PHYSICAL REVIEW E VOLUME 55, NUMBER 5 MAY 1997

Interface dynamics in a mean-field lattice gas model: Solute trapping, kinetic coefficient,
and interface mobility
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In a recent paper we showed that we can obtain dendritic growth in a mean-field lattice gas model. The
equation of motion, derived from a local master equation, is a generalized Cahn-Hilliard equation. In the
present paper, we study the isothermal dynamics of planar interfaces in this model. Stationary interface states
advancing with constant velocity are investigated. We present numerical results as well as a continuum
approximation that gives an analytic expression for the shape correction in the limit of small interface veloci-
ties. We observe departure from local equilibrium at the interface and solute trapping. The associated kinetic
coefficients are calculated. The two effects are found to be related. We finally give an expression for the
interface mobility and derive a relation between this mobility and the kinetic coefficients. Furthermore, we
show that there occur oscillations of the growth velocity and density waves in the two bulk phases during the
advance of the interface. This is related to the discrete dynamics using the theory of area-preserving maps as
proposed by Pandit and WortisS1063-651X%97)11305-9

PACS numbegps): 05.70.Ln, 68.35.Fx, 05.58.q, 82.65.Dp

[. INTRODUCTION shapes, one often has to generalize the local equilibrium con-
dition at the interfac€Gibbs-Thomson conditignby inclu-
The study of moving interfaces is an old subject. The fieldsion of a velocity-dependent terfs].

in which most of the interesting questions first arose is met- Another phenomenon related to the finite kinetic time
allurgy, where the microstructure of materials is greatly in-Scale is the so-called “solute trapping” effect, observed dur-
fluenced by the domain growth processes during their fabrilng rapid solidification in alloy§7-11]: the solute atoms
cation. Two well-known and extensively studied processe§annot escape fast enough from the advancing front and are
where interface dynamics is crucial are spinodal decomposil’corporated into the growing solid even if this increases
tion (phase separatiorand dendritic growth. The classic thelr_chemlgal pote_ntla_l. This leads to a con_geqtraﬂon of the
models are phenomenological continuum models: th&rowing solid that is different from the (_aqu[llbrlum one. !n
Cahn-Hilliard equatiorf1] for phase separation, and diffu- this case, the de_parture from 'OC?" equmpnum may be Im-
sion equations assorted with a Gibbs-Thomson boundar gsgrri]tti’cagrdowtil:g??; i?ep dp;gxérrzgllogrgrﬁhlig%éietgg used in
f;?;'g%g;;ihhe, tlr?;eirr:?ecr?afger iier:gggfegrl());\;vgashsa];l.r:)nsiz;ce There have been numerous attempts to describe interfacial

line i di . q h i the bound dynamics in continuum theories. The problem of a purely
ine in two dimensiong and we have to specify the boundary g sion-controlled interface is known as the Stefan prob-

condi_tions at this surface as functions of its curvature a”qem, and there is a huge body of literatlite?]. Langer and
velocity. _ Sekerka used the Cahn-Hilliard equation to calculate the de-
The motion of two-phase interfaces can be controlled by iations from the equilibrium interface shag@3]. Their
diffusion or by growth kinetics. In the first case, the interfacemethod needs as input the atomic mobility as a function of
is in local thermodynamic equilibrium, and growth is entirely the concentration. More recent approaches include phase-
limited by diffusion: heat or material has to diffuse through field methods that use @esoscopiclocal thermodynamic
the bulk phases to allow the phase transformation to proceedescription and couple a local-order parameter to a diffusion
The limiting step in the second case is the flow of materialfield [11,14—17. It would be interesting to establish the con-
across the interface: if the time necessary for a particle tmection between such macroscopic methods and microscopic
be incorporated in the growing phase is much larger than thdynamical models. In statistical mechanics, a great deal of
characteristic diffusion time scale, temperature and solutattention has been paid to the dynamics of model systems as
concentration are nearly constant in the bulk phases, and thie kinetic Ising mode[18,19. However, in their original
interface velocity is determined by the incorporation kinet-version these models atéor the moment still too difficult
ics. The reality is situated almost always somewhere betweenecause of their probabilistic nature, and exact solutions are
these two extremes. Often, the kinetic effects are small. Thiknown only for some special cases.
leads to a small modification of the local equilibrium at the We want to present here a microscopic model that dis-
advancing interface. For example, in dendritic growth, it hasplays some of the features described above. It is based on a
been recognized that to account for the obtained growtlmean-field method recently developed by one of the authors
[20]. From a master equation of a stochastic lattice gas, one
can derive a system of coupled nonlinear differential equa-
*Electronic address: Mathis.Plapp@Polytechnique.fr tions, which takes the form of a generalized Cahn-Hilliard
"Electronic address: Jean-Francois.Gouyet@Polytechnique.fr equation. This procedure gives an explicit expression for the
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atomic mobility, in contrast to the standard Cahn-Hilliard the continuum approximation and use it to calculate the first-
equation, where the mobility is usually taken constant. Ouorder shape correction to the equilibrium interface shape. In
equations are discrete, but they are not merely a discretizédec. V, we investigate in more detail the discrete system and
tion of the continuous Cahn-Hilliard equation: the underly-the growth velocity oscillations. Section VI contains the re-
ing lattice gas model establishes a connection to real Crystﬁuhs for the kinetic coefficients describing the interface mo-
lattices, say, in an alloy. This motivates the choice of thetion, together with comparisons to simulations. Section VII
transition rates. We choose activated jump processes, leadif®ydevoted to a summary and discussion.

to an Arrhenius behavior as generally observed in metallic

compounds. Thus our model could be a highly simplified Il. THE MODEL

_descrlptlon of a binary alloy. quever, its pres_ent VErsion is  tpis model has been presented in some detdRid, and
isothermal, so it can only describe processes in alloys wher,

the chemical diffusion is th te-limit ; dth I\‘fve will give here only a very brief summary. As we want to
€ chemical difiusion IS the rate-imiting stép and thermaly ), o results to the complete two-dimensional model, we

: ) M. Weyill study planar interfaces on a square lattice. Evidently, for
have shown in a recent papkl] that this model exhibits a planar interface, a one-dimensional description is suffi-

der;drmctgro_vvth, :nd calcula_‘iled thle orlentano_n-ocljege_?(:ﬁn&em; however, as we shall see, there are slight differences
surface tension. Here, we will analyze more In aetall tN€,anyeen dynamics in different directions, and therefore it is

dynam|ps of planar mtgrfaces._ . . useful to keep in mind that there is an underlying two-
We investigate stationary interfaces, moving with con-y;oncionai |attice

stant velocity, driven by a constant interdiffusion current fed Consider a square lattice ®f sites in two dimensions

into the system. This models interface motion during late'(coordination numbez=4). Let n, denote the occupation

stage growth, when the local interface velocity varies VeYhumber of sitei: n;=1 if a particle is present, 0 otherwise.

slqwly, and the incoming currents are determmed. by the SOWith an attractive nearest-neighbor interaction, the Hamil-
lution of the long-range diffusion problem. Numerical simu- tonian is

lations show that the shape of the interface is modified by the
motion. Our model displays the kinetic shift of local equilib- N
riur_n_a_nd an effept that is gnalogous to s_olutg trapping during H= _82 nin; —qu ni, (1)
solidification. Using a continuum approximation, we can cal- (0 i=1
culate the correction to the equilibrium interface profile to . . ) . ]
linear order in the interface velocity. This shows a very goodVheres is the interaction energfattractive:s>0), uo is an
agreement with the simulations. The solute trapping effect i§xtérnal chemical potential, and the first sum goes over all
governed by the kinetics of particles traversing the interfaceNarest-neighbor pairs. Clearly, this is completely equivalent
as it should. We have access to various interesting quantitie the Ising model. Besides, this is only another form of the
For example, we can show that a chemical potential dm[ﬁamlltonlan of a binary alloy, if we think of a particl&ole)
develops at the interface, which corresponds to energy dissS an atom of typé (B). _
pation at the interface during incorporation of new material. 10 define the dynamics, we assume that particles can
For small velocity, the height of this potential step is propor-move only by nearest-neighbor hops. In the alloy picture,
tional to the velocity, and the proportionality constant defineghis corresponds to a simple exchange mechanism. The sys-
an interface mobility, which we can calculate. We also havd€m is in contact with a heat bath: temperature is constant,
access to the kinetic coefficient needed in the Gibbs@nd energy is not conserved. Particles can be introduced or
Thomson condition. taken out only at the boundaries. The transition rate for a

