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Complex-temperature phase diagrams of one-dimensional spin models
with next-nearest-neighbor couplings
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We study the dependence of complex-temperature phase diagrams on details of the Hamiltonian, focusing on
the effect of non-nearest-neighbor spin-spin couplings. For this purpose, we consider a simple exactly solvable
model, the one-dimension&lD) Ising model with nearest-neighb@IN) and next-nearest-neighb@INN)
couplings. We work out the exact phase diagrams for various valugaQf Jyy and compare these with the
case of pure NN couplings. We also give some similar results for the 1D Potts model with NN and NNN
couplings.[S1063-651X97)06305-9

PACS numbes): 05.50+q, 05.70.Fh, 64.60.Cn

I. INTRODUCTION singularities, such ag# y' (for the susceptibility exponent
. . . +28+ i i
Yang and Lee pioneered a very interesting line of re-and at2f+y#2 (as one approaches such a singularity

. : ; 7 . from the PM phasg[5].
se_arch in which one stu_dle_s statlstlcal-_mechanlcal models | | 1he present paper, we explore further the extent of non-
with the external magnetic field generalized from real to

; k universal features of complex-temperature phase diagram of
complex valueg1]. Since the free energy of a spin systemgpin models, focusing on the effect of non-nearest-neighbor
f=1(K,H) is a function of both the fielth and the tempera-  gpin-spin couplings. Here, by “nonuniversal’ we mean fea-
tureT [or, equivalentlyK = 8J, whereB=(kgT) ' andJis  tures of the complex-temperature phase diagram that depend
the spin-spin coupling a related complexification is to gen- on a parameter in the Hamiltonian, where a variation of this
eralizeK from real to complex values. Both of these com- parameter does not change the universality class of a phase
plexifications give one deeper insight into the properties otransition at a given critical point. For our study, it will suf-
such models. Recently, there has been renewed interest fite to use a simple exactly solvable model, namely, the 1D
this subject for Ising modelg2—10] and Potts modelgl1—  Ising model with nearest-neighbdNN) and next-nearest-

13] (earlier references can be found in these papésthe  neighbor (NNN) spin-spin couplingslyy and Jyyy- This
comparison of complex-temperature phase diagrams for theaodel (except for the special cadgny= —|Innl/2) is criti-
two-dimensional (2D) (isotropic, nearest-neighborlsing  cal atT=0, so we specifically study the dependence of the
model with spins=1 versuss=3 in Refs.[4, 8—1(0 has complex-temperature phase diagram on the ratio

shown, these phase diagrams differ considerably for different

s even though all values of are in the same universality r=
class for the usual paramagneiRM) to ferromagneti¢FM) Inn

phaAi%:;lae?S[:;gcr)gnzr;t?;zfn:ﬁgﬂémiltonian on which complex-for the range of values where change; ndo not change
i . . ) the ground state of the model or the universality class of the
tempgrature phase qllagrams depend is thg I’ElltIO of SPIN-spitical point atT=0. After some early paperkl5,16], a
couplings. Indeed, in cases such as tBpin;, nearest- yatailed solution and discussion of this model was given by
neighboy Ising model on regular bipartite 2D lattices, where Stephenson in Ref17] and subsequent papdi8]. Some
a variation in the ratio of spin-spin couplings along different|5¢er papers include Ref§19,20. All of these dealt with
lattice directions does not change the universality class of thBhysicaI temperature; the model has not, to our knowledge,
PM to FM phase transition, this variation has a significantheen studied for complex temperature. As our analysis of the
effect on the continuous locus of points where the free encomplex-temperaturéCT) phase diagram of this model will
ergy is nonanalytic, which is denotdst while B is a one-  demonstrate, it illustrates very well how sensitive the CT
dimensional algebraic variety for the case of isotropic couphase diagram is to the presence of such NNN couplings.
plings, it becomes a two-dimensional variety for theThis example is also useful in giving one a qualitative idea,
nonisotropic casgl4]. Recently, we have also shown, using in a simple context, of what to expect concerning the effect
exact results, that at complex-temperature singularities, thef non-nearest-neighbor couplings in higher-dimensional
exponents describing the behavior of various thermodynamispin models for which one does not have any exact solution.
functions depend, in general, on lattice type, which constifor these higher-dimensional models the addition of NNN
tutes a violation of universality5]. Moreover, we have couplings gives rise to quite complicated phase diagrams
found a number of violations of exponent relations at sucteven for physical temperatuf@l]. Moreover, althoughd
=1 is the lower critical dimensionality for the Ising model
and some features, such as the lack of a physical phase tran-
*Electronic address: shrock@insti.physics.sunysb.edu sition at finite temperature, are qualitatively different from
"Electronic address: tsai@insti.physics.sunysb.edu the behavior ind>d,=1, past experience with-2¢ and 1
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+ € expansion$22] has shown that one can learn about spinand negative integer power@n the respective Boltzmann
models in intermediate dimensionalities by moving upwardweights(i) u and(ii) ux . Of course, one could also consider
from d, as well as downward from the upper critical dimen- the case =p/q, wherep#1 andq+1 are relatively prime
sionality d,. Indeed, several intriguing connections wereintegers, but we shall not do this here. Tlheduced, per sije
previously noted between the CT phase diagrams of the 1free energy is defined als=— gF=limy_.N"1InZ in the
spins Ising model and features of the same model on theéhermodynamic limit. We assume periodic boundary condi-
square latticd8,9]. In passing, it may be noted that the 1D tions and take the number of lattice sithsto be even in
NNN Ising model has also been used in a complementargrder to preserve the bipartite lattice structure on a finite
manner in Ref[23], for a study of Yang-Le¢complex-field lattice.
zeros of the partition function for physical temperature.
Ill. GENERALITIES AND COMPLEX-TEMPERATURE
1. ISING MODEL AND NOTATION PHASES

