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Nonlinear dynamics of damped and driven velocity-dependent systems
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In this paper, the nonlinear dynamics of certain damped and forced versions of velocity-dependent potential
systems, namely(j) the motion of a particle on a rotating parabola dimfla nonlinear harmonic oscillator, is
considered. Various bifurcations such as symmetry breaking, period doubling, intermittency, crises, and anti-
monotonicity are reported. We also investigate the transition from two-frequency quasiperiodicity to chaotic
behavior in a model for the quasiperiodically driven rotating parabola system. As the driving parameter is
increased, the route to chaos takes place in four distinct stages. The first stage is a torus doubling bifurcation.
The second stage is a merging of doubled torus. The third stage is a transition from the merged torus to a
strange nonchaotic attractor. The final stage is a transition from the strange nonchaotic attractor to a geometri-
cally similar chaotic attractof.S1063-651X97)00505-9

PACS numbds): 05.45+b

I. INTRODUCTION 1 5(2+ng2
In this paper, we consider the dynamics of a class of L_E 1—-2x2 |’ )

nonpolynomial oscillators governed by the equations of mo-

tion and the corresponding Hamiltonian is

(1+ A%+ AXX%+ wix=0 (1) H=3[p2(1—Nx®) + wox?(1-Ax?) 1],
and with
. : d =x(1—=\x2)"1
(1= AxA)X+Axx%+ wix=0, (~=a) 2) P=X(1=2x)

Also, a perturbative analysis of this model can reproduce the
and subjected to additional linear damping and periodic forcexact solution for all values of the coupling parametds].
ing. The corresponding field system for E@) has an interest-
In particular, Eq(1) is a well-known modeJ1-3] for the  ingly simple harmonic traveling wave solution. In the mass-
analysis of inherently nonlinear phenomena in a nongeneritess case, this is an isoscalar analogue of the chiral invariant

mechanical system corresponding to the Lagrangian SU(2)® SU(2) Lagrangian in the Gasiorowicz-Geffen coor-
dinates[7].
L= 3[(1+ \x®)X*— 03x?], (3) It is of considerable physical interest to consider the non-

linear dynamics of Eqs(l) and (2) under the influence of
whence the Hamiltonian is

H=3[p2(1+Ax®) 1+ wix?], ﬁz

and the canonical momentum is

p=X(1+\x?). a
>

A mechanical setup for this case is that of the motion of a
particle of massn sliding freely on a wire described by the
parabolaz= \/\/2x?, which rotates with a constant angular
velocity [Q=0Qy=(—w2+gV\)*?] about its z axis as
shown in Fig. 1. A physical realization of this model is that
of a man riding a motor bike on a rotating parabolic well in
a circus. Whenu(2)>0, physically realizable solutions to Eq.
(1) can be expressed in terms of elliptic integrals.

Equation (2) corresponds to a velocity-dependent

mg

potential-type nonlinear oscillator, exhibiting amplitude- = X
dependent simple harmonic oscillatioi8s-5]. It is a model 0

system corresponding to the oscillator version describing

pion-pion interaction with the Lagrangid6] FIG. 1. Particle on a rotating parabola definedzsy/\/2x2.
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additional damping and external periodic forces so that the 30
equations of the motion become 20
T 10
(1+AxD)X+AxX2+ wix+ ax=f coswt (5) x
and -10
. _20 .
oq OO0 f 6 0o 1 2 3 4 5";6 7
X+ —————+ax=
1)) @ coswt, (6)

respectively, in place of Eq4l) and (2). In addition, we
consider the system shown in Fig. 1, when the angular ve-
locity is parametrically varying af2]

Q=Qy(1+€ coswpt). (7)

Then the equation of motion can be rewritten as

(14+AXP)X+AXX2+ wix— Q[ 2€ cosw,t

+0.56%(1+ cos2w,t) X+ ax="f comwet, (8)

wherew, is the frequency of the external force.

In particular, we wish to make a detailed investigation of
the dynamics of the mechanical systé¢f) and investigate >
the existence of a rich variety of bifurcations as the external
forcing parameter is varied while all other parameters are
fixed. Specifically, we would like to present a detailed ac-
count of the various bifurcations such as symmetry breaking,
period doubling, periodic windows, intermittency, and anti-
monotonicity, exhibited by the systefb) as the parameter
changes. We also investigate the transition from two-

frequency quasiperiodicity to chaotic behavior in the system d

(8). As the parameter is increased, the route to chaos takes -2.8 /O
place in four distinct phases. The first phase is a torus-

doubling bifurcation. The second phase corresponds to the -3 \\
doubled torus merging into a single torus. The third phase is x

a transition from the merged torus to a strange nonchaotic -3.2 /
attractor. The final phase is a transition from the strange /.O

nonchaotic attractor to a geometrically similar chaotic attrac-
tor. Finally, we wish to present briefly the bifurcation routes
and chaotic dynamics of syste(6). In particular, the exis-
tence of symmetry breaking, period doubling, antimonoto-
nicity, and crises bifurcations are reported.