Coming back to the original, discrete model we then in-Particle jumping from site to sitek is given by
vestigate whether the continuum approximation is a good
description. The discreteness of the equations causes varia- , _ £
tions of the chemical potential at the interface during its ad- wi({n}) WOeXF{ KT Ea li+a
vance, which can be understood using the theory of area-
preserving maps developed by Pandit and Wd&B. This  Wj is the bare jump frequendgpr the jump rate of ark atom
leads also to variations of the surface energy. The main efinh a B environment in the alloy pictujeand sets the overall
fects are growth velocity oscillations with the periodicity of time scale. Here and in the following,will denote a lattice
the lattice, and damped density waves behind the interfaceinit vector, and summation ovarmeans summation over all
whose wavelength can be considerably larger than the latticeearest neighbors. This choice of transition rates corresponds
spacing. However, the amplitude of these oscillations is veryo an activated process and displays the Arrhenius behavior
small, and they do not modify substantially the values for thethat is common in metallic diffusion. The lattice points are
kinetic coefficients obtained in the continuum approxima-located at the equilibrium positions of atoms in a crystal
tion, which therefore is a valid approach. Variations in physi-structure. Then an atom is trapped at its site in a potential
cal guantities during interface motion due to lattice effectswell whose depth depends on the local energy landscape. We
are known to occur in epitaxial growfl23,24], and density assume that the saddle points between the wells are at a
oscillations have been reported in some discrete growtleonstant energy; then the depth of a potential well is equal to
models[25-27. However, in our case the connection to lo- the energy necessary to take away an atom from its site, that
cal thermodynamics is particularly straightforward. is, the sum of its binding energies.

In Sec. Il, we will describe the model. After a short pre-  Expression(2) differs from the usual Metropolis rule,
sentation of our simulations in Sec. Ill, we discuss in Sec. IVwhere the transition rate is proportional to exg(H/2kT)
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with AH being the energy difference between initial andric with respect to the interchange of particles and holes.
final state. This corresponds to a process without activatioiThis gives rise to the factors expgs/2kT) in Egs.(6) and
barrier. In our model, the transition rate depends only on thé7).

initial state. Since our transition rates satisfy detailed bal- The mobility and diffusion coefficient both include de-
ance, the equilibrium distribution is the same. But contrary tgoendence on concentration as well as gradient and curvature

the widely used Kawasaki exchange dynanii28], where

terms. The connection with the well-known field-theoretic

the dynamics is invariant under a global spin-flip, we have aimodels[30] can be established by setting
asymmetry between particles and holes: an atom surrounded

by attractive neighbors will stay in its place much longer

than a hole surrounded by other holes.

dF({p})
Pk

M= 9

Writing a local master equation, and making a mean-field

approximationsee[20,21] for more detaily we arrive at the

following equation of motion:
ap;
&_tlz ~Wo> { pi(1- pk)exF< k> pi+a)
k a
—pk(l—pi)exrl(—f(g pk+a>}- (€©))

Here, the occupation probabilitigg (which can be inter-
preted as concentrations as wedlre continuous variables

F({p}) being a lattice version of a free-energy functional:

FUPH=2 [ (P0+ 3 2 (Pea—PO?| (10
with a local potential
ze 1
f(p)==— (p—2)*+kT[pInp+(1-p)in(1-p)].
(11

between 0 and 1, and=¢/kT. The terms on the right-hand This is a discrete analog of a continuous functional of the
side are currents resulting from jumps of particles from siteGinzburg-Landau type, wite playing the role of a gradient

i to a neighboring sitdfirst termg or the inverse(second
terms. Indeed, it is a conservation equation for the particle

concentration,
d .
Epi:_zklik: (4)

where j;, denotes the particle current in the link. The

energy:

2

f(p)+ - (Vp)2av. (12

-

Using these identities and the expressi@h)s the equation
of motion can be rewritten as a generalized Cahn-Hilliard
equation, or alternatively as a nonlinear diffusion equation.

currents can be rewritten in the form of generalized transpor he structure of the free-energy function can be obtained

equations,
Jik=—Mi(pme— wi), (5a
Jik=—Di(Pc—=pi), (5b)
with a generalized mobility
e,LLk/kT_ eHi /KT
M., =Wn(1— 1—0p: e—Zs/ZkT— 6
ik=Wo(1—p)(1-pj) e (6)
and a generalized diffusion coefficient
e;Lk/kT_ e,lLi IKT
Di=Wo(1—p)(1—pe T ———— . (7)

Pk—Pi
Here, we have defined the local chemical potential as

Pk
1-pg

uk=—82a (Prra— P —2e(p— 3) +kTIn ®)

(z is the coordination number of the latticén the first term

simply by discretizing a continuous functional; however, the
expressions for mobility and diffusion coefficients are inti-
mately connected to the underlying jump process. Remember
that Eq.(3) describes indeed a system moving towards equi-

librium: calculating the total time derivative of the free en-
ergy, we find
dF 1 M ) 13
a2 & ik i) (13

Since M, is always positive, the free energy can only de-
crease, and the stationary states satigfy= u = const.

Below the critical temperatur&T.=ze/4, the potential
f has a double-well structure with two minima, symmetric
with respect to3, Peq and pfq. Here and in the followinge
will denote the densg" A-rich”), B the dilute (* B-rich”)
phase. Neaf ., the potential can be closely approximated by
a quartic polynomial. For lower temperatures, higher-order
terms become more important. The two potential wells be-
come very sharp and are located very close to 0 and 1. The
phase diagram is depicted in Fig. 1. The order parameter is
the miscibility gapAp(T)=pe(T) - pfq(T). The transition

we recognize a discrete Laplacian: this chemical potentiais first order except at the poipt= 3, which corresponds to
takes into account local curvature of the concentration prozero magnetic field in the Ising model.

file, a natural extension as already noticed by Cig#). We
have fixed in Eq(8) the constanj in the Hamiltonian(1)
(which is arbitrary for a fixed number of particle ug

This is exactly equivalent to the mean-field phase diagram
of the Ising model. So, statics are completely symmetric with
respect to the interchange of particles and holes. But dynam-

=2ze/2 in order to make the chemical potential antisymmet-ics are not. If in the expressioli§) and(7) for mobility and
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For planar interfaces, the system of equati¢@)scan be

f 02 04 06 08 ! simplified. When the interface is oriented normal to ¢he)-
or (11)-symmetry directions, we can reduce it to a quasi-one-
-0.01 dimensional set of equations for points on a line. Then each
concentratiorp, represents a whole layer of lattice sites and
-0.02 the indices are integers, proportional to the normal coordi-
nate. For the(10) direction the reduced version of EB)
-0.03 reads
-0.04 d
% :WOEJ_: 1P(1—pj)exd k(Px—1+ 2Pkt Pr+1)]
0.05

—pj(1-poexd «(pj-1+2pj+p;+ 1)1}, (173

whereas for th€11) direction it is

dp
R w3 ot et o

—2pj(1-pexd 2«(pj-1+pj+ 0]} (A7b

In the second case, there are two bonds connecting a site to
the neighboring layer. In both casdstakes the valuek

—1 andk+1 in the sum. The distance between two succes-
sive layers isa in the (10) direction anda/v2 in the (11)
direction.

Ill. SIMULATIONS

0 pBp 02 04 0.6 08 po 1

eq €q . X . .
P To investigate Eqs(17), we integrated them numerically
FIG. 1. Local free energy as a function of for a temperature for various temperatures, initial conditions, and system sizes

i : . . . L. We used a simple Euler algorithm with variable time step
T<T. and the mean-field phase diagram of a simple binary mlx-t llow for initial diti far f ilibri Th |
ture:  the two equilibrium concentratios, andp‘fq are located at ‘0 @ow for initial conditions far from equiliorium. The cal-

the minima off. The regions in light gray are unstable; dark gray PUIa“On speed ,'S limited by a numerlcgl |r_1$tab|I|ty OCC“”_'”9
corresponds to metastable states. in the low-density phase, where diffusion is fastest. The limit

on the time step can be calculated by linear stability analysis.
We used a maximal time step near this threshold. Control
runs with smaller time step gave the same results.
We initialized the system with an interface, thephase
p(1—p) being to.the left. The system was closed at .t_his side:k at
M onP) =W T exp(— kzp) (14 =0, we imposed a zero flux boundary condition. To calcu-
late the current from site O to site 1, we need the value of
p at location—1. We chose “mirror” boundary conditions,
that isp_;=py. S0 we can imagine the system to be one
half of a one-dimensional droplgor a two-dimensional
slice) growing symmetrically. Ax=L, we fixed the current

for the diffusion coefficient. Notice that these quantities aret0 some valug,. To obtain a stationary state, we performed

still defined on the bonds of the lattice. To give them thesmulatlons_ In a moving frame:_ once the interface reached
: . . : .a fixed position, the whole configuration was set back by one
usual dimensions of the continuum equivalents, that is

length squared over time, one has to multiply them by theIatt|ce step. Under these conditions, we observed that the

square of the jump lengtia2. Taking advantage of the sym- system converged to a stationary state, independent on the