In this section, we shall briefly give the relevant notation For d=1 dimension, it is straightforward to solve this
and review some basic properties of the model for physicaiodel exactly, e.g., by transfer matrix methods. One has
temperature, which will serve as a background for our results
on the complex-temperature properties. The (dpin-3)

Ising model with NN and NNN couplings is defined, for Z=Tr(TN)=; A (@)
temperaturd and external magnetic field on a 1D lattice,

by the partition functionZ=X, e"#", with the Hamil-  where ther;, j=1,...,4, denote the eigenvalues of the
tonian transfer matrix7 defined by7,, = (I ,|exd —BE(,, )]l )-

It is natural to analyze the phase diagram in complex plane
_ of the appropriate Boltzmann weight variablssich asu or
H==Jnn ; TnOn+1~ Innn ; TnOn+2~H ; In: ug for positiver). For physical temperature, phase transi-
(2)  tions are associated with degeneracy of leading eigenvalues.
There is an obvious generalization of this to the case of com-
where o,=*1 and 8= (kgT) "'. Except where indicated plex temperature: in a given region ofor other Boltzmann
otherwise, we takél =0 below. It is convenient to define  weight variable, the eigenvalue Gfthat has maximal mag-
nitude \ hax gives the dominant contribution @ and hence,

K=BIn. 3 in the thermodynamic limitf receives a contribution only
K'=pJ @ from Npax: F=IN(\pmay- FOr complexK., fis, in gene(al,
NNN also complex. The CT phase boundaries are determined by

the degeneracy, in magnitude, of leading eigenvalueg. of
As one moves from a region with one dominant eigenvalue

we can redefines,——a, for neAg, oy—o, for n Mmax t0 @ region in which a different eigenvalug,,, domi-
e Ay, andJyy— —Jun, WhereA, and A, denote the even nates, there is a nonanalyticity inas it switches fromf

0 ) e ) , . .
and odd sublattices of; the partition functiorZ is invariant ~ — N(Amad t© IN(A\rg,). The boundaries of these regions are
under this mapping.Using this fact, we shall thus take defined by the degeneracy condition among dominant eigen-
Jun>0 henceforth. We define the ratio of couplings by Eq.Values|\mad=[Apl- These form curves in the plane of the
(1). We shall mainly consider the effect of NNN couplings 9iven Boltzmann weight variable. _ _
with r=0 since, given that we takiy,>0 these NNN cou- Of course, for physical temperature, a 1D spin model with
plings do not introduce any frustration or competition and dofinite-range interactions has no nonanalyticities for &y
not change the universality class or ground state of thdite) value ofK, so that, in particular, the 1D NNN lIsing
model. In contrast, given that we talgy>0, a NNN cou- model is analytic along the positive real axis in the complex
pling with negativeJyyy does introduce such competition U OF Uk plane and is only singular dt=0. In this context,
and frustration and is not necessarily an irrelevant perturbae recall that the elements of the transfer matrix are non-
tion to the Hamiltonian. We shall also include some resultg'egative(positive or zero real functions ofT for physical

for negativelyyy - It is convenient to define the Boltzmann temperature and the Perron-Frobenius thedi24h guaran-
2K’ tees that dfinite-dimensional, but not necessarily symmet-

weight variablez=e™ <" | ; o . :
ric) square matrix with non-negative real entries has a real
U=72= %' (5) posi_tive eigenvalue of greatest magnitude_. This property un-
' derlies the absence of any nonanalyticity and associated
andzg=e 2K, with phase transition in a 1D spin model with finite-range inter-
actions. However, when one generalizes the temperature to
ug=zz=e % (6)  complex values, the elements of the transfer matrix are not,
in general, non-negativéthey are complex so that the
For our study, it will be sufficient to consider the casespremise of the Perron-Frobenius theorem is no longer satis-
where(i) r=1/p, wherep is an integer, ofii) r is an integer, fied and, indeed, the maximal eigenvalue can switch as one
since these already amply demonstrate the sensitivity of theariesK over complex values.
complex-temperature phase diagram to the value.ofn Since the\; are analytic functions ofi, whence\;(u*)
these caseg is a generalized polynomidgi.e., with positive ~ =X\;(u)*, it follows that the solutions to the degeneracy

andh= BH. Recall that on a bipartite lattic&, without loss
of generality, one may takéw=0. (If Jyn<O initially,
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equations defining the boundaries between different phases

INi|=|\;| are invariant undeu—u*. Hence the complex- = — Iy SINK) — I
temperature phase boundayor, equivalently, the continu- Vsink(K) + e~ 4’

ous locus of points where the free eneffgis nonanalytic is

invariant underu—u*. The same applies foB in the ug 2e 4K

plane, as discussed below. Although the model has a physi- % 1-— K - |
cal phase structure consisting only of thesymmetric, dis- Sint?(K) +e” '+ coshK) Vsint?(K) +e
ordered phase, its complex-temperature phase diagram is (12)
nontrivial and exhibits a number of interesting features.

