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Chaotic behavior and damage spreading in the Glauber Ising model:
A master equation approach
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We investigate the sensitivity of the time evolution of a kinetic Ising model with Glauber dynamics against
the initial conditions. To do so we apply the “damage spreading” method, i.e., we study the simultaneous
evolution of two identical systems subjected to the same thermal noise. We derive a master equation for the
joint probability distribution of the two systems. We then solve this master equation within an effective-field
approximation which goes beyond the usual mean-field approximation by retaining the fluctuations though in
a quite simplistic manner. The resulting effective-field theory is applied to different physical situations. It is
used to analyze the fixed points of the master equation and their stability and to identify regular and chaotic
phases of the Glauber Ising model. We also discuss the relation of our results to directed percolation.
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PACS numbg(s): 05.40+j, 64.60.Ht, 75.40.Gb

[. INTRODUCTION rium properties numerically, much less is known about the
original problem of damage spreading, viz. how sensitive is
The physics of dynamic phase transitions and dynami¢he dynamics of the Ising model to differeimitial condi-
critical phenomena has been a subject of great interest for tHions In particular, there are no rigorous results on the tran-
last two decades. Whereas the dynamic behavior at and clo§#ion between regular and chaotic behavi@alled the
to usual static phase transitions is well understgn@],  “SPreading transition’j. _ _
much less is known about dynamic phase transitions which 1here are two different mechanisms by which the damage
do not have a static counterpart. Sometimes it is not evef@n Spreéad in a kinetic Ising model. First, the damage can
known whether or not a particular dynamic transition coin-SPreadwithin a single ergodic componefite., a pure state or
cides with an equilibrium phase transition. free-energy valley (_)f the SYStem' Th'.s IS _the case for
One of these dynamic phenomena is the so-called “damgalau_ber or Mgtropolls dyqamlcs. Numerical _S|mulat|ons here
age spreading’[3-5]. The central question of this problem '([:ho nS|ste.r|1.tgy.g|ve a.tt_rarlls;uon temtperaturg sllgr;)tly Iowia(; than
is how a small perturbatiofcalled the damagen a coop- e equilibrium critical temperaturg9]. Grassberge{10]

ativ tem chan during the further time evoluti nconjectured that the spreading transition falls into the univer-
erative system changes ounng the turthe € evolutio Sality class of directed percolation if it does not coincide

) X , NeUGith another phase transition. This was supported by high-
Ising models where the above question has been investigatefle cision numerical simulations for the Glauber Ising model

by means of Monte Carlo simulatiof4,5]. In these simula- 1117,
tions two identical Ising models with different initial condi- Second, the damage can spread when the system selects
tions are SubjeCted to the same thermal noise, i.e., the Sar@ﬂe Of the free-energy Va”eys at random after a quench from
random numbers are used in the Monte Carlo procedure. IRigh temperatures to below the equilibrium critical tempera-
analogy to the physics of chaotic dynami€ the differ-  ture. This is the only mechanism to produce damage spread-
ences in the microscopic configurations of the two systeming in an Ising model with heat-bath dynamics. In this case
are then used to characterize the dynamics and distinguighe spreading temperature seems to coincide with the equi-
regular and chaotic phases, depending on external parametditsium critical temperature below which the two pure states
(e.g., temperature and magnetic fjeld separate]4,12,13. Thus at the spreading point there are
Later the name “damage spreading” has also been aplong-range static correlations in the systems, and the transi-
plied to a different though related type of investigations intion is expected to fall into a universality class different from
which the two systems amot identical. Instead, one or sev- directed percolation.
eral spins in one of the copies are permanently fixed in one In this paper we investigate the damage spreading in the
direction. Therefore the equilibrium properties of the two Glauber Ising model by deriving and solving a master equa-
systems are different, and the microscopic differences beion for the time evolution of a joint probability distribution
tween the two copies can be related to static and dynamifor two identical systems with different initial conditions and
correlation functiong7,8]. Note that in this type of simula- subjected to the same thermal noise. The paper is organized
tions it is not essential to use identical noige., random as follows. In Sec. Il A we define the model. Transition
number$ for the two systems. Instead it is only a convenientprobabilities between the states of a spin pair are calculated
method to reduce the statistical error. in Sec. Il B, and the master equation for the joint probability
Whereas this second type of damage spreading is wetlistribution is derived in Sec. Il C. We discuss how to con-
understood and established as a method to calculate equilistruct a mean-field approximation for this equation in Sec.
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[IIA. In Secs. llI B, Il C, and Ill D we present solutions of TABLE |. Transition probabilitiesv(v— ) between the states
the master equation within this approximation for differentof a spin pair.