II. CHAOTIC DYNAMICS OF THE MOTION
OF A PARTICLE ON A ROTATING PARABOLA
UNDER THE INFLUENCE OF DAMPED x
AND DRIVEN FORCES

To be concrete, we consider the dynamics of E5).
where we fix the values of the parameters @&=0.25,
A=0.5, a=0.1, 0°=02=6.7, andw=1.0 and vary the
value of the forcing parametér At low values of the forcing
paramet_er, the respon_se asymptotica_lly approa_ches a StableFIG. 2. Bifurcation diagram of the syste(B) for x(t) vs f, (a)
fixed point. As t.he fqrc!ng parameter is further increased, g € (0.0,7.0): () symmetry-breaking and period-doubling bifurca-
stable symmetrical limit cycle occurs &t=0.012. As we tions for fe(0.0,2.0); (c) periodic windows in the intervaf

slowly increase the value df the symmetric solution bifur-  _ (0 3.0):(d),(e) a reverse period-2 bubble fdre (2.75,3.15).
cates into a limit cycle that exhibits asymmetrical behavior atrhe other parameters at=0.25,=0.5, a=0.2, andw=1.0.

f —»
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FIG. 3. Time seriex, containing laminar parts vs the number of cyctes(a) Period-5 orbit atf =2.2993;(b) intermittent chaos at
f=2.2995.

f=1.213. Even though the velocity-dependent potential en- A. Feigenbaum scenario

ergy of this system is symmetric, the actual behavior of the

response is not symmetric, leading to dynamical symmetry As the parametef is further increased, a period-doubled
breaking similar to the one that occurs in a Duffing oscillatororbit appears and the original limit cycle becomes unstable at
[8,9]. f=1.689. As we increase the valuefofurther, this period-2
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20.00 have a stable period-5 orbit, while just aftgrs, there is
o chaos. Thus as the parametes increased through, 5, we

E have an intermittency transition from a periodic to a chaotic
attractor. Forf slightly greater thanf, s, there are finite
stretches of time during which the orbit closely resembles the
orbit for f<f, s, but this regular(approximately periodic
behavior is intermittently interrupted by finite duration

10.00

P TR T T U S VO T N T U0 S T I A A O O 1

I “bursts” in which the orbit behaves in a decidedly different
0.00 manner.
x
C. Antimonotonicity
-10.00 Recently Yorke and co-workef42,13 have shown that

antimonotonicity, inevitable reversals of period-doubling
cascade$14,15, is a fundamental phenomenon for a large
_ , class of nonlinear systems. One finds that periodic orbits are
~20.00 e not only created but also destroyed when one increases the

0.00 0.02 0.04 0.0 0.08 control parameter monotonicallismoothly in any neigh-

€ — borhood of a homoclinic tangency value. Now we wish to

point out that for the present problem, antimonotonicity can
be observed in one way by looking at the bifurcation dia-
gram, Fig. 2, in the range 2.731<3.153. Asf is in-
creased, the chaotic behavior is followed by an “unusual”
orbit flips to a period-4 orbit af =1.823, which then bifur- Period-4 orbit. The period-8 orbit appears and disappears due
cates to a period-8 orbit 4t=1.874 and so on, as shown in {0 pitchfork bifurcation in the range 2.7§%<2.775, fol-
the bifurcation diagram, Fig. 2. This infinite sequence enddoWed by a reverse period-doubling bifurcation whence a
up in chaotic motion in the standard way. Of course, one caR€riod-4 orbit and then a period-2 orbit appear. Further, it is
verify that the bifurcation sequence is associated with thdollowed by a complete period-doubling sequence leading to
Feigenbaum universal constdri]. Further increase in the chaotic oscillations. Such a pattern is called a reverse
value of f leads to periodic windows and further complex period-2 bubble. We also notice that in the above range the

behaviorsas depicted in Fig.)2which are discussed below. everse period cascades of the period-2 orbit starts in an un-
usual way[16], however, this is followed by the standard
period-doubling sequence.

T I 1

FIG. 4. Bifurcation diagram of Eq(8) for x(t) vs €: €
€(0,0.08). The other parameters ané:0.25, A=0.5 «=0.2,
wp=1, 05=6.7, andf = w,=0.

