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Method of constructing exactly solvable chaos
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We present a systematic method of constructing rational mappings as ergodic transformations with nonuni-
form invariant measures on the unit intervalI5@0,1#. As a result, we obtain a two-parameter family of rational
mappings that have a special property in that their invariant measures can be explicitly written in terms of
algebraic functions of parameters and a dynamical variable. Furthermore, it is shown here that this family is the
most generalized class of rational mappings possessing the property of exactly solvable chaos onI , including
the Ulam–von Neumann mapy54x(12x). Based on the present method, we can produce a series of rational
mappings resembling the asymmetric shape of the experimentally obtained first return maps of the Beloussof-
Zhabotinski chemical reaction, and we can match some rational functions with other experimentally obtained
first return maps in a systematic manner.@S1063-651X~97!09405-1#

PACS number~s!: 05.45.1b, 04.20.Jb
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Characterizing invariant measures for explicit nonline
dynamical systems is a fundamental problem which conn
dynamical theory with statistics and statistical mechanics
some cases, it would be desirable to characterize erg
invariant measures for simple chaotic dynamical syste
However, in the cases of chaotic dynamical systems, s
attempts to obtain explicit invariant measures have ra
been made. One well-known exception is the logistic m
Y54X(12X)[ f 0(X) on I5@0,1# given by Ulam and von
Neumann in the late 1940s@1#.

The Ulam–von Neumann dynamical syste
xi5 f 0(xi21) has an ergodic measurem(dx)5dx/
pAx(12x) such that the time averages of a functionQ(x)
can be explicitly computed by the formula

lim
N→`

(
i50

N21
1

N
Q~xi !5E

0

1 Q~x!dx

pAx~12x!

for almost all initial conditionsx0PI . The first attempt to
generalize the Ulam–von Neumann map within a set of
tional functions was made by Katsura and Fukuda in 19
@2#. The Katsura and Fukuda model is written as

Y5
4X~12X!~12 lX !

~12 lX2!2
[ f l~X!, ~1!

for 0< l,1. Clearly, the Ulam–von Neumann map can
regarded as a special case of Katsura–Fukuda systems w
the parameterl is set to 0. The author show@3# that the
Katsura–Fukuda mappings~1! also have ergordic measure
which can be written explicitly as

m~dx!5r~x!dx5
dx

2K~ l !Ax~12x!~12 lx !
, ~2!

whereK( l ) is the elliptic integral of the first kind (g51)
given by K( l )5*0

1du/A(12u2)(12 lu2). It is known @2#
that the Katsura-Fukuda systems and the Ulam–von N
mann system also have explicit solutions in terms of
Jacobi sn elliptic function, as
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xn5sn2„K~ l !2nu0…, u0PI , ~3!

whereAl corresponds to the modulus of Jacobi elliptic fun
tions. The validity of the formulas of the general solutio
~3! is easily checked using the duplication formula@4# of the
Jacobi sn elliptic function

sn~2u!5
2sn~u!A@12sn2~u!#@12 lsn2~u!#

@12 lsn4~u!#
. ~4!

Because the Ulam–von Neumann system and Kats
Fukuda systems havenot onlyexact solutions~3!, but also
the explicitly written ergodic invariant measures~2!, we call
a dynamical systemexactly solvable chaosif it has both of
these properties.

Thus, it is of great interest to investigate whether we c
generalize the Ulam–von Neumann system and the Kats
Fukuda systems further within a set of rational function
maintaining the property of exactly solvable chaos. The m
purpose of the present paper is to show that by using
addition formulas of elliptic functions we can construct
two-parameter family of rational mappings of exactly so
able chaos, and, at the same time, that there is a ce
limitation to generalizing this family within a set of rationa
functions.

Our results reported here@5# concern the following ratio-
nal transformations

Y5 f l ,m~X!5
4X~12X!~12 lX !~12mX!