physical situations. Finally, Sec. IV is dedicated to conclu

sions and an outlook on future work. A short account of part—— — —— vl - maxm<1’,h<2>)]
of this work has already been publishigd!] together witha —— — ++ v[min(h®,h?)]
comparison to the heat-bath Ising model. -—— - —+ O (h®—hM[v(h@)—p(hM)]
-—— 5 +- O (hM—h@)[v(h®D) -y (h?)]
Il. MASTER EQUATION FOR DAMAGE SPREADING -+ = - O(—h®—h@)[y(~h®)—p(h®)]
, 4+ O (h®W+h®)[y(h®) —y(—h®)]
A. Glauber Ising model 4 —4 p[min(—h®n2)]
We consider two identical kinetic Ising models with -+ — +-— v[ —max(—h®,h@)]
sites described by the Hamiltoniah§®) andH () given by
H = _ %E Jijs.(n)sfn)_ hE Sl(n) ’ (1) B. Transition probabilities
1 ! In order to formulate a master equation for the probability
distributionP(v4, . .. ,vy,t) we need to know the transition

(n) | - i -
where S is an Ising variable with the values:1 and probabilitiesw(v— u) between the states of a spin pair.

n=1,2 distinguishes the two copieg; is the exchange in- - gjnce the Glauber dynami¢®) involves only a single lattice
teraction between the spins ahddenotes an external mag- gjte within each time step, we have to consider transitions

netic field. Thg dyna_lmic§ of the Is@ng models is g_iveq Py thépetween the statesof a single site only. Let us look, e.g., at
Glauber algorithm, i.e., in every time step a lattice sitie the transition of sitd from state— — to + +. This corre-
chosen at randortthe samesite in both copies The value of sponds to botts) and S changing from—1 to 1. Ac-

the spin at this site is calculated according to cording to the Glauber dynamics2) this requires
SV(t+ 1) =sgru[hM ()] - 1+ SV &) — 3], v(hi(l))—gi_>0 andv(hi(z))—gi>.0. Sincew (h) is a monoto-
(2)  nous function ofh, both equations are simultaneously ful-
filled for v[min(h{*) ,h(?))]— £>0. Becausg; is a random
where the transition probality(x) is given by the usual number taken from a uniform distribution between 0 and 1,
Glauber expression the transition probability is given by

v(x)=e’T/(eXT+e ¥T). 3) W(———++)=v[min(h® h@)]. (6)

Here h{"(t)==,J;;S{"(t) + h is the local magnetic field at - B B

sitei and(discretizedtimet in the systemn. &;(t) €[0,1) is A'nalogogs'ly, for(le; transition from %{)ﬂe to +— the

a random number which is identical for both systems, ani}wof "Iﬁﬁtéal'st'.e&’(h‘h )._ &>0 andv(h; f)—§i<0¢fhar\]{e 'to

