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Analysis of bifurcation patterns in reaction-diffusion systems:
Effect of external noise on the Brusselator model
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A detailed stochastic analysis of the Brusselator scheme has been performed to bring out the effect of
external noise on the system. The diffusion parambBtewas taken to be fluctuated by external noise and a
complete solution diagram with the composition variabfeandY has been generated. These noise-induced
transitions reveal that this system attains a stable state not described by its deterministic analysis. The stochas-
tic analyses also reveal that the structural stability of such systems is disturbed even for a slight external
perturbation in the bifurcation parameter, and in a certain range of noise intémsipd correlation timér)
some different spatial and temporal structures afiS&063-651X97)08505-X]

PACS numbe(s): 05.45+b

INTRODUCTION weakly connected can lead to chaotic oscillations due to de-
synchronizatiori6].

One of the most striking and intriguing aspects of natural It is widely known that the interaction of a reaction and
phenomena is that complex systems, involving a large nundiffusion in an open system operating far from equilibrium
ber of strongly interacting elements, can form and maintairfives rise to many interesting phenomena such as ordered
“patterns of order” extending over a macroscopic space andteady states, spatially homogeneous periodic solutions, trav-
time scale. Oscillatory as well as multiple steady-state be€ling waves and fronts, and shock structures. The volume of
havior of certain catalytic reactions has been observed if{térature in this field has been growing steadily since the

numerous experiments and a number of theoretical investgl,if*fssiCal paper by NiCOIiIS da”‘?' hPrigogiﬁé]. Thlf, reaction-
gations have been attempted to explain these effégtSus- ~ difusion equations coupled with appropriate kinetic expres-

. o . . . . i i Is of a num-
tained oscillations in reaction rate, in the concentration of Iorn(S)fht?i\cl) (Ieob(iaceatll Suz\;vgngoerfsr\;ﬁ dasmsa:mgliomgseljir?s?mill;r
reacting component, or in the temperature have been notice(ﬁ 9 P y P

: ; enomena in many other fields.
in many heterogeneous catalytic systems. It has been est " A simple model known as the Brusselaf6i shows how
lished that for the nonisothermal systems it is usually the

S _ . structure can arise as a sequence of instabilities. Evidently,
thermal feedback that causes oscillations, while for the iS0y,yer certain circumstances the usual equilibrium state of a
thermal operations it is generally the autocatalytic variablepemical reaction may be unstable with respect to small per-
Particular attention has been paid in the literature to _the ISOfyrbations and a spatially nonuniform steady state appears
thermal oscillations of hydrogen or carbon monoxide ON(symmetry-breaking instabilily For the Brusselator chemi-
catalytic wires, gauzes, or supported catalysts. In many sitica| network, a couple of results of the numerical solution of
ations the oscillations have been aperiodic or irregular. Venthe transient reaction-diffusion equa’[ion were repoﬂ@h
complex oscillations in the case of isothermal oxidation ofThey have calculated multiple stable solutions for particular
carbon monoxide over a single porous catalyst particle havealues of governing parameters. A slight change of initial
been reportef?]. It is generally recognized that the physical conditions for the relevant parabolic equations very often
processes of heat and mass transfer, coupled with nonlineegsulted in widely different steady-state profiles. As a result,
kinetics may be responsible for the periodic phenomena. lit was not possible to determine how many solutions exist for
has been observed, however, that the majority of the progiven values of the parameters. Kubicek and Maf2@]
posed models predict simple oscillations, or the relaxationook advantage of the continuous approach that made it pos-
type of oscillations, but no model adequately accounts fosible to draw a complete bifurcation diagram. Almost all
multipeak or chaotic oscillations. authors considered the initial componeAt&ndB to some-

Among the few models that explain the aperiodic oscilla-how be maintained uniformly so that they can be treated as
tions are the “pebbly bed” modefa metal catalyst finely externally determined parameters. An exception is the work
disperged on an inactive carnef3,4], and the coverage- of Herschkowitz-Kaufmam9], which indicated that if diffu-
dependent activation energy modél. The essence of all sion ofA is considered, the space structures still may exist. A
these proposed models is the presence of a discrete numhdstailed study of this scheme has been made and reported for
of oscillators(metal crystallites or surface patchewhich if  all the possible situationgl1]. This work was further ex-

tended to show the chaotic behavior of this system through
period-doubling bifurcatiof12].
*Present address: Simulation & Advanced Controls, Inc., Louis- It is well known that nonlinear macroscopic systems op-

ville, KY 40202. erating far from equilibrium possess points of brancHinig
"Present address: United Catalyst Inc., Louisville, KY 40232.  furcation pointy at which the stability properties of the
*National Chemical Laboratory, Pune 411 008, India. steady-state solutions undergo change. At these so-called
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FIG. 1. Bifurcation diagram showing the dependence of the concentration vaKabiethe diffusion componer®, for L=0.1, D,
=0.008,A=2, andB=4.6.

