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Metastate approach to thermodynamic chaos
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In realistic disordered systems, such as the Edwards-AndéEsonspin glass, no order parameter, such as
the Parisi overlap distribution, can be both translation-invariant and non-self-averaging. The standard mean-
field picture of the EA spin glass phase can therefore not be valid in any dimension and at any temperature.
Further analysis shows that, in general, when systems have many com(petiggthermodynamic states, a
single state which is a mixture of many of thgas in the standard mean-field pictuntains insufficient
information to reveal the full thermodynamic structure. We propose a different approach, in which an appro-
priate thermodynamic description of such a system is instead basednetaatatewhich is anensemblef
(possibly mixed thermodynamic states. This approach, modeled on chaotic dynamical systems, is needed
when chaotic size dependen finite volume correlationsis present. Here replicas arise in a natural way,
when a metastate is specified by (isetgcorrelations. The metastate approach explains, connects, and unifies
such concepts as replica symmetry breaking, chaotic size dependence and replica nonindependence. Further-
more, it replaces the older idea of non-self-averaging as dependence on the bulk couplings with the concept of
dependence on the state within the metastatfixat coupling realization. We use these ideas to classify
possible metastates for the EA model, and discuss two scenarios introduced by us earlier—a nonstandard
mean-field picture and a picture intermediate between that and the usual scaling-droplet picture.
[S1063-651%97)06905-5

PACS numbgs): 05.50:+q, 75.10.Nr, 75.50.Lk, 05.45.b

I. INTRODUCTION thermodynamic approach to understanding macroscopic
properties of not only spin glasses, but, more generally, sys-

The nature of the spin glass phase remains a fundamentims which may have many competing pure states. Through-
and unsolved problem in both condensed matter physics amult this paper we will often apply our ideas and methods to
statistical mechanics despite over 20 years of intensive rehe EA spin glass model—in particular, in its Ising form—
search. At a more basic level, the proper theoretical treatbut our scope is more general and is not confined to a par-
ment of systems with quenched disorder and frustration reticular model or a single condensed matter system. We will
mains open. More recent experiments exhibiting intriguingbegin, however, by considering some of the very basic open
properties such as aging have not helped to resolve mattergyestions which arise in connection with the EA Ising spin
but have instead intensified the ongoing deljaie glass and related models.

Spin glasses can be metallic or insulating, uniaxial or iso- These open problems cover both thermodynamic and dy-
tropic, mostly crystalline, or completely amorphous; in gen-namical questions. It is somewhat discouraging that they per-
eral they are not confined to a single set of materials. Theist at such a basic level. Very slow equilibration times make
microscopic interactions which give rise to spin glass behavthe analysis of both laboratory experiments and numerical
ior may differ considerably from one material to another.simulations difficult; and techniques for the theoretical
(For a more extensive discussion, see the review article bgnalysis of systems with quenched disorder and frustration
Binder and Yound?2].) Nevertheless, in 1975 Edwards and remain primitive. So, for example, even though there has
Anderson(EA) [3] proposed a simpléand unifying Hamil-  been a steady accumulation of evidence that there exists a
tonian to describe the thermodynamic, magnetic, and dytrue thermodynamic phase transition in the EA madeld in
namical properties of realistic spin glasses. Their basic aseal spin glassesit is fair to say that the issue is not yet
sumption was that the essence of spin glass behavior arostosed(and from the standpoint of a mathematical proof, or
from a competition between quenched ferromagnetic and areven a convincing heuristic argument, remains wide pdén
tiferromagnetic interactions, randomly distributed throughoutan equilibrium phase transition does exist, the lower critical

the system. dimension—and in particular, whether it is above or below
While the EA model and its mean-field version, the three—is similarly unknowrtsee, for example, Reff5—7]).
Sherrington-KirkpatricK SK) model[4], remain the primary Assuming the existence of a phase transition in some di-

focus of theoretical treatments of spin glasses, a number agfhension, other open thermodynamic issues include the effect
other models have also been propo&dItis not our aimin  of a magnetic field on the transition; the number of pure
this paper to compare the suitability of these models for thestates below the transition; the correct description of broken
description of all, or some subset of, laboratory spin glassesymmetry and the nature of the order parameter; critical
Here we are concerned instead with presenting the corregiroperties at the transition; the role of quenched disorder
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and/or frustration, separately and together, in determiningssumes that the main features of Parisi and co-workers so-
ground state structure and multiplicit,9]; and the relation- lution [30—33 of the infinite-ranged SK model—an infinite
ship between the properties of mean-field models and realistumber of pure states, organized by an ultrametric overlap
tic spin glasses. These are only a subset of such very basstructure[33], and whose pairwise overlaps are non-self-
guestions, which remain the subject of intense debate. averaging even in the thermodynamic lif83]—apply also

Dynamical properties are central to spin glass physics—to realistic spin glasses. In this scenario, the number of order
here, open problems include the origin of long relaxationparameters is infinite—i.e., the order parameter is a distribu-
times, the understanding of frequency-dependent susceptibifion that is a function of a continuous variable, and this dis-
ity experiments, the origin and interpretation of aging, andtribution has a characteristic structure, both for a single real-
the nature of metastable states. As before, this is only a smailtation of the couplings, and for the average over all such
sample of outstanding questions. Tying together both theealizations. The nature of the symmetry breaking here dif-
thermodynamic and dynamical problems is the general issukers from more conventional kinds, familiar from studies of
of the nature of broken ergodicit8E) in spin glassefl0—  various nondisordered systems: in Parisi's solution, the spin
12]. BE may also serve as a bridge toward an investigatiomlass phags) exhibit spontaneously broken replica symme-
of the relationships, if any, between spin glasses and othdry of a nontrivial kind.
disordered systems—structural glasses, electric dipole An alternative point of view arises from a scaling ansatz
glasses, quadrupolar glasses, and s¢2jn due to MacMillan[34], Bray and Moord 35|, and Fisher and

Some thermodynamic questions are of direct experimentafuse [36—39. This gave rise to a thermodynamic picture
relevance: low-temperature properties cannot be understoaary different from that implied by the Parisi solutidgal-
without knowing the nature of low-energy excitations abovethough some features, such as chaotic dependence of corre-
the ground stats); a knowledge of the critical behavior is lation functions on temperature, are similar in the two pic-
required before properties ned (if it exists) can be ex- tureg. In particular, the droplet analysis of Fisher and Huse
plained. It should also be emphasized that méhgugh not [38,39 led to the conclusion that there exists, at any tem-
all) important dynamical questions cannot be properly underperature and in any finite dimension, at most a pair of pure
stood, or in some cases even posed, without a correct thestates(see, however40] for a critique of this prediction
modynamic theory of spin glasses. For example, what is thélere the order parameter and the nature of symmetry break-
relationship, if any, between the metastable states of a spimg is markedly different from that of the Parisi picture.
glass and the pure thermodynamic st4fie314]? Moreover, These two pictures reach opposite conclusions on a num-
many experiments, e.g., aging, have been explained usinger of other thermodynamic issues; for example, any external
conflicting theoretical picturefl5-24. In the absence of magnetic field destroys the phase transition in the droplet
conclusive experimentdlor even numericaldata deciding picture, while that based on the Parisi solution displays an
the matter, how does one decide among different theories dflmeida-Thouless ling¢41]. (For discussions on whether nu-
the spin glass state, much less explain the experimental olorerical evidence supports such a transition, see Refs.
servations? [42,43.)

Our concern in this paper is therefore with the thermody- Both pictures also imply certain dynamical behavior for
namic nature of spin glasses. In two recent pap2t26, spin glasses. However, although the physical origins behind
we introduced several concepts that we believe are crucialarious dynamical mechanisms differ markedly in the two
for providing a correct and complete description of the equipictures, their observable consequences are often similar
librium statistical mechanics of spin glasses and other disortsee, for example, the experimental and theoretical discus-
dered and/or inhomogeneous systems. Our approach, mosions on aging in Ref$15—24]), and most experiments have
eled on chaotic dynamical systems, is necessary in particulao far been unable to distinguish between the two pictures.
for understanding systems with competing thermodynami¢One possible exception, however, is the set of experiments
states. The unifying idea is that of the metast®6,27), on noise in mesoscopic spin glass samples by Weissman
which enables us to explain and relate chaotic size deperi44].)
dence 28], replica symmetry breakin@9], replica noninde- In addition to these pictures, there also exist scaling ap-
pendence, and overlgpon-self-averaging. proaches which predict many pure state pairs at low tempera-

Using the notion of the metastate, we have classified alture above three dimensiofé5]. A number of other specu-
lowable thermodynamic “solutions” of the spin glass phaselative pictures of the spin glass state have also appdassd
and ruled out others, including one which has long domi{2] for a more thorough presentatiorbut it is probably fair
nated the theoretical literature. In this paper, we will expando say that the scaling-droplet and Parisi pictures presented
and clarify the ideas presented in R¢f5] and[26], and use above have dominated the discussion of the nature of the
them to present a coherent approach to the thermodynamispin glass phags.
of spin glasses and, more generally, to disordered and other The droplet picture of Fisher and Huse makes a number of
systems with many competing states. We will begin by dis<clear predictions, and is relatively easy to interpret for real-
cussing a long-standing controversy over the thermodynamiistic spin glasses. This has not generally been the case for the
nature of the spin glass phase. Parisi ansatz, and indeed an important issue—although not

This controversy focuses on the multiplicity and orderingalways recognized as such—is to interpret the implications
of pure states in realistic spin glasses in finite dimensions, aif the Parisi solution, both thermodynamically and dynami-
temperatures below sonig.>0 (which, supported by vari- cally, for the spin glass phase in finite dimensions. A large
ous arguments, is assumed to exi€dne approach, which literature(see below exists on the subject, and as a result a
has dominated the spin glass literature for over a decadecasonably clear consensus has emerged on the thermody-
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namic structure of short-ranged spin glasses given that theewer ideas of dispersal of the metastate and replica non-
Parisi ansatz holds for them also. We have called this théndependence. A replacement for the usual definition of non-
“standard SK picture” in[25] and[26], and will use that self-averaging is also presented. In Sec. VIl we introduce the
terminology also throughout this paper. maximal mean-field picture allowable for realistic spin
The main result of25] was to prove, however, that the glasses, and show that its thermodynamic features are con-
standard SK picture cannot apply to realistic spin glasses ifiderably different from those of the more familiar picture
any dimension and at any temperature. This result then led ifwhich cannot hold In Sec. VI, we summarize our main
[26] to an observation which is central to understanding anyeSults, and discuss their implications for the study of spin
system with many competing thermodynamic states: onglasses and, in a larger framework, systems with many com-
should not focus on any particulémixed) thermodynamic peting states in general. Finally, in the Appendix, we discuss

state, which cannot provide sufficient information to describethe importance of distinguishing among differing construc-

the thermodynamic structure; instead, one must consider tHIPNS of overlap distributions in the literature.
metastatewhich is essentially a probability distribution over
the thermodynamic states. One important consequence of Il. EDWARDS-ANDERSON MODEL
[25] and [26] is to redefine the meaning of non-self-
averaging, and to show that most quantities of interest can b&e
defined for asingle realization of the disordefincluding
those which had been thought to be non-self-averaging in the
thermodynamic limit. One can then focus on, and make Hy(o)=— > JyyOx0y 1)
meaningful statements about, a particular sample rather than xy)
an ensemble of samples. This feature should hold also for .
nondisorderede.g., inEomogeneobszstems in general. Where 7 F’er.“’tes the set of cqupllnglsAy, and wh.ere the .
Using the metastate approach, we were able to narrO\BraCketS indicate that the sum is over nearest-neighbor pairs

down the possible thermodynamic structures for realistijor.“y’ with the sites,y = Z®. We will take the spingr, to be

spin glasses. One of these is the scaling-droplet picture>"9: €. Ox= *1; although this will affect the details of
some are new, to our knowledge. Finally, we proposed %ur discussion, it is unimportant for our main conclusions.

possible picture which incorporates some of the features o .he.coupllngs\]xy are _quenc.hed, independent, |dent|cally
the Parisi solution for the SK model. In fact, this is the distributed rgndom vanab.les', throughout the paper we will
“maximal” mean-field picture allowable for realistic spin 2SSUMe their common distribution to be symmetric about

glasses, but it differs considerably from the familiar standard€"® (@nd usually with the variance fixed to bg The most