T denotes the temperature. The spins at all sites differerf® """'<9- '”Ce"(g) ) '5(2? monotonous function d, this Is

from sitei are unchanged within this time step. o_nIy poss_|ble foh;~'>h;<’. The transition probability is ob-
The central quantity in any damage spreading process 140Usly given by

the distance between the two systems in phase space, called

the Hamming distancér the damagk It is defined by w(———+—)=0(hY-h[v(h)—p(h®@)]. (7)
N
_ (1) /1) _ a(2) The transition probabilities/(v— w) fulfill the following
D) 2N 21 ISP -87, @ symmetry relations:

and is identical to the portion of sites where the spins in the
two systems differ.
In order to describe the simultaneous time evolution of
the two system$1(¥) andH®), we define a variable(t) at W(+——v)=w(—+—v) (8b)
each lattice site which describes the state of a spin pair
(S),8?). It has the valuesv=++ for SH=8@=1, for any statev as can easily be seen by making the substitu-
+— for SM=-8@=1 —+ for —SW=5@=1, and tions SV (t)— —S"(t) and &(t)—1—&(t) on the right-
—— for SM=8@=—1. A complete configuration of the hand side of Eq(2).
two Ising models is thus described by the §et, . . . ,u\}. The remaining transition probabilities can be calculated
Since we are interested in the time evolution not for aalong the same lines as above. They are summarized in Table
single sequence of;(t), but in ¢&-averaged quantities we |I.
consider a whole ensemble of system pak$*{,H(?) and
define a probability distribution

wW(t+—-v)=w(———w), (8a)

C. Master equation

2 1—[ s ®) Having calcu_lated_the transition probabilitie§_beUNeen_the

S (1) statesv of a spin pair we are now in the position to write
down the equation of motion for the probalitity distribution

where(-) denotes the ensemble average. P(vy, ...vn,t). It has the form of a usual master equation

P(Vl, P ,VN,t):<
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N
GiPva - onst) P(vy, ... ,vN,t)=H1 P,.(1). (11)

S P . OW( 21— 1) Inserting this into the master equati® and summing over
< D, ViveeoVin 0PNy Vit i all states of sites=2, . . . N gives an equation of motion for
the single-site distributiorﬁ’,,l,

HMZ

z

+_ 2 P(Vl! My, ""VN’t)W(ﬂi_)Vi)V (9)
i=1 uj#v;

d
GiPn= 2 [P W= )+ P, W — v,
where the term in the second line describes the decrease of Hirr

) 12
P(vy,...,wy,t) due to the initial configuration (12
{v1, ... ,v\} being changed at one of the sitefom »; t0  \\here

ui. The term in the third line of the master equation de-

scribes the increase &f(vq, ... ,vy,t) due to “scattering” W( g — 1) =(W(1— v1) (13)
from all the other states intdvq, ...,v\}. Note that we pamr) =(Wipa=va))e

have suppressed the factoNLlih the transition probabilities i the transition probability averaged over the statesf all

which corresponds to random selection of one of the latlic&;iesj 1 according to the distributioR , . Since all sites of
sites in every time step. This neglect cqrresponds toa redef{he systems are equivalent, the site indlwill be suppressed
nition of the time scalgwhich is now independent of the y '

: : : from now on.
system sizgand does not change the dynamic behavior. o ) (2)

This master equation contains, of course, the full diffi- Notetthat thed ?r\]/ergge m_agngtlfartlmamél ' t;n ofl the
culty of the dynamic many-body problem. A complete solu-Wo syzgms an diPe amming distaricecan be easily ex-
tion is therefore out of question, and one has to resort t§'€SSed in terms a?,,
approximation methods. In the following section we discuss 1) _
how to construct a mean-field-like approximation to the mas- m*=P,,+P,_—-P_,—-P__, (143
ter equation(9).

m?=p, , —P, +P_,—-P__, (14b
Ill. EFFECTIVE-FIELD APPROXIMATION

' . D=P,_+P_,. (140
Usually a mean-field theory of a phase transition can be

obtained by taking the range of the interaction to infinity: So far the considerations have been rather general. In the

_ s following subsections we will apply the general formalism to

Jij=Jo/N foralli,j. (10 different physical situations. In Sec. Ill B we investigate a

In the thermodynamic limiN— this suppresses all fluc- tondir_nensionaI system with short-range interactions and
tuations. In particular, the local magnetic fieIUS‘) of all  Vvanishing external field. We determine not only the location

sites in one system become equal and identical to the meafil the spreading transition t.)Ut also calculate the stgtiqnary
field valueJom. Since the two Ising modeld® and H® states of the systems. Section Il C deals with the limit of
0 .