transition points the behavior of the macroscopic systems ifor example, when the system is coupled to a fluctuating
extremely sensitive to perturbations and the mechanisms thanvironment. These fluctuations may be represented as noise
ensure the regression or decay of these fluctuations are get@rms in the evolution equation and are referred to as external
erally lacking. It is necessary then to explicitly take accountnoise. It may be noticed that these fluctuations occur at a
of these fluctuations in modeling systems operating undemacroscopic level and can be included in the macroscopic
such conditions, by the use of stochastic methods. The peglescription once their statistical properties are known. The
turbations are inherent in most systems and are referred to &gcorporation of external noise in the macroscopic equations
the internal or external noise depending on whether the origenerates the stochastic differential equation, which can be
gin of these perturbations lie within the system or outside itequivalently written as the Fokker-Planck equations. As
such as the environment. The role of internal noise in modiwould be evident, these fluctuations being external have no
fying the behavior of macroscopic systems has been exterpearing on properties of systems such as size or volume.
sively investigated using the master equation formalism oifhese can therefore be important for large-volume globally
by a continuous diffusion process, i.e., the Fokker-Planclstable systems.

equation[13,14). It is now agreed that the contribution of = The macroscopic equation suitably appended to include
internal noise to the macroscopic evolution equations is gerthe contributions from the external noise takes the form
erally proportional to the inverse of the square-root volume

of the system. This implies that for large-volume globally dX_

stable systems this effect can generally be ignored. However, dt FO)+G)E @)

for systems in the neighborhood of instability the inclusion

of noise leads to large deviations and qualitatively differentwhere x is the global macroscopic variablgenerally an
results from those obtained for the macroscopic systems. Ba-dimensional vectgr F(x) and G(x) are some
sides this internal noise, the origin of the perturbations in ther-dimensional vectorial nonlinear functions of variatde
system may also lie external to the system. This can occugnd &(t) refers to the stochastic variable with vanishing
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FIG. 2. Steady-state profiles of the concentration variabfer L=0.1 andD,=0.0006.

mean value. The functioR(x) characterizes the determinis- been done. A complete solution diagram of the diffusion
tic part of the evolution of the system af&{x) describes the parameteD, with the composition variableX andY has
coupling of the variablex to the external noisg€(t). This been generated and the diffusion parameter was taken to be
coupling is termed additive iG(x) is constan{independent fluctuated by external source. The results thus obtained re-
of x) and is termed multiplicative iG(x) is dependent on veal that the structural stability of the deterministic states can
X. These two type of couplings have different properties:get disturbed even for slight external perturbations and in
while the additive noise would not influence the stability some cases new structures arise.

properties of the macroscopic equatifiecause eigenvalues

of the Jacobian matrix are not affeciethe multiplicative THE BRUSSELATOR MODEL

noise may bring about changes in the stability properties of . ) )

the system, sometimes even to a completely new evolution The reaction sequence taking place for a typical Brussela-
pattern. The multiplicative noise can enter either as a lineaOr under open system conditions can be obtained as

a quadratic, or an exponential form or as a dichotomic noise. Ky
In this work only the linear coupling of the multiplicative A—B (2a)
noise is considered. ’
It is an experimental observation that in most situations ks
the magnitudes of external fluctuations are distributed ac- B+X=2Y+D, (2b)
cording to a curve that is satisfactorily described by the bell-
shaped curve of the Gaussian or the normal distribution. This Ks
fact can be understood as a consequence of a fundamental 2X+Y=3X, (20)
theorem of probability theory, known as the central limit
theorem. One can utilize the fact that, in most situations, Ka
fluctuations in external parametefsuch as flow rate, tem- X=E. (2d)

