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Interface dynamics in a mean-field lattice gas model: Solute trapping, kinetic coefficient,
and interface mobility

Mathis Plapp* and Jean-Franc¸ois Gouyet†

Laboratoire de Physique de la Matie`re Condense´e, Ecole Polytechnique, 91128 Palaiseau, France
~Received 16 September 1996!

In a recent paper we showed that we can obtain dendritic growth in a mean-field lattice gas model. The
equation of motion, derived from a local master equation, is a generalized Cahn-Hilliard equation. In the
present paper, we study the isothermal dynamics of planar interfaces in this model. Stationary interface states
advancing with constant velocity are investigated. We present numerical results as well as a continuum
approximation that gives an analytic expression for the shape correction in the limit of small interface veloci-
ties. We observe departure from local equilibrium at the interface and solute trapping. The associated kinetic
coefficients are calculated. The two effects are found to be related. We finally give an expression for the
interface mobility and derive a relation between this mobility and the kinetic coefficients. Furthermore, we
show that there occur oscillations of the growth velocity and density waves in the two bulk phases during the
advance of the interface. This is related to the discrete dynamics using the theory of area-preserving maps as
proposed by Pandit and Wortis.@S1063-651X~97!11305-8#

PACS number~s!: 05.70.Ln, 68.35.Fx, 05.50.1q, 82.65.Dp
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I. INTRODUCTION

The study of moving interfaces is an old subject. The fi
in which most of the interesting questions first arose is m
allurgy, where the microstructure of materials is greatly
fluenced by the domain growth processes during their fa
cation. Two well-known and extensively studied proces
where interface dynamics is crucial are spinodal decomp
tion ~phase separation! and dendritic growth. The classi
models are phenomenological continuum models:
Cahn-Hilliard equation@1# for phase separation, and diffu
sion equations assorted with a Gibbs-Thomson bound
condition at the interface for dendritic growth@2–5#. In the
latter approach, the interface is modeled by a sharp surfac~a
line in two dimensions!, and we have to specify the bounda
conditions at this surface as functions of its curvature a
velocity.

The motion of two-phase interfaces can be controlled
diffusion or by growth kinetics. In the first case, the interfa
is in local thermodynamic equilibrium, and growth is entire
limited by diffusion: heat or material has to diffuse throu
the bulk phases to allow the phase transformation to proc
The limiting step in the second case is the flow of mate
across the interface: if the time necessary for a particle
be incorporated in the growing phase is much larger than
characteristic diffusion time scale, temperature and so
concentration are nearly constant in the bulk phases, and
interface velocity is determined by the incorporation kin
ics. The reality is situated almost always somewhere betw
these two extremes. Often, the kinetic effects are small. T
leads to a small modification of the local equilibrium at t
advancing interface. For example, in dendritic growth, it h
been recognized that to account for the obtained gro
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shapes, one often has to generalize the local equilibrium c
dition at the interface~Gibbs-Thomson condition! by inclu-
sion of a velocity-dependent term@6#.

Another phenomenon related to the finite kinetic tim
scale is the so-called ‘‘solute trapping’’ effect, observed d
ing rapid solidification in alloys@7–11#: the solute atoms
cannot escape fast enough from the advancing front and
incorporated into the growing solid even if this increas
their chemical potential. This leads to a concentration of
growing solid that is different from the equilibrium one. I
this case, the departure from local equilibrium may be i
portant, and the linear approximation that is currently used
dendritic growth is limited to small growth velocities.

There have been numerous attempts to describe interfa
dynamics in continuum theories. The problem of a pur
diffusion-controlled interface is known as the Stefan pro
lem, and there is a huge body of literature@12#. Langer and
Sekerka used the Cahn-Hilliard equation to calculate the
viations from the equilibrium interface shape@13#. Their
method needs as input the atomic mobility as a function
the concentration. More recent approaches include ph
field methods that use a~mesoscopic! local thermodynamic
description and couple a local-order parameter to a diffus
field @11,14–17#. It would be interesting to establish the co
nection between such macroscopic methods and microsc
dynamical models. In statistical mechanics, a great dea
attention has been paid to the dynamics of model system
the kinetic Ising model@18,19#. However, in their original
version these models are~for the moment! still too difficult
because of their probabilistic nature, and exact solutions
known only for some special cases.

We want to present here a microscopic model that d
plays some of the features described above. It is based
mean-field method recently developed by one of the auth
@20#. From a master equation of a stochastic lattice gas,
can derive a system of coupled nonlinear differential eq
tions, which takes the form of a generalized Cahn-Hillia
equation. This procedure gives an explicit expression for
5321 © 1997 The American Physical Society
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5322 55MATHIS PLAPP AND JEAN-FRANÇOIS GOUYET
atomic mobility, in contrast to the standard Cahn-Hillia
equation, where the mobility is usually taken constant. O
equations are discrete, but they are not merely a discre
tion of the continuous Cahn-Hilliard equation: the under
ing lattice gas model establishes a connection to real cry
lattices, say, in an alloy. This motivates the choice of
transition rates. We choose activated jump processes, lea
to an Arrhenius behavior as generally observed in meta
compounds. Thus our model could be a highly simplifi
description of a binary alloy. However, its present version
isothermal, so it can only describe processes in alloys wh
the chemical diffusion is the rate-limiting step and therm
diffusion is fast enough to assure thermal equilibrium. W
have shown in a recent paper@21# that this model exhibits
dendritic growth, and calculated the orientation-depend
surface tension. Here, we will analyze more in detail
dynamics of planar interfaces.

We investigate stationary interfaces, moving with co
stant velocity, driven by a constant interdiffusion current f
into the system. This models interface motion during la
stage growth, when the local interface velocity varies v
slowly, and the incoming currents are determined by the
lution of the long-range diffusion problem. Numerical sim
lations show that the shape of the interface is modified by
motion. Our model displays the kinetic shift of local equili
rium and an effect that is analogous to solute trapping du
solidification. Using a continuum approximation, we can c
culate the correction to the equilibrium interface profile
linear order in the interface velocity. This shows a very go
agreement with the simulations. The solute trapping effec
governed by the kinetics of particles traversing the interfa
as it should. We have access to various interesting quant
For example, we can show that a chemical potential d
develops at the interface, which corresponds to energy d
pation at the interface during incorporation of new mater
For small velocity, the height of this potential step is prop
tional to the velocity, and the proportionality constant defin
an interface mobility, which we can calculate. We also ha
access to the kinetic coefficient needed in the Gib
Thomson condition.

Coming back to the original, discrete model we then
vestigate whether the continuum approximation is a go
description. The discreteness of the equations causes v
tions of the chemical potential at the interface during its
vance, which can be understood using the theory of a
preserving maps developed by Pandit and Wortis@22#. This
leads also to variations of the surface energy. The main
fects are growth velocity oscillations with the periodicity
the lattice, and damped density waves behind the interf
whose wavelength can be considerably larger than the la
spacing. However, the amplitude of these oscillations is v
small, and they do not modify substantially the values for
kinetic coefficients obtained in the continuum approxim
tion, which therefore is a valid approach. Variations in phy
cal quantities during interface motion due to lattice effe
are known to occur in epitaxial growth@23,24#, and density
oscillations have been reported in some discrete gro
models@25–27#. However, in our case the connection to l
cal thermodynamics is particularly straightforward.

In Sec. II, we will describe the model. After a short pr
sentation of our simulations in Sec. III, we discuss in Sec.
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the continuum approximation and use it to calculate the fi
order shape correction to the equilibrium interface shape
Sec. V, we investigate in more detail the discrete system
the growth velocity oscillations. Section VI contains the r
sults for the kinetic coefficients describing the interface m
tion, together with comparisons to simulations. Section V
is devoted to a summary and discussion.

II. THE MODEL

This model has been presented in some detail in@21#, and
we will give here only a very brief summary. As we want
apply our results to the complete two-dimensional model,
will study planar interfaces on a square lattice. Evidently,
a planar interface, a one-dimensional description is su
cient; however, as we shall see, there are slight differen
between dynamics in different directions, and therefore i
useful to keep in mind that there is an underlying tw
dimensional lattice.

Consider a square lattice ofN sites in two dimensions
~coordination numberz54!. Let ni denote the occupation
number of sitei : ni51 if a particle is present, 0 otherwise
With an attractive nearest-neighbor interaction, the Ham
tonian is

H52«(
^ i , j &

ninj2m0(
i51

N

ni , ~1!

where« is the interaction energy~attractive:«.0!, m0 is an
external chemical potential, and the first sum goes over
nearest-neighbor pairs. Clearly, this is completely equiva
to the Ising model. Besides, this is only another form of t
Hamiltonian of a binary alloy, if we think of a particle~hole!
as an atom of typeA (B).