L ; initial condition (as long as there is an interface at the begin-
metry of the two equilibrium concentrations, we have . X . .
ning). The interface profile and velocity depend only on tem-

perature and the injected current.

diffusion coefficient we take the limit of homogeneous sys-
tems(p;—p for all i) and use expressio8), we find

for the mobility and, using the chain rule,

Dhon(P) =Wo[1—«zp(1-p)]exp—«zp) (15

M:exp(— kZAD) (16) A typical stationary interface state is depicted in Fig. 2. In
D honl pgq) ' nonconserved systems the two-phase front may propagate by

simple displacement, and to first order in the velocity the
where the miscibility gapAp is a function of temperature. form of the moving front is the same as at equilibrium. In
We see that near the critical temperature this ratio apsystems with global mass conservation, this growth mode is
proaches unity, whereas for low temperatures, the diffusiofiorbidden. New material has to be brought to the interface by
in the dense phase is very much slower than in the dilutdiffusive transport. We can roughly distinguish three differ-
phase, which is the situation found in solidification. ent regions(Fig. 2): behind the moving fronfregion |), a
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! the interface velocity. The linear term of this function gives

P the kinetic coefficieniBy, currently used in the dynamical
pé" =0.8 extension of the Gibbs-Thomson boundary condition.
v q= 10-3 The interface velocity we obtain for a fixed current de-

I

I

|

|

: pends on the system size, or more precisely on the distance
! between the interface and the point where the current is in-
|

|

|

l

|

region I . region III jected. On the other hand, when we compare interface pro-
0.4 files at equal velocity for different system sizes, they are
identical. This is a consequence of mass conservation: for a
o2l T L rieeenenns ireeenans continuous stationary state, the quaniityvp/a is constant
. ' Equilibrium profile throughout the interface; this is still approximately true for
regipon 11 ! _ : . .
. u=x-vt our discrete model. In region Il depends on the distance
-10 -5 0 5 10 15 20 from the interface, and if we fix the same current at two
_ _ ) different points, we will obtain different velocities.
FIG. 2. Stationary interface shape for0.86T; and dimen- Therefore, we choose as variable for all our subsequent

sionless velocityy =v/aw,=10"3, obtained from the continuum developments the dimensionless interface velocity,
treatment described in Sec. IM is in units ofa). The equilibrium —v/(awy), which determines the shape of the stationary
profile is also showrbroken ling. state, independent on system size. We are limited to small
velocities by the phase diagram of our model: the concen-
plateau at concentratigof; developspz is a function of the  tration in region Ill may not be greater than the stability limit
velocity and always smaller than the equilibrium concentragiven by the spinodal curvésee Fig. 1 In other words, the
tion of the dense phaseg,. This is an effect analogous to supersaturation of th@ phase is restricted to small values.
solute trapping in solidification. Here, we have not strictly aThe dimensionless velocities we could obtain in our simula-
liquid-solid transition, because entropy and internal energyions vary between I and 103, in function of tempera-
are the same in the two phages latent heat associated with ture. For very low temperatures and closeTig only very
the transition. However, the process is exactly analogoussmall velocities are possible. Notice, however, that “small”
to solidification: the growingx phase “traps” holes that is stated in terms adiw,. Sincew, may take values between
cannot escape fast enough through the advancing interface0® and 13° Hz, depending on the host lattice and tempera-
This is a purely dynamic effect. The chemical potential ofture, considerable macroscopic velocities may be attained.
the trapped specigbere, holes oB atomg is increased. The Interesting quantities to determine are the concentration
growing phase is not at its equilibrium concentration andvalue far behind the interfacg?, and the interceppfn as
hence not stable. If the external driving force was turned offfynctions ofy. These data are the principal test for our ana-
the system would relax to the equilibrium state {8ow) |ytical developments. The numerical results will be discussed

diffusion of holes through the phase. For small velocities in Sec. VI in direct comparison with our analytic expres-
and temperatures close f., the resulting concentration sjons.

ps is a linear function of the velocity. At low temperatures
and high velocitiesp%(v) becomes highly nonlinear due to
the slow dynamics in the: phase. V. CONTINUUM APPROXIMATION
Region Il is the interface itself, which conserves a struc-
ture close to the equilibrium state when the velocity is small.
Ahead of the moving interfacdregion Ill), we find a The equilibrium states are given lpy= const. As we shall
“ramp” profile that can be approximated by a straight line see in Sec. V, the mathematics of discrete systems is much
sufficiently far from the interface. However, this is true only more intricate than for the continuum. As a first step, we
for small system sizes. The stationary solution of the diffu-therefore will analyze the continuum approximation. One
sion equation in a frame moving with velocityis an expo-  verifies easily that in the continuum limit the two equations
nential with decay length,=D/v; this looks like a straight (178 and(17b) become the same, as expected: we lose the
line on a length scale much smaller thign In our simula-  effect of lattice anisotropy. We will immediately specialize
tions, typical values aréin terms of the lattice constarst  to the case of a planar interface, and we will denote lblye
and the bare jump ratar)) D~1 andv~10"°, giving a  normal coordinate. Then, the chemical potential can be cho-
diffusion length of the order £0 The approximation of the sen equal to 0 by symmetry. We replace the discrete deriva-
ramp profile by a straight line is therefore valid for systemtives (finite differenceg by ax d/dx, wherea is the lattice
sizesL which satisfyé<L <l , whereé is the characteristic constant. Then Eq8) for the chemical potential becomes
interface thickness. For our simulations, we ued80 in )
the (10) direction andL =100 in the(11) direction. _ea? I°p(x)
To compare our findings with the phenomenological x>
sharp-interface models, we have to extract the boundary con-
ditions of the latter from extrapolation of the concentration
profiles in the bulk phases to a hypothetical sharp dividingf’ denotes the derivative df(p) [Eq. (11)] with respect to
surface, which has to be conveniently defiede the dis- p and is the local part of the chemical potential. To discuss
cussion at the end of Sec.)VThe intercept of the ramp the validity of this procedure, we remark that a characteristic
profile at this sharp interface positiop?,, is a function of  length scale of the interface solution to this equation can be

A. Equilibrium state

+f"(p(x))=0. (18
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obtained by linearizing it around one of its stable fixed pointsize the problem around the equilibrium solution. Further-
Pegq OF pgq. The asymptotics are exponentials with a decaymore, in the continuum limit we can somewhat simplify the

length equations. Let us for a moment return to the discrete formu-
lation and examine more closely the mobili#).
o= aVeXen (19 If =0 in all the systen{equilibrium statg Eq. (6) sim-
plifies to

where the susceptibility(p) is defined as

1-p)(1—p;
p(1-p) Mimwo PP g

XP)= 5055 = K 2op( 15 (20)

which can be rewritten as
and xeq= X(Peg - If &g is much larger tham, the committed 5
error due to the continuum approximation should be small. M., = Wop— 2e/2KT (1-p) (1_ Px— pi) (25
For T tending to the critical temperaturéy diverges with k=70 kT 1-p;
power 3, as expected for a mean-field correlation length. We

thus can expect that EGL8) is a good description near the Near equilibrium, the chemical potential is only slightly dif-
critical temperature. ferent from 0; analyzing the expression of the currésd),

It is known that for a quartic potentid(p), Eq. (18 is W€ See that to first order ia the above expression for the
solved by the hyperbolic tangent. In our c’asﬁecontains mobility is sufficient. If we inject this in the conservation
terms of all orders. If we truncate at the fourth-order term,€auation(4), we find to first order
we get a good description of the central interface region, but ap (1-p))2
we do not recover th.e'right limit valuéthe bulk equilibrium a_'cl =woe */AT k—'l'I [E (Hi+a™ pui)
concentrationsat infinity. On the other hand, a pure hyper- a

bolic tangent profile connecting the bulk equilibrium concen- 1
trations is not correct in the interfacial region. We can, how- — > (ira— ) (Pisa—pP)) |, (26)
ever, approximate the exact solution to any desired precision 1-pi 3
by an expansion in powers of the hyperbolic tangent. WeiNhere sum ovea means summation over all links adjacent
pose toi. If we now again use the continuum approximati{am-

1 X X mentarily, we come back here to the full two-dimensional

Po(X)=5— cltani'(— +cgtank? —) treatmen), this can be rewritten in a simpler form:
2 280 280
PED _ e [1-pRD]?
+cgtant?| ——| + -+ |, (21) gt Wo® kT
28
2a?

