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Velocity distribution of topological defects in phase-ordering systems
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The distribution of interfacédomain-wal) velocitiesv in a phase-ordering system is considered. Heuristic
scaling arguments based on the disappearance of small domains lead to a powerRa(wjailv ~P, for large
v, in the distribution ofv=|v|. The exponenp is given byp=2+d/(z—1), whered is the space dimension
and 1z is the growth exponent, i.ez=2 for nonconservedmodelA) dynamics and=3 for the conserved
case(modelB). The nonconserved result is exemplified by an approximate calculation of the full distribution
using a Gaussian closure scheme. The heuristic arguments are readily generalized to systems described by a
vector order parametefS1063-651X97)09805-X]

PACS numbds): 64.60.Cn, 64.60.My

[. INTRODUCTION on the velocity distribution of point defects @(n) models.
The tail of the distribution agrees with the result derived
The theory of phase-ordering dynamics has seen signififrom scaling arguments.
cant advances in recent yedfs. Coarsening proceeds by ~ We shall show that an alternativand a priori equally
the elimination of topological defects, e.g., domain walls,valid) way of using the Gaussian closure results to compute
vortices, or strings, and various properties of the defect disthe velocity distribution gives a Gaussian tail rather than a
tribution have been investigated in some defajB]. power-law tail. The defect velocity distribution, therefore, is
In a recent paper, MazenKd] has carried out an inves- @ useful discriminator between various computational
tigation of the distribution of defect velocities in a phase-schemes. It is reassuring that, in the limit of large spatial
ordering system. Using an approximate “Gaussian closure’dimensiond, when the Gaussian closure approximation is
scheme, he has computed the velocity distribution for poinbelieved to become exadfor nonconserved fields both
defects inO(n) models with a nonconserved order param-schemes yield the same results.
eter. He finds the interesting result that the velocity distribu- In Sec. IV the scaling arguments are extended to vector
tion has a power-law tail. fields and the general resydt=2+(d+1—n)/(z—1) is ob-
In the present work we shall show that such power-lawtained for the tail exponent. For point defects=(d) this
tails can be deduced rather generally using very simple scafesult agrees with that obtained by Mazer{kd using the
ing arguments. The central idea is that large defects velociaussian closure approximation. On the basis of the results
ties are associated with the vanishing of defects at smaflor scalar fields and vector fields with point defects, we con-
length scales. Hence the tail gives information about thdecture[Eq. (24)] a general form for the defect velocity dis-
small-scale structure of the defect morphology. However, théribution within the Gaussian approximation.
velocity distribution is more cleanly defined and therefore
more convenient to study theoreticallgnd in simulations II. SCALING APPROACH
than the morphology itself. The physical arguments we shall _
use are very general and can be applied to systems with both A. Nonconserved scalar fields
pointlike and extended defects, with or without conservation A system described by a nonconserved scalar field coars-
of the order parameter. ens by curvature driven growfli]. The normal velocity of a
Consider, for example, systems described by a scalar opoint on an interface is proportional to the total curvature
der parameter. This class includes the “standard” phaseK. For a small circularfor spherical, ind=3) domain of
ordering systems such as binary alldgsder-disorder tran- radiusr, K=(d—1)/r. The velocity of the interface is there-
sitions or phase separationrand binary liquids. The forey=dr/dtx—1/r. It follows that the timet for a domain
configuration of the coarsening system is described by thef initial radiusr to disappear scales asr?.
locations of the interfaces, or domain walls, that separate |et n(r)dr be the number of domains per unit volume
regions occupied by the two ordered phases. We are intefyith radius between andr +dr. The assumed scaling of the
ested in the velocity distribution of points on the interfaces.domain morphology gives
The high-velocity talil in the distribution arises as follows. At
all stages of the coarsening process, small domains are being n(r)y=L"@*Df(r/L), (0]
eliminated. When the domains are very small, the walls
move very quickly. So the high-velocity tail is related to the where L(t) is the characteristic length scale at time
density of small domains. This is the basic idea behind thafter the quench into the ordered phase. Integrating(Eq.
scaling argument presented in Sec. II. For the case of norever r gives of order one domain per scale voluin® as
conserved scalar fields, an explicit calculation using a Gaussequired by scaling.
ian closure schemeSec. Ill) gives an approximate form for In a time intervalAt, domains withr < (At)Y? will disap-
the full velocity distribution, extending Mazenko's wof&] pear. From Eq(1) the number of such domains is