Since the model has NNN couplings, one cannot definéPserve that
the transfer matrix as acting just between states consisting
only of neighboring spins. The most compact way to define U(InnInnn:B) =U (= I Inwn: B), (13

the transfer matrix is to use state vectors consisting of pairs =~ o ]
of spins: v,=|0on,0041). Then which is an explicit illustration of the general fact noted

above that we can, without loss of generality, takg> 0.
_ - BH The nature of the ground statg.s) depends orr [16]: if
=(v,le . o - .
(Ul T+ 1) =(vale P onia) Junn iS positive or sufficiently weakly negative, the ground
K state is ferromagnetic:
=ex 2 (00041t O 10012)
r>—3=FM g.s., (14)

!
+K'oponiot homl)- ®  while for stronger negativéyyy it changes according to

1
The factor} is included because each interaction of spins r<-z=(22 gs, (19

within a given vectofv,) is counted twice in the sum over : ! )
n. Hence, with the basis vectors ordered{fs,)=|+ +), where the(2,2) g.s. refers to a spin configuration of the
|+ —=),]—+),]— =)}, one had15,16 modulated form (++——++——---). Correspondingly,

there is a nonanalytic change in the ground-state energy:

K+K’'+h —K’'+h 0 0 o 1
€ 0 e 0 e7K+K’7h efK’fh U(T_o)__(‘]NN+‘]NNN) for r=-—s, (16)
T=| gK'+h  goK+K+h 0 0 : whereas
0 0 e*K'*h eK+K’7h
(9) U(TZO):JNNN for r$_%. (17)

Note that7 has zero matrix elements if the second spin inEvidently, given that we takdyy>0, negative values of

lu,) has a value different from the first spin finy,. 1), since Junn give rise to competing interactions and1 frustration. In-

these states overlap in this middle spin. Althoufjis not ~ deed, ifdyw is sufficiently negative that<— 3, it changes
symmetric, the usual relatiad="Tr(7N)=3 A", where the the ground state of the model. In our study of the dependence
) J J ’

\;’s are the eigenvalues f still holds; this follows from(i) of the complex-temperature phase diagram on the addition of

the theorenj24] that an arbitrary compleb< | matrix can be irrelevant operator$i.e., irrelevant in the sense that they do

; ; ; not change ther =0 critical behavioy, we therefore shall
put into upper triangulau.t.) form by a unitary transforma- 9 1 T

tion V: VTV-!=7,,, such that diagl,)=1{A1,...\}; restrict ourﬁe_lves to the case>—j3. However, since the
and (i) the identity Tr(TL']'_t)zTr(TN):E}:l)\}\‘. ltis con- rangers<-—j3 is of interest in its own right, we shall also
_ o C(KEK+h) — ! briefly digress to discuss this case further below. As
venient to define7=e" " 7'so that7y;=1 and €On-  genhenson showeld 7,18, even in the range- i<r <o,
sider the eigenvalues G We shall taken=0 henceforth.  \here the ground state still exhibits saturated FM long-range
Thas the eigenvalues order, the NNN coupling has the interesting effect of giving
rise to a “disorder temperatureTy, where the correlation
A1 =e K[coshK = /sint? K+e*4K'], (10 length has a local minimum; foF <Tp, the spin-spin cor-
relation functions have a purely exponential asymptotic de-

- cay, while forT>Tp, their asymptotic decay is an exponen-
No-=e "[sinhK = ycostf K—e™* ], (11 tial multiplied by an oscillatory factor.
The T=0 criticality of the model is typical of a theory at
For physical temperaturg, . is the dominant eigenvalue, so its lower critical dimensionality, herd=1. As T—0, the
the (reduced, per sijefree energy isf=In(\,,). In passing, specific heaC has an essential zero given by
we note that an equivalent method for solving the model in
zero field is to reexpress it formally in terms of a different C~4kg(1+2r)?K?e 21+20K 35 T0 for r>—1
theory with only NN couplings but a nonzero effective field (19
[17].
The internal or configurational energper sitg¢ U is and



c~% (1+2r)%K?e(t+20K

k
~?B(1—2|r|)2K2e‘(2|’|‘1)K as T—»0 forr<-—-3,

(19

while for the borderline value= — 3 one finds the propor-
tionality

C~kgAK?e ¢ for r=-1. (20

Forr=0 and for physical temperature, the spin-spin corre-

lation function decays asymptotically like

"

This is also true for—3<r<O0 if T<Tp [17,18. Hence,
taking theT— 0 limit, one finds that the correlation leng¢h
defined as usual by~ = —lim,_..n"! In{oyoy), diverges
like

Aoy

<UOUn>N(E (21

gN;ez<1+2r)K
2

as T—0. (22

One also finds that for>— 3, the (zero-field susceptibility
x diverges like

Xw%ﬁ*lez(lJrZr)K as T—0. (23)
Consequently, for >— 1,
C~K2?¢ 1 y~K ¢ asT—0, (24)

independent of in this range. Thus, for>—3, the singu-
larities in C and x, expressed as functions of the correlation
length¢, are independent afin this range, which shows that
for r>—3, the NNN coupling is an irrelevant perturbation
and the model satisfies weak universality in the sense
Suzuki[25], at theT=0 critical point.

