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Nonlinear dynamics of damped and driven velocity-dependent systems

A. Venkatesan and M. Lakshmanan
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India

~Received 6 December 1996!

In this paper, the nonlinear dynamics of certain damped and forced versions of velocity-dependent potential
systems, namely,~i! the motion of a particle on a rotating parabola and~ii ! a nonlinear harmonic oscillator, is
considered. Various bifurcations such as symmetry breaking, period doubling, intermittency, crises, and anti-
monotonicity are reported. We also investigate the transition from two-frequency quasiperiodicity to chaotic
behavior in a model for the quasiperiodically driven rotating parabola system. As the driving parameter is
increased, the route to chaos takes place in four distinct stages. The first stage is a torus doubling bifurcation.
The second stage is a merging of doubled torus. The third stage is a transition from the merged torus to a
strange nonchaotic attractor. The final stage is a transition from the strange nonchaotic attractor to a geometri-
cally similar chaotic attractor.@S1063-651X~97!00505-9#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

In this paper, we consider the dynamics of a class
nonpolynomial oscillators governed by the equations of m
tion

~11lx2!ẍ1lxẋ21v0
2x50 ~1!

and

~12lx2!ẍ1lxẋ21v0
2x50, S •5

d

dtD ~2!

and subjected to additional linear damping and periodic fo
ing.

In particular, Eq.~1! is a well-known model@1–3# for the
analysis of inherently nonlinear phenomena in a nongen
mechanical system corresponding to the Lagrangian

L5 1
2 @~11lx2!ẋ22v0

2x2#, ~3!

whence the Hamiltonian is

H5 1
2 @p2~11lx2!211v0

2x2#,

and the canonical momentum is

p5 ẋ~11lx2!.

A mechanical setup for this case is that of the motion o
particle of massm sliding freely on a wire described by th
parabolaz5Al/2x2, which rotates with a constant angul
velocity @V5V05(2v0

21gAl)1/2# about its z axis as
shown in Fig. 1. A physical realization of this model is th
of a man riding a motor bike on a rotating parabolic well
a circus. Whenv0

2.0, physically realizable solutions to Eq
~1! can be expressed in terms of elliptic integrals.

Equation ~2! corresponds to a velocity-depende
potential-type nonlinear oscillator, exhibiting amplitud
dependent simple harmonic oscillations@3–5#. It is a model
system corresponding to the oscillator version describ
pion-pion interaction with the Lagrangian@6#
551063-651X/97/55~5!/5134~13!/$10.00
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L5
1

2
F ẋ21v0

2x2

12lx2
G , ~4!

and the corresponding Hamiltonian is

H5 1
2 @p2~12lx2!1v0

2x2~12lx2!21#,

with

p5 ẋ~12lx2!21.

Also, a perturbative analysis of this model can reproduce
exact solution for all values of the coupling parameterl @5#.
The corresponding field system for Eq.~4! has an interest-
ingly simple harmonic traveling wave solution. In the mas
less case, this is an isoscalar analogue of the chiral invar
SU~2!^SU~2! Lagrangian in the Gasiorowicz-Geffen coo
dinates@7#.

It is of considerable physical interest to consider the n
linear dynamics of Eqs.~1! and ~2! under the influence of

FIG. 1. Particle on a rotating parabola defined byz5Al/2x2.
5134 © 1997 The American Physical Society
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55 5135NONLINEAR DYNAMICS OF DAMPED AND DRIVEN . . .
additional damping and external periodic forces so that
equations of the motion become

~11lx2!ẍ1lxẋ21v0
2x1a ẋ5 f cosvt ~5!

and

ẍ1
~lxẋ21v0

2x!

~12lx2!
1a ẋ5 f cosvt, ~6!

respectively, in place of Eqs.~1! and ~2!. In addition, we
consider the system shown in Fig. 1, when the angular
locity is parametrically varying as@2#

V5V0~11e cosvpt !. ~7!

Then the equation of motion can be rewritten as

~11lx2!ẍ1lxẋ21v0
2x2V0

2@2e cosvpt

10.5e2~11cos2vpt !#x1a ẋ5 f cosvet, ~8!

whereve is the frequency of the external force.
In particular, we wish to make a detailed investigation

the dynamics of the mechanical system~5! and investigate
the existence of a rich variety of bifurcations as the exter
forcing parameter is varied while all other parameters
fixed. Specifically, we would like to present a detailed a
count of the various bifurcations such as symmetry break
period doubling, periodic windows, intermittency, and an
monotonicity, exhibited by the system~5! as the paramete
changes. We also investigate the transition from tw
frequency quasiperiodicity to chaotic behavior in the syst
~8!. As the parameter is increased, the route to chaos t
place in four distinct phases. The first phase is a tor
doubling bifurcation. The second phase corresponds to
doubled torus merging into a single torus. The third phas
a transition from the merged torus to a strange noncha
attractor. The final phase is a transition from the stran
nonchaotic attractor to a geometrically similar chaotic attr
tor. Finally, we wish to present briefly the bifurcation rout
and chaotic dynamics of system~6!. In particular, the exis-
tence of symmetry breaking, period doubling, antimono
nicity, and crises bifurcations are reported.

