the trajectory
especially for points far away from the fixed point. On th
other hand, near a fixed point, trajectories stay near it fo
short period of time. These short sequences of points in
local region of the fixed points are exactly those which w
satisfy the fixed point criterion given by Eq.~2! and be trans-
formed to the singularity at the fixed point.

F. A Simple numerical example: Skewed logistic map

As a simple example illustrating the singularities
r̂( ẑ), we generate a time series from the skewed logis
map, f (z)5me2zz(12z), with m56.1 @see the inset of Fig.
4~a! for a graph off (z)#. The exponential factor,e2z, intro-
duces higher order nonlinearities to the dynamics so that
Taylor series expansion off (z) will not be a trivial quadratic
polynomial. A histogram approximation to the distr
bution functionr(z) of theuntransformed dataz is plotted in
Fig. 4~a! using 8192 iterates off (z). We see that most o
the 8192 data points are primarily clustered around the
and second iterates of the critical point off @zc50.382;
f (zc)50.983; f 2(zc)50.0385#. This one-dimensional map
has one fixed point (z*50.667) on the attractor and a secon
fixed point z*50 off the attractor. From the distribution
functionr(z), we also observe that the probability for a typ
cal orbit to visit the region near the fixed point
z*50.667 ~within an interval centered aroundz* and with
size '1% of the radius of the attractor! is relatively low
('80 counts/8192 counts'1%). This should later be com
pared with the much enhanced clustering nearz*50.667 in
the distribution functionr̂( ẑ) of the transformed dataẑ using
G(z)5 ẑ @see Fig. 4~b!#.

Using temporal neighbors withM5d51, we can write
down the fixed point transformG(z(n),R) in one dimension
explicitly,

G„z~n!,R…5 ẑ~n!5
z~n11!2S„z~n!,R…z~n!

12S„z~n!,R…
, ~21!

where

S„z~n!,R…5
z~n12!2z~n11!

z~n11!2z~n!
1R@z~n11!2z~n!#,

~22!
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with z(n11) being a temporal neighbor ofz(n).
We applied the transformation Eqs.~21! and ~22! to 256

iterates of our time series with 32 random realizations oR
for each data pointz(n). Here, we letR5kh, where
k510 andh is a uniformly distributed random variable i
the interval@21,1#. A histogram approximation to the re
sultant distribution functionr̂( ẑ) of the transformed dataẑ is
plotted in Fig. 4~b!. In this graph, the singular peak corr
sponding to the true fixed point atẑ50.677 can be clearly
identified.

As a demonstrative comparison illustrating the efficacy
including the random termR in the transformation, we re
calculated the distribution functionr̂( ẑ) for ẑ with k50 in
Fig. 4~c!. In this case, we need a much larger amount of d
points ~8192! to resolve the peaks. In addition to the tru
fixed point atz*50.677, there are three additional spurio
peaks. Two of them are from strong singularities ofr(z)
located at the first and second iterates of the critical po
zc: ẑ„f (zc)…50.189 andẑ„f 2(zc)…520.0344, and the third
spurious peak atẑ50.568 is from a stationary point of th

FIG. 4. ~a! A histogram approximation to the distribution func
tion of the time series data$z(n)% from a one-dimensional chaoti
map~see Sec. II F for a description of this map!. It has a fixed point
on the attractor atz*50.6777. Using 8192 data points, the numb
of points that fall within a small interval~indicated by a pair of
dotted lines! centered around the fixed pointz* is approximately
80. Inset is a graphical representation of the mapf . ~b! A histogram

plot of r̂( ẑ) averaged over 32 values ofR with k510 using
G(z). The number of time series points used here was 256.
parameters are chosen so that the total number of points in

histogram is the same as in~a!. ~c! A histogram plot ofr̂( ẑ) without
randomization, i.e.,k50. In this case, 8192 data points were use
f

ta

t

transformationG(z,0) that is not due to a fixed point. Com
paring Fig. 4~c! with the previous result withkÞ0, all spu-
rious peaks are eliminated fromr̂( ẑ) in Fig. 4~b! and a true
fixed point peak atẑ50.677 remains.

G. Fixed point transform revisited: Second order

In our previous discussion on the fixed point transfo
~Sec. II A!, one needs to estimate the linearized local dyna
ics along the reconstructed trajectory$z(n)% in delay space.
In principle, one can extend this discussion to include hig
order approximations to the local dynamics along the traj
tory by considering successively higher order derivatives
the Taylor series expansion ofF(z) @see Eq.~2!#. These de-
rivative terms can again be estimated from time series d
by a least square fit technique using a collection of neighb
ing points in the embedding space.

With a sufficiently large data set, one should expect
sensitivity of our method in detecting fixed points to impro
as we include higher ordered terms in our series approxi
tion of the local dynamics. In other words, the effective s
of the local region which will be mapped by the fixed poi
transform to a cluster at the fixed point should increase.

As a simple example to illustrate the possible advant
of utilizing the higher order estimates to the local dynami
we again consider our previous one-dimensional skewed
gistic map f (z)5me2zz(12z). To approximatef (z) by a
Taylor series expansion and neglect all terms w
O„(z2z* )3…, the local dynamics near a fixed pointz* is
approximately given by,

f ~z!5z*1 f 8~z!~z2z* !2
1

2
f 9~z!~z2z* !2. ~23!

Then, we defined our ‘‘second-order’’ fixed point transfor
G2(z,R,R8)5 ẑ implicitly by

f ~z!5G21S~z,R!~z2G2!2
1

2
P~z,R8!~z2G2!

2,

~24!

where

S~z,R!5 f 8~z!1R@ f ~z!2z#2, ~25!

P~z,R8!5 f 9~z!1R8@ f ~z!2z#2. ~26!

Here, the adjustable parametersR andR8 have a similar role
to the one which we introduced earlier in the ‘‘first-order
fixed point transform, Eq.~3!. It may be shown for one-
dimensional dynamical systems, such as the skewed log
map treated here, that the density singulari
r̂( ẑ);uẑ2 ẑ(z* )u2n, is stronger forG2 than for G with
n5@12Dp(z* )/3# as compared ton5@12Dp(z* )/2#.