In order to investigate which eigenvalues are dominant i
various complex-temperature phases, it is useful to expre
these as functions of the Boltzmann weight variables. For th
caser =1/p with integral p, sinceZ is a generalized poly-
nomial in u, the CT phase diagram is well defined in the
complexu plane. This follows since the CT zeros Dfmay
be unambiguously calculated in theplane and, in the ther-
modynamic limit, these merge to form the phase boundary
In terms of the variablel,

Nie=3[1+UPP+ (1-uPP)Z+4ul¥P?) (25
Noe=3[1—uP?= (1+uP?)2—aul*P2]  (26)

Note that
Nx—Npe for Ju——u. 27)

If p is an odd integer, then EqR7) implies that

N=(U)=NA,.(U*)=N,.(u)* for negative realu,

(28)
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respectively, for thex cases.(Here we use the standard
branch cut foryu, along the negative real axis)

As background, we recall that for the case of nearest-
neighbor couplings3 consists of the negative real axis in the
u plane(e.g., Ref[9]). This is evident from the fact that for
r=0, the two nontrivial eigenvalues af are \;, =1+u
and\,, =1— \u, which are equal in magnitude for negative
real u. (The other two eigenvalues; _ andA,_ both van-
ish.)

IV. CASE OF r=1/p FOR POSITIVE INTEGER p

We first consider the situation where the NNN coupling is
of the same sign as, but weaker than, the NN coupling, i.e.,
0<r<1. For our purposes, it will suffice to deal with the
case where =1/p with p a positive integer. There are two
subcasesy even and odd. For everp=2l, the eigenvalues

of the transfer matrix have the following Taylor-series ex-
pansions abouti=0:

Np=1+ultP24... (29)
Ao =1—ultP24... (30
Np_=uP+-- (32)
Apo=—uP+... | (32

where the ellipses denote higher-order terma.irt follows

that for evenp, N\, is the dominant eigenvalue on the posi-
tive realu axis and hence also in the complex-temperature
phase that includes this axis. Furthermore, on the negative
realu axis in the vicinity of the origin(i) if p=0 mod 4, i.e.,

| is even, then\,, is the dominant eigenvalue, wherg@s

if p=2mod 4, i.e.] is odd, them\ 1, is the dominant eigen-
value; in both cases, the respective eigenvalues are therefore
also dominant in the CT phases that include this portion of
tpe negative reall axis near the origin. For odd positive
Integral p, the \’s have analogous series expansions in the
etc. Hence, in thau plane

ith the usual+ sign taken foryu if argu)=0], A, is

gain dominant on the positive realaxis in the vicinity of
the origin.

Together with the theorem that a 1D spin model with
finite-range interactions has no nonanalyticity Tor 0, i.e.,
along the positives axis, it follows that for positive integral
p, N1, is the dominant eigenvalue on the entire positive
axis and hence the CT phase in thelane that includes this
axis and to which one can thus analytically continue from
this axis.

We next prove a general theorem: For 1/p with p a
positive integer, there agg+2 phase boundary curves ema-
nating from the origin in the complex plane, at the angles

_(2n+ )7

24D for n=0,...p+1.

(33

n

Proof. To encompass the cases of both even andmdd
we use the Taylor-series expansions in thelane. From
these it follows that in the vicinity ok=0, Ay, and X,
alternate as the dominant eigenvalues. Now define polar co-
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Re(u) Re(u)
FIG. 1. Phase diagram of the 1D NNN Ising model in the com- FIG. 2. Same as in Fig. 1, but for= %

plex u plane fordyyn/JInn=r=1.
. . i i . in the vicinity of u=0, N\, is dominant in regiond and

ordmzates according t@=p,e'’z, whence u=pe'’ with *. On the )éurve separging regi@ from reg?onsb and

=ps and =26, ; then the degeneracy condition of lead- , " :
ﬁ]gpzeigenvalueg Nos|= A |g readsy 1422 P o] b*, [\14|=[\2|. The CT phase bounda#y includes mul-
—[1- 2P| (wh(lare the2+elli ses denote hi her-ordertlple points atu=0, where three curves meet, and a multiple
i th lution to which | P 0)A1=0 9 p point atu= —1, where four curves meet, with two different
f”gs;le S/gt; 'gi ° \;V ¢ _'SOC@GZ+F1) ﬂ'l'_h" €. %2 tangents, hence index 2. Here we use the terms “multiple
E( 23 )(@/2)/(2+p) for n=0,..p+1. IS proves point” and “index” in their technical algebraic geometry