II. CHAOTIC DYNAMICS OF THE MOTION
OF A PARTICLE ON A ROTATING PARABOLA

UNDER THE INFLUENCE OF DAMPED
AND DRIVEN FORCES

To be concrete, we consider the dynamics of Eq.~5!
where we fix the values of the parameters asv0

250.25,
l50.5, a50.1, V25V0

256.7, andv51.0 and vary the
value of the forcing parameterf . At low values of the forcing
parameter, the response asymptotically approaches a s
fixed point. As the forcing parameter is further increased
stable symmetrical limit cycle occurs atf50.012. As we
slowly increase the value off , the symmetric solution bifur-
cates into a limit cycle that exhibits asymmetrical behavio
e
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FIG. 2. Bifurcation diagram of the system~5! for x(t) vs f , ~a!
fP(0.0,7.0); ~b! symmetry-breaking and period-doubling bifurc
tions for fP(0.0,2.0); ~c! periodic windows in the intervalf
P(2.0,3.0); ~d!,~e! a reverse period-2 bubble forfP(2.75,3.15).
The other parameters arev0

250.25,l50.5,a50.2, andv51.0.
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FIG. 3. Time seriesxn containing laminar parts vs the number of cyclesn. ~a! Period-5 orbit atf52.2993;~b! intermittent chaos at
f52.2995.
en
th
t
to

d
e at
f51.213. Even though the velocity-dependent potential
ergy of this system is symmetric, the actual behavior of
response is not symmetric, leading to dynamical symme
breaking similar to the one that occurs in a Duffing oscilla
@8,9#.
-
e
ry
r

A. Feigenbaum scenario

As the parameterf is further increased, a period-double
orbit appears and the original limit cycle becomes unstabl
f51.689. As we increase the value off further, this period-2
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55 5137NONLINEAR DYNAMICS OF DAMPED AND DRIVEN . . .
orbit flips to a period-4 orbit atf51.823, which then bifur-
cates to a period-8 orbit atf51.874 and so on, as shown i
the bifurcation diagram, Fig. 2. This infinite sequence en
up in chaotic motion in the standard way. Of course, one
verify that the bifurcation sequence is associated with
Feigenbaum universal constant@10#. Further increase in the
value of f leads to periodic windows and further comple
behaviors~as depicted in Fig. 2!, which are discussed below

B. Periodic windows and intermittency

In addition to the obvious chaotic orbits, Fig. 2 also sho
that there are certain ranges of the parameters where per
behavior appears that is essentially due to tangent bifu
tion. For example, the widest range is occupied by
period-5 orbit in the interval 2.199, f,2.301 and reverse
period-2 bubble in the interval 2.731, f,3.153.

In the intermittency transition@11#, when the value of the
control parameter is greater than a critical value, the perio
orbit is replaced by a chaotic orbit. An example of this ph
nomenon is illustrated in the interval 2.29, f,2.301. From
Fig. 3, we see that just before the valuef 552.2994, we

FIG. 4. Bifurcation diagram of Eq.~8! for x(t) vs e: e
P(0,0.08). The other parameters arev0

250.25, l50.5, a50.2,
vp51, V0

256.7, andf5ve50.
*
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have a stable period-5 orbit, while just afterf * 5, there is
chaos. Thus as the parameterf is increased throughf * 5, we
have an intermittency transition from a periodic to a chao
attractor. For f slightly greater thanf * 5, there are finite
stretches of time during which the orbit closely resembles
orbit for f, f * 5, but this regular~approximately periodic!
behavior is intermittently interrupted by finite duratio
‘‘bursts’’ in which the orbit behaves in a decidedly differe
manner.

C. Antimonotonicity

Recently Yorke and co-workers@12,13# have shown that
antimonotonicity, inevitable reversals of period-doublin
cascades@14,15#, is a fundamental phenomenon for a lar
class of nonlinear systems. One finds that periodic orbits
not only created but also destroyed when one increases
control parameter monotonically~smoothly! in any neigh-
borhood of a homoclinic tangency value. Now we wish
point out that for the present problem, antimonotonicity c
be observed in one way by looking at the bifurcation d
gram, Fig. 2, in the range 2.731, f,3.153. As f is in-
creased, the chaotic behavior is followed by an ‘‘unusua
period-4 orbit. The period-8 orbit appears and disappears
to pitchfork bifurcation in the range 2.753, f,2.775, fol-
lowed by a reverse period-doubling bifurcation whence
period-4 orbit and then a period-2 orbit appear. Further, i
followed by a complete period-doubling sequence leading
chaotic oscillations. Such a pattern is called a reve
period-2 bubble. We also notice that in the above range
reverse period cascades of the period-2 orbit starts in an
usual way@16#, however, this is followed by the standar
period-doubling sequence.