To define the dynamics, we assume that particles
move only by nearest-neighbor hops. In the alloy pictu
this corresponds to a simple exchange mechanism. The
tem is in contact with a heat bath: temperature is const
and energy is not conserved. Particles can be introduce
taken out only at the boundaries. The transition rate fo
particle jumping from sitei to sitek is given by

wik~$n%!5w0expS «

kT (
a
n11aD . ~2!

w0 is the bare jump frequency~or the jump rate of anA atom
in aB environment in the alloy picture!, and sets the overal
time scale. Here and in the following,a will denote a lattice
unit vector, and summation overameans summation over a
nearest neighbors. This choice of transition rates correspo
to an activated process and displays the Arrhenius beha
that is common in metallic diffusion. The lattice points a
located at the equilibrium positions of atoms in a crys
structure. Then an atom is trapped at its site in a poten
well whose depth depends on the local energy landscape
assume that the saddle points between the wells are
constant energy; then the depth of a potential well is equa
the energy necessary to take away an atom from its site,
is, the sum of its binding energies.

Expression~2! differs from the usual Metropolis rule
where the transition rate is proportional to exp(2DH/2kT)
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55 5323INTERFACE DYNAMICS IN A MEAN-FIELD LATTICE . . .
with DH being the energy difference between initial a
final state. This corresponds to a process without activa
barrier. In our model, the transition rate depends only on
initial state. Since our transition rates satisfy detailed b
ance, the equilibrium distribution is the same. But contrary
the widely used Kawasaki exchange dynamics@28#, where
the dynamics is invariant under a global spin-flip, we have
asymmetry between particles and holes: an atom surroun
by attractive neighbors will stay in its place much long
than a hole surrounded by other holes.

Writing a local master equation, and making a mean-fi
approximation~see@20,21# for more details!, we arrive at the
following equation of motion:

]pi
]t

52w0(
k

H pi~12pk!expS 2k(
a
pi1aD

2pk~12pi !expS 2k(
a
pk1aD J . ~3!

Here, the occupation probabilitiespi ~which can be inter-
preted as concentrations as well! are continuous variable
between 0 and 1, andk5«/kT. The terms on the right-han
side are currents resulting from jumps of particles from s
i to a neighboring site~first terms! or the inverse~second
terms!. Indeed, it is a conservation equation for the parti
concentration,

]

]t
pi52(

k
j ik , ~4!

where j ik denotes the particle current in the linkik. The
currents can be rewritten in the form of generalized transp
equations,

j ik52Mik~mk2m i !, ~5a!

j ik52Dik~pk2pi !, ~5b!

with a generalized mobility

Mik5w0~12pk!~12pi !e
2z«/2kT

emk /kT2em i /kT

mk2m i
~6!

and a generalized diffusion coefficient

Dik5w0~12pk!~12pi !e
2z«/2kT

emk /kT2em i /kT

pk2pi
. ~7!

Here, we have defined the local chemical potential as

mk52«(
a

~pk1a2pk!2z«~pk2
1
2 !1kT ln

pk
12pk

~8!

~z is the coordination number of the lattice!. In the first term
we recognize a discrete Laplacian: this chemical poten
takes into account local curvature of the concentration p
file, a natural extension as already noticed by Cahn@29#. We
have fixed in Eq.~8! the constantm0 in the Hamiltonian~1!
~which is arbitrary for a fixed number of particles! to m0
5z«/2 in order to make the chemical potential antisymm
n
e
l-
o

n
ed
r

d

e

rt

al
-

-

ric with respect to the interchange of particles and hol
This gives rise to the factors exp(2z«/2kT) in Eqs. ~6! and
~7!.

The mobility and diffusion coefficient both include de
pendence on concentration as well as gradient and curva
terms. The connection with the well-known field-theore
models@30# can be established by setting

mk5
]F~$p%!

]pk
, ~9!

F($p%) being a lattice version of a free-energy functional

F~$p%!5(
k

S f ~pk!1
«

4 (
a

~pk1a2pk!
2D ~10!

with a local potential

f ~p!52
z«

2
~p2 1

2 !21kT@p lnp1~12p!ln~12p!#.

~11!

This is a discrete analog of a continuous functional of
Ginzburg-Landau type, with« playing the role of a gradien
energy:

F5E S f ~p!1
«a2

2
~¹p!2DdV. ~12!

Using these identities and the expressions~5!, the equation
of motion can be rewritten as a generalized Cahn-Hillia
equation, or alternatively as a nonlinear diffusion equati
The structure of the free-energy function can be obtain
simply by discretizing a continuous functional; however, t
expressions for mobility and diffusion coefficients are in
mately connected to the underlying jump process. Remem
that Eq.~3! describes indeed a system moving towards eq
librium: calculating the total time derivative of the free e
ergy, we find

dF

dt
52

1

2 (
i ,k

M ik~mk2m i !
2. ~13!

SinceMik is always positive, the free energy can only d
crease, and the stationary states satisfymk[m5const.

Below the critical temperaturekTc5z«/4, the potential
f has a double-well structure with two minima, symmet
with respect to12, peq

a andpeq
b . Here and in the following,a

will denote the dense~‘‘ A-rich’’ !, b the dilute ~‘‘ B-rich’’ !
phase. NearTc , the potential can be closely approximated
a quartic polynomial. For lower temperatures, higher-or
terms become more important. The two potential wells
come very sharp and are located very close to 0 and 1.
phase diagram is depicted in Fig. 1. The order paramete
the miscibility gapDp(T)5peq

a (T)2peq
b (T). The transition

is first order except at the pointp5 1
2, which corresponds to

zero magnetic field in the Ising model.
This is exactly equivalent to the mean-field phase diagr

of the Ising model. So, statics are completely symmetric w
respect to the interchange of particles and holes. But dyn
ics are not. If in the expressions~6! and~7! for mobility and
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5324 55MATHIS PLAPP AND JEAN-FRANÇOIS GOUYET
diffusion coefficient we take the limit of homogeneous sy
tems~pi→p for all i ! and use expression~8!, we find

Mhom~p!5w0

p~12p!

kT
exp~2kzp! ~14!

for the mobility and, using the chain rule,

Dhom~p!5w0@12kzp~12p!#exp~2kzp! ~15!

for the diffusion coefficient. Notice that these quantities a
still defined on the bonds of the lattice. To give them t
usual dimensions of the continuum equivalents, that
length squared over time, one has to multiply them by
square of the jump length,a2. Taking advantage of the sym
metry of the two equilibrium concentrations, we have

Dhom~peq
a !

Dhom~peq
b !

5exp~2kzDp!, ~16!

where the miscibility gapDp is a function of temperature
We see that near the critical temperature this ratio
proaches unity, whereas for low temperatures, the diffus
in the dense phase is very much slower than in the di
phase, which is the situation found in solidification.

FIG. 1. Local free energyf as a function ofp for a temperature
T,Tc and the mean-field phase diagram of a simple binary m
ture: the two equilibrium concentrationspeq

a andpeq
b are located at

the minima off . The regions in light gray are unstable; dark gr
corresponds to metastable states.
-

e

,
e

-
n
te

For planar interfaces, the system of equations~3! can be
simplified. When the interface is oriented normal to the~10!-
or ~11!-symmetry directions, we can reduce it to a quasi-o
dimensional set of equations for points on a line. Then e
concentrationpk represents a whole layer of lattice sites a
the indices are integers, proportional to the normal coo
nate. For the~10! direction the reduced version of Eq.~3!
reads

dpk
dt

5w0(
j

$pk~12pj !exp@k~pk2112pk1pk11!#

2pj~12pk!exp@k~pj2112pj1pj11!#%, ~17a!

whereas for the~11! direction it is

dpk
dt

5w0(
j

$2pk~12pj !exp@2k~pk211pk11!#

22pj~12pk!exp@2k~pj211pj11!#%. ~17b!

In the second case, there are two bonds connecting a si
the neighboring layer. In both cases,j takes the valuesk
21 andk11 in the sum. The distance between two succ
sive layers isa in the ~10! direction anda/& in the ~11!
direction.

III. SIMULATIONS

To investigate Eqs.~17!, we integrated them numericall
for various temperatures, initial conditions, and system si
L. We used a simple Euler algorithm with variable time st
to allow for initial conditions far from equilibrium. The cal
culation speed is limited by a numerical instability occurri
in the low-density phase, where diffusion is fastest. The lim
on the time step can be calculated by linear stability analy
We used a maximal time step near this threshold. Con
runs with smaller time step gave the same results.

We initialized the system with an interface, thea phase
being to the left. The system was closed at this side: ak
50, we imposed a zero flux boundary condition. To calc
late the current from site 0 to site 1, we need the value
p at location21. We chose ‘‘mirror’’ boundary conditions
that is p215p0 . So we can imagine the system to be o
half of a one-dimensional droplet~or a two-dimensional
slice! growing symmetrically. Atx5L, we fixed the current
to some valuej 0 . To obtain a stationary state, we perform
simulations in a moving frame: once the interface reach
a fixed position, the whole configuration was set back by o
lattice step. Under these conditions, we observed that
system converged to a stationary state, independent on
initial condition ~as long as there is an interface at the beg
ning!. The interface profile and velocity depend only on te
perature and the injected current.