perature, and pressureannot be attributed to any one par-
ticular cause and are the result of the cumulative effect oBuch reactions as represented by the above scheme can be
numerous environmental or instrumental factors. If these facvisualized as enzymaticatalyzed by enzymes immobilized
tors are not too dissimilar and are not strongly correlated, then solid suppojtthat take place inside the “idealized pores”
central limit theorem ensures that a Gaussian distributioripores of uniform radii but different length®f a catalyst
would result in the external fluctuating parameter. It is usupellet. It can be assumed that these idealized pores have
ally assumed thag(t) represents a Gaussian process withblocked ends and hence act as oscillators under certain con-
zero mean and i$ correlated 15-17. ditions. This model has been mainly chosen for its autocata-
In this paper a detailed stochastic analysis of the Brusslytic properties and limit cycle behavior. The analysis of the
elator scheme for one particular characteristic length haproblem is simplified by assuming that the noncatalytic com-
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FIG. 3. Spatial and temporal profiles of the concentration varixbfer a fixed value of the noise correlation time and varying noise
intensity forL=0.1, D,=0.0006, and initial profile.

ponentsA and B have very high diffusion coefficients as

compared to the autocatalytic componeXtandY and can g ko,BX—k3X?Y, (5)
therefore be regarded as constant in the reaction. The net
reaction for the above scheme is where the overbars over the variables denote that they are the
actual prescaled reaction components. Now, by introducing
A+B—D+E. (3)  the scaled variables
e k3 172 k3 172
The corresponding balance equations can be written as t=Kat, X=(k—4) X, Y=(k—4) Y; (6)

aX  — - kiks| ¥2— ka
E=|<1A—(|<2|3+|<4)x+l<3x2\(, (4) A=\7a| A B= Ke B, (7)
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FIG. 4. Spatial and temporal profiles of the concentration varisiiter a fixed value of noise intensity and varying noise correlation time
for L=0.1, D,=0.0006, and initial profile.

we have dY D, %Y
— =72 5z TaX,Y), (13)

2 52
f(X,Y)=A—(B+1)X+X2Y, 8) gt L% oz
whereL is the characteristic length of the system. The initial
condition and the associated boundary conditions of the
zero-flux type are given as follows: for the initial conditions

g(X,Y)=BX—X?Y. 9)

Considering now a reaction-diffusion system with one-

dimensional diffusion componenf3, andD,, the balance t=0. X=X Y=Y (123
equations can be represented by the two parabolic partial ’ 0 0
differential equations for z=0,

X Dy 9*°X dX dy

112 92 TIXY), (10 -5 (12b
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FIG. 5. Spatial and temporal profiles of the concentration varixbfer a fixed value of the noise correlation time and varying noise
intensity forL=0.1, D,=0.0006, and initial profilé.

and forz=1, cussion on the validity of assuming the environment to have
certain Markovian properties and the importance of such an
approximation15]. It is also assumed that the environment
besides being Markovian is ergodic. Thus the environment is
governed by an Ornstein-Uhlenbeck process and hence the
external fluctuations can be characterized by the correlation

dX
=

~dy

O—E.

(120

FORMULATION OF THE STOCHASTIC MODEL

function
For noise with nonvanishing correlation time, the tempo-
ral evolution of the system is no longer Markovian. Thus the dé 1 o [dW
_ ; —=——=¢+—= |-, (13
well-known tools of the Markov processes cannot be applied dt 7o 7\ dt

and it becomes difficult to obtain exact explicit results. How-
ever, Horsthemke and Lefever have presented a detailed digshere¢ is the noise termg is the strength of the noise, and
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FIG. 6. Spatial and temporal profiles of the concentration varidtfier a fixed value of the noise intensity and varying noise correlation

time for L=0.1, D,=0.0006, and initial profile.

7 is the correlation time of the nois&V represents the cause of the coupled nature of the reaction scheme, the struc-

Wiener process, the derivative of which is essentially atures that emerge due to the fluctuation®ipshould reveal

pseudo random variable that is characterized by a Gaussidhe qualitative behavior of the system in the presence of ex-
distribution. The noise terré has a nonvanishing correlation ternal disturbances. The effect of these fluctuations takes the

time and hence is termed as colored noise. The incorporatidiorm of &7 in the spatial direction and can be incorporated

of this correlation timer into the temporal evolution of the into the balance equations in a multiplicative fashion as

system is accomplished by a perturbation expansion method
: : aX D, X 1 3*X

[15]. In the present worlD, is considered to be the fluctu- A= (B+1)X+ XY + — i £(t)

ating parameter and is linearly coupled to the external noise dt L? 922 L2Jr 022

in a multiplicative fashion. It should be noted here that the (14

external noise would also affe€t, in some fashion. How- v D Yy

ever, for the sake of simplicitid, alone is considered to be ‘9_: RV yd

fluctuating. This assumption is made with a view that be- at BX=XTY+ L2 9% (19



Ix1

—
’

