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Velocity distribution of topological defects in phase-ordering systems

A. J. Bray
Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

~Received 26 November 1996!

The distribution of interface~domain-wall! velocitiesv in a phase-ordering system is considered. Heuristic
scaling arguments based on the disappearance of small domains lead to a power-law tailPv(v);v2p, for large
v, in the distribution ofv[uvu. The exponentp is given byp521d/(z21), whered is the space dimension
and 1/z is the growth exponent, i.e.,z52 for nonconserved~modelA) dynamics andz53 for the conserved
case~modelB). The nonconserved result is exemplified by an approximate calculation of the full distribution
using a Gaussian closure scheme. The heuristic arguments are readily generalized to systems described by a
vector order parameter.@S1063-651X~97!09805-X#

PACS number~s!: 64.60.Cn, 64.60.My
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I. INTRODUCTION

The theory of phase-ordering dynamics has seen sig
cant advances in recent years@1#. Coarsening proceeds b
the elimination of topological defects, e.g., domain wa
vortices, or strings, and various properties of the defect
tribution have been investigated in some detail@2,3#.

In a recent paper, Mazenko@4# has carried out an inves
tigation of the distribution of defect velocities in a phas
ordering system. Using an approximate ‘‘Gaussian closu
scheme, he has computed the velocity distribution for po
defects inO(n) models with a nonconserved order para
eter. He finds the interesting result that the velocity distrib
tion has a power-law tail.

In the present work we shall show that such power-l
tails can be deduced rather generally using very simple s
ing arguments. The central idea is that large defects vel
ties are associated with the vanishing of defects at sm
length scales. Hence the tail gives information about
small-scale structure of the defect morphology. However,
velocity distribution is more cleanly defined and therefo
more convenient to study theoretically~and in simulations!
than the morphology itself. The physical arguments we s
use are very general and can be applied to systems with
pointlike and extended defects, with or without conservat
of the order parameter.

Consider, for example, systems described by a scalar
der parameter. This class includes the ‘‘standard’’ pha
ordering systems such as binary alloys~order-disorder tran-
sitions or phase separation! and binary liquids. The
configuration of the coarsening system is described by
locations of the interfaces, or domain walls, that sepa
regions occupied by the two ordered phases. We are in
ested in the velocity distribution of points on the interfac
The high-velocity tail in the distribution arises as follows. A
all stages of the coarsening process, small domains are b
eliminated. When the domains are very small, the wa
move very quickly. So the high-velocity tail is related to th
density of small domains. This is the basic idea behind
scaling argument presented in Sec. II. For the case of n
conserved scalar fields, an explicit calculation using a Ga
ian closure scheme~Sec. III! gives an approximate form fo
the full velocity distribution, extending Mazenko’s work@4#
551063-651X/97/55~5!/5297~5!/$10.00
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on the velocity distribution of point defects inO(n) models.
The tail of the distribution agrees with the result deriv
from scaling arguments.

We shall show that an alternative~and a priori equally
valid! way of using the Gaussian closure results to comp
the velocity distribution gives a Gaussian tail rather than
power-law tail. The defect velocity distribution, therefore,
a useful discriminator between various computatio
schemes. It is reassuring that, in the limit of large spa
dimensiond, when the Gaussian closure approximation
believed to become exact~for nonconserved fields!, both
schemes yield the same results.

In Sec. IV the scaling arguments are extended to vec
fields and the general resultp521(d112n)/(z21) is ob-
tained for the tail exponent. For point defects (n5d) this
result agrees with that obtained by Mazenko@4# using the
Gaussian closure approximation. On the basis of the res
for scalar fields and vector fields with point defects, we co
jecture@Eq. ~24!# a general form for the defect velocity dis
tribution within the Gaussian approximation.

II. SCALING APPROACH

A. Nonconserved scalar fields

A system described by a nonconserved scalar field co
ens by curvature driven growth@1#. The normal velocity of a
point on an interface is proportional to the total curvatu
K. For a small circular~or spherical, ind53) domain of
radiusr , K5(d21)/r . The velocity of the interface is there
fore v5dr/dt}21/r . It follows that the timet for a domain
of initial radius r to disappear scales ast}r 2.