B. Periodic windows and intermittency

In addition to the obvious chaotic orbits, Flg 2 also shows IIl. CHAOTIC DYNAMICS OF THE MOTION
that there are certain ranges of the parameters where periodic OF A PARTICLE ON A ROTATING PARABOLA
behavior appears that is essentially due to tangent bifurca- UNDER THE INFLUENCE OF DAMPED, DRIVEN

tion. For example, the widest range is occupied by the AND PARAMETRIC FORCING
period-5 orbit in the interval 2.189f<2.301 and reverse
period-2 bubble in the interval 2.731f <3.153. So far, we have discussed the dynamics of the sys&®m

In the intermittency transitiofil 1], when the value of the Wwith constant angular velocity Q=0 [=(—w}
control parameter is greater than a critical value, the periodier g\A)*?)]. Now we consider the systeii8), which has a
orbit is replaced by a chaotic orbit. An example of this phe-parametrically varying angular velocity instead of the con-
nomenon is illustrated in the interval 229<2.301. From stant angular velocity) as given in Eq(7). Equation(8) can
Fig. 3, we see that just before the valtigs=2.2994, we be equivalently rewritten as

x=y,

o [ (= axy?*—{w3— QZ[2ecosp+ 0.5¢%(1+ cos2p) |} x— ay + fcosh)
y= 1+ !

©)

(-ﬁ:wp-

0= we,
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FIG. 5. Projection of the two-frequency quasiperiodic attractors
of Eq. (8) for e=0.03: (a) Poincaremap in the &-y) plane; (b)
Poincaremap with ¢ mod 2r in the (x,#) plane;(c) same agb)
except¢ mod 47 during computation{d) trajectory in the X-y)
plane. The other parameters arceSZO.ZB, A=0.5 «=0.2, FIG. 6. Torus-doubled two-frequency quasiperiodic attractor for
wp=1.0,93=6.7, f=0.32, andw,=0.991. €=0.0317. Details as in Fig. 5.
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FIG. 7. Merged attractor foe=0.0353. Details as in Fig. 5.
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FIG. 8. Two-frequency attractor of Fig. 7 begins to wrinkle at
€=0.0399.
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FIG. 10. Fully developed discontinuities on the two-frequency

attractor fore

0.0410.

FIG. 9. Appearance of sharp bendseat0.0408.
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FIG. 11. Chaotic attractor a=0.0413.

where the values of the parameters are fixedv3s 0.25,
A=0.5,a=0.2,0,=1.0,f=w,=0, and3=6.7, whilee is
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FIG. 12. Largest Lyapunov exponent gsindicating torus dou-
bling, merging, onset of discontinuities, and transition to chaos.

pared to the period of the parametric modulation
(=2m/w,). The period-2 nature may be understood from the
considerations that the period of the parametric term
cosp+cos2p is approximately twice the Poincaneeriod
To(=27lwp). As € is increased further t@=0.0487, the
attractor undergoes period doubling. On increasing the value
of e further, one observes a complete cascade of period-
doubling bifurcations and a chaotic region as shown in
Fig. 4.

A. Torus doubling and merging bifurcations

Now we consider the combined effect of both the external
and parametric forcing in Eq9). We choose the parameters
f and w, to be 0.32 and 0.991, respectively, and vary the
valuee. For e=0.03, the attractor is a two-frequency quasi-
periodic attractor(Fig. 5. As € is increased ta=0.0317,
the attractor undergoes a torus-doubling bifurcatias seen
Fig. 6). We note from Figs. 5 and 6 that the two strands in
the (x,¢) projection becomes four strands when torus dou-
bling occurs. When we comput¢ modulo 4r instead of
modulo 27 during integration,we notice from Fig. 6 that the
two bifurcated strands of lengthn2in Fig. 6(b) are actually
a single strand of lengthm[Fig. 6(c)]. As a result, it can be
concluded that the torus doubling is nonetheless a length-
doubling bifurcation. Further, it may be noted from Figs.
5(d) and Gd) that each component of the bifurcated torus lies
on the boundary of a Maius band, a situation that is geo-
metrically very similar to period-doubling bifurcations of pe-
riodic orbits in three-dimensional flows. A similar type of
torus doubling has been observed in the quasiperiodically
driven magnetoelastic ribbon experiment, double well Duff-
ing oscillator and logistic mapl7,22,23.