9. (33). sense(see our previous discussions in Re]). Thus, while

h A relatled theorem is thehfollovt\)/ing:dI;orlpositive, Od_d in the model with only the NN spin-spin coupling, the CT
the complex-temperature phase bounddrgiways contains phase boundarys is the negative real axis, the effect of

the negative reall axis. To prove this, we again use the adding a NNN spin-spin coupling with=1 is to produce

rre]suljt th"?lt In the_,- V'C'n'ﬁy 0z=0, Ay, an?))\H altehrnat_e aﬁ two new complex-conjugate phases bounded by curves start-
the dominant eigenvalues. We next observe that inuhe ing out from the origin and meeting at=—1. As must be

pIane,_ the degeneracy condition of leading eigenvalueg o from general arguments, the theory is still analytic on
IN1+|=[2,] is automatically satisfied on the negative realye hositive reals axis; the only changes are an increase in
u axis as a consequence of the symmetry condit& and the number of CT phases elsewhere.

rel§|1_t|on]£28)H This comlplﬁtes the proofr.l followina: F . The complex-temperature phase diagramrfer; Fig. 2
_wWo urt er genera theorems are the following: Or pOSt-jg progressively more complicated, consisting of five phases:
tive r=1/p with integer p, as one makes a half circuit a, a region containing the positive realaxis; b and b*,

around the origin in the: plane, the dominant eigenvalues o hiey conjugate phases whose borders are shaped some-
alternate between,, and . . This is proved by noting \ynat jike half circles, adjacent to the negativeaxis and
first that from the Taylor-series expansions above, these tw

. ; ) S Yfrcluding the interval- 1<u<0; andc andc*, c.c. phases
eigenvalues are the dominant ones in the vicinity of the ori-
gin and second, it is precisely their alternation as dominant
eigenvalues that produces the phase boundaries emanating®?
from the origin at the angleg83) and separating the different
phases. Since the dominant eigenvalue-#&tis the same as 20 ¢
that até, this theorem also completely determines the domi-
nant eigenvalues on the rest of the full circle around the ;41|
origin.

By solving the degeneracy conditions of dominant eigen-
values, we have mapped out the complex-temperature phase
diagrams. We consider odd values pffirst and then even
values. In Figs. 1-3 we show the results fer 1, 3, andz. 1.0}

Forr=1, we find that the complex-temperature phase dia-
gram consists of three phases:a region including the posi- 2.0 t
tive realu axis and extending outward to the circle at infin-
ity, together with two complex-conjugate.c) phased and 3.0 ‘ ‘ , , l ‘ ‘
b*, located above and below the negative reaixis from -40 -30 -20 -10 00 10 20 30 40
the origin leftward tou=—1. As follows from our general Re(u)
discussion abovey,, is the dominant eigenvalue in region
a and, sincex;, and\,, alternate as dominant eigenvalues FIG. 3. Same as in Fig. 1, but for= 1.

0.0




55 COMPLEX-TEMPERATURE PHASE DIAGRAMS OF ONE .. 5189

1.5 : \ ‘ 3.0
1.0 + 1 20t
05 | . 1.0 t
0.0 | 1 0.0
0.5 | 1 1.0 |
1.0 + ] 2.0 t
15 : : : -3.0 l : : : : : :
2.0 -1.0 0.0 1.0 20 40 30 20 -1.0 00 1.0 20 30 40
Re(u) Re(uy)
- 1
FIG. 4. Same as in Fig. 1, but for=3. FIG. 5. Complex-temperature phase diagram inuhglane for
r=2.
lying roughly concentrically outward fronb and b* and
including the interval of the negative real axis —2.4<u Nie =1+ ul?= J(1-ul?2+4ul?, (34)
< —1. From our general discussion above, it follows that, in
addition to regioma, X\, is dominant in region® andb*, )\2i=%[1—uﬁ’zi \/(1+u§’2 2_4ui/2+r]’ (35)

while A, is dominant in regiong andc*. The CT phase

boundary B contains multiple points at=0, where five gne sees that

curves come together, at=—1 and u=-—2.4, where in

each case four curves come together with two different tan- N1+ (U =INor (U],

gent_s, hence the index 2. _ IN1_(U)|=|Na-(ug)| for real ug<O. (36)
Finally, we show the complex-temperature phase diagram

for r =1 in Fig. 3. The general features of this phase diagramrhis implies that the CT phase boundaBy contains the
follow from our previous discussion. A different aspect is negative realic . The expansions of these four eigenvalues
that in addition to the part oB running along the negative around the origin of thei plane follow directly from the
realu axis, B also contains two complex-conjugate curvesexpansions given in Eq$29)—(32) with the replacement

that extend to infinite distance from the origin in the “north- — "~ Hence it is again true that as one traverses a half

east” and “southeast” quadrants. _ , circuit of the origin in theu, plane, the dominant eigenvalue
We next show in Fig4 a typical CT phase diagram in the 5ong the positive realix axis is Ay, and the dominant

u plane for an even valu@=2, i.e.,r=3. In contrast to the  gjgenvalues alternate betwekn, and\,, . This also de-

diagrams with oddp, in those with everp, B does not  ermines the dominant eigenvalues on the complex-conjugate

contain the negative real axis. Fpr=2, the CT phase dia- paif circuit. These two results together imply that for arbi-

gram consists of four phasgrs: aregion containing the posi- trary positive integrap, the CT phase bounda® always

tive realu axis and extending outwards to infinitg; a re-  jhcludes the negative real axis. Reexpressing the Taylor-

gion including the interval —1<u<0; and complex geries expansions of the eigenvalues in termgcofthe de-

conjugate_ regior_u; andc* above and below regioh. O_ur eneracy condition for the leading eigenvalugs, . |
general discussion above determines the dominant elgenva(‘i-| 1+2r