11AX21BX31CX4
PI , ~5!

where A522(l1m1 lm), B58lm, C5 l 21m222lm
22l 2m22lm21 l 2m2, andXPI . The parametersl andm
are arbitrary real numbers satisfying the conditi
2`,m< l,1. Figure 1~a! shows various shapes of the pr
posed mappings~5!. Surprisingly, some rational maps in Eq
~5! strongly resemble the asymmetric shape of the exp
mentally obtained first return maps of the Belouss
Zhabotinski chemical reaction. Here, we will prove the fo
lowing statement. The two-parameter family of ration
mappings~5! is also exactly solvable chaos, such that t
5280 © 1997 The American Physical Society



r-

f
n
h

Ja-
s,
as
le,
r
ua-
e-

el-
-

er

n

os

tu

55 5281METHOD OF CONSTRUCTING EXACTLY SOLVABLE CHAOS
dynamical systemsxi115 f l ,m(xi) Eq. ~5! have ergodic in-
variant measures explicitly given by

m~dx!5r~x!dx5
dx

2K~ l ,m!Ax~12x!~12 lx !~12mx!
,

~6!

whereK is given by the integrals

K~ l ,m!5E
0

1 du

A~12u2!~12 lu2!~12mu2!
, ~7!

and it has general solutions explicitly given by

xn5s2@K~ l ,m!2nu0#, u0PI . ~8!

We prove this by explicitly computing the duplication fo
mula of the following degeneratedhyperelliptic function
s(x) defined by

FIG. 1. ~a! The two-parameter family of exactly solvable cha
mappings ~generalized Ulam–von Neumann maps! ~5! for
( l ,m)5(0.1,210),(0.1,220), . . . ,(0.1,2100). The asymmetric
shapes of this class of mappings are very similar to the first re
maps of the Beloussof-Zhabotinski chemical reaction.~b! The two-
parameter family of exactly solvable chaos mappings~generalized
cubic maps! ~25! for ( l ,m)5~0.1,210!,~0.1,220!, . . . ,~0.1,2100!.
s21~x!5E
0

x du

A~12u2!~12 lu2!~12mu2!
. ~9!

Here, degeneratedmeans that this hyperelliptic integral o
the right-hand side of Eq.~9! can be reduced to a certai
elliptic integral by a rational change of variables. Althoug
the reduction of Abelian integrals of genusg>2 to elliptic
functions was intensively studied in the 19th century by
cobi, Weierstrass, Ko¨nigsberger, Kovalevskaya, and other
it was only in the 1980s that the theory of the reduction w
successfully applied to physics for obtaining, for examp
explicit periodic solutions in terms of elliptic functions fo
the Korteweg–de Vries equation and the sine-Gordon eq
tion @6#. Let us consider reduction of the hyperelliptic int
grals ~9! as

s21~x!5E
0

x du

A~12u2!~12 lu2!~12mu2!

5E
0

x2 dv

2Av~12v !~12 lv !~12mv !
, ~10!

whereu25v. Thus, we can write the degenerated hyper
liptic function s(x) in terms of the Weierstrass elliptic func
tions. The Weierstrass elliptic functioǹ(u) of uPC is de-
fined by

`~u!5
1

u2
1( 8

j ,k H 1

~u22 jv122kv2!
2 2

1

~2 jv112kv2!
2J ,
~11!

where the symbol(8 means that the summation is made ov
all combinations of integersj andk, except for the combi-
nation j5k50, and 2v1 and 2v2 are periods of the function
`(u) @4#. The Weierstrass elliptic functioǹ(u) satisfies the
differential equation

S d`~x!

dx D 254`3~x!2g2`~x!2g3 , ~12!

with the invariants

g2~v1 ,v2!560( 8
j ,k

1

~ jv11kv2!
4

and

g3~v1 ,v2!5140( 8
j ,k

1

~ jv11kv2!
6

@4#. Let e1 ,e2, and e3 be the roots of the equatio
4z32g2z2g350; that is,

e11e21e350, e1e21e2e31e3e152
g2
4
,

e1e2e35
g3
4
. ~13!
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The discriminant D of the function `(u) is given by
D5g2