Figure 5 is a histogram approximation ofr̂( ẑ) using the
‘‘second-order’’ fixed point transform. All other paramete
are the same as in Fig. 4~b!. As compared to the first orde
result, G2 approximately doubled the number of poin
mapped to the vicinity near the fixed point atz*50.667.
Furthermore, the histogramr̂( ẑ) in Fig. 5 also indicates the
existence of a secondary peak located slightly left of

e
he

.
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origin. This secondary peak is due to the existence of ano
unstable fixed point atẑ50. The estimated location of thi
unstable fixed point is shifted and the strength of the
served peak is weak because the actual fixed point is loc
outside the attractor and the trajectory only makes infrequ
visits to its local region. As a comparison, by using the ‘‘fir
order’’ transformG(z) as in our previous example@see Fig.
4~b!#, the peak nearz*50 is more difficult to distinguish
from the background. In other words, the effectivelinear
region of the fixed point atz*50 is not large enough to
include much of its natural measure on the attractor.

III. EXTRACTING UNSTABLE PERIODIC ORBITS WITH
PERIOD HIGHER THAN 1

In the preceding section, we described a method to ext
period 1 fixed points from a finite length discrete time seri
In principle, one can simply extend this fixed point detecti
method to look for periodic orbits with periodp.1 by ap-
plying the method to everypth iterate of the time series. In
effect, this corresponds to looking for period 1 fixed poin
of the pth iterated mapFp(z* )5z* . Recall that the fixed
point transformG„z(n)… will map z(n) to the vicinity of a
period 1 fixed pointz* only if both z(n) and its next iterate
z(n11) lie in the local region ofz* . In the case of a period
p periodic orbit, if we use the fixed point method in th
preceding section, then we need to have bothz(n) and
z(n1p) lie in the local region ofz* . In the presence of nois
or when the largest Lyapunov exponent of the system
large, the likelihood of finding an appropriate sequence
points which satisfy this requirement is small, especially
p is large. Thus, in many situations, this will not work.

In this section, we introduce a detection method for fin
ing periodp periodic orbits withp.1 which will take every
iterate instead of everypth iterate into consideration. In par
ticular, we describe a technique which utilizes short
quences of points that visit only portions of the desired
riodic orbit ~see Fig. 6!. In the following discussion, we
simply refer to this variant method as the ‘‘periodic orbi
method and thepth iterated extension of the method in Se
II as the ‘‘fixed point’’ method.

A. Periodic orbit transform with p>1

To be concrete, assume that we are given a periodic o
of period p, $z* (1), . . . ,z* (p)%, with Fp„z* (1)…5z* (p)5
z* (1). There arep elements of this periodic orbit which w

FIG. 5. A histogram plot ofr̂( ẑ) using the second-order fixe
point transformG2(z). All parameters are kept the same as in F
4~b!.
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label asz* (k), where k51, . . . ,p. In delay coordinates,
thesepd-dimensional vectors have onlyp independent com-
ponents,$z1* ,z2* , . . . ,zp* %, and eachz* (k) along the pe-
riodic orbit is structured in the following cyclic fashion:

~27!

with

~28!

Here, we arbitrarily associate the first component ofz* (k)
with z1. At each pointz* (k) on the periodic orbit, we can
again approximate its local dynamics by the following Tay
lor series expansion:

F~z!5z* ~k11!1“F~z!•@z2z* ~k!#1O„uz2z* ~k!u2….

Using a collection of temporal or spatial neighbors ofz as
described in the preceding section~see Sec. II E!, the Jaco-
bian term“F(z) can again be calculated using least squa
fit methods.

To get the full description of the local dynamics along th
entire periodic orbit, we consider a set ofp points
$zk%, k51, . . . ,p, chosen from the delay reconstructed da
set $z(n)%. These points are chosen to be close to the pe
odic orbit, i.e., uzk2z* (k)u is small. Note that the points
$zk% are not assumed to be consecutive in time. By goi
through one cycle along the periodic orbit and neglectin
termsO„uzk2z* (k)u2…, we then have

.

FIG. 6. A schematic representation of three short pieces
trajectories$z1(n1),z1(n111)%, $z2(n2),z2(n211)%, and $z3(n3),
z3(n311)%, visiting the local regions of a period 3 orbit,
$z* (1),z* (2),z* (3)%, at three nonconsecutive timesn1 ,n2, and
n3.



e

t

5406 55SO, OTT, SAUER, GLUCKMAN, GREBOGI, AND SCHIFF
F~z1!5z* ~2!1“F~z1!•@z12z* ~1!#,

F~z2!5z* ~3!1“F~z2!•@z22z* ~2!#,

A A
F~zp!5z* ~1!1“F~zp!•@zp2z* ~p!#. ~29!

One should note the cyclic relation in this set ofp matrix
equations. As in Eq.~2! of the fixed point method, Eq.~29!
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can be viewed asp simultaneous matrix equations for th
periodic orbit z* (1),z* (2), . . . ,z* (p). All collections of
points $zk%k51, . . . ,p sufficiently close to the periodic orbi
will satisfy Eq. ~29! to linear order.

Now, we wish to define our ‘‘periodic orbit’’ transform
G(Z,R)[Ẑ as a mapping which takes adp-dimensional
vector defined by Z[(z1 , . . . ,zp) into another
dp-dimensional vectorẐ,
Ẑ[G~Z,R!5S 2S~z1 ,z2 ,R1! I 0 ••• 0

0 2S~z2 ,z3 ,R2! I ••• 0

A A A ••• A

I 0 0 ••• 2S~zp ,z1 ,Rp!

D 21

•S F~z1!2S~z1 ,z2 ,R1!•z1
F~z2!2S~z2 ,z3 ,R2!•z2

A

F~zp!2S~zp ,z1 ,Rp!•zp
D ,

~30!
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where I is thed3d identity matrix,R5$R1 , . . . ,Rp% is a
collection ofp adjustabled3d3d tensors which serves th
same role as the ones in our fixed point transform~see Sec.
II A !, and thed3d matrix S(z,z8,R) is defined as

S~z,z8,R!5“F~z!1R•@F~z!2z8#.

Under the mapG(Z,R), each of thep elements of the pe
riodic orbit are mapped to themselves. In other words
Z*5„z* (1),z* (2), . . . ,z* (p)…, we haveG(Z* ,R)5Z*
independentof R.