g2

1063-651X/97/585)/52915)/$10.00 55 5297 © 1997 The American Physical Society



5298 A. J. BRAY 55

12 __pd+1 d+2 <

L—<d+1>f(“) drf(r/L)~L- @ DdL/dnAt.  (2) Pr(r)dr~r=dr/LT, - r<L, @
0 instead of Eq.(4). The final step is to use the relation

v~1k? to deduce the velocity distributio®,(v) from

P,(v)=P,(r)|dr/dv|. From Eg.(7) one infers the power-

law tail

The right-hand side of Ed2) follows from the fact that the
total number of domains per unit volume scaleg a8. The
requirement that the left-hand side of Eg) be linear in
At for At—0 implies the property(x) ~x, for x—0, for the
scaling functionf(x). Inserting this form into Eq(2), one Po(v)~ ——2@m (8)
recoversL (t) ~t'? as expected. v(ul?)

_ We have shown th_am(r)dr~rdr/Ld_+2 for _r<L. The I r conserved scalar fields.

interfacial area per unit volume associated with these sma The scaling approach adopted for scalar fields can be

domains is readily generalized to vector fields. Before doing so, how-
ever, we will consider an analytical approach, based on a
Gaussian closure scheme, for computing the full distribution
P,(v) (i.e., not just the tajl for the nonconserved scalar
case. This is instructive as it provides, in conjunction with
the scaling result5) for the tail, a way of discriminating
between two(a priori equally valig ways of using the

A(r)dr~r9=*n(r)ydr~rddr/L9*2, 3

Normalizing by the total interfacial area per unit volume
L ! gives the area-weighted probability for interfacial radius
of curvature between andr +dr, i.e.,

P.(n)dr~rddr/L9*, r<L, (4) Gaussian closure results in the calculatiorPgf.
Since the velocity associated with radius of curvatures lll. CALCULATION OF P, (v) USING
v~ 1/r, the interfacial velocity distributio,(v) is obtained GAUSSIAN CLOSURE

from P, (v) =P (r)|dr/dv], giving the power-law tail The idea underlying all Gaussian closure schemes is the

introduction of a “smooth” auxiliary fieldm(x,t) whose
zeros define the interfaces, i.e, has its zeros at the same

points as the order-parameter fieds(x,t). Whereas¢ is
) o o ) . essentially constant within domains, but varies rapidly within
This, together with its generalizations below, is our Maingomain walls,m is smooth, i.e., it varies only on the larger
result. scaleL(t). At this stage, however, it is not necessary to

specify precisely hown is defined.
B. Conserved scalar fields An expression for the interface velocity in termsrofcan

For conserved scalar fields, coarsening proceeds throudtf obtained by noting that the rate of changenah a frame
the  Lifshitz-Slyozov-Wagner (LSW)  evaporation- Moving with t.he mterfacg is zero, i.ed m/dtzQz&m/
condensation mechanisf], by which large domaingor, ~Jt+Vv-V¥m. Since Vm is normal to the interface,
more generally, regions with low interfacial curvatuggow V- YM=0v,|Vm|, wherev,, is the normal velocity of the in-
at the expense of small domaifregions of high curvatuje  terface. This gives
This leads to the LSW growth law(t) ~tY3. Large domain-
wall velocities are associated, as in the nonconserved case, va(X)= = om/|Vm]. ©)

with the disappearance of small domains. For the conserV('alc_iormaIIy this equation defines a “velocity” at every point:

C?f)e " 22\9’?\1@55 Elbﬁerr;!g:g)nthie?i/r\f:?a\lgr??g ;ggéi?:}uéf 'the velocity of the surface of constamtdefined at that point.
v = y To find the distribution of interface velocities, we have to

sizer<L(t) to evaporate is of order’. In a time interval : ; .
At, domains of size < (At)3 will disappear. Using Eq1), project onto the interfaces:

1
PU(U)NW- )

the number of such domains is 50— (X)) o(X
o o, ()= <p2<x ))))p( ) o
t
L’(‘”l)f( Tt (rL) ~ L@ D dLdy AL, (6)
0 wherep(x) is the areal density of interface, given by
in complete analogy to Eq2). The requirement that the p(x)=8(m(x))|Vm|. (11)

left-hand side be proportional tAt forces the domain-size

distribution function f(x) to have the smab form Integratingp(x) over any volume of space gives the interfa-

f(x)~x2 for conserved scalar fields. Inserting this form into cial area in that volume.

Eq. (6), one recovers (t) ~t*3 as expected. Equationg9)—(11) are exact, but in order to make further
The interfacial area per unit volume associated with thes@rogress one needs to know the joint distribution function for

small domains is given b(r)dr~r9 In(r)dr, as in Eq. m, 9;m, and the componentm of Vm, at a given point in

(3). Usingn(r)dr~r2dr/L9*® for r<L, which follows from  space. In all Gaussian closure schemes, the figld,t) is

f(x)~x?, and normalizing by the interfacial area per unit assumed to be Gaussian. This approximation works reason-

volumeL " gives the area-weighted probability for interfa- ably well in practice for nonconserved fiel@i]. Using it,

cial radius of curvature betweenandr +dr: the required distribution function is expressible in terms of
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the inverse of the covariance matrix of the variables  choice one obtains=[(d— 1)/2t]*2 Other approximations,
m=4,m, and am (i=1,...d). Clearly (ma;m) and such as that of Mazenk], give the same 2 behavior,
(fd;m) both vanish due to translational invariance. Simi-Put with a different prefactor. The 2 dependence follows

larly, (4,md;m) vanishes fori#] due to the assumed isot- quite generally from the scaling relatian~dL/dt and the

ropy of the system. It follows that the only nonzero elementéJsual resuI1L~t1’2.for nqncons_erveq ?C?"ar fieIds. .
¢ th . i SO =(m?. S2=(mr Before concluding this section, it is instructive to briefly
0 e covariance matrix ares(t)=(m-), =(mm, discuss an alternative approa¢8] to implementing the

T(t)=(m?), andU(t):<_(0im)2>- Note that theVm sectoris  Gaussian assumption for the fietl Consider a given map-
decoupled from theri,m) sector. The required probability ping ¢(m) between the original fields and the auxiliary

distribution has, therefore, the product form field m. The spatial variation ofp across an interface is
5 asymptotically identicalin the scaling regimeto that of an
P(m,m,Vm)= 1 exd — (Vm) 1 equilibrium interface. It follows thagt an interface|V ¢| is
B (27U) 2 2U 27D a given constant, determined by the equilibrium interface
1 profile, and thereforéVm| is a constant, which we shall call
><exp(——(Tm2—'Smr'n+s'n?)), a _ , o
2D This discussion shows that the Gaussian approximation
(12) cannot be exact because, for a Gaussian figl{ivm| fluc-
tuates with position on the interface. An exception is the
where limt d—w, when |Vm| approaches the limit
_ [29 . ((am/ax;)?)1¥2 We shall return to this limit below.
D=ST-S%4 (13 Replacing|Vm| by a in Egs.(9) and (11) leads to the

probability distribution
is the determinant of the covariance submatrix in the

(m,m) sector. (8(v+m/a)d(m))y [ Sa |2 s&
From Eqs.(10) and(11) the velocity distribution is given ~ Pv(v)= (5(m)) “\2-0] ¥R~ 2pV |
by (17)
S(v+m/|Vm|)8(m)|V(m) This new approach, therefore, fails to reproduce the
P,(v) (14
v v)=

power-law tail inP,(v) predicted using the general argu-
ments presented in Sec. I, but gives instead a Gaussian dis-
Evaluating the averages using the distributi@g) gives tribution for all d. While both approaches would seem to be
equally valida priori, the calculation oP,(v) discriminates