3227g3
2. If D.0, all rootse1 ,e2, ande3 of the equa-

tion 4z32g2z2g350 are real. Thus, we can assume th
e1.e2.e3. In the case thatD.0, it is known that the peri-
odsv1 andv2 are written simply as

v15E
e1

` dz

A4z32g2z2g3
, v25 i E

2`

e3 dz

Ag31g2z24z3
.

~14!

Using the transformation of the variable as

v52
~12 l !~12m!

y2
2l12m23lm21

3

11,

we can rewrites21(x) in Eq. ~10! as

E
0

x2 dv

2Av~12v !~12 lv !~12mv !

5E
~22 l2m!/3

@~2l12m23lm21!/3#1@~12 l !~12m!#/~12x2!
dy

3
1

A4y32g2y2g3
, ~15!

where

g25
4~12 l1 l 22m1m22 lm!

3

and

g35
4~22 l2m!~2l2m21!~2m2 l21!

27
.

We note here that 4y32g2y2g3 can be factored as

4y32g2y2g354S y2
22 l2m

3 D S y2
2l2m21

3 D
3S y2

2m2 l21

3 D . ~16!

We set

e15
22 l2m

3
.e25

2l2m21

3
.e35

2m2 l21

3
.

Thus, using the integral representation of the periodv1 ~14!
and the differential equation~12! for the Weierstrass elliptic
function, s(x) can be written explicitly in terms of the
Weierstrass elliptic function as

s2~x!512
~12 l !~12m!

`~v12x!2
2l12m23lm21

3

. ~17!

The functions2(x) also has the same periodsv1 and v2
computed using formula~14!. It is noted here that because
D[g2
3227g2

2516~12 l !2~12m!2~ l2m!2.0, ~18!

for 2`,m, l,1, the period 2v1 is alwaysreal, while the
period 2v2 is alwayspure imaginary. Using the addition
formula,

`~z1y!5
1

4H `8~z!2`8~y!

`~z!2`~y! J 22`~z!2`~y!, ~19!

and the duplication formula,

`~2z!5
1

4H `9~z!

`8~z!J 222`~z!, ~20!

for the Weierstrass elliptic functioǹ(u) @4#, we finally ob-
tain theexplicit duplication formula ofs(x) as

s2~2x!5
4s2~x!@12s2~x!#@12 ls2~x!#@12ms2~x!#

11As4~x!1Bs6~x!1Cs8~x!
,

~21!

where A522(l1m1 lm),B58lm, and C5 l 21m2

22lm22l 2m22lm21 l 2m2. If we set X5s2(x) and
Y5s2(2x), we obtain system~5! asY5 f l ,m(X).

Using the relations

s2~v12u!5 f l ,m@s2~v1u!#,

s2@v1~222u!#5 f l ,m@s2~v1u!#, ~22!

for uP@0,1# and by defining the homeomorphism of@0,1#
into itself given byf l ,m(x)5(1/v1)s

21(Ax), we derive the
tent mapf̃ (x)5f l ,m+ f l ,m+f l ,m

21 as

f̃ ~x!52x for xPF0,12G ,
f̃ ~x!5222x for xPF12,1G . ~23!

Because this tent map~23! is clearly ergodic and preserve
the Lebesgue measure, the mapf l ,m preserves the measure

m~dx!5
df l ,m

dx
dx5

dx

2K~ l ,m!Ax~12x!~12 lx !~12mx!
.

~24!

This measure~24! is absolutely continuous with respect
the Lebesgue measure, which implies that the Kolmogor
Sinai entropyh(m) is equivalent to the Lyapunov expone
of ln2 from the Pesin identity@7#, and that the measure~24!
is a physical one in the sense that it is the Sinai-Rue
Bowen measure such that for almost all initial conditio
x0, the time averages limN→`(1/N)( i50

N21d(x2xi) reproduce
the invariant measurem(dx) @7#.