Furthermore, forZ* not exactly at a bifurcation point, we
can show that“G(Z* ,R)50 independentof R @compare
with Eq. ~8!#. With a similar argument as in our fixed poin
transform, the transformed data cluster around the perio
orbit in the distribution function forẐ. Therefore, an ap-
proximation to the periodic orbit can be found from the da
set by looking for peaks in the distribution functionm̂(Ẑ).
As in the preceding section, the degree of clustering aro
the periodic orbit in the transformed dataẐ depends on the
effective size of the local region around the periodic or
and on the frequency with which the periodic orbit is visite

The issue of spurious peaks due to stationary pointsZs

which are not periodic orbitsZ* of F(z) are handled as in
our fixed point method~see Sec. IID!. In brief, since the
locations of the spurious peaks,G(Zs,R), will depend on
the set of parametersR andG(Z* ,R)5Z* independentof
R, we can eliminate spurious peaks due toZsÞZ* by
smearing using many different randomR for eachZ in our
transformation.

So far, we have not specified how to choose the collec
of thep test points$zk%k51, . . . ,p for our periodic orbit trans-
form. Note that$zk%k51, . . . ,p need not be aconsecutivese-
quence of points from the original data set. In fact, any co
bination ofp points in the data set approximately satisfyi
the periodic orbit condition given by Eq.~29! will be mapped
to the vicinity near the periodic orbit. This suggests an
haustive way to generate the periodic orbit density by c
sideringall combinations ofp delay vectors in the data se
if

ic

d

t
.

n

-

-
-

With a total ofN delay vectors in our data set, this gives
total of ) i50

p21(N2 i ) permutations. Even for a modera
value ofN'1000 withN@p, the number of computation
needed to form the distribution functionm̂(Ẑ) can be very
large, i.e.,;Np. In some experimental situations, this rel
tively heavy computation load for periodic orbits with hig
periods might not be desirable.

An alternative grouping scheme, which we will refer to
the ‘‘short’’ scheme, with a smaller computational load,
possible. First, we begin with a temporally consecutive
quence ofp data points as our backbone. Then, for ea
point on the backbone, we find itsK closest spatial neigh
bors. These givep clusters of test points withK11 members
in each consisting of the backbone itself and all itsK neigh-
bors. We then apply the periodic orbit transformG(Z,R) to
all combinations of$zk%k51, . . . ,p constructed from thep clus-
ters. By sliding the backbone ofp consecutive points along
the whole data set, the total number of possible s
$zk%k51, . . . ,p of test points is;N(K11)p. For small values
of K, the computation time in this ‘‘short’’ scheme is muc
less than the exhaustive grouping scheme stated earlier.
regains the exhaustive grouping scheme by increasing
number of neighborsK in each cluster. In the ‘‘short’’
scheme, if the sequence ofp test points on the backbone
good ~i.e., all p points on the backbone stay close to a p
ticular periodic orbit!, then all sequences formed by the
closestneighbors will also be good and all combinations
$zk%k51, . . . ,p formed from thep clusters will be mapped by
G(Z,R) to the vicinity near the periodic orbit. Furthermor
even if only a subsequence of the points on the backb
stays close to the periodic orbit, other sequences of
points formed by their neighbors might be close enough
the periodic orbit for the entire cycle to be mapped
G(Z,R) to the vicinity of the periodic orbit. This situation i
illustrated in Fig. 6 for a period three orbit. Intuitively, in
stead of blindly picking some random collection ofp test
points for the calculation, the ‘‘short’’ scheme selective
chooses the set ofp test points that are most likely to b
close to the periodic orbit. In the following calculations, w
use the ‘‘short’’ scheme.
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B. Extracting periodic orbits from the transformed data

As in the discussions of our fixed point extraction tec
nique, different variant methods can be applied to the tra
formed dataẐ to extract the periodic orbits. Recall that th
transformed dataẐ are in a special form (ẑ1 , . . . ,ẑp), where
ẑk(1<k<p) is a d-dimensional vector representing thekth
element of the candidate periodic orbit. Here, we will aga
look for peaks in the distribution functionm̂(Ẑ) for the
transformed data.

As in our fixed point method, a reduction procedure
possible for simplifying the distribution functionm̂(Ẑ).
Since our analysis is in delay coordinates, the periodic or
satisfy the cyclic symmetry given by Eqs.~27! and~28!. For
a periodic orbit with periodp, the cyclic symmetry defines a
p-dimensional hyperplane which contains th
pd-dimensional vectorZ* . As a specific example with
p52 and d53, Z* is a six-dimensional vector and
Z*5„z* (1),z* (2)…5(z1* ,z2* ,z1* ,z2* ,z1* ,z2* ). The
two-dimensional hyperplane with the given cyclic symme
defined by Eqs.~27! and ~28! is spanned by the following
two vectors: (1,0,1,0,1,0) and (0,1,0,1,0,1). Numerically,
a given pointẐ, we can calculate its perpendicular distan
from this hyperplane. If this distance is within a given tole
ance, we consider it as a candidate period 2 periodic or
@Recall that in the case with period 1 fixed points, the red
tion of m̂(Ẑ) is to restrict data to a small cross section tu
along the diagonal with a given width.# In general for a pe-
riod p orbit, we have ap-dimensional hyperplane within the
pd-dimensional space and we consider data falling within
thin slab with a given thickness about this hyperplane.

These candidate periodic orbits in principle will havep
independent components, and ap-dimensional distribution
function m̃( z̃) can be constructed by considering
p-dimensional vector in the formz̃[„ẑ1(1), . . . ,ẑ1(p)…,
whereẐ5( ẑ1 , . . . ,ẑp) is a point in the thinp dimensional
slab described above andẑ1(k) denotes the first componen
of the vectorẑk . Again, we have arbitrary chosen the fir
component ofẑk in this construction ofz̃; other choices can
be made. The sharpness of the peak in this reduced dist
tion function is enhanced as the thickness of the slab is m
smaller. However, smaller width requires a larger data se
that enough points fall in the slab.

To uniquely identify a periodic orbit, one needs to dete
mine the values of its p independent components
$z1* , . . . ,zp* % and the correct sequential ordering of the
p elements. To simply look for peaks in thep-dimen-
sional distribution functionm̃( z̃) will serve both of these
purposes since the correct ordering of thep sequential pieces
of the periodic orbit is preserved in the reduced vectorz̃. One
can alternatively form a one-dimensional histogramr̂( ẑ)
with ẑ being a scalar andẑ5 z̃k (k51, . . . ,p) for all reduced
dataz̃. Peaks in this histogram give all possible values of
p components of the periodic orbit. To infer the correct o
dering of thesep components, one can use the subset oz

with R50.