I
-
A iad
Tay, P SPY 2 SN A Sk

55 ANALYSIS OF BIFURCATION PATTERNS N . .. 5255
6.0
1. Deterministic 2.1=20=002
3.3.7=2,0=003 4.7v=20=0.04,0.05
45+
[X] 3.0
4
/
3
15F L
2
V4
] i ] ] i
0 0.2 04 0.6 0.8 1.0
4
6.0 ——— e ————
| i

\
.
\

Ay
AN SN UL SN Y ]

4

20

30 40 50

FIG. 7. Spatial and temporal profiles of the concentration varixbfer a fixed value of the noise correlation time and varying noise

intensity forL=0.1, D,=0.0006, and initial profile.

Now the stochastic system dynamics will be described byunction theorem and the shooting method as well. For the

Egs. (13)—(15 with the initial and boundary conditions
given by Eq.(12).
NUMERICAL METHODS OF SOLUTION

The two bounded equatiof&gs.(10) and(11)] at steady
state reduce to a set of second-order differential equation

The entire bifurcation diagram, which shows the concentra

tion (X) dependence on the diffusion parametBr,), was

then constructed by solving these steady-state determinist

equations using the general parametric mapp@igM) tech-
nique [18]. This technique takes advantage of the implicit

S.

entire specified operating range of the paramely)( the
GPM routine solves the system of bounded differential equa-
tions for the solution diagraniconcentration variablexX).

The steady-state spatial profiles of this set of equations are
generated using the Newton-Fox shoot methbd]. In the
shooting method, the boundary value problem is transformed
into an initial-value problem and the integration of the result-
ing initial-value problem is carried out by a fourth-order
Runge-Kutta method. A guess is made initially for the values
of the concentration variables at one end of the space dimen-
sion and a forward integration is carried out until the bound
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FIG. 8. Spatial and temporal profiles of the concentration varigtfier a fixed value of the noise intensity and varying noise correlation
time for L=0.1, D,=0.0006, and initial profile.

ary conditions at the other end are matched. The temporal RESULTS AND DISCUSSION
evolution of both the deterministic and the stochastic partial
differential balance equatior€gs. (10) and (11) and Egs. Figure 1 shows a bifurcation diagram with, as a param-

(14) and (15)] along with their boundary conditiongEq.  eter and with fixed values df, D,, A, andB. The trivial

(12)] is computed using a finite-difference metH@®]. This  solution can be obtained a6=A andY=B/A. The points
algorithm employs an implicit method, called the Crank-a, b, c, d, ande are chosen in the five-steady-state region of
Nicholson method, for reasons of numerical stability. Theseahe branches 1, 2, 4, 5, and 3, respectively. The correspond-
noise incorporated partial differential equatiofisgs. (14)  ing value ofD, exhibiting these five steady states is 0.0006.
and(15)] are solved simultaneously with the ordinary differ- From the deterministic analysis the stability of the steady-
ential characteristic noise equatidfEqg. (13)], where a state profiles has been judged as follows: profidesl, and
pseudo-random-number generator of the Gaussian distrib@ are stable and profilds andc are unstable.

tion is used to generate the noise tefm The steady-state profiles for the poirtsb, c, d, ande
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FIG. 9. Spatial and temporal profiles of the concentration varixbfer a fixed value of the noise correlation time and varying noise
intensity forL=0.1, D,=0.0006, and initial profiled.