SK picture presented in the literature. We call this Scenarid:ommon.examples are the.Gaussu';}n al?ﬁdlstrlbutl.ons._
the “nonstandard SK picture,” and will discuss it in Sec. Equation(1) is the EA Ising Hamiltonian for an infinite-

. d- . . . .
VII. One important lesson from our analysis is that, for dis-V!UMe spin glass oA™ itis important also to define the EA

ordered systems, the features which characterize the systdfPde! on a finite volume, given specified boundary condi-
in very large but finite volumes may lead to a misleadingt'ons' LetA| be a cube of sidel2+1 centered at the origin;

thermodynamic picture if straightforwardly extrapolated tol-€+ AL={—L,—L+1,... L}¢. The finite-volume EA

infinite volumes. This is of potential importance, for ex- Hamiltonian is then just that of Eq1) confined to the vol-

ample, in interpreting numerical results. There are previously/Me AL, with the spins on the bounda_ of the cube

unsuspected intricacies involved in taking the thermody-0Peying the specified boundary conditiofihe boundary

namic limit for certain disordered systems. dA of the vqu_meAL conS|st§ of all sites not i\ with
The plan of the paper is as follows. In Sec. Il we review©N€ nearest neighbor belonging 4q .) For example, the

some basic features of the EA model and discuss its finitetiamiltonian withfree boundary conditions is simply

and infinite-volume Gibbs states. We discuss the problem of

whether many pure states may exist at some dimension and H, (0)=— E

temperature, and show that the answer is independent of cou- Tt (xy)yeAL

pling realization. In Sec. Il we introduce the SK model and

the Parisi ansatz for its thermodynamic structure. In Sec. NAnother important boundary condition, called a fixed b.c., is

we discuss the standard mean-field picture for realistic spimhere the value of each spin on the boundary is specified. If

glass models in finite dimension. We then show that thisve denote byo the specified boundary spins, then the

picture cannot hold in any dimension and at any temperaturédamiltonian becomes

We also provide an explicit construction of a non-self-

averaged thermodynamic state whose overlap distribution — § —

function must be self-averaged. In Sec. V we describe an Ha(o)=Hz (0)— <Xz> JxyxTy - 3

approach to the thermodynamics of systems with many com- xe AL ,’f/e aAL

peting states, based on the idea of ithetastateanensemble

of thermodynamic states. We also present some of the pos- We will frequently employ a familiar and commonly used

sible scenarios for the metastate of the EA model, includindpoundary condition, namely, periodic boundary conditions,

one that is intermediate between the scaling-droplet an@here each face of the cubg is identified with its opposite

mean-field pictures. In Sec. VI we show how replicas arisdace. These are generally thought of as minimizing the ef-

naturally within this approach, and how the older idea offects of the boundarybut see van Entg®0]), and allow us

replica symmetry breaking is understood and unified withto construct manifestly translation-covariant states.

The EA model[3] on a cubic lattice ind dimensions is
scribed by the Hamiltonian

JxyOxay - (2
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Given the EA Hamiltoniar?{; on a finite volumeA Thermodynamic states may or may not be mixtures of
with a specified boundary conditiofe.g., free or fixed or other states. If a Gibbs stape; ; can be decomposed accord-
periodic, but without the boundary condition superscripting to
here, we can now define the finite-volume Gibbs distribu-
tion p{;);, on A at inverse temperaturg: prp=N\p st (1=N)p% g, 5

where 0<\ <1 andp® andp? are also infinite-volume Gibbs
states(distinct from p), then we say thap sz is a mixed
thermodynamic state or simply, mixed stat&.mixed state
where the partition functiorZ, 4 is such that the sum of may, of course, have many, perhaps infinitely many, states in
p';); over all spin configurations i yields 1. In addition  its decomposition. The meaning of Eq(5) can be under-

to the boundary conditions mentioned so far, one also constood as follows: Any correlation function computed using
siders so-called mixed boundary conditions where the Gibbthe Gibbs distributiorp ; ; can be decomposed as
distribution is a convex combination of the fixed boundary

plh(0)=Z hexpl— BH (o)}, (4)

condition distributions for a giveh with the weights for the (0%, crxm>p”= Moy, ‘Txm>pf7
different o’s adding up to 1. ' ”
p{h(o) is a finite-volume probability measure, describ- HA=N) oy o )2 o (6)

ing at fixed B8 the likelihood of appearance, within the vol-

umeA  , of a given spin configuration obeying the specified If a state cannot be written as a convex combination of
boundary condition. Equivalently, the measure is specifiedny other infinite-volume Gibbs states, it is calleguae (or

by the set of all correlation functions withik, , i.e., by the extrema) state. As an illustration, the paramagnetic state is a
set of all (le .. .oxm> for arbitrary m and arbitrary pure state, as are each of the positive and negative magneti-
Xy .o XmeAL. zation states in the Ising ferromagnet. In that same system,

Thermodynamicstates are described Ligfinite-volume ~ the Gibbs state produced by a sequence of increasing vol-
Gibbs measures, and therefore can be thougtarad indeed, Umes, afT<T, using only periodic or free boundary con-
constructetias a limiting measure of a sequence Las «, dltlon_s is a m|xeq state, decomp-osable into the positive and
of such finite-volume measurésach with a specified bound- Negative magnetization states, witk- 3. A pure statep can
ary condition, which may remain the same or may changd® intrinsically characterized by elustering property(see,
with L) [46]. The idea of a limiting measure can be made®-9-,[47,48), which implies that, for any fixed,
precise by requiring that evemp-spin correlation function,
for m=1,2,..., possesses a limit ds— . (0%0y) 5o (0% p{ 7y) o, 0, |yl =, (7)

It is clear that, if there is more than one thermodynamic
state(at a given temperaturend if arbitrary boundary con- and similar clustering for higher-order correlations.
ditions are allowed for each, different sequence®f vol- Let 7(J,d,8) now denote the number of pure states in
umes and/or boundary conditiorean have different limiting ~ the EA model for a specific coupling realizatioh For any
measures. What is less obvious, but will have important cond andJ this equals one at sufficiently lo@ (except for a set
sequences for spin glasses, is that if many thermodynamief J’s with zero probability according to the underlying
states exist, a sequence of measures each havingathe disorder distribution—see, e.g., Chapter 3[60] and the
(e.g., periodic or freeboundary condition may not even references cited thexeRecall that the droplet picture pre-
havea limit [28]. This phenomenon, which we calhaotic ~ dicts thaty(7,d,8)<2 for alld and 3, while the SK picture
size dependencawill be more fully described in Sec. V. assumes thaiy(7,d,8)== for d above someunknown
Because of compactnesgse., because each of the correla- dy and 8> B.(d).
tions determining the measure takes valueq inl,1], a A reasonable question might then be, could the ansater
bounded closed intervalit follows, however, that every fixed 8 andd) depend on7? What if =2 for half the
such infinite sequence will have some subsequeheéth a  coupling realizationgi.e., for a set of coupling realizations
single limit, so that we are guaranteed the existence of awith probability 3), and infinity for the other half? As it turns
least one thermodynamic statee., infinite-volume Gibbs out, this cannot happen: for a fixed coupling distributign,
distribution). At sufficiently high temperatures it is rigor- at some ¢,8) must have the same value fall instances
ously known(see belowthat there exists only one such state 7 chosen from the disorder distributiqor more precisely,
(limiting Gibbs measure which of course is the paramag- for almost everyJ—i.e., except for a set with probability
netic state. If the spin-flip symmetry present in the EAzero. In other words,n(7,d,B8) is self-averagedfor fixed
Hamiltonian Eq.(1) is spontaneously broken above somed andp, it is a constant almost surely as a function/6f
dimensiond, and below some temperatufg(d), there will The above statement is mathematically rigorous, but since
be at least gair of limiting measures, such that their even- its proof, and that of all other theorems which appear in this
spin correlation functions will be identical, and their odd- paper, have appeared elsewh&see, e.g.[49,50), we here
spin correlation functions will have the opposite sign. As-recount only the central argumen{Ehese arguments will be
suming that such broken spin-flip symmetry indeed exists fouseful later when we discuss possible scenarios for the ther-
d>d, and T<T.(d), the question of whether there exists modynamic structure of the spin glass phase in the EA
more than onesuch limiting pair (of spin-flip-related model) We first note thatp(.7,d,B) is clearly translation-
infinite-volume Gibbs distributionsis a central unresolved invariant; i.e., if all couplings are translated by any lattice
issue for the EA and related models. vectora, so that eacld—J? (i.e., Jyy—Jy1ay+a), the func-
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tion is unchanged(7,d,B)=n(J%,d,8). We next note 1 N
that the disorder distribution/(7) (e.g., an independent HJ,N(O-):_\/_N_;:L Jijoioj, (8
Gaussian distribution of mean zero and variance one at each ==

bond on the latticeis both translation-invariangtrivially ) where the factor 4N ensures that the energy per spin re-

?nd tralnslatlon-ergodlc r‘:’ranslat!on ergodicity fmeansl that mains finite(and nonzerpas N— (given that, as before,
or v-almost every.J, the (spatia) average of translates the distribution of eacld;; is symmetric about zero and has

f(7? of any (measurablefunction f on J equals ther  variance 1 Because there is no natural sense of a boundary
average off. [As a trivial example, consider adlproblem in thi'S mpdel, one usually co.nsiFIers Sir_ﬂply a sequence of
where the functiorf(7) is just the coupling valud,, at a  Hamiltonians of the form(8) with increasingN. The prob-

. . . 2 ability measure on spin configurations in this model is given
given location on the line. The average f¢f7 #) along the

line is clearly 0; so is the distribution average at any site. y

Similarly, for the functionf(J) = (qu)k, the spatial average P h(0)=Z sexp — BH 7 o)} 9)
along the line equals the distribution average at a site, i.e.,
thekth moment of the random variablg, . ] That translation It has been known for many yeaf§2] that a correct

ergodicity in several dimensions holds analogously to thdreatment of quenched disorder involves an averagiver

more familiar one-dimensional case seems to have first bedh€ couplings of the free energy and other extensive vari-
shown by Wienef51]. ables rather than of the partition function. The replica trick
[3,63,64 was introduced as a tool for doing such an average;
because of the lack of spatial structure in the SK model, it is

. . X especially well suited for this approach. Using the replica
isfies the necessary measurability properties appears Wick, SK demonstrated the existence of a phase transition,

[49,50, and will not be discussed further here, except to Notg) 4 fond that the resulting low-temperature phase was un-
that measurability of a functiohis the minimal requirement physical[4]. It is currently believed that their solution was
for having a well-defined meaning for the averagef afver ~ unstable because it was replica symmetric. Several attempts
the disorder distribution. were made to introduce solutions which broke the replica
Returning to the main argument, we note that becaus8ymmetry[65], but it is now thought that the correct proce-
7(J,d,B) is a translation-invariant function of random vari- dure to break replica symmetry in the low-temperature phase
ables.J whose distribution is translation-ergodic, by averag-°f the SK model was the one introduced by Pai&]].
ing 7(72,d,8)=7(7.d,8) over translates, it follows that The Parisi solution to the SK model is both stable and

: agrees well with numerical resulf29]; moreover, some of
7(7,d,B) equals a constar_vt(d,ﬁ) a_llmpst _surely(|.e., for its essential features can be rederived without the use of rep-
almost every 7). n(d,B) is the distribution average of

7(7.d. 8) and it could of course depend on tHistribution licas, primarily through a cavity methd®6,67]. Parisi’s ap-

f hich th i h b i roach suggests that there are many pure states of the
rom whic the coup Ings are chosen, utnot on any specifig finite-ranged model, organized in a highly specific manner
realization chosen from fixed distribution.