C. Numerical example: Skewed He´non map

To demonstrate our detection method for unstable p
odic orbit with p.1, we use the skewed He´non map:
-
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S u8

v8
D 5F~u,v !5S f ~u,v !

u D 5S b1e
b2u~1.42u2!10.3v

u D ,
~31!

with b150.965 andb250.25. Again, the exponential term
eb2u, is introduced so that the highest nonlinearity will not
trivially quadratic. The skewed He´non system illustrated in
Fig. 7 has a chaotic attractor with a Lyapunov dimension
1.261. Using the periodic orbit detection method describ
above, we found all the periodic orbits on the attractor w
periodsp51 to 7.

Note that a complete set of periodic orbits with a giv
period p contains all cycles with periodp and all other
cycles with periods which are integral factors ofp. As an
example, a complete set of period 4 periodic orbits will co
tain all orbits with exactly four cycles, all orbits with exactl
two cycles, and all period 1 fixed points.

Our results are summarized in Table I. In these calcu
tions, we performed the periodic orbit transformG on a time
series $x(n)% constructed from 1024 iterates o
F„u(n),v(n)… with x(n)5u(n). In the ‘‘short’’ scheme, the
number of test points used in each cluster, including
backbone and its closest neighbors, was 2. Other operati
parameters are as follows: the embedding dimension wa
the number of randomR used was 100; the magnitude o
randomizationk was set at 3; and two spatial neighbors we
used in estimating the Jacobian matrices“F(z). In noisy
situations, more neighbors would be needed. One can
from the table that results obtained using the periodic o
transform compared well with ‘‘exact’’ values@calculated
using Newton’s method on the analytically given m
F(u,v) @23##. The discrepancy between our numerical resu
and the ‘‘exact’’ values is less than 0.2%.

Figures 8~a!–8~f! show the histogram approximations
r̂( ẑ) used in extracting the periodic orbits for Table I. The
correspond, respectively, to the cases withp52,3,4,5,6,7. As
an example, Fig. 8~a! has four peaks in the histogram a
proximation to r̂( ẑ) corresponding to the four identifie
cycle points of the periodic orbits. Withp52, there is only
one orbit with exactly two cycles, and two period 1 fixe

FIG. 7. A picture of the attractor for the skewed He´non map Eq.
~31! with b150.965 andb250.25. The attractor has a Lyapuno
dimension of 1.261. The five circles denote the ‘‘almost’’ period
regions and the arrows indicate the order in which these regions
visited.



l

5408 55SO, OTT, SAUER, GLUCKMAN, GREBOGI, AND SCHIFF
TABLE I. Table of periodic orbits found from a scalar time series generated by the skewed He´non map.

Order of PO Total number Number of orbits Extracted values Exact numerica
(p) of orbits with exact cycle of z* (1) from r̂( ẑ) values@23#

(60.002) (60.0001)

1 2 2 ~0.929,0.929! ~0.9302,0.9302!
(21.899,21.899) (21.9030,21.9030)

2 3 1 ~1.300,20.561) ~1.3014,20.5604)
3 2 0
4 3 1 ~1.478,0.536! ~1.4785,0.5388!
5 2 0
6 6 4 (21.078,1.512! (21.0780,1.5125!

(21.924,1.667! (21.9240,1.6681!
(21.689,1.629! (21.6886,1.6292!
(20.959,1.411! (20.9579,1.4115!

7 7 6 (22.158,1.705! (22.1580,1.7060!
(22.103,1.698! (22.1034,1.6989!
(21.539,1.602! (21.5386,1.6026!
(21.447,1.530! (21.4466,1.5322!
(21.156,1.527! (21.1551,1.5283!
(20.412,1.362! (20.4124,1.3618!
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points. These give a total of 4521132 peaks in the histo-
gram approximation tor̂( ẑ). The second fixed point peak a
ẑ521.903 is small because it is not part of the attractor a
a typical chaotic trajectory only intersects a small portion
its effective local region. There are two peaks in Fig. 8~b! for
the casep53 indicating the existence of the two period
fixed points and the absence of period 3 orbits. Figure 8~c!
(p54) has seven peaks corresponding to one orbit of pe
1, one orbit of period 2, and one orbit of period
75111321134. The period 1 in Fig. 8~c! occurs at
ẑ50.929 and the second fixed point off the attractor does
show up in this graph.

D. Detection of ‘‘almost’’ periodic orbit

In Fig. 8~d! (p55), there is one strong peak correspon
ing to the period 1 fixed point atẑ50.929 and there are si
additional broad humps in the histogram indicated by
arrows. The one nearẑ521.903 is again the period 1 fixe
point located off the attractor. The remaining five hum
correspond to an ‘‘almost’’ period 5 orbit with

F5~u,v !2S uv D 5S f 1~u,v !2u

f 2~u,v !2v D'S 00D .
Geometrically, all period 5 orbits correspond to the inters
tion points of the two solution curves defined b
f 1(u,v)5u and f 2(u,v)5v in the two-dimensional (u2v)
plane. Withb150.965, Fig. 9~a! is a graph of the two solu
tion curves f 1(u,v)5u ~thinner curve! and f 2(u,v)5v
~thicker curve!. They intersect at the two period 1 fixe
points of the map atẑ50.929 and21.903 indicated by open
circles in Fig. 9. Although the skewed He´non map does no
possess a true period 5 orbit, the two solution curves ne
touch@see regions indicated by gray ovals in Fig. 9~a!# near
the locations~denoted by arrows! where the five ‘‘almost’’
d
f

d

ot

-

x

s

-

ly

periodic humps appear in Fig. 8~d!. These regions of close
encounter between the two solution curves are indication
a coming saddle-node bifurcation as one or more parame
of the system are varied. A typical trajectory visiting ne
such ‘‘almost’’ periodic regions, nonetheless, for a sh
while behaves as if there were a periodic orbit. In fact, as
parameterb1 is increased from 0.965 to 1.0, two period
orbits are born through a saddle-node bifurcation. Fig
9~b! is a graph of the two solution curvesf 1(u,v)5u ~thin-
ner curve! and f 2(u,v)5v ~thicker curve! near the bifurca-
tion point atb150.9871. In addition to the two already ex
isting period 1 fixed points, now there are five other regio
where the two solution curves touch~see regions indicated
by gray ovals!. Finally, Fig. 9~c! shows the crossing of the
two solution curves atb151.0 after the bifurcation. Two
period 5 orbits are present and the total number of inters
tion points becomes 12~two period 1 fixed points and two
orbits with exactly five cycles!.