) ) . . )— h(2) infinite-range interactions, and in Sec. Il D we study the
are thermodynamically |der_1t_|cal, this It_a_a_ds o =hi). influence of an external magnetic field on the spreading tran-
However, some of the transition probabilities depend on th

existence of fluctuationtsee Table)l i.e., w(r—u) go to ttion.

zero with h®—h® 0. In particular, this is true for _ _ _

w(— ———+) andw(— ——+ —), which are responsible B. Solution of a two-dimensional model

for increasing the damagd®. Consequently, if the thermody-  In this subsection we investigate the damage spreading for

namic limit and the limit of infinite range of the interaction a two-dimensional Glauber Ising model on a hexagonal lat-
are taken at a too early stage of the calculation, the resultingce (with each site having three nearest neighhoFée in-
model does not show any spreading of the damage. To cir-

cumvent these problems we develop a slightly more sophis- TABLE II. Probabilities for the states of the three neighboring
ticated effective-field approximation that retains the fluctua-sites and resulting local magnetic fieldS” andh® for the two-
tions though in a quite simplistic manner. As will be shown dimensional case on the hexagonal lattice.

in Sec. Il C, taking the range of the interaction to infinity

within the framework of this approximation yields a sensible h®)
limit. h® 3J J -J -3J
3 2 2 3
A. Effective-field theory for short-range models j)J 3PI2+D :;F ;,?:}E:l ;:i}?;ﬂr 3PE|;2_ )

The central idea of this effective-field method is to retain 6P,,P._P_, 6P, _P_,P__
the fluctuations but to treat the fluctuations at different sites-3 3p,,P2_ 3P2_P_,+ 3P,,P?2_+ 3P_,P%2_
as statistically independent. This amounts to approximating 6P, ,P, P__ 6P, P_,P__
the probability distributiorP(v4, . .. ,vy,t) by a product of _33 P3 3P2 P__ 3P, P2 ps

identical single-site distributionB,,,
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teraction is taken to be a nearest-neighbor interaction oEach of the neighbors can be in one of four states, thus we
strengthd, and the external magnetic field is set to zero.  have to consider 64 different configurations of the neighbor-
In order to solve the master equati¢i®) for the single- ing sites. The probabilities for these configurations and the
site distributionP,, we first determine the effective transition resulting local magnetic fields are given in Table II.
probabilitiesW(v— u). Let us calculate the probabilities for  With the help of Tables | and Il the averaged transition
a particular site. To this end we have to average the tran-probabilities(13) can be easily calculated by adding up the
sition probabilities given in Table | with respect to the statescontributions of all 64 configurations. The resulting expres-

of all other sites of the system. However, since the interacsjon are quite lengthy though simple. Therefore we present
tion is between nearest neighbors, the transition probab|I|t|e§n|y the example

depend on the states of these three neighbors of sitdy.

W(———++)=(w(— ——++))=(v[min(h,h(>7])
=P3 ,v3+3P2  P_,v,+3P ,P? v_+P? v _3+(3P2,P,_+3P2,P__+6P,.P._P_,)uv;
+(3P,_P?2,+6P,_P_,P__)u_4+3P_,P?> v_3+(38P, P> _+3P2 P_.+6P P, P__)u_,;
+(3P,,P?2_+6P,_P_,P__)u_4+3P_,P% v_4+(P3_+3P2_P__+3P,_P2_+P% )u_g,
(15