_ : which characterizes the SK spin glass phase and its mode of
The same line of reasoning used here to show that theymmetry breaking. Although Parisi's solution predicts

number of pure states at fixedand is the same for almost  many other important features of the spin glass phasg],

every realization7 was used if25] to rule out the standard we will focus here only on its aspects regarding symmetry

SK picture. This will be discussed later in Sec. IV, but first breaking and order parameters.

we present a discussion of the infinite-ranged SK model and We first need to comment on what is meant by “pure

the Parisi solution. state” in the SK model, since a precise definition is not
available and its meaning remains quite unclear. Other ap-
proaches to spin glass mean-field the@yg., the Thouless-

IIl. MEAN-FIELD THEORY AND THE PARISI SOLUTION Anderson-Palme equationj68]) had already suggested the

. . ) existence of many states at low temperature, in the sense that
The SK model has played an important role in spin glassnany solutions could be found which were extrema of the

physics for several reasons. First among these is that it is ong.e energy, some subset of which were believed to be
of the few(nontrivia) spin glass models which igenerally  minima[69]. It had further been argued that they were sepa-

believed to have been solved. Moreover, the proposed solyzieq py barriers which diverged in the thermodynamic limit
tion, due to Parisi and co-worke}80,31,33 admits a strik- [70,71. These are what have come to be called] the

ing type of symmetry breaking, calleteplica symmetry «nre states” of the SK model. The clustering property de-
breaking(RSB), of a form previously unseen in oth@mon-  gerihed by Eq.(7) cannot be used in an infinite-ranged
disorderedl systems. The possibility that RSB plays an im- qde| which has no spatial structure, but it has been sug-
portant role in the physics ofealistic (i.e., finite dimen- gested 2,29 that it can be replaced by
siona) spin glasses and, possibly, other complex systems has
generated a substantial literatufeee, for example, Refs. i O Ao . = i i
[6,13,14,33,52—-6]}, and remains controversial. nlllew'OJ)B’N (T)pn(o)pn=0 (£, (19

The SK model is simply the infinite-ranged version of the
EA model and thus has no spatial structure. The vollthe where averages are taken using the distribution correspond-
is replaced byN, the number of spins, and the Hamiltonian is ing to one of these pure states. The meaning of the averaging

The assumption that be measurable is a necessary, but
somewhat technical requirement. A proof thgt7,d, 8) sat-
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in Eq. (10) is poorly defined, however. Because the strength 1 N

of the random couplings scales to zerd\as =, it is unclear q5’~ NE (oo (13
what meaning, if any, can be ascribed to the notion of non- =1

trivial thermodynamic states, pure or mixed. In the EA

model, on the other hand, methods do exist, as will be briefly_. . . .

discussed in Sec. IV, to construct just such states, for almo tmally, the densityP ;(q) is then given by

every 7. This contrast between the SK and EA models will

be seen to be significant.

. However, in accgrdgnce .with the usual practice, we v_viII pJN(q)~E WQJW}(S(q—q}V . (14
ignore these complications in what follows, though keeping ay

in mind that the meaning of pure state in the SK context

remains vague. Using a replica analysis, Parisi found that the ) )

SK spin glass state could be described properly only with ar heSe expressions can be made precise for the EA model, as
infinite number of order parameters, describing the relationdVill be seen in Sec. IV. o

among the many pure states. This requires the introduction ThedZ”'s also exhibit NSA for arbitrarily largél, except
of a new random variable which describes teglica over-  for the trivial casesr= y anda= — y (where the minus sign

lap, denotes a global spin fljpwhich correspond respectively to
the self-overlapsiga and — ggs (with no dependence off
1 N or ). Why do we not then simply examine tiiNe—co limit
QN=Ni21 aio|, (1) of the q%”’s and their distribution? priori it might seem

that, even though the states themselves are not well defined
for infinite N, their overlapsmight still have a well-defined
limit. It can be proved, however, thahe existence of the
N—oo limit (where the limit is taken in a7-independent
manner) of the distribution of the’d’s is inconsistent with

istributi (N) (N) ¢ 7 i —_
?cl)ft22Ut;\? : (’%‘?i’é(g&ﬁ‘é’fr(ia )\]/v:ltl |ts)ecfuar tFZZ;eéTan: rles- NSA[28]. This is the first appearance of chaotic size depen-
or any .- script bpressed 1N EXPIes”. gence, which will be seen later to play a central role in the
sions related to replica overlaps and their distributions. It is

. : analysis of systems with many competing states.
understood that all calculations take place at fige@dnd the Even though the decomposition of H42) is presumed to
results depend op.)

. - . onsist of infinitely many states &— o, it is believed[29]
The role of order parameter in the Parisi theory is playe hat relatively few of them have non-negligible weighnd
E,Ot b&;)a S:cng:g Vg;}zgﬁ’ Sgﬁi;at;{lrgr bzloihfeugggﬁg'“gogg:;s'tyare therefore thermodynamically significanthese lowest-
JN N ; . ) .
related to it; i.e., P (q)dq is the probability that the ran- lying states are believed to have free-energy differences of

: order 1(for arbitrarily largeN), and their density rises ex-

dom variableQy takes on a value betweepandq+dq (for -( y largeN) ; y
fixed 7 N and3). Above the critical t turie., in h ponentially[66,67] at the lowest energies.
xed J, a? B)t. tt?ved' ?.%” t'.Ca efmpera uree., mt € So far we have only discussed the overlaps among pairs
gaframa}gne ic state Ne IS r'|3u| lon r?_ Qy converges ho a  of pure states. The relationships among triples of pure states

unc'ﬂon at zero(;a —®. be O}N this temperature, how- 016 4150 investigatef3], and were found to have an ul-
Ever, the presume eX|sfcence of many Stat‘?s gives rise ©O@metric structure. That is, the Hamming distan¢dster-
rich and nontrivial behavior oP ;y(q). In particular, Parisi

mined by the overlapsamong any three pure states are such
found that in the spin glass phadeg\(q) approximates a y P g any P

: . : ) that the largest two are always equ@aith the third smaller
sum of manys functions, with weights and locations de- o1 or equal to the other two

pending onJ even in the limitN—ce. This is the first ap- The main features of the Parisi analysis of the SK model,
pearance of non-self-averagifl§SA), which plays a central  rgjeyant to the ordering of the spin glass phase, are then the
role in the Parisi theory of the spin glass phase. following: (1) The spin glass phase consists of a mixture of
The usual explanation given for this behavior is that forixfinitely many pure states. Two replicas have non-negligible
large N the Gibbs measurg(7), given by Eq.(9) (for probability of appearing in different pure state®t related
B>pB:) has a decomposition into many pure staj€s, by a trivial global spin flip. This is one interpretation of

where the spin configurations ando’ are chosen indepen-
dently from the distributiom(}fg(o) given by Eq.(9). [Tech-
nically, ¢ and ¢’ are said to be chosen from tipgoduct

wherea indexes the pure states spontaneous replica symmetry breakiR$B). (2) For fixed
J, the probability density? ; (q) consists of a sum ofap-

(N @ a proximate & functions at discrete locationg such that

Py (o) % Wi pAa), (12 —0ea<0<(Qga, and a pair always at-gg,. The weights

and locations of thes functions, excluding the pair at
whereW¢; denotes the weight of pure stateand the depen- *qea, depend on7, even aN—c (NSA). (3) Because of
dence on the inverse temperatysehas been suppressed. this variation with.7 of the “interior” & functions, the aver-
(The use of the approximation sign is necessary because afjeP(q) =P /q) over all (uncountably manycoupling re-
the haziness of the meaning of pure state, as discussadizations has a continuouand nonzerpcomponent forg
above) Granted the existence of these pure states, one casetween thes functions at=qg,, for 0<T<T.. (4) The
then consider the case wheseis drawn from the distribu- locations of thes functions in(2) have an ultrametric struc-
tion p% and o’ independently fronp?; then the expression ture. In Sec. IV, we examine the meaning of the Parisi pic-
in Eg. (12) equals its thermal mean ture applied to the EA model.
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IV. STANDARD SK PICTURE where o and ¢’ are chosen, similarly to before, from the

If the Parisi solution of the SK model describes the naturéDrOduf:t d|str|byut|onpj_(cr)pj(a )- If o is drawn frompj
of the spin glass phase in realistic spin glasses, as frequentdld o’ rom p37, then it follows that the overlap is the con-
supposed6,13,14,33,52-55,57—fwhat should be its ther- Stant
modynamic properties? A description along these lines has
emerged in the literature(see, for example, Refs. ay_ i -1 @

[29,55,59,61,7R over the past decade and a half. This sce- az’= lim [A,| XE\L (0% (7
nario, which we have called the “standard SK pictuf€6],

is the most straightforward extrapolation of the main feature TS . :

of the Parisi solution to infinite volume spin glasses in finitei—ce probability distributiorP 7 (q) of Q is therefore given
dimension, and is presented in this section as a precise de-
scription of the usual presentations in the literat(gee, for
example, Refs[2,29,42,72). — MY S — %Y

As discussed in Sec. Il, the meaning of pure states in the Pl@ aEV WNz2(a=a7"). 18
EA model(and other realistic modelss clear—they are ex-
tremal infinite volume Gibbs state.e., thermodynamic So this SK picture for the EA moddbr realistic spin
states which cannot be decomposed as in (BjJ. equiva-  glasses in genenaincludes the same four features presented
lently, they satisfy the clustering property as in Eg)]. Itis  at the end of Sec. Il{except the word “approximate” in the
natural then to replace the approximate relation(&g) with second of these should be deletetheir meanings are now
an equality precise. There are other elements of the standard SK
picture—e.g., energy gaps of order one separating the
lowest-lying states in any large volume and an exponentially
increasing density at the lowest energies—but these will not
play a central role in what follows.
where p; (0) is an infinite volume mixed Gibbs statat We turn now to the question of whether the standard SK

fixed temperaturefor a particular coupling realizatio, ~ Picture can be valid in any dimension or at any temperature.
and thep% are pure states for thaf. There may be many ThiS question has two parts. _ _
such mixed states, so we specify the one above as that pro- First, does there exist some natural construction which
duced in some natural wafo be specified laterby a se- begins with the finite-volume Gibbs statp§)(c) of Eq.
quence as.—o of finite volume Gibbs distributions on (4), takes L—c, and ends with a(non-self-averaged
cubesA, with boundary conditions, such as periodic, notinfinite-volume statep ;; (possibly mixed, and its accom-
depending on the coupling realization. Periodic boundarypanying overlap distributio® ; (q)? By “natural” we mean
conditions minimize, in some sense, the effect of a boundaryjot only the usual sense of the term but also that the con-
and are thus a natural analog to the lack of boundary condptruction result in a thermodynamic staigfor almost every
tions in the SK model. It should be noted, however, that7. In particular, we want the limit procedute.g., choice of
there is some possibility of different behavior for periodic asboundary conditions or sequence of cube sitede chosen
opposed to, say, free boundary conditipA8]. independently of any specifig. This will help guarantee
We digress momentarily to discuss briefly two importantthat the 7 dependence generated by this procedure is mea-
points. The first is that, while the notion of an infinite volume surable, and therefore that averages., of the moments of
(pure or mixed state is well-defined for nearest-neighbor Q) can be taken with respect to the disorder distribution. We
models, it is less so for systems with very long-ranged interalso emphasize that we are interested only in procedures
actions, such as Ruderman-Kittel-Kasiya-Yosida. Our arguwhich result in non-self-averaged infinite-volume stafes,
ments that are based on the homogeneity of the disordeaf least some correlation functions computed within such a
presented below, will still apply to these systems, but thisstate depend oy ). Recall that for the SK model, the very
point should be kept in mind. notion of such aJ-dependent infinite-volume state is un-
The second point is that it is necessary that obtained clear. Second, can such Ry (q) exhibit all the essential
from the natural limit procedure discussed above, be definetéatures of the SK picture, including those described by the
for almost every7 chosen from the disorder distribution  four features above?
(and be measurable in its dependence /Basee Sec. ) The answers to these two parts, giverj25] are, respec-
While this may seem like a technical point of little physical tively, yes and no. We will explain our construction pf
consequence, it actually plays a crucial role in any thermo{which is somewhat technigaénd thus the “yes” answer to
dynamic treatment of systems with many competing statepart one later in this section. Meanwhile, we mention one
[25,26,28. We will come back to this point in a little while. crucial feature of the resulting;, which plays a key role in
Returning to the standard SK picture, we note that thghe “no” to part two. That feature is translation covariance;
other equations in Sec. Il are similarly replaced with theiri.e., under the translation qf to 7 2@, where\];"(‘y=\]X+a,era
exact EA counterparts. The overlap random variable befor eachl,,, p s transforms so that
comes

L—oo

pjw):; W% p% (o), (15)