In the same way, we can constructgeneralized cubic
maps fl ,m

(3) from the triplication formula s2(3x)
5 f l ,m

(3)@s2(x)# as
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Y5 f l ,m
~3! ~X!5

XS 2314X1(
i51

4

AiX
i D 2

11(
i52

9

BiX
i

, ~25!

whereA1 , . . . ,A4 andB2 , . . . ,B9 are polynomial functions
in the parametersl andm which vanish forl5m50 @8#. The
generalized cubic mapf l ,m

(3) has the same invariant measur
~24! because the relationf̃ (3)(x)5f l ,m+ f l ,m

(3)+f l ,m
21 holds for

the piecewise-linear map f̃ (3)(x)53x for 0<x< 1
3,

23x12 for 1
3<x< 2

3 and 3x22 for 2
3<x<1. If we set

l5m50, this rational mapping is reduced to the cubic m
Y5X(324X)2 as a special case of Chebyshev maps
tained by Adler and Rivlin@9#. Thus, we can obtaingener-
alized Chebyshev mapsas rational functionsf l ,m

(p) from the
addition formulass2(px)5 f l ,m

(p)@s2(x)#, which have the same
invariant measures~24!. The shapes of the generalized cub
maps are depicted in Fig. 1~b!. Based on the case o
Beloussof-Zhabotinski map, we predict here that some ra
nal mappings~25!, such as that shown in Fig. 1~b!, can re-
semble the first return maps experimentally constructed f
some unknown chaotic phenomena.

Are there more generalized rational mappings that pos
the properties of exactly solvable chaos, such as Eq.~5!? The
exact solvability of the present rational mappings~5! and
~25! is due to the fact thats2(x) in Eq. ~17! is a rational
function of the Weierstrass elliptic functioǹ(u) having the
addition formulaand the real periodv1. For an arbitrary set
of parameterse1 ,e2(,e1), ande3(52e12e2) which deter-
mine the Weierstrass elliptic functioǹ(u) with the real pe-
riod, there exists a set of parametersl andm of f l ,m

(p) given by
l512(e12e2) and m512(2e122e2), l ; i.e., the map-
ping h:(e1 ,e2)°( l ,m) is a bijection. In other words, every
5
n

.
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-

o-

m

ss

element of the family$ f l ,m
(p)% has one-to-one corresponden

to an element of the set of Weierstrass elliptic functio
$`(u)% with real periods. Furthermore, any elliptic functio
w(u) can be expressed in terms of Weierstrassian ellip
functions`(u) and`(u)8 with the same periods, the expre
sion being rational iǹ (u) and linear iǹ 8(u) @4,10#. Since
it is known @11# from theWeierstrassian theoremthat the
class of analytic functionsh(u) having the algebraic addition
formulas @12# including the duplication formulas is exactl
the class of algebraic functions of elliptic functions̀(u),
which of course includes the class of algebraic functions
sine functions, we can say that this two-parameter family
dynamical systemsY5 f l ,m

(p) (X) essentially forms a maxima
class in representing exactly solvable chaos induced by o
dimensional rational mappings.

In conclusion, we present a method of constructing
godic transformations related to rational functions with e
plicit nonuniform invariant measures using the addition fo
mulas of elliptic functions. As a result, we systematica
generalize the Ulam–von Neumann~logistic! map and
Chebyshev maps into two-parameter families of ratio
mappings. We also showed that constructing the more g
eralized family of rational mappings possessing explicit
godic invariant measures has a certain limitation due to
Weierstrassian argument concerning the addition formu
for general analytic functions. As for the applications, all
the constructive results given here for ergodic invariant m
sures by rational mappings can be directly used as nonlin
random number generators for the Monte Carlo methods
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