IV. NOISY TIME SERIES

From our noiseless numerical examples in the preced
two sections, we have seen that one should expect singu
ties in ẑ at the locations of the unstable periodic orbits. Ho
ever, in a real experimental setting, time series are usu
contaminated by dynamical and/or observational noise
these cases, the observed singularities are blurred by s
noise into maxima, and can even be completely washed
by large noise.

The technique of surrogate data@11# can be used to asses
the reliability of the observed peaks. In this procedure,
produce a truly stochastic time series, surrogate data,
similar statistical properties to the original supposedly de
ministic data. We then compare the results of applying
periodic orbit detection method to both the original data
and to the surrogate. In particular, we employ aGaussian
scaled phase shuffle@24# to produce the surrogate data. Th
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FIG. 8. Histogram plots ofr̂( ẑ) for the skewed He´non map with~a! p52, ~b! p53, ~c! p54, ~d! p55, ~e! p56, and~f! p57. These
plots are obtained using the second-order periodic orbit transformG2 with the ‘‘short’’ grouping scheme (K51). Other operational
parameters are as follows: the embedding dimension was 2, the number of randomR values used was 100, and the magnitude of rando
izationk53.
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technique assumes that the surrogate data arise from a l
stochastic process with the same amplitude distribution
approximately the same power spectrum as the original d
Since the surrogate data are stochastic, we do not expec
unstable periodic orbit structure that may be present in
original data set to survive. Most importantly, using ma
different realizations of the surrogate data, we can estim
the statistical probability that the observed peaks in our
perimentalr̂( ẑ) could be modeled by the surrogates.

Numerically, for each realization of the surrogate data,
apply the same procedure for calculatingr̂sur( ẑ) as for our
experimental data. Then, from this collection of$r̂sur( ẑ)%,
we can estimate the ensemble averager̄sur( ẑ) for each ẑ.
Similar to our noisy experimental data,r̂sur( ẑ) from each
individual realization of the surrogates will fluctuate, a
will consequently have fluctuation peaks which deviate fr
the meanr̄sur( ẑ). Denote the deviation from the mean for
ear
d
ta.
ny
e

te
-

e

given surrogate by w( ẑ)5 r̂sur( ẑ)2 r̄sur( ẑ) and let

W5maxẑ„w( ẑ)…. Using many surrogates we can determi
the fractionJ(W8) of surrogates with maximum deviation
W exceedingW8. The numerically determined fraction ap
proaches the probability thatW exceedsW8 as the number of
random surrogates increases. Since we use a large but
number of surrogates, the actual deviation of the obser
peak for a true periodic orbit might fall outside the range
maximum deviations calculated from the surrogates. In t
case, one can say that the probability in observing this p
from the surrogates is ‘‘unobservably’’ small~for the number
of surrogates tested! and we can quantify the distance of th
exceptionally large deviation away from the bulk of the d
tribution J(W) by the ratio, rJ5W/W0, whereW is the
maximum deviation observed in the data andW0 is a mea-
sure of the width of the distribution functionJ(W) with
J(W0)50.5.
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FIG. 9. Solution curves ofF5(u,v)2(u,v)5„f 1(u,v)2
u, f 2(u,v)2v…5(0,0), whereF(u,v) is the skewed He´non map
given by Eq.~31! for the cases~a! b150.965,~b! b150.9871, and
~c! b151.0. The thinner curve denotes the set of points on
(u,v) plane which satisfies the equationf 1(u,v)5u and the thicker
curve denotes the set of points on the (u,v) plane which satisfies
the equationf 2(u,v)5v. The two period 1 fixed points of the ma
are labeled by the two white circles. The five gray ovals in~a! and
~b! indicate the region where the two solution curvesf 1(u,v)5u
and f 2(u,v)5v nearly touch and the five arrows indicate the loc
tions where the five ‘‘almost’’ periodic humps appear in Fig. 8~d!.
In ~c!, the functionF5(u,v) had passed through a saddle-node
furcation and two period 5 orbits were created.
To demonstrate the robustness of our method in a no
situation, we use the noisy Ikeda map as our numerical
ample,

S u~n11!

v~n11!
D

5S 1.01a@u~n!cos t~n!2v~n!sin t~n!#1eddd~n!

a@u~n!sin t~n!1v~n!cos t~n!#1eddd~n!
D ,

where t(n)50.42b/@11u2(n)1v2(n)#, ed is the magni-
tude of the internal dynamical noise, and$dd(n)% is a uni-
formly distributed random variable in@21,1#. To keep our
presentation simple, we will focus only on the detection
period 1 fixed points using the first-order fixed point tran
form. The noiseless Ikeda map (ed50) describes the dynam
ics of a nonlinear optical cavity and the magnitude and an
of the complex quantityu(n)1 iv(n) is related to the ampli-
tude and phase of the magnetic field of thenth light pulse
inside the cavity@25#. With a50.75, b59.0, anded50,
this system has a chaotic attractor with a Lyapunov dim
sion of approximately 1.488, and it has an unstable fix
point at (u* ,v* )5(0.658,0.537). Furthermore, to simula
the effect of external observational noise, we choo
o(n)5v(n)1e0d0(n) to be our observed scalar outpu
where e0 is the magnitude of the external noise a
$d0(n)% is a uniformly distributed random variable i
@21,1#. The delay coordinate vector ind dimensions is then
given by z(n)[(o(n),o(n21), . . . ,o„n2(d21)…)†. The
total length of the time series used for this numerical exp
ments is 2048. A picture of the noiseless Ikeda attractor
constructed from the delay vectorz(n) in two dimensions is
given in Fig. 10~a! along with plots~b! and ~c! showing the
attractor with two different levels of internal dynamic
noise.

In noisy situations, one can often fine tune the statisti
significance of the observed peak inr̂( ẑ) with respect to the
surrogates by adjusting the embedding dimensiond, the
number of random tensorsR used, the magnitude of random
ization k, the number of nearest neighborsM used, and the
number of surrogates used. In general, one expects impro
statistics by using a larger number of random tensorsR and
more surrogates.