A typical stationary interface state is depicted in Fig. 2.
nonconserved systems the two-phase front may propaga
simple displacement, and to first order in the velocity t
form of the moving front is the same as at equilibrium.
systems with global mass conservation, this growth mod
forbidden. New material has to be brought to the interface
diffusive transport. We can roughly distinguish three diffe
ent regions~Fig. 2!: behind the moving front~region I!, a

-
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55 5325INTERFACE DYNAMICS IN A MEAN-FIELD LATTICE . . .
plateau at concentrationp`
a develops.p`

a is a function of the
velocity and always smaller than the equilibrium concent
tion of the dense phase,peq

a . This is an effect analogous t
solute trapping in solidification. Here, we have not strictly
liquid-solid transition, because entropy and internal ene
are the same in the two phases~no latent heat associated wit
the transition!. However, the process is exactly analogo
to solidification: the growinga phase ‘‘traps’’ holes that
cannot escape fast enough through the advancing inter
This is a purely dynamic effect. The chemical potential
the trapped species~here, holes orB atoms! is increased. The
growing phase is not at its equilibrium concentration a
hence not stable. If the external driving force was turned
the system would relax to the equilibrium state by~slow!
diffusion of holes through thea phase. For small velocitie
and temperatures close toTc , the resulting concentration
p`

a is a linear function of the velocity. At low temperature
and high velocities,p`

a(v) becomes highly nonlinear due t
the slow dynamics in thea phase.

Region II is the interface itself, which conserves a stru
ture close to the equilibrium state when the velocity is sm
Ahead of the moving interface~region III!, we find a
‘‘ramp’’ profile that can be approximated by a straight lin
sufficiently far from the interface. However, this is true on
for small system sizes. The stationary solution of the dif
sion equation in a frame moving with velocityv is an expo-
nential with decay lengthl D5D/v; this looks like a straight
line on a length scale much smaller thanl D . In our simula-
tions, typical values are~in terms of the lattice constanta
and the bare jump ratew0! D'1 and v'1025, giving a
diffusion length of the order 105. The approximation of the
ramp profile by a straight line is therefore valid for syste
sizesL which satisfyj!L! l D , wherej is the characteristic
interface thickness. For our simulations, we usedL580 in
the ~10! direction andL5100 in the~11! direction.

To compare our findings with the phenomenologic
sharp-interface models, we have to extract the boundary
ditions of the latter from extrapolation of the concentrati
profiles in the bulk phases to a hypothetical sharp divid
surface, which has to be conveniently defined~see the dis-
cussion at the end of Sec. V!. The intercept of the ramp
profile at this sharp interface position,pint

b , is a function of

FIG. 2. Stationary interface shape forT50.86Tc and dimen-
sionless velocityṽ5v/aw051023, obtained from the continuum
treatment described in Sec. IV~u is in units ofa!. The equilibrium
profile is also shown~broken line!.
-

y

s

ce.
f

d
f,

-
l.

-

l
n-

g

the interface velocity. The linear term of this function giv
the kinetic coefficientb0 , currently used in the dynamica
extension of the Gibbs-Thomson boundary condition.

The interface velocity we obtain for a fixed current d
pends on the system size, or more precisely on the dista
between the interface and the point where the current is
jected. On the other hand, when we compare interface
files at equal velocity for different system sizes, they a
identical. This is a consequence of mass conservation: f
continuous stationary state, the quantityj2vp/a is constant
throughout the interface; this is still approximately true f
our discrete model. In region III,p depends on the distanc
from the interface, and if we fix the same current at tw
different points, we will obtain different velocities.

Therefore, we choose as variable for all our subsequ
developments the dimensionless interface velocity,ṽ
5v/(aw0), which determines the shape of the stationa
state, independent on system size. We are limited to sm
velocities by the phase diagram of our model: the conc
tration in region III may not be greater than the stability lim
given by the spinodal curve~see Fig. 1!. In other words, the
supersaturation of theb phase is restricted to small value
The dimensionless velocities we could obtain in our simu
tions vary between 1025 and 1023, in function of tempera-
ture. For very low temperatures and close toTc , only very
small velocities are possible. Notice, however, that ‘‘sma
is stated in terms ofaw0 . Sincew0 may take values betwee
108 and 1013 Hz, depending on the host lattice and tempe
ture, considerable macroscopic velocities may be attain
Interesting quantities to determine are the concentra
value far behind the interfacep`

a , and the interceptpint
b as

functions ofṽ. These data are the principal test for our an
lytical developments. The numerical results will be discuss
in Sec. VI in direct comparison with our analytic expre
sions.

IV. CONTINUUM APPROXIMATION

A. Equilibrium state

The equilibrium states are given bym5const. As we shall
see in Sec. V, the mathematics of discrete systems is m
more intricate than for the continuum. As a first step,
therefore will analyze the continuum approximation. O
verifies easily that in the continuum limit the two equatio
~17a! and~17b! become the same, as expected: we lose
effect of lattice anisotropy. We will immediately specializ
to the case of a planar interface, and we will denote byx the
normal coordinate. Then, the chemical potential can be c
sen equal to 0 by symmetry. We replace the discrete der
tives ~finite differences! by a3]/]x, wherea is the lattice
constant. Then Eq.~8! for the chemical potential becomes

2«a2
]2p~x!

]x2
1 f 8„p~x!…[0. ~18!

f 8 denotes the derivative off (p) @Eq. ~11!# with respect to
p and is the local part of the chemical potential. To discu
the validity of this procedure, we remark that a characteris
length scale of the interface solution to this equation can



nt
a

a

e

m
b

r-
n
w
sio
W

t

er

of

ffi
th

ad
ul
ar

r-
e
u-

f-

e
n

nt

al

ent

ion

im-

ian

the
c-

n

5326 55MATHIS PLAPP AND JEAN-FRANÇOIS GOUYET
obtained by linearizing it around one of its stable fixed poi
peq

a or peq
b . The asymptotics are exponentials with a dec

length

j05aA«xeq, ~19!

where the susceptibilityx(p) is defined as

x~p!5
1

f 9~p!
5

p~12p!

kT2z«p~12p!
, ~20!

andxeq5x(peq). If j0 is much larger thana, the committed
error due to the continuum approximation should be sm
For T tending to the critical temperature,j0 diverges with
power 12, as expected for a mean-field correlation length. W
thus can expect that Eq.~18! is a good description near th
critical temperature.

It is known that for a quartic potentialf (p), Eq. ~18! is
solved by the hyperbolic tangent. In our case,f contains
terms of all orders. If we truncate at the fourth-order ter
we get a good description of the central interface region,
we do not recover the right limit values~the bulk equilibrium
concentrations! at infinity. On the other hand, a pure hype
bolic tangent profile connecting the bulk equilibrium conce
trations is not correct in the interfacial region. We can, ho
ever, approximate the exact solution to any desired preci
by an expansion in powers of the hyperbolic tangent.
pose

p0~x!5
1

2
2Fc1tanhS x

2j0
D1c3tanh

3S x

2j0
D

1c5tanh
5S x

2j0
D1••• G , ~21!

where j0 is defined by Eq.~19!: this assures the correc
exponential decay. If we expand the potentialf (p) given by
Eq. ~11! up to order 2n in p and equate the tanh terms ord
by order~up to order 2n21!, we getn21 equations among
the coefficients, which allows us to express all in function
say, c1 . Then we use the boundary condition,p0(2`)
2p0(1`)5Dp, to obtain

(
m51

n

c2m215Dp/2. ~22!

This gives a polynomial equation forc1 , which we solve
numerically. As expected, for high temperatures all coe
cients besides the first are very small. We will use in
following only the lowest-order approximation,

p0~x!5
1

2
2

Dp

2
tanhS x

2j0
D , ~23!

representing an interface between thea phase at2` and the
b phase at1`.

B. Stationary states

We now want to calculate the shape of an interface
vancing at constant velocity. An exact solution of the f
nonlinear equations is out of reach; we therefore will line
s
y

ll.

e

,
ut

-
-
n
e

,

-
e

-
l
-

ize the problem around the equilibrium solution. Furthe
more, in the continuum limit we can somewhat simplify th
equations. Let us for a moment return to the discrete form
lation and examine more closely the mobility~6!.

If m50 in all the system~equilibrium state!, Eq. ~6! sim-
plifies to

Mik5w0

~12pk!~12pi !

kT
e2z«/2kT, ~24!

which can be rewritten as

Mik5w0e
2z«/2kT

~12pi !
2

kT S 12
pk2pi
12pi

D . ~25!