: , , _ _ N, | reads|1+z 2+ |=|1-z"% +---|, where the
ues in the various regions:\;, in a andb and A, in ellipses denote higher-order terms. Denoting= pye' %
regionsc andc*. The CT phase boundaty involves mul- the solution to this condition is ’
tiple points atu=0 and —1, each of index 2. The phase
boundaries for evep may run to infinite distance from the (2n+1)m
origin. For example, we have also calculated the phase dia- Gsz
gram forp=4 case and find in this case that parttHton-
sists of curves running ta= *ico,

for n=0,...,2. (37)

This proves that in the complex-temperature phase diagram
in theuy plane,B contains 1 2r curves emanating from the
origin at the angles given in E@37).

In Fig. 5 we show the complex-temperature phase dia-

We have also studied the situation where the NNN cougram for a typical case=2. The dominant eigenvalues in
pling is ferromagnetic and stronger than the NN couplingthe phases that are contiguous to the origi+0 are com-
i.e.,r=1; here we focus on the case of positive integer pletely determined by our previous general results; starting
For this case, the partition function is a generalized polynofrom the phase containing the positive re@laxis and mov-
mial in ux . By reexpressing the eigenvalues. and\,. as  ing in the direction of increasing angy), these alternate ac-
functions ofuy, i.e., cording toN44, Aoy, and N, . For the remaining phase

V. CASE OF POSITIVE INTEGER r
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that is not contiguous to the origin, depending on one’s
choices of branch cuts connecting the branch points of the
square roots in the eigenvalues, either. or A,_ is domi-

nant. 20 1

3.0

VI. NEGATIVE r IN THE INTERVAL —3<r<0 1.0 ¢

For the range- 3<r <0, notwithstanding the competition
and frustration that the NNN interaction produces, it is still
an irrelevant perturbation. As before, ifrt # —p with posi-
tive integralp, thenZ is a generalized polynomial in the 10|

variable u=e K" and hence also in its inverse=1/u.
Since K’ <0, we shall use this inverse variable for our 20 ¢
analysis in order to maintain the correspondence of zero tem-

perature with the origin of the plots. The eigenvalues of the 3.0 : :
-4.0 2.0 0.0 20 4.0

0.0

transfer matrix7 in this variable can be obtained from Egs.
(25) and (26): Re(w)
Nie=[1+wWPP+\(1-wP?)2+4wP?7 1], (39 FIG. 6. Complex-temperature phase diagram inwhglane for
r=-—z

Nor = 3[1—wPP+ \(1+wWP?)2—4wP?71]. (39
the positive realw axis, there are two pairs of complex-
The borderline valup=2, i.e.,r = —; at which the nature of  conjugate phases. As one moves from northeast to northwest,
the ground State ChangeS, as discussed abOVe, is eVidenttHb eigenva|ues that are dominant in these regiong\ﬂe
these eigenvalues since psincreases above=2, i.e.,I  and\,_.
decreases below= — 3, the eigenvalues cease to be finite at  For the present range 1<r <0, there is a finite physical

the originw=0 because the last term in the square rootjisorder temperaturéy determined by the equatiqn7,18
becomes a negative power. By the same reasoning as before,

if and only if p is an odd integeri3 contains the negative real
w axis. For integep>2, so thatr > — 3, which includes the
region of interest here, these eigenvalues have the series
pansions aroun@=_0:

coshK)=e 2¢', (44)

e disorder temperatufg, decreases monotonically from
Tp=x atr=0 to Tp=0 asr decreases te-3. In the con-

Npa=1+wP2 iy (40  text of the complex-temperature generalization of this model,
we observe that, in addition to the physical solution of Eq.

Ao =1-wP2 1q... (41) (44) for T, there are also complex-temperature solutions. In
terms of the ratiac and the couplindK=Kg+iK,, the real

N_=—wPZ iy (42) and imaginary parts of Eq44) yield the respective equa-
tions

)\1+:WP/2—1+... , (43)
cosl{Kg)cogK,)=e ?"Krcog 2rK ), (45)

where the ellipses denote higher-order terms. From this it
follows that for our case of integey>2, A, is the domi-
nant eigenvalue on the positive real axis and in the CT 6.0
phase that includes this axis. Other results are similar to
those derived for positive=1/p above: on the negative real 40 }
w axis in the vicinity of the origin, ifp is even, then) if
p=0mod 4, them\,, is the dominant eigenvalue, whereas ,, |
(i) if p=2mod 4, ther\,, is dominant, and these respec-
tive eigenvalues are also dominant in the CT phase that in-
cludes this portion of the negative realaxis.