Xy

pja(axlzal, ce ,axmzom)
Q=lim[A [ > oyoy, (16)
xeAp

L—oo

=pg(0y-a=01,....0x —a=0m). (19
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The conceptual significance of translation covariance is thaaveraged Gibbs statp ; whose overlap distribution Pis

the mapping from7 to p 7, being a natural one, should not self-averagedThe standard SK picture therefore cannot de-
(and in our construction does natepend on the choice of an scribe realistic spin glassesaty dimension or temperature.
origin. It also implies the technical conclusi¢d9,50 that It is important to note that these conclusions apply to the
this procedure leads to a limiting infinite-volume overlap dis-thermodynamic®of spin glasses. What might or might not
tribution functionP ; (q), which exists for almost everyy  occur in finite volumes involves several subtle issues and
and depends measurably gh{guaranteeing that averages of will be discussed in Sec. VII.

g-dependent functions can be taken over the couplinfs While the demise of the standard SK picture is interesting
begin our answer to the second part of the question, we sds itself, and has important consequences for our understand-
what the translation covariance pf; implies aboutP ;. ing of spin glasses, the methods used above and in our con-

By translation covariance gf;, the overlap random vari- struction ofp ; lead to perhaps more significant conclusions
able Q ;a has the same distribution as the random variabléhat might affect our thinking on not only spin glasses, but
Q% where disordered—and more widely, inhomogeneous—systems at
a deeper level. Indeed, these methods indicate a path to a

general approach for studying the thermodynamics of sys-

Q}az lim A ]2 z Ox—a0y_a=Q. (20 tems with many pure states. One consequence will be the

xedy emergence of a replacement for the standard SK picture, a

picture which retains some mean-field flavor. The general
Thus the overlap distribution functioR ;a=P_; for almost formulation introduces several interesting concepts, among
everyJ and allae 2% i.e., P is translation-invariant them replica nonindependence and a definition of non-self-

As in the case of the translation covariancepof, the — averaging, and relates them to replica symmetry breaking,
translation invariance oP ; has the conceptual significance overlaps, and chaotic size dependence. The unifying theme is
that a natural object like the Parisi order parameter distributhe concept of the metastate, which is introduced in Sec. V.
tion should no(and in our construction does ')Qiepend on Before that, we Complete this section with a discussion of
the choice of an origin. But it also has the very importanthow we construct our thermodynamic state.
technical (and physical significance that ; must be self- We begin by noting that we cannot simply fikand take
averagedbecause, as already noted in Sedinlthe discus- an ordinary limit(i.e., through a sequence of cube sites
sion on the number of pure statesa (measurable chosen independently of) of the finite cube, periodic b.c.
translation-invariant function of random variables whose disstatep(},};, asL—x. Unlike, say, thed=2 homogeneous
tribution is translation-ergodic is a constant almost surely, byising ferromagnet, where such a limit existand equals
the ergodic theoremWe remark that the fact that we are 3p* +3p~) by spin flip symmetry considerationgnd the
dealing with a function of7 whose value for eacty is an  fact thatp™ andp™ are the only pure stat¢Z3,74), there is
entire distribution is not a problem, since any particular mo-no guarantee for a spin glass that there is a well-defined
ment of that distribution is a real-valued function &) limit. (In fact, if such a limitdoesexist for the spin glass, one

This answers the second part of our question: the overlapan then provg28] that thesamelimiting state is obtained
distribution functionP; (q)=P(q) is independent of7. It  through the use ontiperiodicboundary conditions—a fea-
therefore does not exhibit non-self-averagfpgoperty(1)],  ture that already seems incompatible with a SK picjure.
and can exhibiait mostone of the two propertie) and(3) It is true that one can easily prove, using compactness
discussed at the end of Sec. Ill. While propgty[discrete- arguments, convergence alosgbsequencesf L's for each
ness of the locations of thé functions which appear in J. But these subsequences shotild a SK picture be J
P(q)] is not rigorously ruled out, it now seems like a highly dependent. The inconsistency between the existence of many
implausible possibility, since it would imply that the loca- pure states and the existence of a thermodynamic limit for a
tions (and weight} of the § functions(and consequently the sequence of finite-volume Gibbs states using coupling-
values ofg which correspond tao overlap valug are all  independent boundary conditiof®ich as periodjcand cube
independent of7. If property (2) is then eliminated as a Sizes has serious consequences not only for spin glasses but
realistic possibility, then one can also rule out propédpyof ~ also for systems in general with many competing states. It
the SK picture, i.e., ultrametricity of all of the pure state suggests in the present case that, if many pure states exist,
overlaps for fixed7 [25]. such a sequence of finite-volume Gibbs state exhdbitsotic

Consequently, we have proved thhe standard SK pic- Size dependend€SD) and does not converge to a limit. The
ture cannot be valid in any dimension and at any temperaconvergent (-dependent subsequences would then give
ture. This result goes beyond our specific construction of theise to different (non-self-averaggdpure states or mixed
Gibbs statep; and overlap distributionP ;, since any  states with no way to make @easurablechoice of a limit
infinite-volume  translation-invariant overlap distribution state for eachy.
function would be self-averaging. It would be quite peculiar ~ There is, however, a natural limit procedure which does
if the overlap distribution depended on the choice of origingive rise to an infinite-volume Gibbs state;, while avoid-
of the coordinate system, and we therefore regard the proghg such difficulties. Here, one considers floent distribu-
erty of translation-invariance foP_; (or translation covari- tion on the spinsand the couplings; i.e., one considers the
ance forp ;) as not specific to our particular construction. distributionv(7) Xp%)ﬁ on the periodic cubd [25]. Then

Our conclusion is thahearest-neighbor (and in general (again using compactness argumer#sme subsequence of
realistic) spin glasses exhibit non-mean-field behavior, bel’s converges to a limiting infinite-volume joint distribution
cause for those systems one can construct a non-selft(.7,0). From this joint distribution,p ; results when the

L—oo
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spin configurations are chosen conditioned @nwhich is In Sec. IV we were forcetby chaotic size dependende
chosen fromy(J7) in the usual way; i.ep ;is determined by replace a S|mpl_e_ sequence of states on Cl_Jbes with periodic
the identity u (7, o) =v(J) X p (o). The important differ- boundary conditions with a more complicated sequence
ence with the earlier limit procedure is that this one is validwhich involved an averaging over boundary conditions, fol-
for almost everyJ, i.e., the subsequence bfs is 7 inde- lowed by sending this average off to infinity. This avoids
pendent (The discussion so far has been based on mathchaotic size dependencat least for a7-independent subse-
ematically rigorous arguments. At this point however, weguence of volumes, but probably altogethén this section,
would suggest—but cannot rigorously prove—that it is prob-we will pursue the opposite strategy—we will forego the end
ably the case that using a subsequenck’sfis not needed run around CSD, and instead use it to gather maximal infor-
for convergence, because the use of a joint distribution fofation about the disordered system. The price will be to
J and o should avoid CSD.A proof that the resulting lim- abandon the usual procedure of constructing and studying a
iting distribution is indeed a Gibbs state may be found insingle infinite volume Gibbs stafe;.

[27,49,5Q. We note that such joint distribution limits were  The central observation behind this is that, at dayge)
considered, implicitly or explicitly, in Refd.75-78. fixed L (and with periodic boundary conditionsthe exis-

To obtain a clearer idea of this construction, consider théence of multiple pure states should generally require an ap-
following procedure. Start with three cubésbeleda, b, ~ Proximate decomposition as in E(L2) [see also Eq(15)]:
andc), all centered at the origin, with volumég, LY, and
Lg, with 1<l <Lp<L.. On the outermost box we impose
periodic boundary conditions. The couplings are fixed inside
the intermediate boxand averaged over between the inter-

mediate and largest bpand in the innermost box the over- kg eachi, the pure states appearing with the largest weights
lap computation is done. The average over couplings bep the sum will be those whose configurations within the
tween the intermediate and large boxes is equivalent t0 afo|yme of sizel are best adapted to the boundary condition.
average over many boundary conditidnensistent with the  chaotic size dependence requires that the pure states and
outer periodic b.¢.on the boundary of the intermediate box. weights appearing within this decomposition vary persis-

Now let L.—o while keepingL, andL,, fixed; then let  eny asl is increasedthough it says nothing about the rate
Lp— 0, while still keepingL, fixed. This sends our “aver- 4t \which this variation occuys
age over boundary conditions” off to infinity, and results in  The analogy with the chaotic orbit of a dynamical system
an infinite-volumep ; which is conditioned orall of the  fo)i0ws from the identification of cube size with time t
coupllngs_ an_d is .therefore non—self-.avgraged. Finally, |e%1|ong such an orbit. Achaotio dynamical system’s trajec-
L,—; this gives finally the overlap distributioR ; (q) be- oy will appear random if one considers the sequence of
tween infinite-volume pure states appearing in ghe points along its orbit, but one can describe its long-time be-

It is important to note thgt any _an_a!og of_ thls_ procedurenavior by studying the appropriate probability measigg,
for the SK model will result in an infinite-spin Gibbs state, 5 state space. That is, one can construct a histogram at
but a trivial one; i.e., it will already be self-averaged andgmest, t,, . . . ty, with N increasing to infinity, and study
therefore un_lntergstmg. This is because flxmg_only finitelyihe fraction of times spent by the orbit in different parts of
many couplings in the SK model and averaging over theate spacgin a continuous space this would require break-
remainder is equivalent to averaging owll of the cou- ing the space up into bipsThe N— limit of this process
plings when N—«. This difference between finite- yields a well-definedcyyy,.

dimensional and mean-field models is crucial. _ Similarly, we consider at fixeq7 a histogram of finite
We conclude by pointing out yvhy our copstructldor volume Gibbs state;a("l) ,p("Z), ca ,p("N)—ucj asN—oo,
the EA model of the limiting joint distribution u(J,0) ) ) s J .
yields translation covariance fgr;. This is so because tak- The information contained in; provides the fraction of
ing periodic b.c.'s on the cubd, really means that the cu_be sizes which th? system spends in d|ffer@1_uss_|bly
couplings and spins are defined ordiscrete torus of size mixed) Fr_]ermodynamlc states. We refgr toK 7, Wh.'Ch IS a
L, with a finite-volume joint distribution invariant under probability measure on thermodynamic stalest fixed 7,

torus translations. This implies that afgubsequengdimit as themetastate

joint distribution is invariant under translations 8%, which di To S|_mplt|;‘]y tnotatlon, I WI"t b?h assutmetd tm.the ?gSL{'t?]g i
in turn implies that the infinite-volume Gibbs stape; is IScussion that convergence fo the metastate 1S vald withou

translation covariant. In Sec. V, we go beyond the construc['eecj for a subsequence oN’s or a subsequence

tion of a single limiting thermodynamic state by introducing I}leLli h of thg, c;ube SIZes. V(;/el point OUL ho&ve\{erv\t/hat
the notion of metastates. ulske has studied some models, e.g. the Curie-Weiss

random-field model, in which choosing a sparse subsequence
of sizes is necessary for the empirical distributioe., the
histogram to converggfor almost every disorder configura-

In this section we will describe an approach, introduced |nt|0n) to the metastate. We will not diSC.USS these issues here,
Ref. [26], to studying inhomogeneous and other systemdut refer the reader to Reff79] for details. .
with many competing pure states. This approach is based on Our empirical distribution approach to construction of a
an analogy to chaotic dynamical systems, and involves thE'etastate, based on CSD for fixgkl constructsx 7 as the
replacement of the study of a single thermodynamic statimit of x4, a type of microcanonical ensemble in which
with an ensemblef (pure or mixed thermodynamic states. each of the finite-volume stateg},p!?), ... o) has

p P (o)~ W% p% (0). (21)

V. CHAOTIC SIZE DEPENDENCE AND METASTATES
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weight L™, This limit can be understood in the following pure phase, e.g., the paramagnetic state. TheDJJ}mfyL)
way: consider anice) function on the states, such as the=, s a single pure state, there is no CSD, and

correlation (ooy)(-); i.e., (oxoy)(I') is this correlation kAT)=8(T~p.).

computed using a particular infinite-volume Gibbs distribu- | the second example we suppose that the scaling-droplet
tion I', and(o0y)(p™)) is the same correlation computed picture is correct, so that only two pure stajels and p/y
using the finite-volume Gibbs distributigit™) (we suppress exist, related by a global spin flip. Thefas in thed=2

the 7 index here, which is understopdf [ -], denotes an  homogeneous Ising ferromagnet with periodic or free b.c.’s
average of a state-dependent function over mietastate