Near equilibrium, the chemical potential is only slightly di
ferent from 0; analyzing the expression of the current~5a!,
we see that to first order ina the above expression for th
mobility is sufficient. If we inject this in the conservatio
equation~4!, we find to first order

]pi
]t

5w0e
2z«/2kT

~12pi !
2

kT F(
a

~m i1a2m i !

2
1

12pi
(
a

~m i1a2m i !~pi1a2pi !G , ~26!

where sum overa means summation over all links adjace
to i . If we now again use the continuum approximation~mo-
mentarily, we come back here to the full two-dimension
treatment!, this can be rewritten in a simpler form:

]p~xW ,t !

]t
5w0e

2z«/2kT
@12p~xW ,t !#2

kT

3Fa2Dm2
2a2

12p~xW ,t !
grad m •grad pG ,

~27!

whereD is the Laplacian operator. Another rearrangem
gives

]p~xW ,t !

]t
5a2div@M loc„p~xW ,t !…gradm#, ~28!

which has exactly the structure of a Cahn-Hilliard equat
with a local mobility

M loc~p!5w0

e2z«/2kT

kT
~12p!2 ~29!

depending only on the local concentration. This result is s
ply the continuum limit of Eq.~6! for m50. On the contrary,
if we consider homogeneous states, for which the Laplac
is 0, we find the homogeneous mobility~14!. As could have
been expected, near equilibrium the curvature effects in
mobility can be neglected, leading to a local mobility fun
tion instead of the complete expression~6! that has to be
used far from equilibrium. In addition, this mobility functio
is a simple polynomial inp @the exponential term of Eq.~14!
is absent#, which simplifies our analytic treatments.

For a planar interface with normal coordinatex, the equa-
tion of motion takes the form
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]p~x,t !

]t
5a2

d

dx SM loc„p~x,t !…
dm~x,t !

dx D . ~30!

We search stationary states, that is, solutions of this equa
that propagate with constant velocityv. Such solutions de-
pend onx and t only through the combinationu5x2vt.
The equation transformed in this moving frame reads

2v
dp~u!

du
5a2

d

du SM loc„p~u!…
dm~u!

du D . ~31!

This equation can be integrated once to furnish the relat

j ~u!5
v
a

@p~u!2p`
a# ~32!

~remember thatj52Madm/dx!. This is nothing else than
the expression for mass conservation in the mov
frame: the left-hand side is the interdiffusion current, t
right-hand side represents the current crossing the inter
because of its advance. Integrating this equation once m
we obtain

m~u!5m~2`!2
v
a E

2`

u p~u8!2p`
a

M loc„p~u8!…

du8

a
. ~33!

Using the continuum expression~18! for m, we obtain an
integro-differential equation forp(u):

2«a2p9~u!2
] f

]p
„p~u!…1

] f

]p
~p`

a !

1
v
a E

2`

u p~u8!2p`
a

M loc„p~u8!…

du8

a
50. ~34!

Equivalent expressions have already been obtained
Langer and Sekerka@13#. We emphasize once more that th
expression will be valid only not too far from equilibrium
since we use the ‘‘local’’ expression~29! for the mobility.

We are interested in the shape correction to the equ
rium interface for small velocities and with the bounda
condition j (2`)50 ~no current in thea phase!. We will
assume that this correction is linear in the velocity and m
the ansatz

p~u!5p0~u!1 ṽp1~u!, ~35!

wherep0(u) is the equilibrium solution, andṽ5v/(aw0) is
the dimensionless interface velocity. Far behind the interf
the concentration is constant, deviating from the equilibri
concentration by an amount proportional to the velocity. T
means thatp1(u) tends to a constant valuep1

a for u→2`.
The linearized equation for the first order inṽ becomes

«a2p19~u!1
p1~u!

x„p0~u!…
2

p1
a

xeq
1n~u!50, ~36!

wherex is given by Eq.~20! and we have definedn(u) by

n~u!5E
2`

u w0@peq
a 2p0~u8!#

M loc„p0~u8!…

du8

a
. ~37!
on

n

g

ce
re,

by

-

e

e

s

Without the last two terms, Eq.~36! would be an eigenvalue
problem completely analogous to a one-dimensional Sch¨-
dinger equation. The ‘‘potential’’ 1/x@p0(u)#5 f 9@p0(u)#
and the termn(u) are depicted in Fig. 3@notice that the
factorw0 in the numerator of Eq.~37! cancels out with the
prefactor ofM loc , makingn(u) dimensionless#. The asymp-
totes ofn(u) are readily understood: foru→2`, p0(u)
tends towardspeq

a , which means thatn(u) vanishes. On the
other hand, foru→`, p0(u) tends topeq

b , the mobility be-
comes constant, andn(u) is linear inu. Given this behavior
of n(u), we see at once that Eq.~36! allows a solution with
linear asymptotes:p1 tends top1

a for u→2`, whereas for
u→`, it tends to a straight line with slopem:

m5
w0Dpxeq

aM loc~peq
b !

5
4kTj0

2Dp

«a3~11Dp!2e2z«/2kT . ~38!

A brief analysis shows that this expression diverges wh
T approachesTc . This is due to the fact that the miscibilit
gap tends to zero and therefore a very small current is s
cient to drive the interface with high velocity. This show
that the limitT→Tc is somehow pathological, which is no
surprising, as the interface thickness diverges at the crit
temperature.

We emphasize that this procedure is valid only near
interface. It is known that the stationary solution for a syst

FIG. 3. The ‘‘potential’’ 1/x@p0(u)#5 f 9@p0(u)# ~a! and the
inhomogeneous termn(u) ~b! of Eq. ~36!. Without n(u) and the
constant term, Eq.~36! is an eigenvalue problem for a particle in th
potential well~a!.



o
t

e
he
on
n

a
p
e
his
n
e
To

ui

e

i-
to
ic

in
le
r-

ls
E
d
T

dif-
e
ce.

ld
om-
r-

n
ub-
nc-

ect
We
mu-

in
in
ect
be

f

e

en

5328 55MATHIS PLAPP AND JEAN-FRANÇOIS GOUYET
with diffusion and drift~and constant diffusion coefficient! is
an exponential; here, we can retrieve only the linear term
this exponential. This means that the solution is limited
regions whereṽp1!1, which is the regionu! l D , where
l D5D/v is the diffusion length. Second, in our model th
diffusion coefficient varies with the concentration. But in t
linearized equation, it is taken along the equilibrium soluti
and thus a constant in the bulk phases. This means o
again that we must haveṽp1!1. This condition limits the
velocity range that can be treated for given temperature.

Langer and Sekerka@13# solved their equations by
Green’s-function method outside the interface and extra
lated to a hypothetical sharp interface to obtain the corr
tions to local equilibrium. Here, we have to go beyond t
approach because we are precisely interested in the con
tion between the model parameters, the processes insid
interfacial region, and the resulting kinetic coefficients.
solve Eq.~36!, we split up the functionp1(u) in three parts:

p1~u!5p1
a1g~u!1h~u!, ~39!

whereg(u) solves the equation

«a2g9~u!2
g~u!

xeq
1n~u!50. ~40!

The interest of this operation is that if we use for the eq
librium solutionp0(u) the approximation~23!, this equation
can be solved, and we obtaing(u) explicitly with the aid of
a symbolic calculus program. The last remaining piece
h(u), which obeys the differential equation

«a2h9~u!2
h~u!

x„p0~u!…

1
kT~Dp!2@p1

a2g~u!#

peq
a (12peq

a )F122peq
a ~12peq

a !S cosh uj021D G 50.

~41!

This equation is not directly solvable. To proceed, we us
variational ansatz. The functionh(u) is different from 0 only
around the origin. We try different test functions and min
mize the integral of the square of the left-hand side opera
This is equivalent to the Ritz method in quantum mechan
h(u) must be orthogonal~in function space! to the function
tanh8(u/2j0), which generates a simple translation of the
terface@and has a zero eigenvalue in the eigenvalue prob
associated with Eq.~36!#. A candidate that shows good pe
formances is the function

h~u!5Au tanh8
u

2j0
. ~42!

Then,p1
a andA are the variational parameters. We have a

tested trial functions with more terms and checked that
~42! gives the dominant contribution. This term correspon
to a modification of the characteristic interface thickness.
see this, note that to first order inṽ, the interface thicknessj
will be
f
o

ce

o-
c-

ec-
the

-

is

a

r.
s.

-
m

o
q.
s
o

j5j01 ṽj1 , ~43!

where j0 is the equilibrium value~19!. If we expand
tanh(u/2j) to first order inṽ using Eq.~43!, we find exactly
a term of the form~42!:

p~u!5
1

2
2

Dp

2
tanh

u

2~j01 ṽj1!

'p0~u!1
ṽj1Dp

4j0
2 u tanh8

u

2j0
. ~44!