where &, is defined by Eq(19): this assures the correct X|a?Au— 1_—()“) grad w -grad p|,
exponential decay. If we expand the potenfigb) given by p{X,
Eqg. (11) up to order 21 in p and equate the tanh terms order (27)

by order(up to order 21— 1), we getn— 1 equations among . .
the coefficients, which allows us to express all in function of,W.hereA is the Laplacian operator. Another rearrangement

say, ¢;. Then we use the boundary conditiopg(—) gives
—po(+)=Ap, to obtain ap(X,t) . .
n T:a le[MIoc(p(Xnt))gradM]v (28)
mE:l Com-1=AP/2. (22 which has exactly the structure of a Cahn-Hilliard equation
with a local mobility
This gives a polynomial equation far;, which we solve —2elKT
numerically. As expected, for high temperatures all coeffi- M oo P) =W, (1-p)2 (29)
cients besides the first are very small. We will use in the oc KT

following only the lowest-order approximation, . . . L
g only PP depending only on the local concentration. This result is sim-

1 Ap X ply the continuum limit of Eq(6) for w=0. On the contrary,
Po(X) = 5T 5 tani(g ' (23 if we consider homogeneous states, for which the Laplacian
0 is 0, we find the homogeneous mobilit{4). As could have
representing an interface between thphase at-= and the beeri _expected, near equilibrium the curvature effgcts in the
B phase att . r_nobl_llty can be neglected, leading to a local mobility func-
tion instead of the complete expressi(®) that has to be
used far from equilibrium. In addition, this mobility function
is a simple polynomial ip [the exponential term of E¢14)
We now want to calculate the shape of an interface adis absenf, which simplifies our analytic treatments.
vancing at constant velocity. An exact solution of the full  For a planar interface with normal coordinatethe equa-
nonlinear equations is out of reach; we therefore will linear-tion of motion takes the form

B. Stationary states
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apxb) _, d

ot a dx

du(x,t ,7
Miae(p(x,0) )). (30) f
| N - (a) 1
We search stationary states, that is, solutions of this equation
that propagate with constant velocity Such solutions de-
pend onx andt only through the combination=x—uvt. 0.5
The equation transformed in this moving frame reads

d d d
%zaz ﬁ (Mloc(p(u)) l;(UU))

(31) -10 5 5 10
u/a

—U

This equation can be integrated once to furnish the relation

(W)= [p(w)—p2] (32

(remember thaj = —Madu/dx). This is nothing else than 100}
the expression for mass conservation in the moving (b)

frame: the left-hand side is the interdiffusion current, the 80
right-hand side represents the current crossing the interface

because of its advance. Integrating this equation once more, 60}
we obtain

v (v p(u)-—pg du’
u=pu(—»)— = —_— 33
(W)= p( =) aﬁm M) a /
Using the continuum expressidi8) for w, we obtain an

integro-differential equation fop(u): -10 -3 > 10

u/a
> of of
—ea’p (U)—% (p(u))+ ap (p2) FIG. 3. The “potential” 1[po(u)]=f"[po(u)] (@ and the
inhomogeneous term(u) (b) of Eq. (36). Without »(u) and the
v (fu pu)—ps du’ constant term, Eq36) is an eigenvalue problem for a particle in the
a fﬁx Mo(p(U) a 0. (349  potential well(a).

ithout the last two terms, E¢36) would be an eigenvalue
roblem completely analogous to a one-dimensional Schro
dinger equation. The “potential” M po(u)]=f"[po(u)]
and the termy(u) are depicted in Fig. 3notice that the
factor wg in the numerator of Eq(37) cancels out with the
prefactor ofM .., making»(u) dimensionlesk The asymp-

Equivalent expressions have already been obtained b
Langer and Sekerkd 3]. We emphasize once more that this
expression will be valid only not too far from equilibrium
since we use the “local” expressiof29) for the mobility.

We are interested in the shape correction to the equilib

rium interface for small velocities and with the boundary ¢ il d 4 f B
condition j(—%)=0 (no current in thea phase. We will  ©Ot€S O v(u) are readily understood: fai— —<, po(u)

assume that this correction is linear in the velocity and makd€nds towardpg,, which means that(u) vanishes. On the
the ansatz other hand, fou—o, po(u) tends topgq, the mobility be-
comes constant, ane(u) is linear inu. Given this behavior

p(u)=po(u)+vpy(U), (35 of v(u), we see at once that E(B6) allows a solution with

linear asymptotesp, tends top] for u— —, whereas for

wherepg(u) is the equilibrium solution, and=uv/(aw,) is u—oo, it tends to a straight line with slopa:
the dimensionless interface velocity. Far behind the interface

the concentration is constant, deviating from the equilibrium WoAPxeq 4kT§§Ap

concentration by an amount proportional to the velocity. This m= M Py~ zad(1+ Ap)le 22/KT: (38
- aMio(Peg  8a( p)‘e

means thap,(u) tends to a constant valyg for u— —o.

The linearized equation for the first orderanbecomes

A brief analysis shows that this expression diverges when
D1(U) o2 T approached . This is due to the fact that the misci_bility _
ea2p)(u)+ L S L »(u)=0, (36) gap tends to zero and therefo_re a very sma_ll current is suffi-

X(Po(U))  Xeq cient to drive the interface with high velocity. This shows

o i that the limitT— T, is somehow pathological, which is not
wherey is given by Eq.(20) and we have defined(u) by syrprising, as the interface thickness diverges at the critical

& o (0] du’ temperature.
b(U) = f” Wol Peg— Po(U’)] au 37) We emphasize that this procedure is valid only near the
—»  Mpe(po(u’)) a interface. It is known that the stationary solution for a system
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with diffusion and drift(and constant diffusion coefficiens E=EytDE, (43)

an exponential; here, we can retrieve only the linear term of

this exponential. This means that the solution is limited towhere &, is the equilibrium value(19). If we expand

regions wherép;<1, which is the regioru<Ip, where tanh(/2¢) to first order inv using Eq.(43), we find exactly

Ip=D/v is the diffusion length. Second, in our model the a term of the form(42):

diffusion coefficient varies with the concentration. But in the

linearized equation, it is taken along the equilibrium solution p(u)= E_ ﬁ tanh UN

and thus a constant in the bulk phases. This means once 2 2 2(&ptvéy)

again that we must havep,<1. This condition limits the TEA "

velocity range that can be treated for given temperature. ~po(u)+ 1 2p utanh —. (44)
Langer and Sekerk@l3] solved their equations by a 4§ 280

Green’s-function method outside the interface and extrapo- ) ) )

lated to a hypothetical sharp interface to obtain the correcAnother way to see that the interface thickness must be dif-

tions to local equilibrium. Here, we have to go beyond thisférent from its equilibrium value is a brief analysis of the

approach because we are precisely interested in the conne??lu'['oln.'n region I, that is, the _plateau behind the interface.

tion between the model parameters, the processes inside thiearizing Eq.(34) aroundps; gives

interfacial region, and the resulting kinetic coefficients. To dp dp 1 d%p
solve Eq.(36), we split up the functiomp;(u) in three parts: 2 ay| a2 by & 2 M
1 1% du a Mloc(pm) ea du4+ X(pg) duZ .
p1(u)=p1+g(u)+h(u), (39) (45)
whereg(u) solves the equation We see that this equation is solved by an exponergial)
=ps+CexpW), if ¢ satisfies
g(u)
21 _ — o
ga“g”(u) Yoo +v(u)=0. (40 5 i (&la)2—ex(p?)
—0=Dpon(Pz) (46)

: , o : : wo(éla)®
The interest of this operation is that if we use for the equi-

librium solutionpgy(u) the approximatior{23), this equation where we have used the identiy=M/y. For v=0, we
can be solved, and we obtajfu) explicitly with the aid of  retrieve the equilibrium resultl9). If £ was a constant, this
a symbolic calculus program. The last remaining piece issquation would furnish a simple relation betwaemnd p

h(u), which obeys the differential equation and allow the determination qf¢. Such a simple solution
does not correspond to the physical situation: it would
ea?h’(u)— h(u) mean that we could understand interface-controlled phenom-
x(po(u)) ena without any knowledge of what is going on in the inter-
face. Indeed, comparison of E@46) to the simulations
KT(Ap)?[p§—g(u)] shows that we have to allow for a variation §fso that Eq.
+ u =0. (46) has three variables, and we cannot directly obfzin
pé‘q(l—pé’o){l—Zpéq(l—p‘;&(coshg—o—lﬂ and ¢ as functions ofv. On the other hand, the solution

obtained by the variational procedure described above sub-
(41) stantially implies the processes in the interface via the func-
tion h(u) that is localized there.