Let n(r )dr be the number of domains per unit volum
with radius betweenr andr1dr. The assumed scaling of th
domain morphology gives

n~r !5L2~d11! f ~r /L !, ~1!

whereL(t);t1/2 is the characteristic length scale at timet
after the quench into the ordered phase. Integrating Eq.~1!
over r gives of order one domain per scale volumeLd, as
required by scaling.

In a time intervalDt, domains withr,(Dt)1/2 will disap-
pear. From Eq.~1! the number of such domains is
5297 © 1997 The American Physical Society
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L2~d11!E
0

~Dt !1/2

dr f ~r /L !;L2~d11!~dL/dt!Dt. ~2!

The right-hand side of Eq.~2! follows from the fact that the
total number of domains per unit volume scales asL2d. The
requirement that the left-hand side of Eq.~2! be linear in
Dt for Dt→0 implies the propertyf (x);x, for x→0, for the
scaling functionf (x). Inserting this form into Eq.~2!, one
recoversL(t);t1/2 as expected.

We have shown thatn(r )dr;rdr /Ld12 for r!L. The
interfacial area per unit volume associated with these sm
domains is

A~r !dr;r d21n~r !dr;r ddr/Ld12. ~3!

Normalizing by the total interfacial area per unit volum
L21 gives the area-weighted probability for interfacial radi
of curvature betweenr and r1dr, i.e.,

Pr~r !dr;r ddr/Ld11, r!L. ~4!

Since the velocity associated with radius of curvaturer is
v;1/r , the interfacial velocity distributionPv(v) is obtained
from Pv(v)5Pr(r )udr/dvu, giving the power-law tail

Pv~v !;
1

v~vL !d11 . ~5!

This, together with its generalizations below, is our ma
result.

B. Conserved scalar fields

For conserved scalar fields, coarsening proceeds thro
the Lifshitz-Slyozov-Wagner ~LSW! evaporation-
condensation mechanism@5#, by which large domains~or,
more generally, regions with low interfacial curvature! grow
at the expense of small domains~regions of high curvature!.
This leads to the LSW growth lawL(t);t1/3. Large domain-
wall velocities are associated, as in the nonconserved c
with the disappearance of small domains. For the conse
case, however, the relation between velocity and radiu
v(r );1/r 2 @1,5#. Therefore, the time taken for a domain
size r!L(t) to evaporate is of orderr 3. In a time interval
Dt, domains of sizer,(Dt)1/3 will disappear. Using Eq.~1!,
the number of such domains is

L2~d11!E
0

~Dt !1/3

dr f ~r /L !;L2~d11!~dL/dt!Dt, ~6!

in complete analogy to Eq.~2!. The requirement that the
left-hand side be proportional toDt forces the domain-size
distribution function f (x) to have the small-x form
f (x);x2 for conserved scalar fields. Inserting this form in
Eq. ~6!, one recoversL(t);t1/3 as expected.

The interfacial area per unit volume associated with th
small domains is given byA(r )dr;r d21n(r )dr, as in Eq.
~3!. Usingn(r )dr;r 2dr/Ld13 for r!L, which follows from
f (x);x2, and normalizing by the interfacial area per un
volumeL21 gives the area-weighted probability for interf
cial radius of curvature betweenr and r1dr:
ll

gh

se,
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Pr~r !dr;r d11dr/Ld12, r!L, ~7!

instead of Eq.~4!. The final step is to use the relatio
v;1/r 2 to deduce the velocity distributionPv(v) from
Pv(v)5Pr(r )udr/dvu. From Eq.~7! one infers the power-
law tail

Pv~v !;
1

v~vL2!~d12!/2 ~8!

for conserved scalar fields.
The scaling approach adopted for scalar fields can

readily generalized to vector fields. Before doing so, ho
ever, we will consider an analytical approach, based o
Gaussian closure scheme, for computing the full distribut
Pv(v) ~i.e., not just the tail! for the nonconserved scala
case. This is instructive as it provides, in conjunction w
the scaling result~5! for the tail, a way of discriminating
between two~a priori equally valid! ways of using the
Gaussian closure results in the calculation ofPv .