with d
GID=(L-D)W(— ==+ =)+ W(= === +)]
vh,=v(nJd). (16)
D[ 1+W(—+—+—)FW(—+——+)].
Equations of motion for the magnetizatioms*) and (20)
m(®) as well as for the damagd® can be derived by inserting

definitions(14) into the single-site master equati@®). Af-  gince in the following we will be mainly interested in the
ter some manipulations the equations of motion for the magstationary solutions of this equation, we restrict the consid-
netizations read erations to cases where both systems are in equilibrium at the
beginning of the damage spreading process. In doing so we
exclude, however, all phenomena connected with the behav-
ior after a quench from high temperatures to temperatures
below T . These phenomena require an investigation of the
+7(m™M)3[tani(3J/T)~3tankJI/T)]. (17)  early-time behavior and will be analyzed elsewh§ts.

It is now useful to distinguish three casds), damage
These equations are, of course, identical to the equation afpreading in the paramagnetic pha3e-(T¢), (ii) the ferro-
motion of the magnetization derived for a single systemmagnetic phasel(<T.) where both systems are in the same
within the same framework of statistically independent fluc-pure statdi.e., free energy valldy mY)=m®=m, and(iii)
tuations. The point at which the coefficient of the term linearthe ferromagnetic phas@ € T) where the two systems are
in m on the right-hand side of Eq17) changes sign defines in different pure statesn®=—m®=m.
the (equilibrium) critical temperaturdl ¢ of the Ising model

d
§m(“)= m"{— 1+ 3[tan(3J/T) +tanh(J/T)]}

within our approximationT is thus determined by 1. Paramagnetic phase
In the paramagnetic phase &, can be expressed in
3[tanh(3J/Tc) +taniJ/Te) =1, 18 terms ofD-
which gives T¢/J~2.104. The stationary solution of Eq. P,,=P__=1(1-D) (219

(17) can be used to determine the magnetization as a func-
tion of temperature. For temperaturés: T, we obtain

P, =P_,=3D. (21b
3
(m(™ 2:z[tanr(SJ/T)thanr(J/T)]_l (19) By inserting this into the transition probabilitié¥(v— u)
3tani(J/T) - ttani(3J/T) calculated from Eq(13) and Table II, the equation of motion

(20) of the Hamming distancB can be written as

We now turn to the discussion of the Hamming distabce
After inserting Eq.(14) into (12), the equation of motion of

, . . =1(D-3D%+2D°® .
the Hamming distancB can be written as D=3(D—3D"+2D%tanh(3J/T) 22

Sla
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After inserting this into the averaged transition probabilities

10 (13) the equation of motion of the Hamming distance takes
’ », Hamming the form
\ distance D
magnetization \
05} e . d
——————— aD=%(D—3D2+ 2D3)tanH3J/T)— 2m?[2DtanHJ/T)
0.0 S7A —D?%anh(J/T) + D?tank(3J/T)]. (25)
//Ts Te
// This equation has two fixed poinB* in the interval[0,1].
—-0.5r g The first fixed point isD} =0. By linearizing Eq.(25) in
~7 Lyapunov exponent d,=D—-D7} we investigate the stability of this fixed point.
// We again find thad,(t) follows the exponential law23)
Ll with \ ;= 3tanh(3/T) — 3m?tanh(/T). Using expressiokl9)
n 1 1 1 n ] n 1 L 2 . . . .
00 05 10 15 20 25 30 for m, it is easy to dlscus§ the behaviorof. _For. tempera-
tures larger than a spreading temperaftgavhich is defined
T/J b
y

FIG. 1. Magnetizatiorm, asymptotic Hamming distanc@*, 5
and Lyapunov exponenk; as functions of temperature for the 3mtani(J/Tg) =tanh(3J/Ts), (26)
Glauber Ising model. Below,, the curve forD* has two branches

corresponding to the two systems being in the same or in differeng, o Lyapunov exponenk, is positive and thus the fixed
free energy valleys. point D¥ is unstable. FOIT<Tg the Lyapunov exponent
N1 is negative, and the fixed poifd} is stable. Conse-