(o(m)[V(m)})

r d+2 clearly in favor of the first approach of treating the fietd
1 2 /1 1 ( consistently as Gaussian throughout. In the lidait o, how-
Py(v)=— = , (19  ever, both approaches agree, since 8d) has, for large
v d+1 2/ (d+2)/2 rE . ’ '
Vm I\ —- v (1+0%/v%) d, the limiting Gaussian form

_ P,(v)=(t/m)Y%exp —tv?), 18
where the characteristic velocityis given by o(v)=(tIm) —to?) (18

using v— (d/2t)Y2 from the Ohta-Jasnow-KawasakDJK)

Y LI (L T e Ll g theory.
" Nsu (m?{(Vm)?)/d * (16) A concrete realization of the new scheme requires a
model that ensures that the interface thickness is time inde-
Note that the distributiorf15) is normalized on the interval pendent. Although it is difficult to enforce the constraint
(—o0,). |Vm|=a at interfaces, models in which the looser condition
The v~ @*2) tail predicted by Eq(15) agrees with the ((Vm)?)=a? is imposed can be devised. The simplest such
scaling arguments for nonconserved fields presented in Semodel is that proposed by Bray and HumayuarilQ], which
Il. This agreement is a nontrivial result, since up to now weis equivalent to the Oono-Puri extensiphl] of the OJK
have made no assumptions about the nature of the dynamiasiodel. Within this model, the field is still strictly Gaussian,
The only assumption used is that the fiefdis Gaussian, so P,(v) still has the form(15). This model allows, how-
which is evidently qualitatively correct for nonconserved ever, a quantitative comparison of Eq4.7) and (15) for
fields but not for conserved fields, where the power law pred—ow. One finds[1,10] S=4t/d, T=(d+2)/2dt, and
dicted using Eq(15) disagrees with the scaling resu®). U=1/d (corresponding ta=1), and henc® = 2/d. Putting
We conclude that no simple Gaussian auxiliary-field ap-these results into either E@15), with d—<, or Eq. (17),
proach captures the physics of the conserved model. Similagith a=1, reproduces Eq18).
conclusions have been drawn in another conf@kt
The explicit value ob in Eq.(16) depends on the dynam-
ics of the fieldm. The simplest approximation is that of
Ohta, Jasnow, and Kawasdki], in which m obeys the dif- The scaling arguments of Sec. Il can be generalized rather
fusion equatiory,;m=D,V?m, with Dy=(d—1)/d. The ini-  simply to n-component vector fields in spatial dimension
tial condition is (m(x,0)m(x’,0))=A8(x—x"). With this  d=n (the latter condition being necessary for the existence

IV. VECTOR FIELDS
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of localized defects The quantitativgthough approximaje tion between these two distributions is simply
methods of Sec. Ill are, for technical reasons, less straightt,(v)=[27"3T'(n/2)]v" P (v), i.e.,
forward to extend to the general case. Mazefkphas re-

cently given the result for nonconserved fields with point ~n (vlv)"?