Interestingly, ase is increased further te=0.0353, the

being varied. For smakl value, the attractor is a fixed point. strands of the length-doubled attractor begin to merge into a
For e=0.0146, the attractor is a limit cycle of period 2 com- single attractor again as shown in Fig. 7.
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0.05 7 C. Characterization of nonchaotic and chaotic attractors
] 1. Lyapunov exponent

0.04 7 In Fig. 12, the largest Lyapunov exponent is plotted as a
function of e for a range ofe values. This figure summarizes
the four major dynamical events that occur as the system is
taken from two-frequency quasiperiodicity to chaos. The
peak neae=0.0317 corresponds to the torus-doubling bifur-
cation. Such peaks in Lyapunov exponents are well-known
occurrences at bifurcation points. The second peak near
€=0.0353 corresponds to the torus merging bifurcation. The
peak just beyond=0.0399 coincides with the appearance of
discontinuities on the attractor. The transition to chaos oc-
curs ate=0.0413.

u&%%m 2. Correlation dimension

1009 2000 3000 4000 5000 . . .
K , We have also estimated correlation dimensibnof the

attractors shown in Figs. 10 and 11, using the algorithm pro-

posed by Grassberger and Proccd@6]. The correlation

dimension of the strange nonchaotic attractor shown in Fig.

10 is estimated as 1.77, while for the chaotic attractor of Fig.
080 7 11 it is 1.86.
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3. Power spectral analysis

0.60 The occurrence of a strange nonchaotic attractor is further

] confirmed by a power spectrum analysis. For a strange non-
chaotic attractor the number of pedkéo) in a power spec-
trum exceeding a threshold amplitudescaleq 20] as

k ] N(o)xo™ @, 1<a<2. (10)

1 The power spectrum of the attractor is obtained using the fast
« Fourier transform with 8192 points. From the |g§(o’) ver-

sus logg(o) plot the value of the scaling exponent is esti-

] mated as 1.63. This is in agreement with the power-law scal-
ing relation(10).

0 1000 2000 3000 4000 5000

Kk 4. Separation of nearby points

Sensitive dependence on initial conditions can be verified
FIG. 13. Separation of two nearby points vs iterati¢e)  py |ooking at the separatiofr, between two orbits starting
Strange nonchaotic attractore£0.0410); (b) chaotic attractor  from two nearby initial conditions. Two nearby points on the
(€=0.0413). attractor §;,y;,¢;) and ;,yj,¢;) are chosen and their
separation
B. Strange nonchaotic and chaotic attractors

A= Nk X002+ (Yirk—Yj+1)? (1)
On increasing further the value to 0.0399 the merged

attractor begins to wrinkle as shown in Fig. 8. Figure 9 re-is monitored at each forward stép For regular behavior
veals the formation of sharp bends in the strand of the attracA, will decay to zero as— . However, it will vary irregu-
tor. These bends tend to become actual discontinuities darly with time for chaotic nature. Figure 13 is a plot &f,
€=0.041. At such values, the attractor loses smoothness anersusk for two values,e=0.0410 and 0.0413. Figure (3
becomes “strange’[17-28. The attractor shown in Fig. 10 shows thatA, for the valuee=0.0410 diminishes to zero
is nothing but nonchaotic as the maximum Lyapunov expoafter short-lived irregular variation. For comparison Fig.
nent works out to b& ;= —0.0123. To confirm further about 13(b) shows thatA, for the valuee=0.0413 exhibits more
this behavior, we carry out some other characterizations bdrequent and longer lived strong excursions. Hence the
low. On further increase of the value efto 0.0413, we find former case clearly supports the loss of sensitive dependence
the emergence of a chaotic attractor, which though visiblyon initial conditions, which corresponds to the strange non-
similar to the nonchaotic strange attractor has a positivehaotic attractor, while the latter one corresponds to a chaotic
Lyapunov exponentXN;=0.0013). It is shown in Fig. 11. attractor.
The chaotic behavior persists as the values @$ increased To sum up the above investigation, the attractor evolution
further. has been found to follow the following route asis in-
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FIG. 14. Phase portraitx{x) of Eq. (6): (a) Symmetric periodF orbit at f=0.213; (b) asymmetric period- orbit at f=0.321; (c)
f=0.537;(d) f=1.7; (e) =2.832;(f) f=3.781.

creased: two-frequency quasiperiodicity torus doubling
— torus merging— strange nonchaotic attractes strange

chaotic attractor.

from the earlier studies on the torus-doubling route to chaos.
In the earlier studies, it has been found that a variation of
bifurcation parameter leads to the doubled torus, which gets

This type of route to chaos seems to be rather differenwrinkled and becomes strange nonchaotic on touching the
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- 1.25

