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Method of constructing exactly solvable chaos
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We present a systematic method of constructing rational mappings as ergodic transformations with nonuni-
form invariant measures on the unit interval[ 0,1]. As a result, we obtain a two-parameter family of rational
mappings that have a special property in that their invariant measures can be explicitly written in terms of
algebraic functions of parameters and a dynamical variable. Furthermore, it is shown here that this family is the
most generalized class of rational mappings possessing the property of exactly solvable chaosloding
the Ulam—von Neumann magp=4x(1—x). Based on the present method, we can produce a series of rational
mappings resembling the asymmetric shape of the experimentally obtained first return maps of the Beloussof-
Zhabotinski chemical reaction, and we can match some rational functions with other experimentally obtained
first return maps in a systematic mann&1063-651X97)09405-1

PACS numbd(s): 05.45+b, 04.20.Jb

Characterizing invariant measures for explicit nonlinear Xp=SIP(K(1)2"8y), 6pel, 3
dynamical systems is a fundamental problem which connects
dynamical theory with statistics and statistical mechanics. Inwhere/I corresponds to the modulus of Jacobi elliptic func-
some cases, it would be desirable to characterize ergodiions. The validity of the formulas of the general solutions
invariant measures for simple chaotic dynamical systems3) is easily checked using the duplication form[#a of the
However, in the cases of chaotic dynamical systems, suchacobi sn elliptic function
attempts to obtain explicit invariant measures have rarely
been made. One well-known exception is the logistic map 2snu)\[1—srf(u)][1—Isrf(u)]
Y=4X(1-X)=fo(X) on 1=[0,1] given by Ulam and von sn(2u) = [=Tsf(u)] L@
Neumann in the late 19404].

The Ulam-von Neumann dynamical systemBecause the Ulam—von Neumann system and Katsura-
xj=fo(Xi—;) has an ergodic measureu(dx)=dx/  Fukuda systems haveot only exact solutiong3), but also
myX(1—x) such that the time averages of a functiQ(x)  the explicitly written ergodic invariant measurey, we call

can be explicitly computed by the formula a dynamical systemexactly solvable chaoi it has both of
N1 these properties.
i 2 1 Q%) 1 Q(x)dx Thus, it is of great interest to investigate whether we can
im —Qx))= | —F——— i _ .
M= [ 0 Wm generalize the Ulam—von Neumann system and the Katsura

Fukuda systems further within a set of rational functions,

maintaining the property of exactly solvable chaos. The main
aPurpose of the present paper is to show that by using the
§1dditi0n formulas of elliptic functions we can construct a
two-parameter family of rational mappings of exactly solv-
able chaos, and, at the same time, that there is a certain

AX(1—X)(1—1X) Iimita_tion to generalizing this family within a set of rational
= X722 =f(X), (1)  functions.

(1 ) Our results reported hef&] concern the following ratio-

nal transformations

for almost all initial conditionsxpel. The first attempt to
generalize the Ulam—von Neumann map within a set of r
tional functions was made by Katsura and Fukuda in 198
[2]. The Katsura and Fukuda model is written as

for 0O=<I<1. Clearly, the Ulam—-von Neumann map can be
regarded as a special case of Katsura—Fukuda systems where 4X(1=X)(1=1X)(1—mX)
the parametet is set to 0. The author shoyB] that the Y=1f n(X)=
Katsura—Fukuda mappind4) also have ergordic measures
which can be written explicitly as

TACBrcxd < ©®

where A=-2(I+m+Im), B=8Im, C=12+m?-2Im
dx —21?m—2Im?+1?m?, and Xel. The parameters and m
w(dx) = p(x)dx= ' (2) are arbitrary real numbers satisfying the condition
2K(1) yx(1—=x)(1—1x) —co<m=|<1. Figure 1a) shows various shapes of the pro-
posed mappingéb). Surprisingly, some rational maps in Eq.
where K (1) is the elliptic integral of the first kindg=1) (5) strongly resemble the asymmetric shape of the experi-
given by K(1)=fadu/\(1—u®)(1—Iu?). It is known [2]  mentally obtained first return maps of the Beloussof-
that the Katsura-Fukuda systems and the Ulam—von NeuwZhabotinski chemical reaction. Here, we will prove the fol-
mann system also have explicit solutions in terms of thdowing statement. The two-parameter family of rational
Jacobi sn elliptic function, as mappings(5) is also exactly solvable chaos, such that the
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=0.1

s’l(x)—fx du
o J(1—u)(1—1D)(1-mP)

(€)

Here, degeneratedneans that this hyperelliptic integral of
the right-hand side of Eq9) can be reduced to a certain
elliptic integral by a rational change of variables. Although
the reduction of Abelian integrals of gengs=2 to elliptic
functions was intensively studied in the 19th century by Ja-
cobi, Weierstrass, Kuigsberger, Kovalevskaya, and others,
it was only in the 1980s that the theory of the reduction was
successfully applied to physics for obtaining, for example,
explicit periodic solutions in terms of elliptic functions for
the Korteweg—de Vries equation and the sine-Gordon equa-
tion [6]. Let us consider reduction of the hyperelliptic inte-