Another way to see that the interface thickness must be
ferent from its equilibrium value is a brief analysis of th
solution in region I, that is, the plateau behind the interfa
Linearizing Eq.~34! aroundp`

a gives

2v
dp

du
5a2M loc~p`

a !S 2«a2
d4p

du4
1

1

x~p`
a !

d2p

du2D .
~45!

We see that this equation is solved by an exponential,p(u)
5p`

a1C exp(u/j), if j satisfies

2 ṽ5Dhom~p`
a !

~j/a!22«x~p`
a !

w0~j/a!3
, ~46!

where we have used the identityD5M /x. For v50, we
retrieve the equilibrium result~19!. If j was a constant, this
equation would furnish a simple relation betweenv andp`

a

and allow the determination ofp1
a . Such a simple solution

does not correspond to the physical situation: it wou
mean that we could understand interface-controlled phen
ena without any knowledge of what is going on in the inte
face. Indeed, comparison of Eq.~46! to the simulations
shows that we have to allow for a variation ofj, so that Eq.
~46! has three variables, and we cannot directly obtainp`

a

and j as functions ofv. On the other hand, the solutio
obtained by the variational procedure described above s
stantially implies the processes in the interface via the fu
tion h(u) that is localized there.

We therefore choose as variational parametersp1
a andj1

@using Eq.~42! with A5j1Dp/4j0
2 from Eq. ~44!#, which

have direct physical meaning. The optimization with resp
to these parameters is without problems numerically.
postpone a comparison of the obtained results with our si
lations to Sec. VI.

V. DISCRETE SYSTEM

A. Equilibrium states

In our original system, the translational symmetry
space is discrete. But the interface moves continuously
time, and therefore takes all possible positions with resp
to the lattice. One could imagine that the interface can
described by some continuous curve as Eq.~23!, the points
of the lattice system at a timet being given by the values o
this function for the points wherex2vt is a multiple of the
lattice constanta. This is, however, not the case. If we us
our evolution equations~17! for a closed system, in which
the total mass is fixed to enforce an interface at a giv



an
a
I
t

u

te

er

e

a
e

ce
in-
ink

ra-
, we
ean-

lve
-
e
o-

. It
m
ns
e-
on,
the

ed
to
e
y,
n
int
nts

to
ng
the
c
et
ym-
re-

nts
me

is
r-
ter-
ec-

e
kes
of
its
ion

-

r

55 5329INTERFACE DYNAMICS IN A MEAN-FIELD LATTICE . . .
position, the final state is an equilibrium state with const
chemical potential. This equilibrium value of the chemic
potential is found to depend on the interface position.
particular, the valuem50 is taken only for interfaces tha
are symmetric with respect to a lattice point~pn2k5

1
22pk

for all k>0 and some fixedn! or with respect to a point in
the middle between two lattice points (pn2k215

1
22pk). For

other interface positions,m is different from zero in the
whole system, which means, in particular, that the bulk eq
librium values~which depend onm! are slightly modified.
This would not happen if we could derive the discrete sta
from a single continuous curve by off-lattice translations~see
@31# for an example of such a situation!.

Plotting the chemical potential as a function of the int
face positionx0 for an interface in the~10! direction~Fig. 4!,
we see thatm(x0) is nearly a sine:

m~x0!52mcsin~x0 /a!, ~47!

wheremc is a constant depending on temperature~Fig. 5!
that vanishes near the transition. This behavior is indep
dent on the system sizeL, as long asL@j0 . As this equation
describes lattice effects, we expectmc to be a function of the
ratio j0 /a. The minus sign corresponds to our choice th
the x unit vector points into theb phase. We have used th

FIG. 4. Plot of the chemical potentialm versus the interface
positionx0 /a for T50.866Tc .

FIG. 5. Critical valuesmc of the chemical potential versus tem
perature for the main symmetry directions. Diamonds,~10! direc-
tion; circles, ~11! direction. Note the very rapid decay fo
T→Tc .
t
l
n

i-

s

-

n-

t

method of the Gibbs dividing surface to define the interfa
position: the interface profile is replaced by a step, conta
ing the same mass as the original system. Then the k
positionx0 is determined by the equality

x0p01~L2x0!pL5(
i50

L

pi . ~48!

The sinelike behavior is verified in a large range of tempe
ture. To gain a deeper understanding of this phenomenon
use the theory of area-preserving maps as applied to m
field interfaces by Pandit and Wortis@22#.

To find the discrete equilibrium states, we have to so
the equationmk5m5const for allk, using the discrete ex
pression~8! for the chemical potential. For an interface in th
~10! direction, this equation can be rewritten as a tw
dimensional mapping, settingxk5pk21 andyk5pk :

xn115yn ,

yn1152m/«12yn2xn2z~yn2
1
2 !1kT/« ln

yn
12yn

.

~49!

The Jacobian of this mapping is 1: it is area preserving
has two fixed points, corresponding to the two equilibriu
concentrations. An interface solution is a series of iteratio
of this mapping, connecting the two fixed points. As r
marked by Pandit and Wortis, unlike the continuum versi
which possesses a unique heteroclinic orbit connecting
two fixed points, the discrete mapping~49! has chaotic prop-
erties. This can be seen if we plot the inset of one of the fix
points, which is the set of all points that will be mapped on
the fixed point after an infinite number of iterations of th
mapping ~49!. It has the structure of a chaotic trajector
passing in the vicinity of the other fixed point infinitely ofte
without ever reaching it. The outset of the other fixed po
can be constructed by symmetry: it is the set of all poi
that will flow to the fixed point under~infinite! iteration of
the inverse mapping. An interface solution, which has
connect the two fixed points, is a set of points that belo
simultaneously to the outset of one fixed point and to
inset of the other. Form50, the phase portrait is symmetri
@Fig. 6~a!#, and the intersection points of inset and outs
form two such sets, corresponding to interfaces that are s
metric with respect to a plane and to a half plane: we
cover the result of our simulations. In Fig. 6~b! we depict a
phase portrait for a small positive value ofm. We see that
inset and outset deform, and the intersection poi
move: the two solutions approach each other. For so
critical value, which is identical tomc defined in Eq.~47!,
the solutions coincide, and beyond, no interface solution
possible@Fig. 6~c!#. In real space, this motion of the inte
section points corresponds to a displacement of the in
face: the first solution moves to the right, whereas the s
ond moves to the left; at the critical value ofm, they meet.
The antisymmetry of Eqs.~49! with respect to an exchang
of particles and holes assures that the inverse motion ta
place whenm is negative. We thus recover the dependence
m on the interface position. From the structure of the orb
in the phase portrait, we can deduce that the funct
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FIG. 6. Phase portraits of the~10! interface forT50.5Tc andm50 ~a!, 0.02~b!, and 0.04~c!. We show the beginnings of the outset
theb-phase fixed point~solid line! and of the inset of thea-phase fixed point~dashed line!. A point (x,y) in this phase portrait is equivalen
to a couple of concentrations (pk , pk11). Some points forming the two interface solutions are marked by diamonds and circles.
vicinity of each fixed point~marked by open squares! there are infinitely many such intersection points~not shown!. The arrows in~b!
indicate in which direction the interface points have moved in comparison to~a!. All diamonds have moved upwards and to the rig
whereas the circles have moved downward and to the left. In~c!, the interface solutions have ceased to exist. Notice that this figure is n
identical to Fig. 5 of Ref.@22#. See that paper for more details on this kind of diagrams.
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m(x0) is periodic, antisymmetric with respect to lattic
points, linear with finite slope around the lattice points, a
has horizontal tangents at its extremal values. The simp
such function is the sine of Eq.~47!. It would be desirable to
calculatemc directly from the properties of the chaotic ma
however, this seems a difficult task. The fact thatmc is inti-
mately related to the structure of the mapping is illustra
by a comparison between the two symmetry directions
the ~11! direction, the mapping equivalent to Eqs.~49! reads

xn115yn ,

yn1152m/2«12yn2xn2
z

2
~yn2

1
2 !1

kT

2«
ln

yn
12yn

.

~50!
d
st

d
n

This seems to be not very different from Eqs.~49!; however,
in this direction the sign of the sine is inverted, andmc is two
orders of magnitude smaller than in the~10! direction ~see
Fig. 5!. Visualizing the phase portrait@Fig. 7~a!#, we see that
for the same temperature, the trajectories seem to be m
less chaotic. To see the intersections between inset and
set, we have to magnify a part of the phase portrait@Fig.
7~b!#. Such chaotic behavior seems to be a general featur
discrete mean-field equations. However, results have b
reported on a discrete but integrable system of a similar k
@31#, but in this model a chemical potential cannot
uniquely defined.