1.15

IR W

FIG. 15. Bifurcation diagramftx) of the system(6): (a) Period doubling, periodic windows, and period halvirig: (4.8,5.8);(b)
period-5 bubblef € (5.2,5.6). The other parameters ar§= 1.0,A=0.5,a04=0.2, w=1.0.

separatrix. However, in the present case, before the strange it has been found that the systéd) also exhibits the other
nonchaotic attractor appears, the doubled torus gets mergédo known types of routes to chadd) two-frequency qua-
and then becomes wrinkled. Such a route to a strange nosiperiodicity— torus doubling— wrinkling — strange non-
chaotic attractor has very recently been investigated in a ringhaotic attractor— chaos;(2) two-frequency quasiperiodic-
map[27,28. Further, over a wide range of valuesfoind ity — strange nonchaotic attractes chaos.
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FIG. 16. Poincaremap in the ((-5() plane of Eq.(6): (a) 5-band chaotic attractor &t=5.2993;(b) widened chaotic attractor at
f=5.2995.

IV. CHAOTIC DYNAMICS OF THE NONLINEAR

phase plane, which obviously corresponds to the damped os-
HARMONIC OSCILLATOR

cillatory solution. At the value of =0.213, a stable sym-
. : . metrical limit cycle occurs. Further increasing thealue the
Let us now consider the dynamics of the nonlinear har- . s . -

- . . .~ symmetric orbit[Fig. 14(a)] loses its stability and a stable
monic oscillator under the influence of damped and drlvenas mmetric orbit appeaf&ig. 14b)]. As the value off is
forces. For this purpose, we integrate ). numerically by yn : bp 9 ' .

; ) - _ ~ continuously increased further, changes in the number of
keeping the parameters fixed aé—l.o, A=0.5, «=0.2, . . .
w=1, and vary the value df. lOODSh'n thﬁ (((,jx_) _plane(|F|g..l4) oceur. q 21 the fi

For small values of a stable fixed point occurs in the ~ YWhen the driving value is increased to 4.8621, the first
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period-doubling bifurcation is observéBig. 15. It is again  both period J attractor and unstableT5orbit. At the crisis
preceded by a symmetry-breaking bifurcation. point f=f, .s=5.2994, the unstable period &ollides with
On increasing the value of further to 5.123, one ob- five pieces of the chaotic attract(fig. 16).
serves a complete cascade of bifurcations and a chaotic re-
gion as shown in Fig. 15. The above chaotic region is inter- V. CONCLUSIONS
rupted by period-5 windows in the region 5.216<5.517. . .
Beyond the forcing value 5.623, as the value fofs in- In this paper, we have shown that the velocity-dependent,

creased, reverse bifurcations occur through period halvingd@mped, driven systeni§) and (6) exhibit a rich variety of
(Fig. 15. bifurcations phenomena. It includes the familiar period-

doubling bifurcations, preceded by a symmetry-breaking bi-
furcation. Besides the period-doubling route to chaos, inter-
mittency, and antimonotonicity exist in the mechanical
Also we notice from Fig. 1&) in the window region system(5) while in (6), antimonotonicity and crisis phenom-
5.215<f<5.517, antimonotonicity can be observed in a wayena are observed. We have also investigated the dynamics of
quite different from the one discussed in Sec. Il. This can beq. (8). Motivated by the detection of a strange nonchaotic
clearly seen from the bifurcation diagrdifig. 15b)]. Asf  attractor in experimental systems, we have also investigated
is increased a tangent bifurcation of the periodic orbit withthe transition from smooth two-frequency quasiperiodicity
period 5 is followed by a complete sequence of period-nehavior to strange nonchaoti&nd chaotit behavior as the
doubling bifurcations. Then after an interval with chaotic driving parameter is increased. So far it is believed that the
behavior, there is a reverse period-doubling sequence, endingrus doubling followed by strange nonchaotic attractor is
in a periodic orbit with period 5. Such a pattern is called aquite general. However, in the present case, a new type of

A. Antimonotonicity

period-5 bubble. transition, namely, the crisis of the tor(merging of doubled
torug results before the consequent appearance of a strange
B. Crisis-induced intermittency nonchaotic attractor.

In the above range of the period-5 window, we also see
that an attractor widening crisis occurs. WHers increased
through f,.s=5.2994, the attractor undergoes a sudden
change. The event causing this change is an interior crisis This work forms a part of research projects sponsored by
[29]. To see the reason behind it, we note that at the begirthe Department of Atomic Energf\BHM) and the Depart-
ning of the window, there is a tangent bifurcation creatingment of Science and Technology, Government of India.
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