T.h'SDiqut'O?].hr? s three stztlotnatr)y trs}olutliiﬁzedbp.omt% i guently, the Glauber dynamics is chaotic for temperatures
Viz. Dy =1 which corresponas to both Systems being 1dentl-y, e Ts but regular below. Equation(26) gives

cal, D% =1 whereS®")= — S for all sites andD¥ = 3 which — -
correéponds to the two systems being comgletely uncorre-[S Fjrzsr?l]pecr)z;\?jreergﬁT
lated[16]. To determine the stability of the fixed points, we S
linearize the equation of motiof22) in d,=D—D} . The
linearized equation has the solution

the equation of motiof25) pos-
sesses another fixed poib§ with 0<D} <3, which is al-
ways stable. Its temperature dependence is presented in Fig.
1. Close to the spreading temperature the asymptotic Ham-
ot ming distanceD} increases linearly witf — T, which cor-
d(t) =dyoe™, (23 responds to the spreading transition being of second order.
The order parameter exponeBi defined byD* =|T—T|#
with \;=X\,=3tanh(3T) and \3=—jtanh(3/T). Conse- s given by S=1. In contrast to the paramagnetic phase,
quently, the only stable fixed point B =3. In the whole  where the two systems eventually become completely uncor-
paramagnetic phase the damage spreads, and asymptoticadyated, forT,<T<T, the asymptotic Hamming distan@
reaches the valub = 3. If the two systems start very close is always smaller thar, so that the two systems remain
together D small initially) their distance in phase space in- partially correlatedas it must be the case since both systems
creases exponentially with a Lyapunov exponentare in the same free energy valleRirectly at the spreading
\1=3tanh(/T). Therefore the Glauber dynamics showspoint the term linear irD in Eq. (25 vanishes. For small
chaotic behavior in the whole paramagnetic phase. Note thaltamming distances the equation of motion now reads
for large temperatures the Lyapunov expon&ptgoes to  dD/dtx—D?, which gives a power-law behavioD(t)
zero ash,~3J/T. Thus the time it takes the system to reach«=t~?. The critical exponent is given b§=1.
the stationary stat® =D% =3 diverges forT—. This has

recently also been found in simulatioh$7]. The depen- 3. Ferromagnetic phase with ¥ =—-m®@=m
idnegicge olf the Lyapunov exponent on temperature is presented We now turn to the case where the two systems are in

different free-energy valleys. The single-site probabilities
. o ;
2. Ferromagnetic phase with ) =m@=m P, can be expressed in terms Dfandm:
In this section we study the case where both systems are P,,=P__=1(1-D) (273
in the same free energy valley. The single-site probabilities T2 ’
P, can be expressed in terms Bfandm:
P, =z(D+m), (27
P, =3(1-D+m), (249
P_,=z(D-m). (279
P__=3(1-D-m), (24b
With this substitutions the equation of moti¢g0) of the
P,_=P_,=1D. (240 Hamming distance can be written as
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D=1%(D-3D?+2D%tanK3J/T)

=S

1.0

magnetization

+ 2m?[tani(3J/T) + tanHJ/T) — 2DtanH 3J/T)

+D?tanh(3J/T)—D?tanHJ/T)]. (29) 05F
Analogously to Sec. Il B 2, this equation possesses two
fixed points. The fixed poinD; =1 exits for all tempera- 0.0 [rovermmmememe s e R
tures. It is stable for temperatures beldw and unstable AP
above. FolT>Tg, Eq.(28) has another fixed poif} , with
3<DZ <1, which is always stable. Its temperature depen- ~057
dence is given in Fig. 1. I " Lyapunov exponent
C. Limit of high dimensions L -

In this subsection we study damage spreading in the 0.0 0.5 1.0 15

Glauber Ising model in the limit of high dimensions, i.e., in T/

the mean-field limit proper. Within the framework of our
effective field approach high dimensions correspond to high FIG. 2. Magnetizatiorm and Lyapunov exponent; as func-
coordination numbers, i.e., high numbers of nearest neightions of temperature for the Glauber Ising model with vanishing
bors. We therefore consider a Glauber Ising model on a latexternal field in the limit of high dimensions.
tice with z nearest neighbors, and study the limit-oo. To
obtain a physically sensible limit we scale the interaction W(————+)=0(h®@—hM)[p(h@)—p(h1)]
strength withz, J=J,/z.