LCO00OO000
oxuhMwhboN©©O=

@) grals(9) as
s 1(x) = f x du
0V(1-u?)(1-1u?)(1-md)
x2 dv
= f , (10
05 0 2\u(1—v)(1—lv)(1-mv)
0.8
0.7
08 whereu?=v. Thus, we can write the degenerated hyperel-
03 liptic function s(x) in terms of the Weierstrass elliptic func-
o3 tions. The Weierstrass elliptic functign(u) of ue C is de-
° fined by
1 ) 1 1
pU)=r2t 2 [

(U—2]j w1~ 2Kw,)2 (2] wi+ 2kw,)?|’
(11

FIG. 1. (a) The two-parameter family of exactly solvable chaos Where the symbat’ means that the summation is made over
mappings (generalized Ulam—von Neumann mapg5) for  all combinations of integerg andk, except for the combi-
(I,m)=(0.1,—10),(0.1~20), ...,(0.1~-100). The asymmetric nhationj=k=0, and 2v; and 2w, are periods of the function
shapes of this class of mappings are very similar to the first returg (U) [4]. The Weierstrass elliptic functiop(u) satisfies the
maps of the Beloussof-Zhabotinski chemical reactibh.The two-  differential equation
parameter family of exactly solvable chaos mappitggneralized

cubic maps (25) for (I,m)=(0.1,-10),(0.1,—20), . .. (0.1,-100. dp(x)\? 3
ax =4p°(X) — 920 (X) —ga, (12
dynamical systems;,,="f (X)) Eq. (5) have ergodic in-
variant measures explicitly given by with the invariants
(d0=p(x)d & (01,00)= 603, ——
X)=p(x)dx= , w,)= -
P ok m) T 0@ o m 921,02 =00 0
(6)
and
whereK is given by the integrals
, 1
K(l,m) fl = (7) gS(wlle):MO% (o w)®
m)=
1 — 2 — 2 — b
0V(1-uH)(L-IuH)(1-mu) [4]. Let e;,e,, and e; be the roots of the equation
3_ 40N ;
and it has general solutions explicitly given by 427~ 072 05=0; thatis,
Xn=8°[K(I,m)2"6p], foel. (8 e, +e,+e;=0, e1e2+e2e3+e3e1=—%

R
We prove this by explicitly computing the duplication for-

mula of the following degeneratednyperelliptic function

s(x) defined by (13

03
€1ee3="""
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The discriminant A of the function p(u) is given by A=g3—2795=16(1—1)?(1—m)?(1-m)>>0, (19

A=g3—27g3. If A>0, all rootse, ,e,, ande; of the equa-

tion 4z°—g,z—gy=0 arereal. Thus, we can assume that for —<m<I<1, the period 2, is alwaysreal, while the
e,>e,>ej3. In the case thad >0, it is known that the peri- period 2w, is alwayspure imaginary Using the addition

ods w, and w, are written simply as formula,
= dz .Fs dz 1(p"(2)—p'(y)]?
wq1= 1 wy=1 B ——— = - -
1 el\/m 2 70€W W(Z_Fy) 4( (@(Z)_p(y) ] p(z) SO(Y), (19)
(14

. . . and the duplication formula,
Using the transformation of the variable as

1 p”(Z) 2
(1-H(1—m) ¥ AL
VST T lvam—3im-1 oz 4(9,(2)] 20(2). 20

y= 3

for the Weierstrass elliptic functiop(u) [4], we finally ob-

we can rewrites1(x) in Eq. (10) as tain theexplicit duplication formula ofs(x) as

48?(x)[1—s2(x)][1—-1s3(x)][1—m&(x)]

X2 dv 52(2)():
1+As*(x) +Bs?(x) + CsB(x ’
fo 2\v(1-v)(1-lv)(1—mo) ) *) > 21)
_ _ _ _ 2
:f[(2|+2m $m=DRFHEDE M) dy where A=-2(I+m+Im),B=8lm, and C=I?+m?
(2-1-m)/3 —2Im—21°m—2Im?+1°m?. If we set X=s?(x) and
1 19 Y=s%(2x), we obtain systent5) asY = f; (X).
R e, Using the relations
V4Y> =02y — 03 g
where Sz(wlza):fl,m[sz(wla)]i
g _A(1—1+12=m+m?—Im) S w1(2-20)]=f, n[s*(010)], (22)
,=
3
for #<[0,1] and by defining the homeomorphism [dJ,1]
and into itself given by¢|,m(x)=(1/w1)s‘1(\/§), we derive the
i = o oh L
4(2-1-m)(2-m-1)(2m-1-1) tent mapf (x)= 1 me 1w b1 m 3
f(x)=2x for xe O,—},
We note here thaty—g,y— g5 can be factored as 2
3 2—I-m 2l-m-1 ~ 1
Ay°—goy—0gz=4|y— 3 y— 3 f(x)=2—2x for xe 5,1. (23
x|y— 2m—|—1>. (16) Because this tent maf23) is clearly ergodic and preserves
3 the Lebesgue measure, the nfap, preserves the measures
We set
w(dx)= Ao dx
. ~2-1-m o _2I—m—1>e _2m-1-1 dx 2K(1,m) YX(1—=x) (1= 1x)(1—mx)
3 273 s 3 (24)