This equation is not directly solvable. To proceed, we use a We therefore choose as variational paramepgraind £,
variational ansatz. The functidr(u) is different from 0 only ~ [using Eq.(42) with A=¢&;Ap/4g5 from Eq. (44)], which
around the origin. We try different test functions and mini- have direct physical meaning. The optimization with respect
mize the integral of the square of the left-hand side operatoito these parameters is without problems numerically. We
This is equivalent to the Ritz method in quantum mechanicspostpone a comparison of the obtained results with our simu-
h(u) must be orthogonalin function spacgto the function lations to Sec. VI.
tanh (u/2¢,), which generates a simple translation of the in-
terface[and has a zero eigenvalue in the eigenvalue problem V. DISCRETE SYSTEM
associated with Eq36)]. A candidate that shows good per- I
formances is the function A. Equilibrium states

In our original system, the translational symmetry in
space is discrete. But the interface moves continuously in
time, and therefore takes all possible positions with respect
to the lattice. One could imagine that the interface can be
Then,p{ andA are the variational parameters. We have alsadescribed by some continuous curve as €§), the points
tested trial functions with more terms and checked that Eqof the lattice system at a tintebeing given by the values of
(42) gives the dominant contribution. This term correspondsghis function for the points where— vt is a multiple of the
to a modification of the characteristic interface thickness. Tdattice constant. This is, however, not the case. If we use
see this, note that to first orderan the interface thickness  our evolution equation$l7) for a closed system, in which
will be the total mass is fixed to enforce an interface at a given

u

h(u)=Autanh .
W 26

(42
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method of the Gibbs dividing surface to define the interface
position: the interface profile is replaced by a step, contain-
ing the same mass as the original system. Then the kink
positionx, is determined by the equality

L
Xopo+(|-_xo)p|_:i20 pi - (48)

The sinelike behavior is verified in a large range of tempera-
ture. To gain a deeper understanding of this phenomenon, we

[ use the theory of area-preserving maps as applied to mean-
2 x 1070 ] e — field interfaces by Pandit and Wor{ig2].

0 02 04 06 o8 X,/a 1 To find the discrete equilibrium states, we have to solve
the equationu,= w=const for allk, using the discrete ex-
FIG. 4. Plot of the chemical potential versus the interface pression(8) for the chemical potential. For an interface in the
positionx,/a for T=0.866T,. (10) direction, this equation can be rewritten as a two-
dimensional mapping, setting.=p,_1 andy,=py:
position, the final state is an equilibrium state with constant
chemical potential. This equilibrium value of the chemical Xn+1=Yn,
potential is found to depend on the interface position. In
particular, the valugu=0 is taken only for interfaces that L Yn
are symmetric with respect to a lattice poi,_=3— px Yne1=~ple+2yn=Xn=2(yn—2) +KT/eln -y,
for all k=0 and some fixeah) or with respect to a point in (49)
the middle between two lattice pointp{_,_,=3—py). For
other interface positionsy is different from zero in the The Jacobian of this mapping is 1: it is area preserving. It
whole system, which means, in particular, that the bulk equihas two fixed points, corresponding to the two equilibrium
librium values(which depend onu) are slightly modified. concentrations. An interface solution is a series of iterations
This would not happen if we could derive the discrete statesf this mapping, connecting the two fixed points. As re-
from a single continuous curve by off-lattice translatigese  marked by Pandit and Wortis, unlike the continuum version,
[31] for an example of such a situatipn which possesses a unique heteroclinic orbit connecting the
Plotting the chemical potential as a function of the inter-two fixed points, the discrete mappi49) has chaotic prop-

face positiorx, for an interface in th€10) direction(Fig. 4), erties. This can be seen if we plot the inset of one of the fixed

-1x107°

we see thaj(Xg) is nearly a sine: points, which is the set of all points that will be mapped onto
. the fixed point after an infinite number of iterations of the
H(Xo) = = pucSin(Xo/a), (47)  mapping (49). It has the structure of a chaotic trajectory,

passing in the vicinity of the other fixed point infinitely often
where u is a constant depending on temperatlf&. 5  without ever reaching it. The outset of the other fixed point
that VanisheS near the transition. Th|S behaVior iS indeperban be Constructed by Symmetry: it is the set Of a” points
dent on the system size as long ad. > &,. As this equation  that will flow to the fixed point undefinfinite) iteration of
describes lattice effects, we expectto be a function of the  the inverse mapping. An interface solution, which has to
ratio £o/a. The minus sign corresponds to our choice thatconnect the two fixed points, is a set of points that belong
the x unit vector points into thegg phase. We have used the simultaneously to the outset of one fixed point and to the

inset of the other. For=0, the phase portrait is symmetric

e —— [Fig. 6(@)], and the intersection points of inset and outset
10? C e i form two such sets, corresponding to interfaces that are sym-
He o ° 1 metric with respect to a plane and to a half plane: we re-
10 °© o E cover the result of our simulations. In Figbd we depict a
o ° 3 phase portrait for a small positive value af We see that
10° ° 1 inset and outset deform, and the intersection points
o ° 3 move: the two solutions approach each other. For some
107 E critical value, which is identical tq. defined in Eq.(47),
° E the solutions coincide, and beyond, no interface solution is
107 o7 possible[Fig. 6(c)]. In real space, this motion of the inter-
o 3 section points corresponds to a displacement of the inter-
L —— B face: the first solution moves to the right, whereas the sec-
05 06 07 08 “T/T, ond moves to the left; at the critical value gf they meet.

The antisymmetry of Eq949) with respect to an exchange
FIG. 5. Critical valuesu. of the chemical potential versus tem- Of particles and holes assures that the inverse motion takes
perature for the main symmetry directions. Diamond&,0) direc-  place wheru is negative. We thus recover the dependence of
tion; circles, (11) direction. Note the very rapid decay for u on the interface position. From the structure of the orbits
T-T.. in the phase portrait, we can deduce that the function
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FIG. 6. Phase portraits of th&0) interface forT=0.5T, and =0 (a), 0.02(b), and 0.04(c). We show the beginnings of the outset of
the B-phase fixed poingsolid line) and of the inset of the-phase fixed pointdashed ling A point (x,y) in this phase portrait is equivalent
to a couple of concentrationpy, px+1). Some points forming the two interface solutions are marked by diamonds and circles. In the
vicinity of each fixed pointmarked by open squarethere are infinitely many such intersection poittet shown. The arrows in(b)
indicate in which direction the interface points have moved in comparisda)tAll diamonds have moved upwards and to the right,
whereas the circles have moved downward and to the left)Jrihe interface solutions have ceased to exist. Notice that this figure is nearly
identical to Fig. 5 of Ref[22]. See that paper for more details on this kind of diagrams.

n(Xg) is periodic, antisymmetric with respect to lattice This seems to be not very different from E¢49); however,
points, linear with finite slope around the lattice points, andin this direction the sign of the sine is inverted, aadis two
has horizontal tangents at its extremal values. The simplesjrders of magnitude smaller than in thE0) direction (see
such function is the sine of E¢47). It would be desirable to  Fig. 5). Visualizing the phase portrdiFig. 7(a)], we see that
calculateu directly from the properties of the chaotic map; for the same temperature, the trajectories seem to be much
however, this seems a difficult task. The fact tpatis inti-  |ess chaotic. To see the intersections between inset and out-
mately related to the structure of the mapping is illustratedset, we have to magnify a part of the phase portf&it.
by a comparison between the two symmetry directions. Ir7(b)]. Such chaotic behavior seems to be a general feature of
the (11) direction, the mapping equivalent to Eq49) reads  discrete mean-field equations. However, results have been
reported on a discrete but integrable system of a similar kind
Xys1=Y [31], but in this model a chemical potential cannot be
n+1 n» . .
uniquely defined.
The variations ofu are accompanied by variations of the
Yn surface tension. Pandit and Wortis already remarked that of
1-vy,’ the two solutions a.=0, the one with off-plane symmetry,
(50 has a lower surface tension. In thEl) direction, this situa-

Z L KT
Yni1= — ml28+ 2y, — Xy~ 5 (Yn—2)+ Z In
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. mass to define the interface position: the only correct
choice is the method of the Gibbs dividing surfdd8).

B. Stationary states

We have seen in Sec. V A that quantities as the equilib-
rium chemical potential and the surface tension of a planar
interface depend on its position relative to the lattice. An
interface that is forced to advance by a constant current in-
jected into the system therefore generates oscillatory behav-
ior. Mathematically, this stems from the fact that unlike in
continuous systems, where a stationary spgte—vt) satis-
fies gp/at=—vadpl/ox, in a system with discrete transla-
tional symmetry the set of concentratiopg(t) satisfies

05 t)=py_(t—alv), 52
0.5 0 0.5 1 15 Pa(t)=Pn-a(t~alv) 52

wherev is the (constank stationary velocity. However, time
is continuous. Therefore, we could rewrite the evolution
equation(17) using the condition(52) as an ordinary differ-
ential equation for the continuous time variableUnfortu-
nately, this equation is nonlocal in time and thus not easier to
solve. However, we can visualize the stationary state as a
continuous curve, tracing the trajectory of a pomi(t),
while it traverses the interface. For high temperatures this
trajectory tends to the continuous stationary state that we
have determined in Sec. IV; when one lowers the tempera-
ture, oscillations appear, which we will analyze now.
For small velocities, the interfacial regidinegion Il of
Fig. 2) is slightly modified, but keeps its overall shape. It
stays close to the equilibrium shape, and monitoring the dy-
L namics we see that the chemical potential in this region os-
Ol 0 L L cillates with the advance of the interface, as for the equilib-
0 002 0.04 006 0.08 X 0.1 rium states(see Fig. 11 beloy So it seems that for small
driving forces the relatior(47) stays valid: the chemical
FIG. 7. Phase portrait of th@l1) interface afT=0.5T; and . Potential oscillates with the spatial periodicity of the lattice
=0 (a). Only the beginnings of inset and outset are shown, henc@nd the frequency/a=wgv. Currents are driven by chemi-
the apparent asymmetry of the diagram. To see the structure of insé@l potential gradients, so these oscillations can modify the
and outset, one has to magnify a part of this diagtam the (11) behavior of the whole system. Seen on the scale of the mac-
interface is “less chaotic” than th@l0) interface. The open squares roscopic sharp-interface models, this is like an oscillating
indicate the fixed points. boundary condition at the interface.