In Figs. 6 and 7 we show our calculation of the complex

temperature phase diagram in tiveplane for the values 20 ¢
=—1 and —3, respectively. Forr=—3, besidesa, the

wedge-shaped phase including the positive realaxis, -4.0 t

where\ . is dominant, there is a phasethat includes the \
interval —1<w<0 of thew axis, in which\,, dominates, 6 , ,

andc, a phase including the segmente<w<—1 where '0-8-0 60 -40 -20 00 20 40 60 80
N, is dominant. In addition, there are two complex- Re(w)

conjugate phased andd*, where\;_ is dominant; these

have boundaries that cross each other at a multiple point of FIG. 7. Complex-temperature phase diagram inwhglane for
index 2 atw= — 1. Forr = — 3, besides the phase containing r=— 2.

0.0




55 COMPLEX-TEMPERATURE PHASE DIAGRAMS OF ONE .. 5191

6.0 ‘ ‘ . : ; ‘ . 3.0

40 t 8 20

20 ¢ 4 1.0 +

0.0 f 0.0 -

201 , -1.0

4.0 B 2.0

-6.0 - : . ‘ : : . -3.0 : : .

80 60 40 -20 00 20 40 6.0 80 -4.0 2.0 0.0 2.0 4.0
Re(uy) Re(w)

FIG. 9. Complex-temperature phase diagram inwhplane for
1

FIG. 8. Complex-temperature phase diagram inugelane for p=_1
=-1

r=-1.
VIIl. CASE r=—13

sinhKg)sin(K,)=—e ?Xrsin(2rK,). (46
AKrsin(K)) A ) ) For the borderline value=—3, i.e., Jyan= — 3Jun<0,

the competing preferences toward a ferromagnetic(2r2i
ground state are exactly balanced. Indeed,rfer—3, the
model has nonzero ground state entr&{f =0) =kgIn{3
1 (1+ \/5)} [17,20 and exponential asymptotic decay of
1+z¢=2z . (47 (g40,) (modulated by an oscillatory factoeven atT=0
[17,18. We find that if and only ifr=—3, then the
Let us defineKp=Jyn/kgTp andzg=e 2o, As an illus- complex-temperature phase boundally does not pass
tration, forr=— 3, Eq. (47), expressed in terms of the vari- through the poinfT=0 or, equivalently, the origin in thes
able w=w2 where w=e*" [whence,w(r=—121)=2zY2 =1u=e**" plane. This avoidance of the poimt=0 by 3
=e Kis (w—1)(w3+ w?+ w—1)=0. [The trivial solution  shows the absence of criticality &t=0. In Fig. 9 we present
w=1 corresponds t&K=K’=0 in Eq. (44) and is not of our calculation of the complex-temperature phase diagram
interest herd.The cubic factor has as roots the physical dis-for r=—73. One sees thaB3 consists of two complex-
order solutionwp=0.5437, i.e.,wp=0.2956 Kp=1.219) conjugate curves that only intersect the realaxis at the
and, in addition, the complex-temperature roois= pointw=—1 (where they exhibit a multiple point of index
—0.7718:1.115, ie., w=-0.6478-1.721 (K= 2).
—0.6094+1.931). As noted in Ref[12], there are an infi-
nite number of compleX values corresponding to a given IX. POTTS MODEL
value of a Boltzmann weight variable, depending on one’s L ) )
choice of Riemann sheet in the evaluation of the logarithm: Since the spir Ising model is equivalent to the two-state
here we list only one value ¢f for eachw. These complex- Potts model, it is natural to extend the present study to in-
temperature solutions of E¢44) lie in phasesd andd* in  clude some remarks on how the complex-temperature phase
Fig. 6. From a similar analysis far=— %, wherew(r=—  diagram of the 1D Potts model changes under the addition of
1y=e %3 \ve find, besides the physical disorder poig & NNN coupling that is gnllrre!evant operator. Recall th_at in
=0.066 94 Kp=2.028), also the two pairs of complex- contrast to the 2D NNspin-<) Ising model, no exact solution
temperature  solutionsw= —1.607-1.539 (K=—0.5998 IS known for general temperature of the 2D MNstate Potts
+1.783) and w=1.073+1.366 (K= —0.4142-0.6787). model forq>2 and hence the CT boundaByis not known

One can see from Fig. 7 that these complex-temperature s§YenN for this NN casesee, e.g., Ref$12,13 and references

lutions of Eq.(44) lie in the interiors of four CT phases.  therein. _ _
The zero-field 1Dg-state Potts model with NN and NNN

interactions is defined by the partition functiodp
VIl. NEGATIVE r IN THE INTERVAL —00<r<—% =3, e BMp with
n

A more compact way of writing Eq44) is in terms of the
Boltzman variablezy ,

As discussed above, for< — 3, the NNN spin-spin cou-
pling is so strong as to change the nature of the ground state Hp=—JInn E 5
from FM to the(2,2) form. In Fig. 8 we show the complex- no
temperature phase diagram for a typical case—1. Note
that, in particular, by the same reasoning as for positive inwhere §; is the Kronecker delta ana, < {1,... g}. For our
tegerr [cf. Eq. (36)], it follows that B always includes the study, we shall consider ferromagnetic couplings
negative realix axis. Jnn-JInnn=>0 and definek K’ r, as in Eqs(3), (4), and(1)

n0n+1_JNNN zn: 5‘7n0'n+2' (48)
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andup=e"K. The 1D NN model withyy<O0 involves fi-
nite ground-state disorder, with ground-state entrcgy
=kgIn(g—1). This is similar to the situation on several
higher-dimensional lattices; see REZ6] for the square lat-
tice and Ref[27] for the honeycomb lattice.