III. CALCULATION OF Pv„v… USING
GAUSSIAN CLOSURE

The idea underlying all Gaussian closure schemes is
introduction of a ‘‘smooth’’ auxiliary fieldm(x,t) whose
zeros define the interfaces, i.e.,m has its zeros at the sam
points as the order-parameter fieldf(x,t). Whereasf is
essentially constant within domains, but varies rapidly with
domain walls,m is smooth, i.e., it varies only on the large
scaleL(t). At this stage, however, it is not necessary
specify precisely howm is defined.

An expression for the interface velocity in terms ofm can
be obtained by noting that the rate of change ofm in a frame
moving with the interface is zero, i.e.,dm/dt505]m/
]t1v•“m. Since “m is normal to the interface
v•“m5vnu“mu, wherevn is the normal velocity of the in-
terface. This gives

vn~x!52] tm/u“mu. ~9!

Formally this equation defines a ‘‘velocity’’ at every poin
the velocity of the surface of constantm defined at that point.
To find the distribution of interface velocities, we have
project onto the interfaces:

Pv~v !5
^d„v2vn~x!…r~x!&

^r~x!&
, ~10!

wherer(x) is the areal density of interface, given by

r~x!5d„m~x!…u“mu. ~11!

Integratingr(x) over any volume of space gives the interf
cial area in that volume.

Equations~9!–~11! are exact, but in order to make furthe
progress one needs to know the joint distribution function
m, ] tm, and the components] im of “m, at a given point in
space. In all Gaussian closure schemes, the fieldm(x,t) is
assumed to be Gaussian. This approximation works rea
ably well in practice for nonconserved fields@1#. Using it,
the required distribution function is expressible in terms
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the inverse of the covariance matrix of the variablesm,
ṁ[] tm, and ] im ( i51, . . . ,d). Clearly ^m] im& and

^ṁ] im& both vanish due to translational invariance. Sim
larly, ^] im] jm& vanishes foriÞ j due to the assumed iso
ropy of the system. It follows that the only nonzero eleme
of the covariance matrix areS(t)5^m2&, Ṡ/25^mṁ&,
T(t)5^ṁ2&, andU(t)5^(] im)

2&. Note that the“m sector is
decoupled from the (m,ṁ) sector. The required probabilit
distribution has, therefore, the product form

P~m,ṁ,“m!5
1

~2pU !d/2
expS 2

~“m!2

2U D 1

2pD

3expS 2
1

2D
~Tm22Ṡmṁ1Sṁ2! D ,

~12!

where

D5ST2Ṡ2/4 ~13!

is the determinant of the covariance submatrix in
(m,ṁ) sector.

From Eqs.~10! and~11! the velocity distribution is given
by

Pv~v !5
^d~v1ṁ/u“mu!d~m!u“~m!u&

^d~m!u“~m!u&
. ~14!

Evaluating the averages using the distribution~12! gives

Pv~v !5
1

Ap

GS d12

2 D
GS d11

2 D
1

v̄

1

~11v2/ v̄2!~d12!/2
, ~15!

where the characteristic velocityv̄ is given by

v̄5A D

SU
5A^m2&^ṁ2&2^mṁ&2

^m2&^~“m!2&/d
. ~16!

Note that the distribution~15! is normalized on the interva
(2`,`).

The v2(d12) tail predicted by Eq.~15! agrees with the
scaling arguments for nonconserved fields presented in
II. This agreement is a nontrivial result, since up to now
have made no assumptions about the nature of the dynam
The only assumption used is that the fieldm is Gaussian,
which is evidently qualitatively correct for nonconserv
fields but not for conserved fields, where the power law p
dicted using Eq.~15! disagrees with the scaling result~8!.
We conclude that no simple Gaussian auxiliary-field a
proach captures the physics of the conserved model. Sim
conclusions have been drawn in another context@9#.