Let us analyze the effect on the dynamics in the bulk
tion is inverted. If we calculate numerically the surface ten-phases. First, we discuss what is happening indhghase
sion for the different equilibrium states, we find to a goodbehind the interfacéregion |). To this end we linearize the
precision full discrete equation of motioiil7) around the limit value
ps. Writing p,=ps+ 8¢, we obtain to first order i,

_Ul+02+01_0'2 / 51 d sy
o) = 7 cosx/a, G <t = Muor PO (P (81~ 28+ s 1)

whereo; and o, are the surface tensions of the two sym- ~8(8k-27 401+ 68— 401t Gk 2)]- (33

metric (,u=Q) solutl_o_ns. '_I'h|s determlr?es_ t_he behavior of theAssuming, as before, an exponential behavios,
system during equilibration. For an infinite system, matterocex;iq(ka—vt)] this gives the following equation fay:
can be redistributed to infinity, and the interface will always ’

relax to the position of lowest surface tension, which has v
zero chemical potential. If the system has finite size, it —m
equilibrates at the state with lowest surface tension compat- hon P=:
ible with the constraint of constant mass. It is in this situation X (e29—2+e729)]. (54)

that we can observe the states at intermediate position. But

even in finite systems, we have a slight redistribution ofThis is the discrete analog of E@L6). But in contrast to Eq.
mass, because the equilibrium concentrations depend on tlé6), which always has three real solutions, Ef4) is a
chemical potential, so that we cannot simply use the totatranscendental equation that may have a multitude of solu-

q=(e*1-2+e *N[1-ex(p)
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FIG. 8. Image of a part of thes(r) plane to show some of the
solutions of Eq.(55) for T=0.7T.. The points are the solutions of

Eq. (55) for T=0.7T,, 7=6.074 4310 °, andp2=0.913 610 8
(jo=5x%1075). The corresponding nonoscillating solution issat

=0, r=1.91101. The lines are drawn using the numerical value

py=—12.329 and velocities ranging from G+£27) to 10 3.
Similar patterns are seen around multiples ef 2

tions, in particular, complex ones that correspond to oscilla

ing behavior. Writingaq=r +is, with r ands real, we ar-
rive at the following couple of real equations:

vWo 2 sirssinhr[1—4& y(p%)
— —————s=2simssinlr[1—4&x(p2
Dhoﬁ{poo) X p

X (coscoshr—1)], (55

W,

— ———r=2(coscosh—1)+4 &
Drart P9 2 T dex(ps)

X[ sirPs sintfr — cos’s costr + 1],

which have to be solved far ands. As in the continuum
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FIG. 9. Time derivative(measured in units ofvy) of a point
fixed in space as the interface passes by, on a logarithmic scale, for
T=0.7T, andj,=5% 10" 5. Behind the interface, there is a region
where the decay is exponentighick line segment This region is
too small to get results of sufficient precision. In addition, it is too
near the interface for the linearized equati@3) to be valid. To
both sides of the interface, we see the onset of oscillations. The
missing line segments are regions where the time derivative is nega-
tive.

whereas for the other familygoes to 0 ag vanishes, which
means a diverging decay length.
Which of these solutions will be selected? Equati6B)

tis linearized inp, so we could even expect a superposition of

several solutions. Now consider the oscillations at the inter-
face: the concentration behind the interface behaves like a
damped oscillator, which evolves between a fixed value at
—o (frequency @ and an oscillating concentration which is
“dragged” by the moving interface. The two solutions,
which will play obviously the most important role, are the
nonoscillating solution and the one with the first nonzero
value ofs, slightly below 27. To check this assertion with
our numerical simulations, it is best to plot the time deriva-
tive of one point(fixed in spacg while the interface ad-
vances. The nonoscillating solution decays much faster
(smaller decay lengihand even if it is predominant directly
behind the interface, farther behind the oscillating part will
show up. Indeed, plottinglp/dt on a logarithmic scale
shows a region behind the interface with exponential decay,

case, forv=0 we recover the equilibrium situation. For ar- giving a straight section in the plot, and the onset of oscilla-
bitrary v, we see thas=0 always solves trivially the first tions behind(Fig. 9. Magnifying these oscillations, we see
equation, and we are left with one equation forThis is a  the damped oscillator, and we can extract the corresponding
branch of nonoscillating solutions. Other solutions that givevalues ofr ands. An example is shown in Fig. 10: the

negative values for have to be discarded. However, there agreement with the predictions from E&5) is excellent.

are branches with positiver for nonzero values of

Now we have to remember that in our system time is

s: when the rati@w,/M is small, these solutions appear continuous, but space is discrete. If we look at the spatial

in pairs, withs near a multiple of 2, one slightly smaller,

dependence for some tinte we see slow variations: be-

one slightly bigger. This corresponds to damped oscillatofause of the lattice structure, wave vectors differing by 2

solutions that have a wavelength=2rals nearly equal to a
harmonic of the lattice and a decay length. In Fig. 8. we
show for one particular value of the parameterandp, the
possible solutionsr(s) nears=2. Using the numerical
value for pi, we can also trace the approximate fofto
linear order inv) of the branches of solutions for small
Around other multiples of 2, the picture is similar. The
family of solutions withs slightly above the multiples of2

have decay lengths very near the equilibrium solution,

are equivalent. We defing=2#—s. The apparent wave-
length of the undulations is thex' =2#al¢ and beatings
occur. This is shown by open circles drawn in Fig. 10 at
distances corresponding to a lattice constant. Wheap-
proaches 0, a leading order expansion of &) gives that
¢=r (note the slope-1 of the concerned branch in Fig) 8
and

r=@=\T0Wq/Dpon( p%) = mall (56)
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1S - fusion. But it is interesting to note the similarities: oscilla-

A ] tions arise because an interface advances continuously in a
lattice model. We believe that such oscillations are a general
feature of deterministic discrete growth equatidase also
[27]), but in real systems they should be masked by fluctua-
tions, absent in our mean-field approach.

On the other side of the interface, in region I, the situa-
tion is quite different because of the presence of the driving
current. In this region, too, the oscillations of the chemical
potential at the interface have important effects. If we fix the
chemical potential at somgarge distance of the interface,
variations ofu at the interface imply variations of the chemi-
cal potential gradient, and thus of the flux. A similar effect is
. ) ) observed when we fix the current: when the chemical po-

FIG. 10. Same as Fig. 9, but farther behind the interface ande gl at the interface increases, the chemical potential in all
el ?hneact?\?:rasnc(jxle_. A fE\g’g‘ngdamge_dosg‘fo mdrl]stmgulsaabl?he region in front of the interface must increase to maintain

i gives= _' an r: : » whereas the o gradient towards the interface. The only way to achieve
predictions from Eq(55) ares=6.028 11,r =0.2414. Open circles this is to “stack” some matter, because in region iljs an
are drawn at distances corresponding to one lattice step. This illus- - . ’ .
trates the beatings discussed in the text. increasing fungtlon of the concentration. Matter accumula_tes

in front of the interface and is “liberated” when the chemi-

_ cal potential at the interface decreases, causing a strong flux
(Ip=aD/wgv is the diffusion length N’ and the decay towards the interface. Hence we conclude that the oscilla-
length diverge, keeping always the same ratio. The fretions of the chemical potential cause fluctuations in the cur-
quency svw, goes to O linearly inv, and thus the phase rent arriving at the interface.
velocity vs/r behaves liké& 2. But this means, because of mass conservation, that the