(i.e., the function of each state is weighted using the weight lim p(jL)= oA+ 307, (24)
of the corresponding state within the metastatieen Lo

L and again there would be no CSD. Indeed, the analogy here
lim (1/L) >, (oxoy)(p('))=[((rx(ry>(F)]K. (220  is to a dynamical system with a simple fixed point. The met-
Lo =1 astate is simply

Furthermore, such an equation similarly holds for any other kAT)=8(T =[3p+3 p)). (29
(nice) function of finitely many correlationgsregarded as a
function on states However, we can introduce a slight variation of this pro-

There is another approach to constructing the metastateedure to illustrate the potential sensitivity of the metastate
due to Aizenman and Welfi27], which uses the randomness to the boundary conditions used in the limiting procedure.
of the couplings directly, in a manner similar to that of the Suppose that, instead of periodic boundary conditions for
construction ofp 7 in Sec. IV. There we studied the limiting eachL, we usefixedboundary conditions, e.g., all spins are
joint distribution u(7,o) of the random pairs.(,c™)) dis- +1 on the boundary of each® cube appearing in the se-
tributed for finiteL by V(j)xp(jL)_ Here one considers in- quence. This of course breaks the spin flip symmetry, and for
stead the random paig(p(JL)) at finite L. We will not dis- somelL’s the statep’; will be preferred, while others will
cuss various technicalities associated with this methodpreferp”;, depending in each case on whether the sum along
details can be found in Refi27,49,5Q. We will simply note  the boundary o{ax>prjis (substantially positive or negative.
here that the two approache the very least along common (There may be occasionhls where the preference for each
J-independent subsequentgseld the same limiting met-  state is roughly equal, but this should be a negligible fraction

astate. . ~of L's and so would not show up in the limiting histogram
The metastatex ; contains all of the thermodynamic in- \yhich yields the metastate.

formation about a system, in this case the EA spin glass with  gg in this case we obtain chaotic size dependence, albeit
coupling realization7. As such, it contains far more infor- ¢ 5 trivial sort: pH)~p!, for roughly half of theL's, and
mation than the single thermodynamic stategenerated by
the construction of Sec. IYor any other single stakeln fact,
it can be seefi27,49,5Q that thep ; of Sec. IV is theaverage M=t 8T =041 8T =0" 26
thermodynamic state of the ensemble of states within the wA1)=2 81 =pg+32 8I'=py). (26)

metastatec 7, in the following sense: consider any spin cor- Here the metastate is a rough analog to ihg, obtained

pf}')wp} for the remainder. The metastate is now

relation in the state 7, e.9..(ox,, - - ..0x ), - This equals from a discrete time dynamical system with an attractive
the averagéover the metastal®f the correlation function of  orbit of period 2.
the same set of spins ovall thermodynamic states of the This is our first example in which the metastate is not

ensemble. So ik (I')dI" denotegformally) the probability ~— simply a § function on thermodynamic states. We call this
of appearance of the states within a region of state spadeehaviordispersal of the metastatand it is intimately con-

centered o of state-space volumél’, then nected with CSD. From this and the previous example, it
should be clear that dispersal of the metastate is quite differ-
<"X1' . "Txn>p]:[<(’><1' . 'an>r]xj ent from the mere existence of multiple states; while the

existence of more than one state is necessary for dispersal to

_ occur, it by no means guarantees it.
- j (g0 ox el (23 The above discussion leads naturally to the following pos-
sibility, first proposed irf26] as a possible candidate for the
and similarly for all other correlation functions. EA metastate, based in turn upon earlier wor &t Sup-

We see that one problem with the standard SK picturgose that the EA spin glass has many pure states in some
(and with other standard thermodynamic treatments of sysand at someg, but unlike in the mean-field picture each
tems with many competing stajes that the stat@ ;(or any ~ volume “sees” essentially only one pair at a time. In other
other single state, pure or mixeid simply not a rich enough words, for everyL (and once again using periodic boundary
description of theL— behavior of a thermodynamic sys- conditiong, one finds that
tem where CSD occurs. In these approaches, one is in effect
replacing with a single average all of the information con- pf}‘)% %p‘C;L-I- %p}“L (27)
tained in an entire distribution.

To illustrate the nature of the metastate, we now presenihere — « refers to the global spin flip of pure state In
some simple examples. The first is the trivial case of a singl@ny volume, this looks very much like the droplet-scaling
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picture, but its thermodynamic behavior is considerably dif-are takenbefore L—o) could yield a different result than
ferent: there are infinitely many pure states and which paithat obtained by first letting.— oo to obtain an infinite vol-
appears in any finite volume depends chaoticalllotun-  ume state ; and then taking replicas. The noncommutativity
like the droplet-scaling picture, this possibility exhibits CSD of these operations will be shown to follow from a phenom-
and dispersal of the metastate. In this “chaotic pairs” pictureenon we calleplica nonindependencwhich is not the same
the (periodic b.c) metastate is dispersed ovénfinitely)  as replica symmetry breaking, as will be seen below. But
manyIs, of the formI'=T*=3p%+ 3p . first we will explore the meaning of this way of taking rep-
It is interesting to note that just this type of behavior islicas.
observed for the many ground states of a simple highly dis- Taking replicas firsti.e., from the samé) really means,
ordered spin glass model in high dimensi@B]; see also in terms of the metastate, that they are being taken from the
[80]). (Indeed, for the EA model itself, we would expect this sameT’, i.e., from I'(¢})['(o®) for someT" chosen from
type of behavior to occur ak=0 if infinitely many ground  « (I'). (Without metastates, it would be difficult to assign a
states exis}. clear meaning to this statemerfor n replicas(wheren can
One can study metastates in models more complicatede any positive integer, or infinityve taken uncoupledbut
than those above, but still simpler than the EA spin glassidentica) Hamiltonians (and boundary conditiopsin the
and a discussion of some of thegeg., random-field Ising cube LY. We then use for finiteL the product measure
models, the highly disordered spin glass of R8}, and the  p(=p()(51®) pP(a2V). .. p()(o"V)). The limiting
homogeneouX'Y model with random b.c.)sappears ii49],  joint distribution for (7,6*®),?®), ... ¢"V) is then of
to which the interested reader is referred for details. At thishe form v(J)p% (o,0?, ... 0" for somep', that we call

point, however, we will proceed and use the ideas introduce¢he infinite-volume n-replica measure(The mathematical

in this section to revisit the concepts of replica symmetryanalysis of this limit procedure is essentially the same as was
breaking and non-self-averaging, and will introduce someyiscussed fon=1 in Sec. IV above and, with more detail, in
concepts such as replica nonindependence. The idea of theg 5q.) In this approach, replicas in the infinite volume
metastate will enable us to relate, explain, and unify thes@mit are described by (¢1)T'(o?)- - - with I distributed by

concepts. We will then return to the EA model and discuss - repjicas in finite volume are taken from teame L, and
the remaining possibilities for its metastate, and therefore |t§<j describes the sampling of stateslasaries.

low-temperature thermodynamic structure. A crucial point, as emphasized by Guef&d], is thatin
the infinite-volume replica measupg,, the replicas need not
VI. REPLICA SYMMETRY BREAKING, be independentalthough they of coursare independent in
REPLICA NONINDEPENDENCE, the finite-volume measurg’’") . The replicas in infinite vol-

AND OVERLAP DISTRIBUTIONS ume can be thought of as coupled through “boundary con-

In Sec. IV we discussed the Parisi order parameter distriditions at infinity.” _ _
bution P (q) in the standard SK picture, whose counterpart If this occurs, we saj26] that the system displays replica
P,n(q) for the SK model was successful in describing nomnd_eperjdenceRNl). The presence of RNI means that
mean-field spin glass ordering. In the standard SK modep’, Which is a thermodynamic state for the uncoupled rep-
P 4q) is constructed as the distribution of the overlap ran-lica Hamiltonians, isnot simply equal to the product of the
dom variableQ, which in turn is constructed according to individual Gibbs statep ; (o). In general, we have from the
Eq. (16), where the spin configuratiors ands’ are chosen above description that
from the product distributiorp ; ()p 7 (o'); i.e., each is
chosen independently from the sariteermodynamigstate  p%(ot,02, . .. ,Un):J [[(eY)I(a?)--T(a") ]k (I)dr.

bg 5 . . . . (29
ut now, given the metastate point of view discussed in
Sec. V, we know that the staje; (o) is really the average This makes it clear that RNI is equivalent to dispersal of the
over the metastate, in the sense described by (8. metastate. If the metastate is nondispersed, its weight is con-
Equivalently, centrated entirely on a single thermodynamic states sis a
delta function, and the RHS of E(R9) reduces to a simple
_ product of Gibbs state@ach of which is the single state on
PoA7) f Flo)xg (T)al. 28 which the metastate is concentrgte@therwise, the product

i , ) i ) o decomposition ofp”; is as a mixture over ;. This also

So each time a par of spin configurations, say,¢®),iS  shows that RNI is equivalent to the noninterchangeability of
chosen fromp 7 (o )PJ(U_),laU independerif 'S used f(2)r the operations of taking replicas and the thermodynamic
each configuration. That isr* is chosen froml'*, and o limit.

2\ 1712 1 2y. 71
frgm_l“ with (I'*,I"%) chosen fromk 7 (I'") k7 (I'*); '~ and In Ref.[26], these points were explained using the idea of
I'* will in general be distinct if the metastate is dispersed.«metacorrelations.” Just as the usual correlations

This in turn means in essen¢see Eq.(22)] that the spin <0i1, -.o; )r are momentsin this case, of ordem) charac-
m

configurations™ is chosen using the d|str|but|oplf71) and  terizing the thermodynamic stafe metacorrelations are mo-
a? from p(J"Z) , with L; #L,. It seems more natural instead to ments that characterize the metastatel.e., they are the
take the two replicas from the same distribution, i.e., for aaveragegover the metastatef functionsg(I") on the states
single L, and therefore from theamel'. As Guerra has that are monomial§of orderm) in the correlationgof vary-

pointed out[81], this order of operationén which replicas ing orders:
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[Q(F)]K=[<0Al>r' . '<O'Am>1"]:<! (30 coulq happen that.two different .sets of weights and ove_rlap
locations are seefin the approximate sense corresponding

to the fact that we're restricted here to finite volumes, so that,

e.g., the finite-volume overlap distributi(ﬁ’f}‘) is not a sum

of exact$ functions. It is logically possible that in such a

case, fluctuations iﬁ’%’ persist for arbitrarily largé.. From

whereop denotes<ril~ o, for the setA={i,...,i\}. As

noted in Ref.[26], restriction to metacorrelations of order
m=1 vyields p;, to m=2 yields the two-replica measure

2 1 2 H 1H H 1]
py (07,07, wh_lchwcorresponds to “integrating out allthe o previous discussions, however, it would ibeorrect to
other replicas inp 7, and so on. The measurg; therefore  oncjude that there is an infinite-volume overlap distribution

not only contains information about arbitrarily many repli- {41 is non-self-averaging.e., that depends ad). Rather, it
cas, but since it determines all the metacorrelations, it als%ould imply that the limit "mbmp(}_) does not exist: i.e..

contains all information about the metastatp. that 'Y exhibits chaotic size dependen¢8ee the Appen-

Replica symmetry breakingRSB) occurs when indi- . . : o e
vidual thermodynamic statel (chosen fromx ;) are mix- dix fqr a discussion of .the_ dls_tlncuons among differing con-
7 %tructlons of overlap distributions.

tures of multiple pure states, so that even, when restricted t Our conclusion is that if overlap fluctuationgue to cou-

a singlel’, replicas can come from different pure states, in_,. . X
the spirit of the Parisi ansatz. This definition allows for Whatpllng dependengedo not vanish a.t_)oc [82], this doesnot
mean that the standard SK picture of overlap non-self-

we call trivial RSB (e.g., in a two-state pictuyebut corre- . ] S . .
sponds to the more familiar meaning when many pure State%veraglng holds; ratheﬁ itis a signal that sexondkind of
ependence holds for infinite volume.

are present i’ The presence of RSB means that when one With the approach outlined above, a replacement for the