Thus, using the integral representation of the petigd14)  This measurg24) is absolutely continuous with respect to
and the differential equatio(l2) for the Weierstrass elliptic the Lebesgue measure, which implies that the Kolmogorov-
function, s(x) can be written explicitly in terms of the Sinai entropyh(u) is equivalent to the Lyapunov exponent

Weierstrass elliptic function as of In2 from the Pesin identitj7], and that the measuf@4)
is a physical one in the sense that it is the Sinai-Ruelle-
2ron (1-H(1-m) Bowen measure such that for almost all initial conditions
s(x)=1- Siram—3m_1 9 Xo, the time averages lign...(1/N) =Nt 6(x—x;) reproduce

P(w1—X)— 3 the invariant measurg (dx) [7].
In the same way, we can construgeneralized cubic
The functions?(x) also has the same periods; and w, ~maps f3) from the triplication formula s?(3x)
computed using formulél4). It is noted here that because =ff?n)1[sz(x)] as
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4 \2 element of the family{f("\} has one-to-one correspondence
X[ =3+4X+ 2 AX to an element of the set of Weierstrass elliptic functions
i=1 . . .. .
Y=£3(X)= 5 , (259 {p(u)} with real periods. Furthermore, any elliptic function
' 1+ BX w(u) can be expressed in terms of Weierstrassian elliptic
= ! functionsp (u) andg (u)’ with the same periods, the expres-

sion being rational i (u) and linear inp’(u) [4,10]. Since

whereA,, ... A;andB,, ... By are polynomial functions it is known [11] from the Weierstrassian theorerthat the
in the parametersandm which vanish fol =m=0[8]. The  ¢Jass of analytic functions(u) having the algebraic addition
generalized cubic maff3) has the same invariant measuresformulas[12] including the duplication formulas is exactly
(24) because the relatioh®(x) = ¢, of(2e e, > holds for  the class of algebraic functions of elliptic functiopgu),
the piecewise-linear map?(3)(x)=3>é for O=x< i which of course includes the class of algebraic functions of
—3x+2 for t<x<2 and Xx—2 for Z<x<1. If we set sine functions, we can say that this two-parameter family of
|=m=0, this rational mapping is reduced to the cubic mapdynamical system¥'=f(")(X) essentially forms a maximal
Y=X(3—4X)? as a special case of Chebyshev maps obclass in representing exactly solvable chaos induced by one-
tained by Adler and Rivlif9]. Thus, we can obtaigener-  dimensional rational mappings.
alized Chebyshev mags rational functiong(?), from the In conclusion, we present a method of constructing er-
addition formulasz(px)=ff%[sz(x)], which have the same g(_)d_|c transf_ormat_lons_related to ratlongl functions _vylth ex-
invariant measure4). The’shapes of the generalized cubic plicit nonunnfor_m invariant measures using the addltlon for-
maps are depicted in Fig.(H). Based on the case of mulas qf elliptic functions. As a result, we systematically
Beloussof-Zhabotinski map, we predict here that some ratiodeneralize the Ulam-von Neumanfiogistic) map and
nal mappingg25), such as that shown in Fig(H), can re- Chebyshev maps into two-parameter famllles of rational
semble the first return maps experimentally constructed fronf?@PPings. We also showed that constructing the more gen-
some unknown chaotic phenomena. eral!ze_d far_nlly of rational mappings possessing explicit er-

Are there more generalized rational mappings that possegéjd,'c invariant measures has a certain I|m|tat|_0_n due to the
the properties of exactly solvable chaos, such ag®@.The Weierstrassian argument concerning the ad_dlthn formulas
exact solvability of the present rational mappin@ and for general apalytlc funct!ons. As for the appllt_:anr_\s, all of
(25) is due to the fact thas®(x) in Eq. (17) is a rational the constructive results given here for ergodic invariant mea-

function of the Weierstrass elliptic functign(u) having the ~ SUT€S by rational mappings can be directly used as nonlinear
addition formulaand the real period,. For an arbitrary set 'andom number generators for the Monte Carlo methods.

of parametere; ,e;(<e;), andez(= —e;—e,) which deter- The author would like to acknowledge Dr. K. Iguchi and
mine the Weierstrass elliptic functign(u) with the real pe- Dr. A. Bobenko for useful discussions. Also, Professor T.
riod, there exists a set of parameteendm of ffﬁ% given by  Kohda and Professor S. Amari provided helpful suggestions.
=1—-(e;—e,) and m=1—(2e;—2e,)<lI; i.e., the map- This work was supported by the RIKEN Special Research-
ping h:(e;,e,)—(I,m) is abijection In other words, every er's Program to promote basic sciences.
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