First, we will examine the effect of internal dynamic
noise (edÞ0 andeo50). Figure 11 corresponds to our re
sults with four different observational noise levels:~a!
ed50; ~c! ed;5% of the radius of the attractor;~e!
ed;10% of the radius of the attractor; and~g! ed;30% of
the radius of the attractor. The thin solid curves give t
histogram approximations tor̂( ẑ) and the thick curves are
the corresponding surrogate averagesr̄sur( ẑ). To quantify the
statistical significance of the deviations between the data
the surrogate mean, we plotted the corresponding distr
tion functionsJ(W) in Figs. 11~b!, 11~d!, 11~f!, and 11~h!
with the arrows indicating the locations of the observ
maximum deviationsW found in Figs. 11~a!, 11~c!, 11~e!,
and 11~g!. In all these calculations, the time series data w
delay embedded in a four-dimensional space. A collection
M57 spatial neighbors were used for estimating“F(z) and
50 Gaussian scaled phase shuffled surrogates were

e

-

-
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FIG. 10. Ikeda attractor in time dela
coordinates:~a! with no noise;~b! with
ed510%3~radius of attractor!; ~c! with
ed530%3~radius of attractor!.
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ployed. Furthermore, in the process of randomization,
have used 500 different randomR in Eq. ~4! for each data
point andk was set at 8. In Fig. 11~a!, the fixed point at
ẑ50.54 has a strong peak rising sharply above the surro
mean. As indicated by the arrow in Fig. 11~b!, the probabil-
ity for observing such a large deviation (W;2300) from the
50 surrogates is ‘‘unobservably’’ small (rJ560.1). As the
amount of noise was increased to;5% @Figs. 11~c! and
11~d!#, the peak at the fixed point broadened. Nonethele
the deviation of the peak above the surrogate mean w
W;713 is still significant. The probability of finding such
peak with the same large deviation in the surrogates is ‘‘
observably’’ small withrJ513.2. With a substantial amoun
of internal noise (;10%) @see Figs. 11~e! and 11~f!#, the
probability of finding the fixed point peak is still somewh
significant withJ(W);6%. In the last case with 30% nois
@Figs. 11~g! and 11~h!#, the indication of the fixed point a
ẑ50.54 disappeared and the maximum deviation observe
the data has an approximately 60% probability to be found
the surrogates.

The performance of our periodic orbit detection method
similar in situations with only external observational noi
(ed50 andeoÞ0). A similar sequence of eight graphs re
resenting our results with four different observational no
levels: ~a! e050; ~c! e0;5% of the radius of the attractor
~e! e0;10% of the radius of the attractor, and~g!
e0;30% of the radius of the attractor, are given in Fig
12~a!, 12~c!, 12~e!, and 12~g!. Figures 12~b!, 12~d!, 12~f!,
and 12~h! are the corresponding plots of the distributio
J(W) for each cases. All operational parameters are
same as in the previous Ikeda example with internal dyna
cal noise. The observed peaks in the midnoise levels~c! and
~e! are statistically significant with ‘‘unobservably’’ sma
probabilities@rJ53.90 for ~d! andrJ52.96 for ~f!# in find-
ing the same large peaks in the 50 random surrogates. In
last set of our graphs@Figs. 12~g! and 12~h!#, we demon-
strated that the location of the fixed point can again be co
pletely washed out by large external noise (e0;30%).
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The last example in this section is from an experiment
a gravitationally buckled, amorphous magnetoelastic ribb
~see Ref.@26# for a detailed description of the experiment
setup!. In this experiment, the ribbon was periodically drive
by a magnetic fieldH(t),

H~ t !5Hdc1Haccos~2pnt !.

The time series was obtained optically by measuring the
sition of the ribbon near its base sampled at a constant p
of the periodic drive. A total of 1024 time series points we
collected and a section of the time series is graphed in
13~c!. The dimension of the experimental attractor is a
proximately 1.2 but in order to unfold all the crossings, de
coordinate data have to be embedded in a three-dimens
delay space. With the following operational paramete
500 different randomR, k55, and 50 surrogates, the histo
gram for the first-order fixed point densityr̂( ẑ) is plotted in
Fig. 13~a! as a thin solid curve and the surrogate me
r̄sur( ẑ) is plotted as a thicker curve. Six spatial neighbo
were used to estimate the Jacobian matrices“F(z) at each
point z. The dominant fixed point is located at approximate
5.40. Again, using 50 surrogates, we calculated the distr
tion, J(W), and we plotted its histogram approximation
Fig. 13~b!. The arrow indicates the location of the maximu
deviation calculated at the fixed point and the probability
observing this value in the surrogates is ‘‘unobservabl
small (rJ517.9). Thus, the observed fixed point structure
the experimental data is highly unlikely to have result
from a linear stochastic process modeled by the surroga

V. QUASISTATIONARY DYNAMICS

With experimental time series, in addition to the comp
cation of noise contamination, the problem of dealing w
nonstationary system parameters is also important. Thi
especially true for biological time series where living tissu
are constantly changing and global parameters are difficu
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FIG. 11. Histogram plots ofr̂( ẑ) ~thin curves! for time series generated from the Ikeda map with internal dynamical noise:~a! ed50; ~c!
ed50.053~radius of attractor!; ~e! ed50.13~radius of attractor!; and ~g! ed50.33~radius of attractor!. The thicker curves are the corre
sponding surrogate means. 2048 data points were used, 500 different randomR were used for each data point, 50 surrogates were u
M57, and k58. ~b!, ~d!, ~f!, and ~h! are histogram plots ofJ(W) in the four cases. Insets are the four corresponding plots

@ r̂( ẑ)2 r̄sur( ẑ)# vs ẑ. Arrows indicate the values of maximum deviations betweenr̂( ẑ) and the surrogate means.
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control. In general, changes in system parameters are
flected in changes in the unstable periodic orbits. Here,
assume that the set of system parameters is slowly chan
in time with respect to the natural time scale of the dyna
ics. In this quasistationary condition, one typically expe
the periodic orbit structure of the underlining dynamics
vary continuously as a function of time. Obviously, when
system is operating near its bifurcation values, its perio
orbit structure might experience sudden changes. Near t
bifurcation points, periodic orbits might be created or d
stroyed. Furthermore, for existing periodic orbits, their loc
stability and their associated manifold structures usually
through topological changes in bifurcations. If one blind
bins theentire transformed time series$ẑ(n)% into the peri-
odic orbit densityr̂( ẑ), real periodic orbits might be misse
re-
e
ing
-
s

ic
se
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l
o

because of their constantly shifting locations@27#. A simple
solution in dealing with this problem is to divide the enti
time series into smaller windows and to perform the perio
orbit transform in each of the windows. The periodic orb
peaks in the histograms from each window should sharpe
the parametric changes within each time slice become s
and therefore quasistatic. However, there will be a trade
with the number of data points available in each windo
that is, the decreased number of data points in each slice
the slice duration is decreased, might lower the statist
significance of the observed peaks. We find for the examp
below that a good compromise between these factors is
sible such that useful results are obtainable.