?heecorgfrgjf;iggcsh ngglnblze?\}v(ezg Igitf?e?g:ta rsetafiiZstri]se?os tandard SK picture suggests itself. This replacement at first
P y y P Eplay seem very unusual and different from previous under-

in each of the products where a pure state is chosen for eac . : : .
replica. It follows that RSB and RNI are distinct phenomena,StandmgS of thermodynamic spin glass structure, but it falls

and either can oceur without the other out naturally from the ideas presented in this and in Sec. V.
Althouagh we have a new way of cbnstructin are Iicam Sec. VIl we ask how can at least some of the familiar
measuregwe can still take over)llaps in the usugl wayp i echaracteristics of the Parisi version of spin glass ordering be
according to Eq.(16). The distribution of an overla, fetained in realistic spin glasses? We will see that the “maxi

thouah. depends on how and o’ are chosen. Because of mal” mean-field picture allowed, given our understanding of
gn, dep 7 y metastates and their consequences, has an intricate and novel
the possibility of RNI, we no longer take overlafisetween

. . thermodynamic structure.
one or more pairs of replicasrom the product measure
ps(ahps(a?)-- -, butinstead from the more suitable rep-
lica measure’;. Because of this, the nature of the overlaps

changes. For example, the distribution of a single overlap e saw in Sec. IV that the familiar thermodynamic pic-
Q is no longer theP ; (q) obtained fronp 7 (0)p; ('), but  tyre usually associated with the Parisi ansatz applied to the
rather isfPr(q) s (I')dI’, whereP(q) denotes the over- EA model, which we called the standard SK picture, could
lap distribution obtained fronl'(o)I'(o"). Whenk s is dis-  not be valid in any dimension and at any temperature. Any
persed,Pr may or may not depend on tHe chosen from  thermodynamic theory of realistic spin glasses will differ
k7. (It does not in the chaotic pairs picture but does in theconsiderably from this picture. The question then is whether
nonstandard SK picture discussed bejomformation on  and how any aspects of mean-field behavior can survive in
this dependence is contained in the overall “overlap strucsuch a theory. We now address this question.

ture,” by which we mean the joint distribution of all over-  we begin by asking what a maximal mean-field picture
lapsQ" between all pairs of replicasr{(,o’) from p’;. This  would look like infinite volume. There have been a number
(possible dependence ol is significant because, as in our of numerical simulationge.g.,[42,61,73) which appear to
analysis above of the standard SK pictutes overlap struc- see a Parisi-like structure of finite-volume states, i.e., the
ture still does not depend off, by essentially the same ar- appearance of several states with nonnegligible weight, sev-
guments using translation invariance of the overlaps aneral (approximate 6 function overlaps whose positions de-
translation ergodicity of the coupling distribution(7).  pend on coupling realization, and a Parisi-liRéq) (i.e., 6
More specifically, regardind®r as random because of its functions at+ qg, connected by a continuous pastter av-
dependence oh for fixed 7, the probability of appearance eraging over the coupling$See, however43] for a criti-

of a particular set of weightand corresponding locations of cism of[42].) We will not attempt to resolve controversies
the overlapé functions will not depend ot/. (Here, we are associated with these or other simulations, nor will we
describing the situation, discussed at length in Sec. VII of thespeculate whether, if correct, these results persist for larger
paper, in whichP, for eachl’, has an SK-type forn. volumes. Rather, we asksuch results should hold for arbi-

In realistic systems, thermodynamic state observables camarily large volumes, what does that imply about the ther-
depend on the bulk couplings and/or on the couplings amodynamics of spin glasses, given that the usual thermody-
infinity. Thus we observe thdhere are two distinct types of namic extrapolation of these finite-volume resuite., the
dependence: (i) on7, and (ii) on the statel’ within the  standard SK pictupeis incorrect?
metastatex for fixed 7. We have seen that replica overlaps We will see that the metastate approach allows us to con-
cannot have the first type of dependence, but can in principlstruct such a thermodynamic scenario, which we call the
have the second kind. In that case, if one examines the sanm@nstandard SK pictur€This picture, or one closely related
(finite) volume for two different coupling realizations, it to it, must describe the thermodynamics of realistic spin

VII. NONSTANDARD SK PICTURE
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glasses if the abovénite-volume picture is correct. That is, varies within the metastate ensemhkethe new sort of non-
the nonstandard SK picture allows for propertigs-(4) ap-  self-averaging discussed at the end of Sec. VI. ltis clear then
pearing at the end of Sec. Illor more precisely, finite- that this picture must have both nontrivial R§Because
volume versions of these propertie® hold in any fixed eachl' is a sum over many pure stateand CSD(and RN)
finite volume(with, e.g., periodic boundary conditiondt is  since the metastate is dispersed.
therefore a maximal mean-field picture, as promised at the Finally, we require that théaveragegiParisi order param-
end of Sec. VI. However, the thermodynamics to which iteter P(q) have the usual form, that is, twé functions at
gives rise is unconventional. It displays RSB and RNI=*gg,, connected by a continuous component with nonzero
(equivalently, CSIp and a type of non-self-averaging, suit- weight everywhere in between; however, the averagiugt
ably redefinedas described in Sec. ¥Iit does not have the now be done over the statEswithin the metastate ;, all at
features commonly thought of as associated with the Parigixed 7, rather than ovey7 itself:
ansatz, e.g., ultrametricity of all of the pure statg6,57),
but displays some of its properties in a more limited fashion.
As a starting point, then, we require that in afigrge P(Q)=[PF(Q)]K]=I Pr(q)xz (I')dI. (34)
finite volume, the Gibbs state is an approximate decomposi-
tion over many pure states, In order for this requirement to be valid along with discrete-
ness of the individuaPr’s, it must be that there is eon-
(L) ) al tinuum of I'’s in the metastate ensemble. So we have re-
Py (@) za: Wrpg (o), 3y placed dependence on coupling realizatiofi with
dependence on the stdfewithin the metastate fofixed 7.
where a few states dominate the sum. From the metastate \\e see that the nonstandard SK picture differs from the
point of view, this implies that each (chosen fronk ;) isa  ysual mean-field picture in several important respects. One is
mixed state with a nontrivial decomposition into pure Statesthe lack of dependence of Over|ap distributionaﬁmnd the
namely, replacement of the usual sort of non-self-averaging with the
concept of dependence on states within the metastate. An-
r=> Wep% (), (32)  otherimportant difference is that, in the nonstandard SK pic-
« ture, a continuum of pure statesd their overlaps must be
present; thereforajltrametricity would not hold in general
and this decompOSition is discrete but with many nonzer%mong any three pure states chosen at figedinlike in the
weightsWy [83]. standard SK picturésee, for exampl€56,57). (The argu-
In order that this scenario correspond to the usual expeanent supporting this conclusion is presented in R2§].)
tations of the Parisi-SK picture iinite volumes(and at fixed  Rather, the pure states at fixgflare split up into(a con-

J), we require that the fixedl-overlap distribution tinuum of) families, where each family consists of those pure
states occuring in the decomposition of a particdlarand
P =S WaWZS(g—a®” 33 only within each such family would ultrametr|C|_ty hold.
r(@ aEy rWea-a™) 33 We have presented the nonstandard SK picture as a re-

placement for the more standard mean-field picture; if real-

display the form consistent with proper(®) listed at the end istic spin glasses display any mean-field features, something
of Sec. lll; that is, a countable sum of mamyfunctions. like it must occur. However, this leaves open the question of
[Note that the occurrence of mangistincy g,,’'s is an ad-  what actually happens in realistic spin glasses. In particular,
ditional requirement, and does not follow automatically fromdoes the nonstandard SK picture actually occur? It turns out
Eq. (32).] The metastate must be an ensemble of many sucto have an important covariance property which may provide
I'’s (in fact, a continuum of them, as we explain bejow a clue.
each of which yields a pair of functions at+qg,, but with For specificity, consider the EA model with(aean zero,
the locations of the remaining functions beingl" depen-  variance } Gaussian coupling distribution. Suppose that we
dent. We further require that the locations of #héunctions  change dinite number of couplings. The metastate (I'),
within a specificP(q) be ultrametric. in addition to translation covariance, is also covariant with

The above requirements are consistent with propertiesespect to this chand®7]; that is, the ensemble transforms
(1)—(4) of Sec. Il holding for any finite volume, including (as would any probability measyrander a change of vari-
(conventional non-self-averaging for arbitrarily largé. ablesI'—I''. Here,I'' is the thermodynamic state with cor-
However, instead of the straightforward extrapolation to in-relations(oa)r = {oae #2H) /(e #2H) | whereAH is the
finite volumes characteristic of the standard SK picture, theehange in the Hamiltonian. Under this change of variables,
thermodynamic properties of this nonstandard SK picture arpure states remain pure and their overlaps do not change.
considerably different. We now discuss what these propertieslowever, the weights which appear in E83) will in gen-
are. eral change. Nevertheless, the overall overlap struciieg

The crucial conceptual point is that the translation covathe probability of appearance of a given set of weights and
riance of the metastate ; still requires that the resulting overlap locationsmust remain invariant.
ensemble of overlap distributions is independent/ofThe We proposd49] this covariance property under coupling
metastate in this picture must be an ensemble of nidsy,  changes as an appropriate analog to that of of dynamical
with a singleI’" appearing in any fixed cube® (with, e.g.,  Systems having a probability measure invariant under the
periodic boundary conditionsThe dependence dh (asT’ dynamics. Our reasoning is as follows. Suppose we consider



55 METASTATE APPROACH TO THERMODYNAMIC CHAOS 5207

free b.c.’s. Changing from a cube of siketo one of size translation-invariant. We know of no othénatura) con-
L+1 corresponds to taking a certain layer of couplings andstruction of a thermodynamic state for the EA mogehich
changing them from zero to nonzero values. Having alreadys measurable with respect to the disorder configuration
made an analogy betweénand the time for the dynamical the event that the spin glass does indeed possess many states
system, it seems appropriate to extend it to one betweefin which case chaotic size dependence must be taken into
dynamical invariance tPH—l) and coupling covariance account at some dimension and temperature.
(J—J+AJ). The analogy is even clearer if we consider Although we presented these resultsxd much of our
increasing volumes not by a whole layer at a time but by ather discussion on spin glassés the context of the EA
single site at a time. Exploitation of this covariance propertymodel, we stress that they apply quite generally to most re-
could result in a type of cavity methd@9,66,61 for study-  alistic spin glass models, because they depend only on gen-
ing the properties of realistic spin glass models. eral properties such as translation-invariance of the overlap
In the nonstandard SK picture, there seems every reasdanction and translation-ergodicity of the underlying disorder
to expect nontrivial dependence of, e.ge,*BAH)‘} on the distribution. These results lead, however, to an interesting
many «'s appearing for eacl'. Thus, under changes of fi- approach to the thermodynamics of systems with many com-
nitely many couplings, eacR would be changed to By, peting states that is far more general than considerations of
with the sameg,,'s but with differentweights. Nevertheless, spin glasses alone might indicate. The failure of the standard
by the translation-invariance—ergodicity argument men-SK picture arises from the fact that if many pure states do
tioned earlier in this section, thdistribution of the Py's (as  exist for a particular systerfat some dimension and tem-
I" varies over the metastatie fact does not depend qgfiand ~ peraturg, then chaotic size dependence generally follows,
hence is unchanged hy— J+AJ. and it becomes unreasonable to describe the thermodynamics
Thus the above covariance property under changes dfrough a single state—even though this state may be a mix-
couplings places a large number of constraints on the distriture of infinitely many pure states—as in the standard ap-
bution of thePy’s that can arise in the nonstandard SK pic- proach. As an alternative, and based on the example of a
ture. We wonder whether all these constraimhich donot  chaotic dynamical system, we describe the thermodynamics
arise either in the droplet-scaling or in the chaotic pairs picthrough anensemble of stateevhich may themselves be
ture can actually be satisfied. Clearly, more study of thismixtures of pure statgshat we call the metastate. Within
issue is needed. that approach, the idea of replicaghose correlations deter-
mine the metacorrelations of the metastdtecomes natural
VIIl. CONCLUSIONS and formerly mysterious concepts—such as replica symme-
try breaking—become clear. Further, the connections be-
We have shown that the traditional picture of spin glasstween these and more recent concepts such as replica non-
thermodynamics, based on the Parisi ansatz as applied tedependence and dispersal of the metastate can be easily
finite-dimensional models, cannot hold for realistic spinuncovered.
glasses in any dimension and at any temperature. This stan- A crucial issue is the replacement of the old concept of
dard SK picture is a natural and straightforward extrapolanon-self-averagingas dependence on the bulk coupling re-
tion to infinite volumes of the main features of spin glassalization with a version of dependence on boundary condi-
ordering uncovered by Parisi and others for the SK model. Itions at infinity. This allows for the possibility that moments
assumes a single infinite-volume overlap distribution funcof Q, for example, as computed through the distribution
tion P 7 (q) which is non-self-averaging, i.e., dependent onp(L)(q) in any finite volume can depend @fifor arbitrarily
J. This plCtUre proposes that the pure states are chosen i[Hrge L—even thoughP] (q) itself is independent of7.
dependently from some mixethnd, of course, non-self- \ithin the context of the nonstandard SK model, we replace
averagegl thermodynamic statp ; with a decomposition of  the idea of dependence qfi with dependence on the state
the form of Eq.(15) and that the resulting /(q) will consist T within the metastate faiixed.7. This notion corresponds,
of (many discrete 5 functions lying between a pair at roughly speaking, to dependence on couplings at infinity
*dea- The locations of thes functions(except for the pair  (which yield a kind of annealed boundary condition at infin-
at =gga) and their weights depend on the coupling realiza-ity) or to dependence on, all for fixed 7.
tion 7, but for any fixed7 their locations are ultrametric. Applying these results to the EA model, we find that sev-
When averaged over th@ncountably manycoupling real-  eral scenarios for the metastate remain as logical possibilities
izations chosen from the coupling distribution, the order pain various dimensions and temperatures. One of course is the
rameter distributiorP(q)=P_; (q) shows the characteristic trivial paramagnetic phase. Another is the scaling-droplet
form of a continuous component connecting théunctions  model. Two other possibilities, mentioned in RE26], in-
at £gga, and nonzero everywhere in betwegt least for  volve stated” consisting of a continuum of pure states; in
0<T<T,). one of these scenarios the metastate is dispersed and in the
We have shown, however, that this picture can nevepther it is not, although both exhibit replica symmetry break-
hold: any P, (qg) with the weak (and physically reasonable) ing. However, we see no evidence that either of these apply
property of translation invariance must be self-averaging to realistic spin glasses, and so do not discuss them further
due to the underlying translation ergodicity of the couplinghere.
distribution. In Sec. IV we presented an explicit construction An intriguing new possibility, also discussed in ReZ6],
of such a non-self-averaged thermodynamic spatewhich  is the chaotic pairs picture, which is different from both
obeyed the physically important requirement of translationdroplet-scaling and mean-field pictures. This picture follows
covariance, and whose overlap distribution function was thugaturally from our earlier discussion on the metastate; it has
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infinitely many pure states, but with weights so mismatchedy DOE Grant No. DE-FG03-93ER251%B.L.S)).
in any finite volume(with, say, periodic boundary condi-
tiong) that only a pair of pure statéselated by a global spin
flip) appear. So in finite volumes this picture resembles drop-
let or scaling, but it has a very different thermodynamics; in