This behavior can be readily explained in terms of diffu- interface velocity varies. The variations of the incoming flux
sion. The variations of the chemical potential at the interface&eannot be compensated by the outgoing flux behind the in-
cause variations in concentration, of the ordegfu. [this  terface, the latter being much smaller than the former. We
follows from the fact that, for smalle, p—peq=uxeq: @nd  can indeed observe directly fluctuations of the growth veloc-
using Eq.(47)]. Imagine an initially homogeneous phase. ity. However, we have to be careful, because a proper defi-
When the interface moves, it creates in its wake a perturbanition of the interface velocity is difficult. Out of equilib-
tion that causes a diffusive flux: the perturbation propa-ium, the profile is not symmetric any more and we cannot
gates. The characteristic length scale is the diffusion lengtseparate “interface” and “ramp” profile: the application
Ip, the characteristic time scaleadD/v?. Whenv tends to  of the Gibbs dividing surface method is impossible. We can
0, the diffusion length diverges, implying that the length define the interface position by the symmetric pojms; 3.
scales of the problem grow, but the diffusion time divergesBut alternate definitions are possible, for example, the inflec-
even faster. Transport over the length scale of the diffusiottion point. As we have shown that the interface shape de-
length (which is necessary to propagate the waievery  pends on velocity, neither of these definitions can claim su-
slow, which explains the behavior of the phase velocity.periority; however, the differences are small. We will adopt
When the interface velocity grows, the diffusion length de-the first definition, operationally the simplest one. Our inter-
creases, and the time necessary to equilibrate the fluctuatiofesce being defined on a lattice, we need an interpolation pro-
becomes comparable to the inverse frequency of the oscillasedure to determine this position for arbitrary time. A com-
tions: they are damped very rapidly. parison at equilibrium to the Gibbs method shows that a

To summarize, in the wake of the interface, we findsimple linear interpolation introduces rather large errors; the
damped oscillations of density and current which can havéest procedure seems to be a tanh interpolation, which gives
wavelengths considerably larger than the lattice constant, esto very good precision at high temperatures, to some per-
pecially for slow velocities, where, in addition, the decaycents atT=0.5T) the same results as the Gibbs method at
length becomes big. However, their amplitude is snfefl  equilibrium. We have plotted in Fig. 11 the interface velocity
order yeqitc), SO it should be difficult to observe such a phe-(the time derivative of the interface positjoduring several
nomenon experimentally. In addition, we do not know pre-cycles. We also have displayed the variations of chemical
cisely whether the mean-field approximation mimics cor-potential and of the current arriving at the interfgbaving
rectly the progressive filling of the atomic layers at low measured some sites in front of the interface positidime
temperatures, where such oscillations become stronger. periodic fluctuations are clearly visible. The amplitude of the
similar phenomenon has been reported in the context of kiescillations of the chemical potential is in good agreement
netic stochastic growth model®5,26. The authors ob- with the equilibrium valueu.. The “zero line” of the sine
served oscillations in the density of a growing aggregate, du&nction is shifted to a small positive value, but the symmet-
to the discrete lattice structure. Note, however, that theic points are still on lattice planes or half planes. Note the
physical context is different, because this work does not takehase relationship between chemical potential and veloci-
into account relaxation processes, so there is no diffusioty: the interface is fastest when the slope of the chemical
and the density variations are “frozen” once the interfacepotential curve is steepest. If we consider the surface tension
has passed. In addition, their system was not limited by dif{51), we see that it is in phase with the velocity, that is, the

dp/dt (107%w)




5334 MATHIS PLAPP AND JEAN-FRAN®IS GOUYET 55

oo 120 L
p1 [

100 |
80 |
60
40

20 |

0F

—8><10_6r“‘ [ P . [ L - 4 s
-20 -15 -10 -5 0 5 10 15 20
0 1 2 3 4x0(t)/a5

FIG. 11. Difference between instantaneous interface velocity FIG. 12. Linear part of the shape correctiqm, at T
and its meartsolid line), difference between instantaneous current=0.86T., as determined by simulatiorisymbol for velocities

some sites in front of the interface ajgl(dashed ling and chemi- =(0.668 07,1.3390,2.0129,2.6899,3.37810 ° and by the
cal potential at the interfac@otted ling versus the interface posi- continuum approximatiofisolid ling).

tion xq(t)/a, for T=0.73T, andj,=5x10"°. The chemical poten-
tial has been divided by 100 to show the three curves on the samgyt the direct result of the variational procedure discussed in
scale. The mean velocity is 6.830%; thus the relative amplitude Sec. IV.

of the oscillations is about 6%. In Fig. 13, we compare the results of the continuum ap-

proximation with numerical results for the solute trapping

interface is fastest at the points of highest surface tensiorcoefficientps . The results are very good for a large range of
This contradicts the somewhat naive assumption put forwargemperatures. Evidently, the continuum method cannot de-
in our previous papef21] that the interface should slow scribe the differences between tti0) and (11) directions.
down when it has to “climb” a hill of surface tension. Here However, these differences are small for high temperatures
we see that the dynamics is accurately described in terms e@ind decrease to 0 wheh—T,. Towards 0.5, the data
the chemical potential, whereas simple static considerationgoints for the(10) direction differ appreciably from the the-
lead to wrong interpretations. The slight phase differenceretical curve, whereas for tHa1) direction the agreement
between velocity and current is due to the fact that the curstays very good. This reflects once more the “more chaotic”
rent is measured some sites in front of the interface. nature of the(10) interface.

It is probably impossible to observe directly these fluctua- |n Fig. 14, we show¢; in function of temperature, divided

tions, because a definition of an interface position on arpy £(T). Near the critical temperaturé; can be well ap-
atomic scale and even more its measurement seem impogroximated by

sible. However, the oscillations of chemical potential and
current could be observable. Note, on the other hand, that we £=C&, (57)
have not taken into account thermal noise: in any “real”

SyStem it should deStroy the weak coherent oscillations at Where the coefficient was numerica”y determined toGe
small distance of the interface. =102.3. Unfortunately, reliable numerical values fgrare

VI. RESULTS pe CfT T
1 F

. . . -10 ¢
We will now summarize our main results and compare the 5

continuum approximation to the simulations. First, let us  -20
comment on the validity of our linearized ansé®5) and the :

quality of the continuum approximation. In Fig. 12, we show 0

a data collapse fof = 0.86T,, that is, we plot the difference 40 b B B
between stationary state and equilibrium profile as obtained ., £ 0728 | —12.157 | 12929 | —12.035 3
numerically, divided by the velocity. If the linear hypothesis i o s o 1
is true, all points should fall together. We see that this is €0 ¢ E

indeed the case. The slight differences for larger positive 70 b E
are traces of higher-order terms: fqy;>100 and v '
>10"°, vp; is no longer small enough for the linear ap-

.Bo:lwxwlwwlw)lwwwlwwl\]\I\\-

. ’ : ’ ’ I 0.5 0.6 0.7 0.8 0.9 1
proximation to be strictly valid. If we extrapolate in this T/T,
region the slope of the different curvesde=0, the agree-

ment with the valuem given by Eq.(38) is excellent. The FIG. 13. Plot of the “Solute trapping” coefficienp$ versus

solid line is the prediction of the continuum approximation. temperature. The solid line is the continuum approximation, sym-
All qualitative features of the shape correction are well re-hols are values of numerical simulations. Diamond&,0) direc-
produced, even if there are small differences in the interfacaion, circles, (11) direction. Inset: table with some numerical
We emphasize that this curve is not a fit to the data pointsalues ofp{ .
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FIG. 14. Plot of¢, /& versus temperature. The horizontal tan- o o
gent atT, shows that the asymptotic behavior &fis like £2. FIG. 15. Kinetic coefficieni3, versus temperature. Symbols as

in Fig. 13. Inset: table with some numerical values3gf.