As stated earlier, as parameters are varied, the sys
might undergo topological changes through different bif
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FIG. 12. Histogram plots ofr̂( ẑ) ~thinner curves! for time series generated from the Ikeda map with external observational nois~a!
e050; ~c! e050.053~radius of attractor!; ~e! e050.13~radius of attractor!; and~g! e050.33~radius of attractor!. The thicker curves are the
corresponding surrogate means. 2048 data points were used, 500 different randomR were used for each data point, 50 surrogates were u
M57, and k58. ~b!, ~d!, ~f!, and ~h! are histogram plots ofJ(W) in the four cases. Insets are the four corresponding graph

@ r̂( ẑ)2 r̄sur( ẑ)# vs ẑ. Arrows indicate the values of maximum deviations betweenr̂( ẑ) and the surrogate means.
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cations. A knowledge of how the structure of periodic orb
changes as a function of system parameters provide
clearer picture on the possible dynamical ranges of the
tem. Furthermore, from a practical point of view, the abil
to characterize and to track a moving periodic orbit in time
critical in developing a successful control algorithm for t
system@28#.

To illustrate the functionality of our method in trackin
unstable periodic orbits in an experimental setting, we ag
used the magnetoelastic ribbon system. In this case, the m
nitude of the dc magnetic fieldHdc was slowly varied sinu-
soidally through one complete cycle during the whole len
of the experiment which consisted of approximately 10
cycles of the ac periodic drive. Figure 14~a! is the histogram
approximation tor̂( ẑ) ~thin solid curve! over the entire 1000
a
s-

s

in
g-

h
0

cycles of the ac drive using 500 randomR with k55 and 50
surrogates for the entire time series. A section of the ti
series is plotted in Fig. 14~c!. As in the preceding section, th
time series was embedded in a three-dimensional d
space. A collection ofM53 temporal neighbors was used
determine the Jacobian matrices“F(z). Again, the thicker

curve is a histogram of the surrogate meanr̄sur( ẑ). From this
graph, one can see a broad peak with a few sharper fea
rising above the surrogate mean. The largest peaks

ẑ55.40 and 5.36 are labeled as I and II, respectively, in F
14~a!. From the probability distribution functionJ(W), Fig.
14~b!, one can see that these two largest peaks are signifi
with ‘‘unobservably’’ small probability@rJ54.61 for the
one at 5.40~I! andrJ53.54 for the one at 5.36~II !# for them
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to be found in the 50 surrogates. However, the broadnes
the background feature prevents one from resolving the
locations of the fixed points further.

In Fig. 15, the whole time series was divided up into
sequence of 107 overlapping windows with 128 data po
in each and the fixed point transformG(z) was performed on
the 128 data points in each time slice. All of the operatio
parameters were the same as in Fig. 14. Using the probab
distribution functionJ calculated from the 50 surrogates, w
assigned a probability to each of the values of the histog
r̂( ẑ). These probabilities are represented by a gray scal
Fig. 15 with black corresponding to ‘‘unobservably’’ sma
probability of observing that histogram value in the sur
gates as the maximal value among all the bins, and w
corresponding to probability near 1 of observing that his
gram value as the maximal value in the surrogates. In
density plot, one can clearly see the track of the perio
fixed point, indicated by the nearly black streak in the figu
As the dc magnetic field went through one sinusoidal cy
during the experiment, the location of the fixed point swe
through the range from 5.35 to 5.45 also approximately i
sinusoidal fashion. In most of the time slices, the obser
deviations between the peaks and the surrogate mean
significant with an ‘‘unobservably’’ small value ofJ(W).

FIG. 13. ~a! A histogram plot ofr̂( ẑ) ~thinner curve! for the
magnetoelastic ribbon data. 1024 data points were used, 500 d
ent randomR were used for each data point, 50 surrogates w

used,M56, andk55. The thicker curve corresponds tor̄sur( ẑ).
~b! is a histogram plot ofJ(W). Inset is the corresponding graph

of @ r̂( ẑ)2 r̄sur( ẑ)# vs ẑ. Arrow indicates the value of maximum

deviation betweenr̂( ẑ) and r̄sur( ẑ). ~c! is a section of the actua
time series data.
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The peaks in Fig. 14~a! evidently come from averaging th
drifting result ~Fig. 15! over time. We emphasize, howeve
that the time plot, Fig. 15, shows that there is onlyone~drift-
ing! peak.

As another example application to real data, we consid
sequence of interburst time intervals@29# obtained from a rat
hippocampal slice~see Ref.@30# for a detailed description o
the experiment!. ~A detailed report on the first identificatio
of periodic orbit structures in the rat hippocampus slice a
in electroencephalogram signals from a human epileptic
cus will appear in Ref.@31#.! The 1834 data points collecte
were obtained during a 25 min recording. The environmen
variables such as temperature, oxygen level, potassium
centration, etc. were kept constant. As we will see later fr
our results, even with all environmental variables being k
constant, the dynamics in this neural ensemble demonstr
both spontaneous changes and slow drifts within the 25
time span of the experiment. In constructing Fig. 16,
subdivided the entire data set into 54 overlapping windo
with 128 data points in each. For each time slice, the 1
data points were delay embedded in a two-dimensional d
space. Using the fixed point transformG(z) with 300 ran-
domR tensors,M52, andk50.05, we generated 54 histo

er-
e

FIG. 14. ~a! A histogram plot ofr̂( ẑ) ~thinner curve! for the
magnetoelastic ribbon data with varyingHdc. 977 data points were
used, 500 different randomR were used for each data point, 5
surrogates were used,M53, andk55. The thicker curve corre-

sponds tor̄sur( ẑ). ~b! is a histogram plot ofJ(W) and the inset is

the corresponding graphs of@ r̂( ẑ)2 r̄sur( ẑ)# vs ẑ. Arrows ~I and II!