particular, there are infinitely many pure state pairs and |n this appendix we briefly discuss different methods for
which of these appears in a given volume depends chaottonstructing overlap distributions. Several approaches pres-
cally onL. It is interesting to note that this scenario actually ently exist, and it may be the case that the use of different
arises in high dimensions in a highly disordered ground-statgoundary conditions and/or limit procedures can lead to dif-
model of spin glassel$]. ferentP ; (q)’s. This has led to some confusion in the litera-
Finally, we discussed a maximal mean-field picture calledyre (see, for example, the discussion in Ré&5,86)) over
the nonstandard SK picture. This picture has features whicthe “correct” way to computeP ; (q). We emphasize at the
resemble some of the familiar aspects of Parisi-type spiutset that, although the actual form of the overlap distribu-
glass ordering in finite volume—and is consistent with vari-tion in various constructions can differ, our self-averaging
ous numerical simulations which claim to see this type ofarguments of Sec. IV apply tall of them. That is, if a
ordering—but has an unfamiliar thermodynamic structureparticular construction of an overlap distribution has a well-
and does not correspond to the usual picture presented in thfined thermodynamic limit at afthat does not depend on
literature. In particular, it does not possess nontrivial ultrathe choice of an origin then it is necessarily self-averaging.
metricity of all of the pure states corresponding to a fixed The fact thatP(q) for various models, including short-
coupling realization7; indeed, one of our results is that such ranged Spin g|asses' can depend Sensitive|y on the choice of
ultrametricity cannot occur in any reasonable spin glass pichoundary conditions was pointed out by Huse and Fisher in
ture. It also does not possess non-self-averaimthe sense  Ref. [38]. They further argued tha®(q) was too global a
of 7 dependengeof thermodynamic quantities related to the measurement to give reliably accurate information about
order parameter, such as the overlap distribution function. numbers of pure states in many modételuding relatively
Nevertheless, the features of non-self-averaging and ultrassimple” systems like conventional Ising ferromagnets
metricity could appear in anfinite volume if this picture  They provided examples whe(q) could have a trivial
should hold. This leads to a further conclusion, namely, thagtructure in spite of the presence of many states, and other
for systems with quenched disord@nd for inhomogeneous examples where it had a nontrivial structure in spite of the
systems in generawith many competing thermodynamic apsenceof many states. Notwithstanding these examples
statesproperties which persist in large finite volumes cannot(which we believe to be correctmuch of the literature on
be Straightforwardly extrapOIated to a description of the the Subject persists in usw@(q) as an order parameter for
thermodynamicsin these cases, the metastate approach igpin glasses, and so it is necessary to sort out various subtle-
indispensible for sorting out the thermodynamics. _ties which may arise in its us@Arguments supporting the
In any case, we haVe serious reservations about the V|ab|b'se Ofp(q) to gain interesting thermodynamic information
ity of the nonstandard SK picture. Although we cannot at thisgp, spin glasses are presented in Rég].]
point rule it out on purely logical grounds, it requires an |5 Ref. [25] we presented two different constructions
enormous number of constraints to be simultaneously sati§each of which yields a well-defined limit for the overlap
fied. Further arguments suggesting that the nonstandard Sfstripution asL—). In these constructions, there are
picture of Sec. VIl is.not.valid (in any dimensiopwill ap-  poxes, of sizet ,, Ly, andL., with periodic b.c.’s imposed
pear in a future publication. _ . on theL, box, fixed couplings in thé, box, and overlaps
Further work is needed to determine which of these etomputed in thel, box. The first construction takes
maining pictures does hold for real spin glasses. Work is alsq L,<L,=L., while the second construction, which is the
needed to study the connections between the approach prgae ~described in Sec. IV of this paper, takes
sented in this paper to systems in equilibrium and the dy1<La<Lb<Lc- The averagingover the couplings in the
namical behavior of systems out of equilibrium. Such inves'region betweer, andL,) is necessary to obtain a thermo-

tigations are currently in progress. We conclude by againyynamic limit only when many pairs of states are present.
pointing out that although we have concentrated in this paper” The first of these constructions is related to numerical

on spin glasses, the phenomenon of thermodynamic chag,mpytations which appear in the literature; it computes
and the metastate approach to its analysis are potentially apr

. X ; 7 (q) directly without prior construction of thermodynamic
plicable to any thermodynamic systefdisordered or not, gzies The second of these is of greater theoretical impor-
inhomogeneous or nptn which there are many competing

. ok tance in the sense that it first computes a thermodynamic
pure states and the finite-volume boundary conditis  qa6(the average of the periodic b.c. metastate, as discussed
fields) are not(or cannot bg carefully chosen to favor one

in Sec. V) which, if many pure states are present, will be a

(or a very few of them. mixture of them. This second construction first takes the
thermodynamic limit, and then takes replicas and overlaps;
thus it averages over the couplings betwégrandL . sepa-
rately for each of the replicas. The first construction, as well

The authors thank Aernout van Enter for many valuableas the metastate procedure of Sec. VI for constructing over-
comments on this work, and in particular for his illuminating laps (which takes.,, L, andL. as in the second construc-
example discussed in RdB8]. This research was partially tion), uses the opposite order, taking replicas first and then
supported by NSF Grant No. DMS-95-00868.M.N.) and  the thermodynamic limit; thus replicas are taken with the
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same couplings in the entile, box. If RNI is present, this more than one pure state this example, the extreme case
opposite order of operations could lead to a differentof uncountably many It also illustrates the contention of the
P (q), as discussed in Sec. VI and RE81]. The form of  authors in Refs[25] and [86] that P(q) may be a poor
the periodic b.c. overlap distributiafusing the construction choice of order parameter in finite dimensional models.
of Sec. V) for the nonstandard SK picture was discussed in The nonstandard SK picture presented in Sec. VIl pro-
Sec. VII; here we will mostly focus on the two constructionsvides a more interesting possibility. Here there may also be
discussed above. two forms of P q), depending on which construction is
In agreement with the arguments of Huse and Fi§B8}; used (but both forms are still self-averagingThe picture
we noted in Ref[25] that these two constructions probably was created so that the overlap distribution constructed ac-
give different limit overlap distributions for the random-field cording to Sec. VI consists of a collection éffunctions of
Ising model[87] and for the highly disordered spin glass varying weights lying between a pair atqe,. While it is
model of Ref8] in high dimensions. Furthermore, they pos- |ess clear what will occur in this case in each of the two
sibly would also yield different distributions for the usual constructions under discussion, a likely outcofifiehis pic-
finite-dimensional spin glasses if something like the Non+,re were to holi is that the first construction yields the
standard SK picture, described in Sec. VII, holds. familiar ParisiP(q)—i.e., a continuous component connect-

In the case of the random-field Ising model, the first con-ing the pair of S functions at=qg,. However, the second

struction should yield a singlé-function spike even for construction should then result either #q) or else in a
T<T. because, for each volume, only one of the two pure

states will appeafalthough which one will depend on the continuous dlstrlbutlc_)n with nonzero density between
volume. This situation is illustrated in Fig.(h) of Ref.[38]. = eA, but no & fl_mctlons at*Qea. The reason for nd .
The second construction, however, should yield the expectef&i‘.ncu.ons fitinA Is that here states are _chosen from a dis-
pair of 6 functions symmetrically placed with respect to thetrIbUtlon (i.e., from a metastalecontfa.mmg uncountably.
origin, because here the replicas are drawn from the thermq: any such states, so that the probability of two states being

dynamic mixed state which is an equal mixture of the mag_hessa:cne or r(alateddpy a glogatlhspln flip is zero. f the tw
netization up and down pure states. o far we have discussed the consequences of the two

Our second example uses the highly disordered groun onsiructions pr_opose_d in ReR5], mostly us_ing periodi_c
state model of Ref[8] in dimensions high enough so that oundary conditiongDifferent boundary conditions are_d_ls—
there exists an uncountable number of ground states. T ssed in Secs. V and Vin a comment on Re{25], Pgr|3|
situation here is essentially the “chaotic pairs” picture of: 5] proposed two constructions, Wh'.(fh are furthgr discussed
Sec. V. In any specified volumés usual, with periodic ina reply(flr)om the(;;tgtho_r@G]. Parisi's constr_u_ctlo_nsde-
boundary conditions only a single pair of ground states, Noted asP;™ andP;“%in his commelrbt.are_ modifications of
related by a global spin flip, appears, but which pair isthe two constructions of R425). P(!) is similar to the first
present changes chaotically with volume. Therefore, we exconstruction(with replicas having the same couplings in the
pect the first construction to yield only a single pair &f entireL box), but takes,=Lp<L.. P{?) is likewise simi-
functions at=qga, as in the Fisher-Huse droplet picture. lar to the second constructiofwith separate averaging of
(This would also be the case for a construction like that ofcouplings betweer., and L for each of the replicasbut
Sec. VI) However, we believe that the second constructionagain takesL,=L,<L.. Once more, finite-size effects
will yield a single 5-function spike at zero. This is because might lead, in each case, to overlap distributions different
each ground state can be thought of as consisting of an inffrom the corresponding constructions in Ref5]. Parisi as-
nite set of invasion “trees'(see Refs[8] and[9] for detaily  serts thaP ()= 5(q) for realistic spin glasses, which may be
of rigidly coupled spins. Each tree can exist in one of twothe case for some of the pictures presented in this paper,
configurations which are global flips of each other. A groundalthough it is not clear whether it holds for &particularly
state is therefore an assignment of a particular choice to eathe nonstandard SK picturd=or a more detailed discussion,
tree; the set of ground states is the collection of all possiblsee Refs[85] and[86].
assignments. The average of the metastate should be a  In our work, we have mostly chosen constructions where
uniform distribution over the uncountably many groundoverlaps are computed in boxes which are small compared to
states(in the sense of independent tosses of a fair coin fothe box on which boundary conditions are placed. We be-
each treg lieve this to be essential if one is trying to understand the