The variations ofm are accompanied by variations of th
surface tension. Pandit and Wortis already remarked tha
the two solutions atm50, the one with off-plane symmetry
has a lower surface tension. In the~11! direction, this situa-
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tion is inverted. If we calculate numerically the surface te
sion for the different equilibrium states, we find to a go
precision

s~x0!5
s11s2

2
1

s12s2

2
cos~x0 /a!, ~51!

wheres1 ands2 are the surface tensions of the two sym
metric (m50) solutions. This determines the behavior of t
system during equilibration. For an infinite system, mat
can be redistributed to infinity, and the interface will alwa
relax to the position of lowest surface tension, which h
zero chemical potential. If the system has finite size
equilibrates at the state with lowest surface tension com
ible with the constraint of constant mass. It is in this situat
that we can observe the states at intermediate position.
even in finite systems, we have a slight redistribution
mass, because the equilibrium concentrations depend on
chemical potential, so that we cannot simply use the to

FIG. 7. Phase portrait of the~11! interface atT50.5Tc andm
50 ~a!. Only the beginnings of inset and outset are shown, he
the apparent asymmetry of the diagram. To see the structure of
and outset, one has to magnify a part of this diagram~b!: the ~11!
interface is ‘‘less chaotic’’ than the~10! interface. The open square
indicate the fixed points.
-

r

s
it
t-
n
ut
f
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mass to define the interface position: the only corr
choice is the method of the Gibbs dividing surface~48!.

B. Stationary states

We have seen in Sec. V A that quantities as the equi
rium chemical potential and the surface tension of a pla
interface depend on its position relative to the lattice.
interface that is forced to advance by a constant current
jected into the system therefore generates oscillatory be
ior. Mathematically, this stems from the fact that unlike
continuous systems, where a stationary statep(x2vt) satis-
fies ]p/]t52v]p/]x, in a system with discrete transla
tional symmetry the set of concentrationspn(t) satisfies

pn~ t !5pn21~ t2a/v !, ~52!

wherev is the~constant! stationary velocity. However, time
is continuous. Therefore, we could rewrite the evoluti
equation~17! using the condition~52! as an ordinary differ-
ential equation for the continuous time variablet. Unfortu-
nately, this equation is nonlocal in time and thus not easie
solve. However, we can visualize the stationary state a
continuous curve, tracing the trajectory of a pointpn(t),
while it traverses the interface. For high temperatures
trajectory tends to the continuous stationary state that
have determined in Sec. IV; when one lowers the tempe
ture, oscillations appear, which we will analyze now.

For small velocities, the interfacial region~region II of
Fig. 2! is slightly modified, but keeps its overall shape.
stays close to the equilibrium shape, and monitoring the
namics we see that the chemical potential in this region
cillates with the advance of the interface, as for the equi
rium states~see Fig. 11 below!. So it seems that for smal
driving forces the relation~47! stays valid: the chemica
potential oscillates with the spatial periodicity of the latti
and the frequencyv/a5w0ṽ. Currents are driven by chemi
cal potential gradients, so these oscillations can modify
behavior of the whole system. Seen on the scale of the m
roscopic sharp-interface models, this is like an oscillat
boundary condition at the interface.

Let us analyze the effect on the dynamics in the b
phases. First, we discuss what is happening in thea phase
behind the interface~region I!. To this end we linearize the
full discrete equation of motion~17! around the limit value
p`

a . Writing pk5p`
a1dk , we obtain to first order indk ,

ddk
dt

5Mhom~p`
a !@ f 9~p`

a !~dk2122dk1dk11!

2«~dk2224dk2116dk24dk111dk12!#. ~53!

Assuming, as before, an exponential behavior,dk
}exp@q(ka2vt)], this gives the following equation forq:

2
v

Dhom~p`
a !

q5~eaq221e2aq!@12«x~p`
a !

3~eaq221e2aq!#. ~54!

This is the discrete analog of Eq.~46!. But in contrast to Eq.
~46!, which always has three real solutions, Eq.~54! is a
transcendental equation that may have a multitude of s

e
set
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5332 55MATHIS PLAPP AND JEAN-FRANÇOIS GOUYET
tions, in particular, complex ones that correspond to oscil
ing behavior. Writingaq5r1 is, with r ands real, we ar-
rive at the following couple of real equations:

2
ṽw0

Dhom~p`
a !

s52 sinssinhr @124«x~p`
a !

3~cosscoshr21!#,
~55!

2
ṽw0

Dhom~p`
a !

r52~cosscoshr21!14«x~p`
a !

3@sin2ssinh2r2cos2scosh2r11#,

which have to be solved forr and s. As in the continuum
case, forv50 we recover the equilibrium situation. For a
bitrary v, we see thats50 always solves trivially the firs
equation, and we are left with one equation forr . This is a
branch of nonoscillating solutions. Other solutions that g
negative values forr have to be discarded. However, the
are branches with positiver for nonzero values of
s: when the ratioṽw0 /M is small, these solutions appe
in pairs, withs near a multiple of 2p, one slightly smaller,
one slightly bigger. This corresponds to damped oscilla
solutions that have a wavelengthl52pa/s nearly equal to a
harmonic of the lattice and a decay lengtha/r . In Fig. 8. we
show for one particular value of the parametersṽ andp`

a the
possible solutions (r ,s) near s52p. Using the numerical
value for pa

1, we can also trace the approximate form~to
linear order inṽ! of the branches of solutions for smallṽ.
Around other multiples of 2p, the picture is similar. The
family of solutions withs slightly above the multiples of 2p
have decay lengths very near the equilibrium soluti

FIG. 8. Image of a part of the (s,r ) plane to show some of the
solutions of Eq.~55! for T50.7Tc . The points are the solutions o
Eq. ~55! for T50.7Tc , ṽ56.074 43731025, andp`

a50.913 610 8
( j 05531025). The corresponding nonoscillating solution is ats
50, r51.911 01. The lines are drawn using the numerical va
p1

a5212.329 and velocities ranging from 0 (s52p) to 1023.
Similar patterns are seen around multiples of 2p.
t-

e

r

,

whereas for the other familyr goes to 0 asṽ vanishes, which
means a diverging decay length.

Which of these solutions will be selected? Equation~53!
is linearized inp, so we could even expect a superposition
several solutions. Now consider the oscillations at the in
face: the concentration behind the interface behaves lik
damped oscillator, which evolves between a fixed value
2` ~frequency 0! and an oscillating concentration which
‘‘dragged’’ by the moving interface. The two solution
which will play obviously the most important role, are th
nonoscillating solution and the one with the first nonze
value ofs, slightly below 2p. To check this assertion with
our numerical simulations, it is best to plot the time deriv
tive of one point~fixed in space! while the interface ad-
vances. The nonoscillating solution decays much fas
~smaller decay length!, and even if it is predominant directly
behind the interface, farther behind the oscillating part w
show up. Indeed, plottingdp/dt on a logarithmic scale
shows a region behind the interface with exponential dec
giving a straight section in the plot, and the onset of osci
tions behind~Fig. 9!. Magnifying these oscillations, we se
the damped oscillator, and we can extract the correspon
values ofr and s. An example is shown in Fig. 10: th
agreement with the predictions from Eq.~55! is excellent.

Now we have to remember that in our system time
continuous, but space is discrete. If we look at the spa
dependence for some timet, we see slow variations: be
cause of the lattice structure, wave vectors differing byp
are equivalent. We definew52p2s. The apparent wave
length of the undulations is thenl852pa/w and beatings
occur. This is shown by open circles drawn in Fig. 10
distances corresponding to a lattice constant. Whenṽ ap-
proaches 0, a leading order expansion of Eq.~55! gives that
w5r ~note the slope21 of the concerned branch in Fig. 8!
and

r5w5Ap ṽw0 /Dhom~p`
a !5Apa/ l D ~56!

e

FIG. 9. Time derivative~measured in units ofw0! of a point
fixed in space as the interface passes by, on a logarithmic scale
T50.7Tc and j 05531025. Behind the interface, there is a regio
where the decay is exponential~thick line segment!. This region is
too small to get results of sufficient precision. In addition, it is t
near the interface for the linearized equation~53! to be valid. To
both sides of the interface, we see the onset of oscillations.
missing line segments are regions where the time derivative is n
tive.
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~l D5aD/w0ṽ is the diffusion length!. l8 and the decay
length diverge, keeping always the same ratio. The
quencysṽw0 goes to 0 linearly inṽ, and thus the phas
velocity vs/r behaves likeṽ 1/2.

This behavior can be readily explained in terms of diff
sion. The variations of the chemical potential at the interfa
cause variations in concentration, of the order ofxeqmc @this
follows from the fact that, for smallm, p2peq5mxeq, and
using Eq. ~47!#. Imagine an initially homogeneous phas
When the interface moves, it creates in its wake a pertu
tion that causes a diffusive flux: the perturbation prop
gates. The characteristic length scale is the diffusion len
l D , the characteristic time scale isa

2D/v2. Whenv tends to
0, the diffusion length diverges, implying that the leng
scales of the problem grow, but the diffusion time diverg
even faster. Transport over the length scale of the diffus
length ~which is necessary to propagate the wave! is very
slow, which explains the behavior of the phase veloc
When the interface velocity grows, the diffusion length d
creases, and the time necessary to equilibrate the fluctua
becomes comparable to the inverse frequency of the osc
tions: they are damped very rapidly.