A notable feature of the CT phase diagram for the 1D NN

Potts model is its simplicity; in Ref9] we found that for

g=3, it consists only of two phases, separated by the bound- 0.0 r

ary B comprised of a circle

—1+¢€®

Up— q_2 y Osw<2w.

(49

The solution of the 1D NNN Potts model proceeds in the 0
standard manner, via transfer matrix methods. As before, it is 3.

most efficient to use spin configuration vectots,
=|0y,0n41), SO that

<Un|7;|vn+1>:<Un|e_ﬁHP|Un+1>

K
_ - ’
_eXF( 2 (5"n"n+l+ 5"n+1”n+2)+K 5‘rn”n+2 ’

(50

Thus the transfer matrigp is a q>Xg? matrix. Here we
consider the simplest case=3. The resultanf; is straight-
forwardly calculated from Eq. (50). Defining 7p
=g~ (K*K'*h7 we find, for the characteristic polynomial
of 7p,
P(Tp;N) =[N+ Up(1=Up) JIN2— (U3 -+ Up+ 1)\
+Up(1—Up)(1+2up) N3+ (UB—1)A?

+Uui(Uup—1)(up+2)A

+ud(1-up)?(2up+1)12. (52)

The resultant eigenvalues ﬁ are
No=Up(Up—1), (52
Me=3[1+up+ud+\1—2up—ud+10ud+up], -
53

together with three roots of the cubic factor in E§1), each
of which is a double root oP(75;\). We denote these as
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3.0

20
1.0 1
-1.0
2.0 r

40 -30 -20 -1.0 00 10 20 30 40
Re(up)

FIG. 10. Complex-temperature phase diagram of theqtEB
Potts model in theip plane forr=1.

> uz+0(ud).

A3c=Up— (58)

In the absence of any NNN coupling, E49) shows that
B would be a circle of radius 1 centeredwgi= —1. In Fig.
10 we show the complex-temperature phase diagranr for
=1. We find that the presence of the NNN interaction has a
strong effect on this diagram. The CT phase boundary is
much more complicated than just the unit circle centered at
up= —1. Rather than just two regions, as in the model with
only NN spin-spin interactions, the complex-temperature
phase diagram consists of nine phases. Three of these are
a, the region containing the positive rea} axis, where
N1+ is dominant;b, the region including the intervat-1
<up<0, in which\ 3, is dominant; and, the region includ-
ing the rest of the negative real axispe<up<—1, where
\g is dominant. The remaining six are comprised of three
complex-conjugate pairs. Starting from the northeast quad-
rant and moving to the northwest quadrant, the members of
these pairs with Im()>0 ared, a region with a wedge
contiguous to the origin, wheres, is dominant;e, a second
region contiguous to the origin, whekg , is dominant; and
f, at the same angle-2#/3 but farther out from the origin,
a region where, depending on how the cuts linking the
branch points of the cube roots are choskg, or \s is
dominant; the others are then the complex conjugates of
these. The complex-temperature boundargontains a mul-

Nsa, N3p, andi g, and, since the expressions for these cubidiple point atup=0, where six curves come together with
roots are rather complicated, we omit listing them herethree separate tangentisence index B and two complex

Aside from the polynomiah, the other eigenvalues have
the following Taylor-series expansions aroumg=0:

As=1+2u3+0(up), (54
Ai_=Up+ud+0(ud), (55)
Nza=1-Up+O(up), (56)
Nan=—Up— > ug+0(up), (57)

2

conjugate multiple points atug),=e>"" and Up)¥,,
where six curves meet in a tacnode, with three different tan-
gents(see Ref[6] for a discussion of tacnodes on CT bound-
aries B). We note that the complex conjugate boundary
curves separating phasesand f, anda and f*, respec-
tively, eventually head outward in northeast and southeast
directions at larger distandep| from the origin.

X. CONCLUSION

In this work we have continued our exploration of the
dependence of complex-temperature phase diagrams on de-
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tails of the Hamiltonian, focusing on the effect of a next-ture phase diagrams and singularities give a deeper insight
nearest-neighbor spin-spin coupling in a simple exactly solvinto the behavior of statistical-mechanical models, they de-
able model, the 1D Ising model with nearest- and nextpend on details of the Hamiltonian, in contrast to the usua

nearest-neighbor spin-spin couplings. Even for the range afiniversality observed at physical critical points.

values ofr =Jynn/JInn, Where the NNN coupling is an ir-
relevant perturbation to the Hamiltonian at the-O critical

point, we have shown that it has a considerable effect on the
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