The explicit value ofv̄ in Eq. ~16! depends on the dynam
ics of the fieldm. The simplest approximation is that o
Ohta, Jasnow, and Kawasaki@6#, in whichm obeys the dif-
fusion equation] tm5D0¹

2m, with D05(d21)/d. The ini-
tial condition is ^m(x,0)m(x8,0)&5Dd(x2x8). With this
-
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choice one obtainsv̄5@(d21)/2t#1/2. Other approximations
such as that of Mazenko@7#, give the samet21/2 behavior,
but with a different prefactor. Thet21/2 dependence follows
quite generally from the scaling relationv̄;dL/dt and the
usual resultL;t1/2 for nonconserved scalar fields.

Before concluding this section, it is instructive to briefl
discuss an alternative approach@8# to implementing the
Gaussian assumption for the fieldm. Consider a given map
ping f(m) between the original fieldf and the auxiliary
field m. The spatial variation off across an interface is
asymptotically identical~in the scaling regime! to that of an
equilibrium interface. It follows that,at an interface, u“fu is
a given constant, determined by the equilibrium interfa
profile, and thereforeu“mu is a constant, which we shall ca
a.

This discussion shows that the Gaussian approxima
cannot be exact because, for a Gaussian fieldm, u“mu fluc-
tuates with position on the interface. An exception is t
limit d→`, when u“mu approaches the limit
@( i51

d ^(]m/]xi)
2&#1/2. We shall return to this limit below.

Replacingu“mu by a in Eqs. ~9! and ~11! leads to the
probability distribution

Pv~v !5
^d~v1ṁ/a!d~m!&

^d~m!&
5S Sa22pD D 1/2expS 2

Sa2

2D
v2D .

~17!

This new approach, therefore, fails to reproduce
power-law tail inPv(v) predicted using the general argu
ments presented in Sec. II, but gives instead a Gaussian
tribution for all d. While both approaches would seem to
equally valida priori, the calculation ofPv(v) discriminates
clearly in favor of the first approach of treating the fieldm
consistently as Gaussian throughout. In the limitd→`, how-
ever, both approaches agree, since Eq.~15! has, for large
d, the limiting Gaussian form

Pv~v !5~ t/p!1/2exp~2tv2!, ~18!

using v̄→(d/2t)1/2 from the Ohta-Jasnow-Kawasaki~OJK!
theory.

A concrete realization of the new scheme requires
model that ensures that the interface thickness is time in
pendent. Although it is difficult to enforce the constrai
u“mu5a at interfaces, models in which the looser conditi
^(“m)2&5a2 is imposed can be devised. The simplest su
model is that proposed by Bray and Humayun@1,10#, which
is equivalent to the Oono-Puri extension@11# of the OJK
model. Within this model, the field is still strictly Gaussia
so Pv(v) still has the form~15!. This model allows, how-
ever, a quantitative comparison of Eqs.~17! and ~15! for
d→`. One finds @1,10# S54t/d, T5(d12)/2dt, and
U51/d ~corresponding toa51), and henceD52/d. Putting
these results into either Eq.~15!, with d→`, or Eq. ~17!,
with a51, reproduces Eq.~18!.

IV. VECTOR FIELDS

The scaling arguments of Sec. II can be generalized ra
simply to n-component vector fields in spatial dimensio
d>n ~the latter condition being necessary for the existen
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of localized defects!. The quantitative~though approximate!
methods of Sec. III are, for technical reasons, less strai
forward to extend to the general case. Mazenko@4# has re-
cently given the result for nonconserved fields with po
defects (n5d).

The scaling argument can be presented in a rather gen
way. If the dynamical exponent isz, i.e., L(t);t1/z, it fol-
lows that the characteristic velocity scales
dL/dt;L2(z21). The next step is to assume that a sm
defect structure@a small domain (n51), a small vortex loop
(n52, d53), or vortex-antivortex pair (n525d), etc.#, of
size much less thanL(t), collapses under its own interna
forces at a rate consistent with scaling. That is, the scaler of
the structure evolves asdr/dt;2r2(z21) for r!L(t). The
collapse time of such a structure will then scale asr z and
structures withr,(Dt)1/z will disappear in a time interva
Dt. This scenario agrees precisely with what we found
plicitly for scalar fields in Sec. II, wherez52 ~3! for non-
conserved~conserved! fields. The casen52 has been dis-
cussed by Rutenberg and Bray@12#.