To summarize, in the wake of the interface, we fi
damped oscillations of density and current which can h
wavelengths considerably larger than the lattice constant
pecially for slow velocities, where, in addition, the dec
length becomes big. However, their amplitude is small~of
orderxeqmc!, so it should be difficult to observe such a ph
nomenon experimentally. In addition, we do not know p
cisely whether the mean-field approximation mimics c
rectly the progressive filling of the atomic layers at lo
temperatures, where such oscillations become stronge
similar phenomenon has been reported in the context of
netic stochastic growth models@25,26#. The authors ob-
served oscillations in the density of a growing aggregate,
to the discrete lattice structure. Note, however, that
physical context is different, because this work does not t
into account relaxation processes, so there is no diffus
and the density variations are ‘‘frozen’’ once the interfa
has passed. In addition, their system was not limited by

FIG. 10. Same as Fig. 9, but farther behind the interface
seen on a linear scale. A fit with a damped sine is indistinguish
from the curve and givess56.0288 andr50.2424, whereas the
predictions from Eq.~55! ares56.028 11,r50.2414. Open circles
are drawn at distances corresponding to one lattice step. This
trates the beatings discussed in the text.
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fusion. But it is interesting to note the similarities: oscill
tions arise because an interface advances continuously
lattice model. We believe that such oscillations are a gen
feature of deterministic discrete growth equations~see also
@27#!, but in real systems they should be masked by fluct
tions, absent in our mean-field approach.

On the other side of the interface, in region III, the situ
tion is quite different because of the presence of the driv
current. In this region, too, the oscillations of the chemic
potential at the interface have important effects. If we fix t
chemical potential at some~large! distance of the interface
variations ofm at the interface imply variations of the chem
cal potential gradient, and thus of the flux. A similar effect
observed when we fix the current: when the chemical
tential at the interface increases, the chemical potential in
the region in front of the interface must increase to maint
a gradient towards the interface. The only way to achie
this is to ‘‘stack’’ some matter, because in region III,m is an
increasing function of the concentration. Matter accumula
in front of the interface and is ‘‘liberated’’ when the chem
cal potential at the interface decreases, causing a strong
towards the interface. Hence we conclude that the osc
tions of the chemical potential cause fluctuations in the c
rent arriving at the interface.

But this means, because of mass conservation, that
interface velocity varies. The variations of the incoming fl
cannot be compensated by the outgoing flux behind the
terface, the latter being much smaller than the former.
can indeed observe directly fluctuations of the growth vel
ity. However, we have to be careful, because a proper d
nition of the interface velocity is difficult. Out of equilib
rium, the profile is not symmetric any more and we cann
separate ‘‘interface’’ and ‘‘ramp’’ profile: the applicatio
of the Gibbs dividing surface method is impossible. We c
define the interface position by the symmetric point,p5 1

2.
But alternate definitions are possible, for example, the infl
tion point. As we have shown that the interface shape
pends on velocity, neither of these definitions can claim
periority; however, the differences are small. We will ado
the first definition, operationally the simplest one. Our int
face being defined on a lattice, we need an interpolation p
cedure to determine this position for arbitrary time. A com
parison at equilibrium to the Gibbs method shows tha
simple linear interpolation introduces rather large errors;
best procedure seems to be a tanh interpolation, which g
~to very good precision at high temperatures, to some p
cents atT50.5Tc! the same results as the Gibbs method
equilibrium. We have plotted in Fig. 11 the interface veloc
~the time derivative of the interface position! during several
cycles. We also have displayed the variations of chem
potential and of the current arriving at the interface~having
measured some sites in front of the interface position!. The
periodic fluctuations are clearly visible. The amplitude of t
oscillations of the chemical potential is in good agreem
with the equilibrium valuemc . The ‘‘zero line’’ of the sine
function is shifted to a small positive value, but the symm
ric points are still on lattice planes or half planes. Note t
phase relationship between chemical potential and vel
ty: the interface is fastest when the slope of the chem
potential curve is steepest. If we consider the surface ten
~51!, we see that it is in phase with the velocity, that is, t
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interface is fastest at the points of highest surface tens
This contradicts the somewhat naive assumption put forw
in our previous paper@21# that the interface should slow
down when it has to ‘‘climb’’ a hill of surface tension. Her
we see that the dynamics is accurately described in term
the chemical potential, whereas simple static considerat
lead to wrong interpretations. The slight phase differen
between velocity and current is due to the fact that the c
rent is measured some sites in front of the interface.

It is probably impossible to observe directly these fluctu
tions, because a definition of an interface position on
atomic scale and even more its measurement seem im
sible. However, the oscillations of chemical potential a
current could be observable. Note, on the other hand, tha
have not taken into account thermal noise: in any ‘‘rea
system it should destroy the weak coherent oscillations
small distance of the interface.

VI. RESULTS

We will now summarize our main results and compare
continuum approximation to the simulations. First, let
comment on the validity of our linearized ansatz~35! and the
quality of the continuum approximation. In Fig. 12, we sho
a data collapse forT50.86Tc , that is, we plot the difference
between stationary state and equilibrium profile as obtai
numerically, divided by the velocity. If the linear hypothes
is true, all points should fall together. We see that this
indeed the case. The slight differences for larger positivu
are traces of higher-order terms: forp1.100 and ṽ
.1025, ṽp1 is no longer small enough for the linear a
proximation to be strictly valid. If we extrapolate in th
region the slope of the different curves toṽ50, the agree-
ment with the valuem given by Eq.~38! is excellent. The
solid line is the prediction of the continuum approximatio
All qualitative features of the shape correction are well
produced, even if there are small differences in the interfa
We emphasize that this curve is not a fit to the data po

FIG. 11. Difference between instantaneous interface velo
and its mean~solid line!, difference between instantaneous curre
some sites in front of the interface andj 0 ~dashed line!, and chemi-
cal potential at the interface~dotted line! versus the interface posi
tion x0(t)/a, for T50.73Tc and j 05531025. The chemical poten-
tial has been divided by 100 to show the three curves on the s
scale. The mean velocity is 6.3331025; thus the relative amplitude
of the oscillations is about 6%.
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but the direct result of the variational procedure discusse
Sec. IV.

In Fig. 13, we compare the results of the continuum a
proximation with numerical results for the solute trappi
coefficientp1

a . The results are very good for a large range
temperatures. Evidently, the continuum method cannot
scribe the differences between the~10! and ~11! directions.
However, these differences are small for high temperatu
and decrease to 0 whenT→Tc . Towards 0.5Tc the data
points for the~10! direction differ appreciably from the the
oretical curve, whereas for the~11! direction the agreemen
stays very good. This reflects once more the ‘‘more chaot
nature of the~10! interface.

In Fig. 14, we showj1 in function of temperature, divided
by j0

4(T). Near the critical temperature,j1 can be well ap-
proximated by

j15Cj0
4, ~57!

where the coefficient was numerically determined to beC
5102.3. Unfortunately, reliable numerical values forj1 are

y
t

e

FIG. 12. Linear part of the shape correctionp1 , at T
50.86Tc , as determined by simulations~symbols! for velocities
ṽ5(0.668 07,1.3390,2.0129,2.6899,3.3701)31025 and by the
continuum approximation~solid line!.

FIG. 13. Plot of the ‘‘Solute trapping’’ coefficientp1
a versus

temperature. The solid line is the continuum approximation, sy
bols are values of numerical simulations. Diamonds,~10! direc-
tion, circles, ~11! direction. Inset: table with some numerica
values ofp1

a .
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difficult to obtain. As shown in Fig. 9, the region behind th
interface in which the decay lengthj can be measured is to
small to get a sufficient precision. To determinej1 for ~typi-
cal! dimensionless velocities of the order 1025, we would
need a precision of four digits at least onj. For higher tem-
peratures, above all in the~11! direction, the situation is
somewhat better than depicted in Fig. 9, because the e
nential decay region is larger; it permitted us to verify th
j1 is of the correct order of magnitude. Hence we conclu
that this approximation is a valuable tool to investigate int
face dynamics over a quite large range of temperature, e
if the conditionj0@a is not strictly satisfied~at 0.5Tc , j0
'0.25a!.

p1
a andj1 diverge when we approach the critical tempe

ture. This reflects the singular nature of this limit, which w
already discussed in Sec. IV: the interface becomes v
extended in space and the miscibility gap very small. Thu
very small current can cause large deformations of the in
face shape. At the critical temperature, the interface dis
pears, so it is normal that there appear singularities in
‘‘shape correction.’’ For temperatures lower than 0.5Tc , the
diffusion in the a phase becomes so slow that the line
regime is valid only for very small velocities. Here, we c
attain very easily the nonlinear regime. In this limit, the i
terface is very sharp, nearly a step profile, and our mo
becomes rather similar to the phenomenological model
solute trapping proposed by Aziz@9#. In this model, growth
takes place by activated jumps of atoms through a~sharp!
interface. It would be interesting to investigate more in de
this limit. To summarize, we have a region approximat
between 0.5Tc and 0.95Tc , which is described correctly by
the linear continuum approximation. In this region, the int
face becomes more ‘‘rigid’’ when the temperature go
down, that is, one needs a stronger driving force to ca
appreciable deformations of the interface profile.