defects o=d). P ) = o (23
The scaling argument can be presented in a rather general

way. If the dynamical exponent i i.e., L()~t"% it fol-  The power-law tail isP, (v) ~nvZ/v3, which agrees with the

lows that the characteristic velocity scales aSscaling resul(21) (for the casen=d, z=2).
dL/dt~L~ (1. The next step is to assume that a small
defect structur¢a small domainii=1), a small vortex loop
(n=2,d=3), or vortex-antivortex pairn(=2=d), etc], of
size much less thah(t), collapses under its own internal ~ The velocity distribution of topological defects in a phase-
forces at a rate consistent with scaling. That is, the stcale  ordering system has been discussed. A simple scaling argu-
the structure evolves adr/dt~—r~ (1 for r<L(t). The ment, introduced in the context of domain walls in Sec. II
collapse time of such a structure will then scalerasand  and generalized to vector fields in Sec. IV, predicts a power-
structures withr <(At)*? will disappear in a time interval law tail at large velocity. The tail exponeptis given by the
At. This scenario agrees precisely with what we found exgeneral result21), wherez is the dynamical exponent that
plicitly for scalar fields in Sec. I, wherg=2 (3) for non-  describes the coarsening dynamics, @) ~ 12,
conservedconservel fields. The casen=2 has been dis- For the special case of nonconserved fields, approximate
cussed by Rutenberg and Brga2]. analytical calculations, based on a Gaussian closure scheme,
The number of defect structures per unit volume with sizéhave been performed for scalar fiel@c. Il) and for vector
betweerr andr +dr is again given by the scaling for1).  fields with point defectg4]. In both cases the approximate
Requiring that the number of structures that disappear ifiesult exhibits the power-law tail predicted by the scaling
interval At be linear inAt forces the scaling functiofh(x) in ~ arguments. A comparison of Eq45) and(23) suggests the
Eq. (1) to have the small-argument forfx) ~x?~ 1, giving  following conjecture for general nonconserved vector fields,
n(r)~r? /L9 % for r<L. The core volume of a structure of Within the Gaussian approximation:
sizer scales ag®™ ", while the total core volume per unit

V. CONCLUSION

volume of space scales &s". The core-volume weighted d+_2 -
probability for defect structure size betweemndr +dr is, B 2 1 (vh)"?
therefore, Polv)= r( n)r(d—n+2 v (1+v2/p?) 02’
P.(rydr~rz=1d=ngp/Ld+z=n " r<| (19 2 2 (24
a generalization of Eqg¢4) and (7). Usingv~r~(* " leads  This result reduces to EL5) for n=1 [13], to Eq.(23) for
to the power-law tail n=d, and gives rise to the power-law tatl,(v)~v P with
p=d+3—n, in agreement with the scaling predicti¢l)
P (1)~ 1 (20) for z=2.
v v(pLZ hHpP~ 1 As a final comment we note that for certain systems the
growth law forL(t) is expected to contain logarithmic cor-
with the tail-exponent rections to a simple power law. Two examples are the non-
conservech=2 model ford=2, where one expec{d2,14
p=2+(d+1-n)/(z-1). (21)  L(t)~(t/Int)*2 and the conserved=2 model ford=3,

_ . o where[12,15 L(t)~ (tInt)¥%. A simple scaling approach of
This result generalizes Eqf) and(8), to which it reduces  the type used in Secs. Il and IV cannot be applied naively,
for n=1 andz=2,3, respectively. _ due to the appearance of a new length scale, the defect core

We can compare this result with the analytical result forsjze which enters as a short-scale cutoff in the logarithms.
P,(v) obtained using the Gaussian closure approximationye would expect, however, that any resulting modifications
for nonconserved fieldsz(=2) with point defects 1t=d)  of the final result would be limited to possible logarithmic
[4]. For this case Eq.(21) becomes p=3, i.e. corrections to the power-law tail iR, (v). The dominant
P,(v)~1/L%>. Note thatP,(v) is the probability distribu- power-law part will be obtained by inserting the appropriate
tion for themagnitudeof the velocity. The Gaussian closure yg|ye ofz (2 or 4, respectively, in the cases discussed above
calculation gives an expression for the probability distribu-j,, Eq. (21).

tion P(v) of the vectorvelocity in the form[4]
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