The number of defect structures per unit volume with s
betweenr andr1dr is again given by the scaling form~1!.
Requiring that the number of structures that disappea
intervalDt be linear inDt forces the scaling functionf (x) in
Eq. ~1! to have the small-argument formf (x);xz21, giving
n(r );r z21/Ld1z for r!L. The core volume of a structure o
size r scales asr d2n, while the total core volume per un
volume of space scales asL2n. The core-volume weighted
probability for defect structure size betweenr and r1dr is,
therefore,

Pr~r !dr;r z211d2ndr/Ld1z2n, r!L, ~19!

a generalization of Eqs.~4! and~7!. Usingv;r2(z21) leads
to the power-law tail

Pv~v !;
1

v~vLz21!p21 , ~20!

with the tail-exponent

p521~d112n!/~z21!. ~21!

This result generalizes Eqs.~5! and ~8!, to which it reduces
for n51 andz52,3, respectively.

We can compare this result with the analytical result
Pv(v) obtained using the Gaussian closure approxima
for nonconserved fields (z52) with point defects (n5d)
@4#. For this case Eq. ~21! becomes p53, i.e.,
Pv(v);1/L2v3. Note thatPv(v) is the probability distribu-
tion for themagnitudeof the velocity. The Gaussian closur
calculation gives an expression for the probability distrib
tion P(vW ) of the vectorvelocity in the form@4#

P~vW !5

GS n12

2 D
~p v̄2!n/2

1

~11v2/ v̄2!~n12!/2
. ~22!

The normalization of this distribution is*dnvP(vW )51,
whereasPv(v) is normalized as*0

`dvPv(v)51. The rela-
t-

t

ral

ll

-

e

in

r
n

-

tion between these two distributions is simp
Pv(v)5@2pn/2/G(n/2)#vn21P(v), i.e.,

Pv~v !5
n

v̄

~v/ v̄ !n21

~11v2/ v̄2!~n12!/2
. ~23!

The power-law tail isPv(v);nv̄2/v3, which agrees with the
scaling result~21! ~for the casen5d, z52).

V. CONCLUSION

The velocity distribution of topological defects in a phas
ordering system has been discussed. A simple scaling a
ment, introduced in the context of domain walls in Sec.
and generalized to vector fields in Sec. IV, predicts a pow
law tail at large velocity. The tail exponentp is given by the
general result~21!, wherez is the dynamical exponent tha
describes the coarsening dynamics, viaL(t);t1/z.

For the special case of nonconserved fields, approxim
analytical calculations, based on a Gaussian closure sch
have been performed for scalar fields~Sec. III! and for vector
fields with point defects@4#. In both cases the approximat
result exhibits the power-law tail predicted by the scali
arguments. A comparison of Eqs.~15! and~23! suggests the
following conjecture for general nonconserved vector fiel
within the Gaussian approximation:

Pv~v !5

2GS d12

2 D
GS n2DGS d2n12

2 D
1

v̄

~v/ v̄ !n21

~11v2/ v̄2!~d12!/2
.

~24!

This result reduces to Eq.~15! for n51 @13#, to Eq.~23! for
n5d, and gives rise to the power-law tailPv(v);v2p with
p5d132n, in agreement with the scaling prediction~21!
for z52.

As a final comment we note that for certain systems
growth law forL(t) is expected to contain logarithmic co
rections to a simple power law. Two examples are the n
conservedn52 model ford52, where one expects@12,14#
L(t);(t/ lnt)1/2, and the conservedn52 model for d>3,
where@12,15# L(t);(t lnt)1/4. A simple scaling approach o
the type used in Secs. II and IV cannot be applied naive
due to the appearance of a new length scale, the defect
size, which enters as a short-scale cutoff in the logarith
We would expect, however, that any resulting modificatio
of the final result would be limited to possible logarithm
corrections to the power-law tail inPv(v). The dominant
power-law part will be obtained by inserting the appropria
value ofz ~2 or 4, respectively, in the cases discussed abo!
in Eq. ~21!.
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