Once the two parametersp1
a and j1 are determined, we

can obtain other quantities of interest. The kinetic coeffici
b0 used in the dynamical extension of the Gibbs-Thoms
condition valid to linear order inṽ is defined by the relation

pint
b 2peq

b

Dp
5b0ṽ, ~58!

FIG. 14. Plot ofj1 /j0
4 versus temperature. The horizontal ta

gent atTc shows that the asymptotic behavior ofj1 is like j0
4.
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where pint
b is the concentration immediately ahead of t

moving interface. To get this concentration, we choose o
more the pointp51

2 as definition of the interface position an
extrapolate from the ramp profile. In the simulations, w
have to take care of the oscillations in front of the advanc
interface. We fitted a straight line after every iteration st
determined its intercept, and averaged over one period.
cept for low temperatures in the~10! direction, this proce-
dure gave satisfying results. After subtraction of the equil
rium concentration, the resulting concentrations were divid
by ṽ, and extrapolation toṽ50 givesb0 . In the continuum
approximation, it is sufficient to determine the asympto
straight-line fitting top1 in region III; its intercept atu50
gives directlyDpb0 . The results are plotted in Fig. 15. Th
agreement between simulations and continuum approxi
tion is not as good as forp1

a , but the overall shape of the
curve is well reproduced. The most prominent feature i
change of sign of the kinetic coefficient: near the critic
temperature, it becomes negative. This prediction of the c
tinuum approximation~line! is confirmed by the simulations
~data points!. A negative b0 seems at first glance ver
strange, as usually the kinetic coefficient is associated w
attachment kinetics and hence a free-energy dissipation a
interface, which has to be always positive. A look on t
analytic expressions can help us further. In region III, t
correctionh(u) in Eq. ~39! falls off to zero very rapidly. We
need only consider the asymptote ofg(u). Using its explicit
expression, we find for its interceptg0 :

g052mj0DpS TcT 1
1

12DpD , ~59!

wherem is given by Eq.~38!. This term is always positive
and diverges forT→Tc . But we have also to take care of th
constant term in Eq.~39!: the whole profile is shifted by
p1

a . With definition ~58!, b0 is given by

b05
g01p1

a

Dp
52mj0S TcT 1

1

12DpD1
p1

a

Dp
. ~60!

Now, p1
a is negative and diverges nearTc . So the kinetic

coefficient is the sum of two divergent terms of differe
sign, and the negative sign wins near the critical temperat

FIG. 15. Kinetic coefficientb0 versus temperature. Symbols a
in Fig. 13. Inset: table with some numerical values ofb0 .
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This explains in part the distance between data points
prediction in Fig. 15: small errors inp1

a can produce large
relative errors inb0 . This leads to stronger differences b
tween the two directions; however, the form of theb0 curve
is quite the same.

Physically speaking, we have a connection between so
trapping and the kinetic concentration shift. The chemi
potential behind the interface is always lowered by the so
trapping effect. For low temperatures, this is compensated
the chemical potential difference through the interface, le
ing to a positive chemical potential in front of the interfa
and a positiveb0 . Near the critical temperature, the solu
trapping effect becomes so strong that this compensatio
no longer fully possible: the chemical potential~and hence
the concentration! is lowered even in front of the interface
leading to a negativeb0 . But the chemical potential differ
ence across the interface stays positive, leading to a pos
free-energy dissipation. In the conventional equations
dendritic growth, diffusion and solute trapping in the so
are usually neglected: then,b0 is always positive. Notice
also that the sign change takes place only quite near
‘‘pathological’’ limit T→Tc .

Further insight can be gained considering the interf
mobility. It is defined by

ṽ5MIDm, ~61!

whereDm is the chemical potential difference between t
two sides of the interface. This relation describes the re
tance of an interface against the driving force, resulting fr
incorporation kinetics. Using once more the two straight l
asymptotics ofg(u), we can calculate the chemical potent
difference as extrapolated to a sharp interface. Is is evide
linear in ṽ, and the proportionality constant is

MI5
aM loc~peq

b !

2w0~Dp!2j0S TcT 1
1

12DpD
, ~62!

always positive. This expression can be obtained in ano
way by the following considerations. The chemical pote
tials on the two sides of the interfaces arem(peq

a 1 ṽp1
a) and

m(peq
b 1 ṽDpb0), respectively. Linearizing these expressio

in ṽ leads to the following relations between the linear co
ficients:

MI5
xeq

Dpb02p1
a 5

xeq

g0
. ~63!

This shows the connection between the three coefficients
Fig. 16, we plot the theoretical prediction~62! ~full line! and
simulation data, using our values ofp1

a and j1 and the for-
mula ~63!. The agreement is very good; slight scattering
high temperatures comes from the fact that higher-or
terms in ṽ are increasing, and the extrapolation forb0 be-
comes less accurate. The anisotropy between the two d
tions is small.

Let us finally discuss the relation between interface vel
ity and the current crossing the interface. In a sharp interf
model, mass conservation implies
d
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j int52w0ṽ~pint
a 2pint

b !, ~64!

where j int is the current crossing the interface, and thepint
are the concentrations in thea and b phase immediately
adjacent to the interface. In our case, mass conservatio
guaranteed by Eq.~32!. Using this equation with the extrapo
lated concentration in theb phase,peq

b 1 ṽDpb0 , we obtain

j int5 j ~0!52w0ṽ~peq
a 1 ṽp1

a2peq
b 2 ṽDpb0!

52w0ṽDp1w0ṽ
2

xeq

MI
. ~65!

This is the first-order correction to the zeroth-order expr
sion j52w0ṽDp, which corresponds to an advancing inte
face in local equilibrium.

VII. CONCLUSION

We have calculated stationary interface shapes star
from an isothermal lattice gas model. Despite its simplici
this model displays several phenomena observed in exp
ments, as solute trapping and a kinetic shift of local equil
rium at the interface. Using a continuum approximation,
can calculate the corresponding coefficients to linear orde
the velocity, starting from the microscopic interaction b
tween the particles. This approximation involves a var
tional procedure with respect to two parameters that are
lated to solute trapping and to the interface thickness, wh
is a function of velocity. Comparison to simulations show
that this approximation is valid over a wide range of te
perature. It gives the concentration of the growing phase
the concentration ahead of the growing front. This allows
to establish a relation between interface velocity and the c
rent crossing the interface.

We found that solute trapping and the kinetic concent
tion shift are related in this linearized theory, leading to
change of sign in the kinetic coefficient near the critical te
perature. Solute trapping and kinetic coefficient are relate
the interface mobility by relation~63!. It would be interest-
ing to verify this relation experimentally.

With the ~relative! exception of the kinetic coefficien
b0 , the agreement between simulations and continu
theory is very good. This approach does not allow us

FIG. 16. Interface mobilityMI versus temperature. Symbols a
in Fig. 13.
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55 5337INTERFACE DYNAMICS IN A MEAN-FIELD LATTICE . . .
predict the anisotropy of the coefficients. It was found to
small, once again with exception ofb0 in a certain range of
temperatures. Near the critical temperature, all coefficie
diverge, showing the pathological nature of this limit,
which a well-defined interface ceases to exist.

Furthermore, we have shown that oscillations of grow
velocity and chemical potential occur due to the discrete
ture of the model~existence of a crystalline structure, or of
host lattice! and the coupling between interface and diffusi
field. There also exist damped density waves in the wake
the interface. Such oscillations seem to be a general fea
of mean-field-like growth models. Neither of these effe
should be simple to observe in a real experiment, becaus
the small amplitude of the oscillations and the presence
thermal noise.

Starting from a microscopic model, we have achieve
complete understanding of the dynamics of a planar interf
in a mean-field approximation, going beyond the known p
nomenological and mesoscopic theories, which do
specify detailed microscopic dynamics. The choice of
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initial model is not restrictive: the methods we have p
sented are flexible enough to be applied to lattice gases
more complex interactions, thus opening the way to inve
gate the relation between microscopic interactions and m
roscopic interface kinetics.

It would be interesting to obtain similar results in a tru
stochastic model, or improve on the simple mean-field the
using more sophisticated schemes to devise an equatio
motion, as the path-probability method@32# or a lattice ver-
sion of density-functional theory@33#. This is in progress.
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