indicate the value of maximum deviations betweenr̂( ẑ) and

r̄sur( ẑ) at the two dominant sharp features on the broad peak.~c! is
a section of the actual time series data.
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gram approximations tor̂( ẑ) as a function of the experimen
tal time. Furthermore, in each time slice, with 50 Gauss
scaled surrogates, we calculated the distribution func
J(W) which characterized the probability of observing
particular maximum deviationW betweenr̂( ẑ) and the sur-
rogate mean. Then, we usedJ(W) to assign a probability to
each value of the histogramr̂( ẑ). Figure 16 shows a gray
scaled density plot of these probabilities as a function of
experimental time with black corresponding to near z
probability and white corresponding to probability near
From the density plot in Fig. 16, one can clearly identify
prominent period 1 fixed point nearẑ'0.60 sec. During the
entire duration of the experiment, this period 1 fixed po
slowly moved downward from a burst rate ofẑ'0.75 sec at
the beginning of the experiment to a lower burst rate
ẑ'0.55 sec at the end. Biologically, it is reasonable
speculate that the slow drift toward a slower burst rate
indicative of a gradually depolarizing neural ensemble.

Another interesting feature of this data set was the app
ance of a hint of a secondary peak nearẑ'1.20 at approxi-
mately 11 min into the experiment. This peak was less w
defined than the one atẑ'0.60 but persisted for the remain
ing duration of the experiment.

There is no surprise that biological systems are non
tionary. However, as in the case when system-wide par
eters are varying slowly, we have demonstrated that, u
our method, it is still possible to obtain useful structural
formation on dynamics through their time varying period
orbit structure.

FIG. 15. Results for partitioned time series. The time series
from the magnetoelastic ribbon data with varyingHdc ~the same as
in the previous figure! but we partitioned the entire time series u
into 107 overlapping time slices with 128 data points in each. T
graph is a gray scaled density plot showing the probabilities

finding the observed deviations in the experimentalr̂( ẑ) in each
time slice. All operational parameters were the same as in Fig.
The black color corresponds to near zero probability in observ
that value as the maximum deviation in the surrogates and the w
color corresponds to probability near 1 in observing that value
the maximum deviation in the surrogates. The black streak in
figure indicates the track of the period 1 fixed point asHdc varies in
time.
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VI. CONCLUSION

In summary, we have presented a general method to
tract unstable periodic orbits from chaotic time series. T
method is based on a transformation such that the nat
measure in the transformed space is enhanced near the
stable periodic orbits.

Periodic orbits with high periods were found in nume
cally generated time series. Much to our surprise, the met
was able to detect ‘‘almost’’ periodic regions in phase spa
which are precursors to true periodic orbits created by a
gent bifurcation.

The effectiveness of our method in noisy environme
was demonstrated using both numerically generated time
ries and actual experimental data. In the case of the n
Ikeda system, the method was able to statistically iden
periodic orbits with a noise level~dynamical or observa-
tional! that was approximately 10% of the size of the attra
tor.

Lastly, the method was shown to be able to find and tra
unstable periodic orbits in quasistationary systems. By pa
tioning the time series into smaller overlapping windows,
were able to identify dynamical changes characterized
different periodic orbit structures in neural activity from th
rat hippocampus. While the identification and characteri
tion of unstable periodic orbits in chaotic systems provide
method to analyze their dynamical behaviors, the ability
track unstable periodic orbits in time is an essential step

s

e
f

4.
g
ite
s
e

FIG. 16. Results for partitioned time series. The sequence
data points consists of 1834 interburst time intervals collected fr
a rat hippocampal slice. We partitioned the entire data set up int
overlapping time slices with 128 data points in each. The graph
gray scaled density plot showing the probabilities of finding t

observed deviations in the experimentalr̂( ẑ) in each time slice.
Within each time slice, the fixed point transform was used with
following operational parameters: 300 randomR, 50 surrogates,
M52, andk50.05. The black color corresponds to near zero pr
ability of observing that value as the maximum deviation in t
surrogates and the white color corresponds to probability near
observing that value as the maximum deviation in the surroga
The two black streaks~one continuous and one discontinuous! in
the figure correspond to the tracks of two possible period 1 fi
points.
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control nonstationary chaotic systems with time varying s
tem parameters.
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APPENDIX A: GEOMETRIC INTERPRETATION OF G „z…
WITH k50

In this section, we describe a geometric interpretation
the fixed point transformG(z) for a one-dimensional map

FIG. 17. Geometric interpretation ofG„z(n)… in one dimension
for the casek50.
p
ag
,

-

d

y
i-
s
-

f

z(n11)5 f „z(n)… ~see Fig. 17! with k50. Starting from the
value z(n21) on the horizontal axis, one can obtain th
iterates of the map$z(n21),z(n),z(n11)% by following
the straight arrows in Fig. 17. On this graph, the locations
the fixed points are at the intersections of the thick solid l
with the diagonal, i.e.,f (z* )5z* .

Our fixed point transformG„z(n)… consists of two parts.
First, at a given point in the time series,z(n),S„z(n)… ~with
k50),

S„z~n!…5
z~n11!2z~n!

z~n!2z~n21!
,

gives the slope of the line segmentg in Fig. 17, which is an
estimate of the slope of the functionf „z(n)… at z(n). Here,
we have used a temporal neighborz(n21) of z(n) to esti-
mate f 8„z(n)…. Equivalently, a spatial neighbor could hav
been used. Then, the second step is to substitute this
mated slopeS„z(n)… into the fixed point transform, Eq.~3!,

ẑ~n!5G„z~n!…5
z~n11!2S„z~n!…z~n!

12S„z~n!…
,

to evaluate the candidate fixed pointẑ(n). One can interpret
this operation as an algebraic representation of the geom
cal construction of the intersection pointẑ(n) betweeng and
the diagonal line in Fig. 17. In the case of a gene
r th-order fixed point transformGr(z), a similar least square
fit procedure will give the parameters needed for the c
struction of an r th-order polynomial approximation to
f „z(n)… at z(n) and the correspondingr th-order fixed point
transform gives the intersection points between t
r th-order polynomial curve and the diagonal line.
to
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