are given in Fig. 2. The profiles indicate how the steadyprofiles for both deterministic and stochastic analyses.
states emerge in the space dimension for the dimensionless The effects ofo (strength of the noigeand 7 (noise cor-
concentration variablX. The pointa shown in Fig. 1 indi- relation timg on the spatial as well as time evolution of the
cates the concentrations ¥fat the inlet of the characteristic concentration variableX are given in Figs. 3 and 4. The
length (i.e., atz=0). The other end, i.e.z=1, in Fig. 2 initial concentration profila (of Fig. 2) is also marked as 1.
corresponds to the characteristic length 0.1. In this study The temporal evolution of this profile shows that determin-
of the Brusselator scheme, the plots are given only for onéstically (in the absence of noigét is a stable steady state.
concentration variableX) and the qualitative features are These temporal profiles are drawn at the entry conditions
described on these figures. For the inlet values of the conzz=0). The same initial profila has been subjected to ex-
centration variableX andY, a guess was made at the otherternal fluctuations for varying noise intensity o (
end z=1) and a forward integration was performed until =0.02—0.05) at a fixed noise correlation time=2). Now,
the boundary conditions at=0 were matched. These with the noise incorporated, the spatial profiles in Fig. 3
steady-state profiles have been subsequently taken as initisdveal that foro=0.02 the steady state stabilizes at a profile
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FIG. 10. Spatial and temporal profiles of the concentration variélite a fixed value of the noise intensity and varying noise correlation
time for L=0.1, D,=0.0006, and initial profilel.

marked 2, foro=0.03 stabilizes at a profile marked 3, and The interesting feature to be observed in this is that unlike
for ¢=0.02,0.05 stabilizes at the profile marked 4, for athe effect ofc, which takes the solutioa to a trivial solu-
fixed value ofr=2. It clearly shows that the spatial profiles tion, the effect ofr brings in a completely new solution
of a go through new transient profiles for noise strengths ofduring the spatial evolution. The temporal evolution Xf
0=0.02,0.03, and for higher values @f=0.04,0.05 the pro- reveals the same effect as thatogfi.e., periodic oscillations
files stabilize at the trivial solutiofcurvee in Fig. 2). exist for lower values ofr and with the increase in they
Figure 4 reveals the results of the effectzadn the initial  become aperiodic as they approach the new steady state. The
profile a. As observed earlier in the effect of the effect of central phase plane plot of the concentration variaklesd
7 also brings about new transient profiles for noise correlay¥ atz=0.5 for 0=0.02 andr=2 is depicted in Fig. 11.
tion times of r=3-20, for a fixedo=0.02. Forr<5 the Figure 5 gives the deterministic as well as the stochastic
system stabilizes to the profile marked 2, whereas ffor solutions(effect of o) of the unstable steady-state solution
=5-20 the system stabilizes to the profiles marked 3 and 4 (see Fig. 2 The initial profileb has been redrawn here to
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FIG. 11. Phase plane plots of the concentration varialilend Y for the profilesa, b, ¢, andd with 7=2 ando=0.02 forL=0.1,
D,=0.0006, andz=0.5.

facilitate the comparison of the results obtained in the analytemporal evolution of concentration variab¥eexhibits pe-
ses. The deterministic analysis reveals that this unstable stat@dic oscillations after a timet&10) and becomes sus-
stabilizes at the steady-state solutmnWith an increase in tained for low values ofr (say 0.02. For higher values ofr

o from 0.02 to 0.05, for a constant=2, the effect is the (0.03-0.0% the oscillations become aperiodic and the solu-
same as that on solutica, as shown earlier in Fig. 3. The tion reaches the trivial solutiofcurvee in Fig. 2). The effect
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of 7, for a constant value af=0.02, on both the spatial and points p and q on branches 1, 3, and 5 of the bifurcation
temporal evolutions is shown in Fig. 6. With increaserin diagram(Fig. 1) reveal similar effects of and o in bringing
from 3 to 20, a stable solution emerges, which is a comabout new stable transients.

pletely new solution. The temporal structures for this effect
reveals that the qualitative features are analogous to that of

. . CONCLUSION
the effect ofco, as shown in Fig. 5. The central phase plane
plot to this effect, forr=2 ando=0.02, is similar to that of The effect of external noise in the case of the Brusselator
the central phase plane plot of profde model is to bring about noise-induced transitions, i.e., the

The deterministic and stochastic features of solutions system attains a stable steady state not described by the de-
andd are shown in Figs. 7—10. These figures clearly reveaterministic analysis due to the fluctuations. It has been noted
the qualitative features of both spatial and temporal evoluthat the increase in the value afhas the effect of bringing
tions. It is seen from these plots that the effectsr@indo  the final stabilized state closer to the trivial solution.
are to bring about stable transients and periodic oscillations The noise-induced transitions are also caused due to the
with varying amplitude. The central phase plane plot is dechanges in correlation timg?). However, the new solutions
picted in Fig. 11. The trivial solution, i.e., branch&e Fig. attained by the system do not correspond to any of the de-
1), is asymptotically stable. Further stochastic analyses oferministic solutions.
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