In the limit z— o the thermodynamics is described by the =zP_1(23y/2)v" (Igm). (31b
usual mean-field theory. The equilibrium critical temperature_ . ) . o
is given byT=J,, and in the ferromagnetic phase the mag-By inserting these re_sults for the transition prqbabll|t|es into
netization is determined by the equation of state ;ET}% equation of motiori20) of the Hamming distance, we

[
m=tanh(mJ,/T). (29

In order to determine the spreading temperafligat is aD:’\D! (32
sufficient to study the equation of moti¢@0) of the Ham-
ming distance to linear order iD. To this end we have to where the Lyapunov exponektis given by
determineW(— + — + —) andW(— +— — +) to zeroth or-

der inD, butW(— ——+—) andW(————+) to linear exp( —Jo|m|/T)
order inD. A=—1+42
To zeroth order inD we haveh®=h@=h and in the expl(Jo|m|/T) +exp(—Jo|m|/T)
limit z— h is § distributed ah=Jym. The transition prob- 43,17
abilities are thus given bgsee Table)l + [exp(Jom/T) + exfl — Jgmi T2 (33

W(= +—+—)=v[—max—h®,h®)]=v(~Jg|m|),

(309 This can be simplified to

— 2

W(— +—— +)=v[min(—h® h®)]=p (= Jo|m]). A=—mt (1=m5)Jo/T. (34

( In the paramagnetic phasm€& 0) the Lyapunov exponent is
We now calculataV(— — —+—) andW(— ———+) to  Simply A=Jo/T>0. Thus the Glauber dynamics is chaotic

linear order inD. These transition probabilities do not have ain the whole paramagnetic phase.

zeroth-order contribution. In linear order i only those The temperature dependence of the Lyapunov exponent

configurations of the neighboring sites contribute for which A in the ferromagnetic phase is presented in Fig.A2.

the two systems differ in the state of a single site. In this caséhanges sign afs~0.8270,=0.827Tc. Consequently, the

h® andh® differ by 2J,/z. Therefore we obtain dynamics is chaotic for temperatures larger thdi
=0.827 and regular for temperatures smaller tiian Note
W(———+—)=0(hY—h@)[p(hD)—p(h?@)] that the value fofTs/T¢ for the two-dimensional model of
Sec. Il B is very close to but not identical to the value for
=zP. _(23y/2)v'(Jom). (318  the casez— .

Herev’(h) is the derivative ofv with respect to its argu-
ment. The additional factar in the second line arises since
each of thez neighbors can be the one where the two sys- In this subsection we generalize the effective-field theory
tems differ. Analogously we obtain to a finite external magnetic field. For simplicity, we do

D. Damage spreading in a field



55 CHAOTIC BEHAVIOR AND DAMAGE SPREADING IN ... 5163

phase can be easily determined by solving the equation
N=0. The resulting phase diagram is presented in Fig. 4. For
comparison we also give simulation resylt8] for a three-
dimensional Glauber Ising model. An investigation of Egs.
(35) and(36) for large temperatures shows that the spreading
temperaturel g(h) diverges forh/Jy—1 as

Consequently, for external fields>J, the dynamics is al-
ways regular.

IV. CONCLUSIONS

00 05 10 15 20 25 30 35 4.0

/4 To summarize, we developed a master equation approach
0

to damage spreading and applied it to the Glauber lIsing
model. The master equation is an exact description of the
damage spreading problem; it does not contain any approxi-
mations. We then solved the master equation within an
effective-field theory for various physical situations.