Qiﬁicult to obta?n. As shown in Fig. 9, the region behi_nd the \where p2 is the concentration immediately ahead of the
interface in which the decay lengtcan be measured is 100 14ying interface. To get this concentration, we choose once
small to get a sufficient precision. To determifiefor (typi- 1516 the poinp=1 as definition of the interface position and
cal dlmen5|pnless Ve|OCIt!E§ of the order 10 we would extrapolate from the ramp profile. In the simulations, we
need a precision of four digits at least nFor higher tem- 5.6t take care of the oscillations in front of the advancing
peratures, above all in théll) direction, the situation iS iyierface. We fitted a straight line after every iteration step,
somewhat better than depicted in Fig. 9, because the eXpQutermined its intercept, and averaged over one period. Ex-
ner_mal decay region is larger; it p_erm|tted us to verify thatcept for low temperatures in th@0) direction, this proce-

¢, is of the correct order of magnitude. Hence we concludgyre gave satisfying results. After subtraction of the equilib-

that this approximation is a valuable tool to investigate interj,m concentration, the resulting concentrations were divided

face dynami'cs over alquite Iarge range Qf temperature, eve&,;, and extrapolation to =0 givesg,. In the continuum
if the condition£o>a is not strictly satisfiedat 0.5Tc, & approximation, it is sufficient to determine the asymptotic
~0.2%). _ N straight-line fitting top, in region IlI; its intercept au=0

p1 and¢, diverge when we approach the critical tempera-giyes directlyApg,. The results are plotted in Fig. 15. The
ture. This reflects the singular nature of this limit, which Wasagreement between simulations and continuum approxima-
already discussed in Sec. IV: the interface becomes veny,, is not as good as fop, but the overall shape of the

extended in space and the miscibility gap very small. Thus @,,re is well reproduced. The most prominent feature is a
very small current can cause large deformations of the inter,

» ; . "~'Change of sign of the kinetic coefficient: near the critical
face shape. At the critical temperature, the interface disapemperature, it becomes negative. This prediction of the con-

pears, so it is normal that there appear singularities in thg,,m approximatiorfline) is confirmed by the simulations
shap_e correction.” For temperatures lower than'Q,Sth_e (data points A negative 8, seems at first glance very
diffusion in the « phase becomes so slow that the lineargyange as usually the kinetic coefficient is associated with
regime is valid only for very small velocities. Here, we can guachment kinetics and hence a free-energy dissipation at the
attain very easily the nonlinear regime. In this limit, the in- interface, which has to be always positive. A look on the
terface is very sharp, nearly a step profile, and our mOdezlmaIytic expressions can help us further. In region lll, the

becomes rather similar to the phenomenological model fogq rectionh(u) in Eq. (39) falls off to zero very rapidly. We
solute trapping proposed by Azj8]. In this model, growth need only consider the asymptotegtu). Using its explicit

Fakes place by actlvqted Jumps Of. atoms throug(sh?arp .expression, we find for its intercept:
interface. It would be interesting to investigate more in detalil

this limit. To summarize, we have a region approximately

between 0.5, and 0.9, which is described correctly by go=2mé&eAp
the linear continuum approximation. In this region, the inter-

face becomes more “rigid” when the temperature goeswherem is given by Eq.(38). This term is always positive
down, that is, one needs a stronger driving force to causgnd diverges fof — T.. But we have also to take care of the
appreciable deformations of the interface profile. constant term in Eq(39): the whole profile is shifted by

Once the two parameters; and &; are determined, we p$. With definition (58), B, is given by
can obtain other quantities of interest. The kinetic coefficient

Bo used in the dynamical extension of the Gibbs-Thomson Jot P7
condition valid to linear order i is defined by the relation 0" Ap =2mé&o

(59

Tc
T 1-ap)

c <hy

s 8 Now, p7 is negative and diverges nedr. So the kinetic
Pint ™ Peq ) coefficient is the sum of two divergent terms of different

Ap = Bov, (58 sign, and the negative sign wins near the critical temperature.
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This explains in part the distance between data points and 0.08
prediction in Fig. 15: small errors ip7 can produce large M;
relative errors inBy. This leads to stronger differences be-
tween the two directions; however, the form of g curve i
is quite the same. 0.05 L
Physically speaking, we have a connection between solute oo [
trapping and the kinetic concentration shift. The chemical E
potential behind the interface is always lowered by the solute
trapping effect. For low temperatures, this is compensated by 0.02 [
the chemical potential difference through the interface, lead- g
ing to a positive chemical potential in front of the interface
and a positiveB,. Near the critical temperature, the solute
trapping effect becomes so strong that this compensation is
no longer fully possible: the chemical potentiahd hence
the concentrationis lowered even in front of the interface, kG, 16. Interface mobilityM, versus temperature. Symbols as
leading to a negativ@,. But the chemical potential differ- jn Fig. 13.
ence across the interface stays positive, leading to a positive
free-energy dissipation. In the conventional equations of
dendritic growth, diffusion and solute trapping in the solid

are usually neglected: thep, is always positive. Notice where |, is the current crossing the interface, and fhe

also that the sign change takes place only quite near thgre the concentrations in the and @ phase immediately
“pathological” limit T—T,.

- . L ) adjacent to the interface. In our case, mass conservation is
Further insight can be gained considering the interfacg ;aranteed by Eq32). Using this equation with the extrapo-
mobility. It is defined by lated concentration in thg phase,p§q+'5ApBO, we obtain

0.07 |

0.03 [

0.01 [

jint= — W0 (P— P2, (64)

= M A , 61 - . ~ o ~ a ~

v 1SH 61 Jint:J(O):_Wov(peq_l—vpl_pgq_vAp:BO)

where Au is the chemical potential difference between the _ ~ 5 Xeq

two sides of the interface. This relation describes the resis- =—WuAp+wou M. (65)
tance of an interface against the driving force, resulting from !

incorporgtion kinetics. Using once more the twp straight I?neThis is the first-order correction to the zeroth-order expres-
asymptotics ofy(u), we can calculate the chemical potential i 7 — _\y 5'Ap, which corresponds to an advancing inter-
difference as extrapolated to a sharp interface. Is is evidently, .o "in ocal equilibrium.

linear inv, and the proportionality constant is
VII. CONCLUSION
aMIoc(pgq)

M= N 1 ' (62) We have calculated stationary interface shapes starting
2Wo(AP)“Eo| T+ 1-Ap from an isothermal lattice gas model. Despite its simplicity,
this model displays several phenomena observed in experi-

always positive. This expression can be obtained in anothdP'€Nts, as solute trapping and a kinetic shift of local equilib-

way by the following considerations. The chemical poten-um at the interface. Using a continuum approximation, we
tials on the two sides of the interfaces arép®.+op%) and can calculate the corresponding coefficients to linear order in
eq 1

B~ . : o . ___the velocity, starting from the microscopic interaction be-
m(psHvApBo), respectively. Linearizing these expressions . : T :
inv Iqeads to the following relations between the linear coef-tween the partlcle_s. This approximation involves a varia-
ficients: tional procedure W|th respect to two parametgrs that are re-

: lated to solute trapping and to the interface thickness, which
is a function of velocity. Comparison to simulations showed
M= xea _ Xeq (63 that this approximation is valid over a wide range of tem-
ApBo—pPi 9o perature. It gives the concentration of the growing phase and
the concentration ahead of the growing front. This allows us
This shows the connection between the three coefficients: Ito establish a relation between interface velocity and the cur-
Fig. 16, we plot the theoretical predicti¢62) (full line) and  rent crossing the interface.
simulation data, using our values pf and ¢, and the for- We found that solute trapping and the kinetic concentra-
mula (63). The agreement is very good; slight scattering attion shift are related in this linearized theory, leading to a
high temperatures comes from the fact that higher-ordechange of sign in the kinetic coefficient near the critical tem-
terms inv are increasing, and the extrapolation féy be-  perature. Solute trapping and kinetic coefficient are related to
comes less accurate. The anisotropy between the two direthe interface mobility by relatio63). It would be interest-
tions is small. ing to verify this relation experimentally.
Let us finally discuss the relation between interface veloc- With the (relative exception of the kinetic coefficient
ity and the current crossing the interface. In a sharp interfacg,, the agreement between simulations and continuum
model, mass conservation implies theory is very good. This approach does not allow us to
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predict the anisotropy of the coefficients. It was found to beinitial model is not restrictive: the methods we have pre-

small, once again with exception @, in a certain range of sented are flexible enough to be applied to lattice gases with
temperatures. Near the critical temperature, all coefficientenore complex interactions, thus opening the way to investi-
diverge, showing the pathological nature of this limit, in gate the relation between microscopic interactions and mac-
which a well-defined interface ceases to exist. roscopic interface kinetics.

Furthermore, we have shown that oscillations of growth It would be interesting to obtain similar results in a true
velocity and chemical potential occur due to the discrete nastochastic model, or improve on the simple mean-field theory
ture of the mode(existence of a crystalline structure, or of a using more sophisticated schemes to devise an equation of
host latticeé and the coupling between interface and diffusionmotion, as the path-probability meth¢82] or a lattice ver-
field. There also exist damped density waves in the wake a$ion of density-functional theory33]. This is in progress.
the interface. Such oscillations seem to be a general feature
of mean-field-like growth models. Neither of these effects
should be simple to observe in a real experiment, because of
the small amplitude of the oscillations and the presence of We would like to thank W. Dieterich, V. Fleury, T. Go-
thermal noise. bron, and J. C. Nedelec for many valuable discussions. One

Starting from a microscopic model, we have achieved af us(M.P.) was supported by a grant from the Ministedle
complete understanding of the dynamics of a planar interfackEnseignement Supiur et de la Recherch®IESR). Lab-
in a mean-field approximation, going beyond the known pheoratoire de Physique de la Matie Condense is Unite de
nomenological and mesoscopic theories, which do noRecherche Assoaie(URA) 1254 to the Centre National de
specify detailed microscopic dynamics. The choice of thda Recherche ScientifiqUENRS.
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