The overlap of any two ground states chosen at randommicroscopic structure of the pure states, in particular, what
(i.e., according to this uniform distribution and indepen-the spin configurations and their correlations and overlaps
dently of each othercan therefore be related to the overlaplook like in the neighborhood of the origi88]. In this ap-
of two Bernoulli coin-tossing processes. Since half of allpendix, however, we have emphasized that different proce-
flips will agree and half will disagree for almost every pair of dures may well lead to different overlap distributidiasd in
process realizations, the overlap should be zero and thereforeodels better understood than the EA and related models,
we expect thaP ; (q)=6(q) for almost everyJ. (We em- this appears often to be the cgsk.remains an important
phasize that this argument is only heuristic, and in particularssue, to be eventually resolved, whether in the EA model the
assumes that no trees contribute too much to the overlaplifferent overlap procedures discussed do in fact lead to dif-
which is reasonable but has not been proven at this time. ferent overlap distributions—indeed, this may be a better sig-

This last example provides a nice illustration of the con-nature of many states than whethesiagle procedure gives
tention of Huse and Fisher that a trivial overlap function rise to a complicated or trividP(q). In all cases, however, a
this example, a singlé function) can mask the existence of given procedure leading to a thermodynamic overlap distri-



5210 C. M. NEWMAN AND D. L. STEIN 55

bution function which has the weak property of translation[39] D. S. Fisher and D. A. Huse, J. Phys.28, L1005 (1987).
invariance will always be self-averaging. [40] A. van Enter, J. Stat. Phy80, 275(1990.
[41] J. R. L. de Almeida and D. J. Thouless, J. Phys1h 983

[1] For a recent review of a variety of experimental tests, see (1978. . .
Recent Progress in Random Magnetsiited by D. H. Ryan [42] S. Caracciolo, G. Parisi, S. Patarnello, and N. Sourlas, J. Phys.

(World Scientific, Singapore, 1992 (Parig 51, 1877(1990.
[2] K. Binder and A. P. Young, Rev. Mod. Phys8, 801(1989.  [43] D. A. Huse and D. S. Fisher, J. PhyBrance | 1, 621(1991.
[3] S. Edwards and P. W. Anderson, J. Phys, 065 (1975. [44] M. Weissman, Rev. Mod. Phys5, 829 (1993.
[4] D. Sherrington and S. Kirkpatrick, Phys. Rev. Le3f, 1972  [45] A. Bovier and J. Frhlich, J. Stat. Physd4, 347 (1986.
(1975. [46] Infinite-volume Gibbs measurgs; s can also be character-
[5] M. E. Fisher and R. R. P. Singh, Disorder in Physical Sys- ized, without such a limiting process, as probability measures
tems edited by G. Grimmett and D. J. A. WelgBlarendon, (on infinite-volume spin configuratiopswhich satisfy the
Oxford, 1990, p. 87. Dobrushin-Lanford-RuelléDLR) equations. For a mathemati-
[6] E. Marinari, G. Parisi, and F. Ritort, J. Phys. 2V, 2687 cally detailed presentation, se&7].
(1999. [471 H. O. Georgii, Gibbs Measures and Phase Transitiofde
[7] M. J. Thill and H. J. Hilhorst, J. Phy$France | 6, 67 (1996. Gruyter Studies in Mathematics, Berlin, 1988
[8] C. M. Newman and D. L. Stein, Phys. Rev. L€, 2286  [48] A. C. D. van Enter and J. L. van Hemmen, Phys. Re\29\
(19949. 355(1984.
[9] C. M. Newman and D. L. Stein, J. Stat. Ph§g, 1113(1996. [49] C. M. Newman and D. L. Stein, irMathematics of Spin
[10] R. G. Palmer, Adv. Phys31, 669(1982. Glasses and Neural Networkedited by A. Bovier and P.
[11] P. Sibani and J.-O. Andersson, Physic2@6, 1 (1994. Picco (Birkhauser, Boston, in pregs

[12] D. L. Stein and C. M. Newman, Phys. Rev5HE, 5228(1995. [50] C. M. Newman,Topics in Disordered Systen{8irkhauser,
[13] M. Lederman, R. Orbach, J. M. Hamann, M. Ocio, and E. Basel, in press

Vincent, Phys. Rev. Bl4, 7403(199)). [51] N. Wiener, Duke Math. J5, 1 (1939.
[14] Y. G. Joh, R. Orbach, and J. M. Hama@mpublished [52] M. Mézard and G. Parisi, J. Phy@rance | 1, 809 (1991).
[15] P. Refrigier, E. Vincent, J. Hamman, and M. Ocio, J. Phys.[53] J.-P. Bouchaud, M. Mezard, and J. S. Yedidia, Phys. Rev. Lett.
(Parig 48, 1533(1987. 67, 3840(1991).
[16] G. J. M. Koper and H. J. Hilhorst, J. Phy@®arig 49, 249  [54] J. S. Yedidia, in1992 Lectures in Complex Systeredited by
(1988. D. L. Stein(Addison-Wesley, Reading, MA, 1993p. 299.
[17] P. Sibani and K.-H. Hoffmann, Phys. Rev. Le@3, 2853 [55] G. Parisi, Physica A94, 28 (1993.
(1989. [56] E. Vincent, J. Hammann, and M. Ocio, Recent Progress in
[18] K.-H. Hoffmann and P. Sibani, Z. Phys. &), 429 (1990. Random MagnetRef. [1], p. 207.
[19] P. Svedlinh, K. Gunnarson, J.-O. Andersson, H. A. Katori, and[57] D. Badoni, J. C. Ciria, G. Parisi, F. Ritort, J. Pech, and J. J.
A. lto, Phys. Rev. B46, 13 687(1992. Ruiz-Lorenzo, Europhys. LetR1, 495(1993.
[20] J. P. Bouchaud, J. Phy&rance | 2, 1705(1992. [58] S. Franz, G. Parisi, and M. A. Virasoro, J. Ph¢stance | 4,
[21] F. Lefloch, J. Hamann, M. Ocio, and E. Vincent, Europhys. 1657(1994).
Lett. 18, 647 (1992. [59] F. Ritort, Phys. Rev. B50, 6844 (1994.
[22] H. Rieger, J. Phys. &6, L615 (1993. [60] P. Le Doussal and T. Giamarchi, Phys. Rev. L&, 606
[23] S. Franz and M. Meard, Physica 210 48 (1994). (1995.
[24] E. Vincent, J. P. Bouchaud, D. S. Dean, and J. Hamann, Phy$61] E. Marinari, G. Parisi, J. J. Ruiz-Lorenzo, and F. Ritort, Phys.
Rev. B52, 1050(1995. Rev. Lett.76, 843(1996.
[25] C. M. Newman and D. L. Stein, Phys. Rev. Lef6, 515 [62] R. Brout, Phys. Revl115 824 (1959.
(1996. [63] M. Kac, NORDITA, Report No. 286, 196&inpublished
[26] C. M. Newman and D. L. Stein, Phys. Rev. L€t 4821 [64] S. F. Edwards, ifProceedings of the Third International Con-
(1996. ference on Amorphous Materialsdited by R. W. Douglas and
[27] M. Aizenman and J. Wehr, Commun. Math. Ph{80, 489 B. Ellis (Wiley, New York, 1970, p. 279; also inPolymer
(1990. Networks edited by A. J. Chompff and S. Newma&Rlenum,
[28] C. M. Newman and D. L. Stein, Phys. Rev.4B, 973(1992. New York, 1972, p. 83.
[29] M. Mézard, G. Parisi, and M. A. Virasor&pin Glass Theory [65] A. Blandin, J. Phys(Pari§ Collog. 39, C6-1499(1978.
and BeyondWorld Scientific, Singapore, 1987 [66] B. Derrida and G. Toulouse, J. Phy®ari9 Lett. 46, L223
[30] G. Parisi, Phys. Rev. Lettt3, 1754(1979. (1985.
[31] G. Parisi, Phys. Rev. Leth0, 1946(1983. [67] M. Mézard, G. Parisi, and M. A. Virasoro, Europhys. Léit.
[32] A. Houghton, S. Jain, and A. P. Young, J. Physl& L375 77 (1986.
(1983. [68] D. J. Thouless, P. W. Anderson, and R. G. Palmer, Philos.
[33] M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Vira- Mag. 35, 593 (1977).
soro, Phys. Rev. Letb2, 1156(1984). [69] A. J. Bray and M. A. Moore, J. Phys. €3, L469 (1980.
[34] W. L. McMillan, J. Phys. C17, 3179(1984). [70] A. J. Bray and M. A. Moore, J. Phys. 84, L377 (198)).
[35] A. J. Bray and M. A. Moore, Phys. Rev. Le88, 57 (1987. [71] N. D. Mackenzie and A. P. Young, Phys. Rev. Let9, 301
[36] D. S. Fisher and D. A. Huse, Phys. Rev. Lé, 1601(1986. (1982.
[37] D. S. Fisher and D. A. Huse, Phys. Rev.3B, 386(1988. [72] J. D. Reger, R. N. Bhatt, and A. P. Young, Phys. Rev. 6tt.

[38] D. A. Huse and D. S. Fisher, J. Phys.2A, L997 (1987). 1859(1990.



55 METASTATE APPROACH TO THERMODYNAMIC CHAOS

[73] M. Aizenman, Commun. Math. Phyg3, 83 (1980.

[74] Y. Higuchi, in Random Fieldsedited by J. Fritz, J. L. Lebow-
itz, and D. Szaz (North-Holland, Amsterdam, 1979Vol. |, p.
517.

[75] A. Gandolfi, M. Keane, and C. M. Newman, Prob. Theory
Relat. Field92, 511(1992.

[76] F. Ledrappier, Commun. Math. Phys6, 297 (1977.

[77] F. Comets, Prob. Theory Relat. Fiel88, 407 (1989.

[78] T. Sepptainen, Commun. Math. Phy4.71, 233(1995.

[79] C. Kuilske, in Mathematics of Spin Glasses and Neural Net-
works edited by A. Bovier and P. Pica@irkhauser, Boston,
in press.

[80] M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett.
72, 2320(1994.

[81] F. Guerra(private communication

[82] This was proved for the SK model by L. Pastur and M. Shcher-
bina, J. Stat. Phys62, 1 (199)). See F. Guerra, Int. J. Mod.
Phys. B10, 1675(1996 for further rigorous results on the SK
model overlap distribution.

[83] We note, though, that what is actually required is discreteness
of the overlap distribution and it has been pointed o[84]
that this could be the case without discreteness of the pure
state decomposition Eq32). However, there is another fea-
ture of the standard SK picture which seems to require dis-
creteness of at least the low-lying part of the enefoyfree
energy spectrum of pure states. This is the occurrence of en-

5211

ergy (or free energygaps of order unity between the low-lying
states in anylarge volume, accompanied by an exponentially
increasing density of states near the bottom of the spectrum
[66,67. For the remainder of this paper, we will assume a
countable pure state decomposition.

[84] A. C. D. van Enter, A. Hof, and J. Migsz, J. Phys. A25,

L1133(1992.

[85] G. Parisi(unpublished

[86] C. M. Newman and D. L. Steifunpublishedgl

[87] A. C. D. van Enter(private communication

[88] An interesting and simple illustration of this has been sug-

gested by A. van Entefprivate communicationthat extends

an earlier example of Huse and Fish8B8]. He considers the
overlap distribution of an Ising antiferromagnet in two dimen-
sions with periodic boundary conditions. For odd-sized squares
the overlap is equivalent to that of the ferromagnet with peri-
odic boundary conditions, and for even-sized squares it is
equivalent to that of the ferromagnet with antiperiodic bound-
ary conditions. If the overlap distribution were computed in the
full volume, it would therefore oscillate between two different
answers, an example of CSD foverlapdistributions. On the
other hand, our choice of computing overlaps in boxes which
are much smaller than the system size would give rise in this
example to a well-defined answer—i.e., the téxdunction
overlap distribution of the periodic ferromagnet.