In this final section we discuss some aspects which have
not yet been covered. First , we compare the results of our
effective-field theory with numerical simulations of damage

m=tanH (mJy+h)/T]. (35) sprea_ding of the Glauber Ising m(_)del in two ar_ld three di-
mensiong9,11,18. In agreement with the simulation results
Analogously, in all transition probabilitiesV(v— u) the  We find a spreading transitidmelowthe equilibrium critical
term Jom has to be replaced biym-+h. After inserting the ~temperature of the Ising model. Our mean-field value
transition probabilities into the equation of moti¢R0) of ~ Ts/Tc=0.827 is considerably lower than the latest numerical
the Hamming distance, one find¥dt D=AD, and the Values[11] of 0.992 for a two-dimensional Glauber Ising

magnetization: model. We expect our value to be exact, however, for an

infinite-dimensional model or, equivalently, for infinite range
A=—m+(1-m?)Jy/T. (36) of the interaction. Grassbergdl0] conjectured that the dam-
age spreading transition in the Glauber Ising model is in the
The temperature and field dependence of the Lyapunov exniversality class of directed percolation. Our results are
ponent is illustrated in Fig. 3. Obviously, the external field compatible with that, since the values of the critical expo-
shifts the spreading temperature to higher values, thus suments 8 (which describes the dependence of the stationary
pressing chaotic behavior and stabilizing the regular phaselamage on the reduced temperatumed 6 (which describes
The phase boundary between the chaotic and the reguldne time decay of the damage at the spreading tempeyature
are identical to the mean-field valugs=6=1 of directed
10 percolation.

Second, we want to clarify the relation to damage spread-
ing in an Ising model withheat-bathdynamics. As already
0.8+ discussed in Sec. |, the heat-bath Ising model does not show
regular behavior any spreading of damage within a single pure sféatee-
energy valley. When applying our effective-field theory to
the heat-bath Ising model we fifd4] only a single fixed
point D} =0 if both systems are in the same pure sfa&.

If the two systems are in different pure states T<T:) we
also find a single fixed point only, vi2¥ =m. Thus there is
chaotic behavior no chaotic behavior within one pure state. However, the
damage can spred@r, at least, will not healin the heat-
bath Ising model if the two copies start in different pure
. . states or choose to develop into different pure states after a
095 1.0 2,'0 3.0 4.0 5.0 quench from high temperatures. For this case a mean-field
T/Jdo theory similar to ours has been considered befafs.
Finally, we discuss possible extensions of the present

FIG. 4. Phase diagram of damage spreading in the Glauber Ising€ory. In principle, the master equation approach of Sec. II
model in the limit of infinite dimensions. The full line shows the can be applied to any damage spreading problem in which
result of our theory, the squares are simulation results of Le,Caethe dynamics of a single system is given by a stochastic map
with T andh rescaled byl . as in Eq.(2) (or a more general map that involves several

FIG. 3. Lyapunov exponernt as a function of temperature for
external fieldsh=0, 0.2, 0.4, and 0.6from up to down.

this only for the model introduced in Sec. Ill C, viz. the
limiting case of high dimensions.
The equation of stat€29) has to be replaced by

06|

h/Jo

0.2
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sites in each time st¢plt would be very interesting to remap for random fieldd17]. Some investigations on the applica-
the master equation onto a field theory, and then apply renotion of the master equation approach to disordered systems
malization group methods to determine the critical behaviorare in progress.

An obvious idea is to include quenched disorder into the
Hamiltonian of _the Ismg model either in the for_m of a ran- ACKNOWLEDGMENTS
dom external field or in the form of random interactions.
Such systems have been numerically investigated in some This work was supported in part by the DFG under Grant
detall, in particular in the case of random interactipas]. No. Vo 659/1-1 and by the NSF under Grant No. DMR-95-
Recently some interesting results have also been achieved185.
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