III. CHAOTIC DYNAMICS OF THE MOTION
OF A PARTICLE ON A ROTATING PARABOLA
UNDER THE INFLUENCE OF DAMPED, DRIVEN

AND PARAMETRIC FORCING

So far, we have discussed the dynamics of the system~5!
with constant angular velocity V5V0 @5(2v0

2

1gAl)1/2)]. Now we consider the system~8!, which has a
parametrically varying angular velocity instead of the co
stant angular velocityV as given in Eq.~7!. Equation~8! can
be equivalently rewritten as
ẋ5y,

ẏ5F „2lxy22$v0
22V0

2@2ecosf10.5e2~11cos2f!#%x2ay1 fcosu…

~11lx2! G ,
~9!

ḟ5vp ,

u̇5ve ,
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FIG. 5. Projection of the two-frequency quasiperiodic attract
of Eq. ~8! for e50.03: ~a! Poincare´ map in the (x-y) plane; ~b!
Poincare´ map withf mod 2p in the (x,f) plane;~c! same as~b!
exceptf mod 4p during computation;~d! trajectory in the (x-y)
plane. The other parameters arev0

250.25, l50.5, a50.2,
vp51.0,V0

256.7, f50.32, andve50.991.
s

FIG. 6. Torus-doubled two-frequency quasiperiodic attractor
e50.0317. Details as in Fig. 5.
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FIG. 7. Merged attractor fore50.0353. Details as in Fig. 5.

FIG. 8. Two-frequency attractor of Fig. 7 begins to wrinkle

e50.0399.
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FIG. 9. Appearance of sharp bends ate50.0408.

FIG. 10. Fully developed discontinuities on the two-frequen

attractor fore50.0410.
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55 5141NONLINEAR DYNAMICS OF DAMPED AND DRIVEN . . .
where the values of the parameters are fixed asv0
250.25,

l50.5,a50.2,vp51.0, f5ve50, andV0
256.7, whilee is

being varied. For smalle value, the attractor is a fixed poin
For e50.0146, the attractor is a limit cycle of period 2 com

FIG. 11. Chaotic attractor ate50.0413.
pared to the period of the parametric modulati
(52p/vp). The period-2 nature may be understood from t
considerations that the period of the parametric te
cosf1cos2f is approximately twice the Poincare´ period
Tp(52p/vp). As e is increased further toe50.0487, the
attractor undergoes period doubling. On increasing the va
of e further, one observes a complete cascade of per
doubling bifurcations and a chaotic region as shown
Fig. 4.

A. Torus doubling and merging bifurcations

Now we consider the combined effect of both the exter
and parametric forcing in Eq.~9!. We choose the paramete
f andve to be 0.32 and 0.991, respectively, and vary t
valuee. For e50.03, the attractor is a two-frequency qua
periodic attractor~Fig. 5!. As e is increased toe50.0317,
the attractor undergoes a torus-doubling bifurcation~as seen
Fig. 6!. We note from Figs. 5 and 6 that the two strands
the (x,f) projection becomes four strands when torus do
bling occurs. When we computef modulo 4p instead of
modulo 2p during integration,we notice from Fig. 6 that th
two bifurcated strands of length 2p in Fig. 6~b! are actually
a single strand of length 4p @Fig. 6~c!#. As a result, it can be
concluded that the torus doubling is nonetheless a len
doubling bifurcation. Further, it may be noted from Fig
5~d! and 6~d! that each component of the bifurcated torus l
on the boundary of a Mo¨bius band, a situation that is geo
metrically very similar to period-doubling bifurcations of pe
riodic orbits in three-dimensional flows. A similar type o
torus doubling has been observed in the quasiperiodic
driven magnetoelastic ribbon experiment, double well Du
ing oscillator and logistic map@17,22,23#.

Interestingly, ase is increased further toe50.0353, the
strands of the length-doubled attractor begin to merge in
single attractor again as shown in Fig. 7.

FIG. 12. Largest Lyapunov exponent vse, indicating torus dou-
bling, merging, onset of discontinuities, and transition to chaos
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5142 55A. VENKATESAN AND M. LAKSHMANAN
B. Strange nonchaotic and chaotic attractors

On increasing further thee value to 0.0399 the merged
attractor begins to wrinkle as shown in Fig. 8. Figure 9 r
veals the formation of sharp bends in the strand of the attr
tor. These bends tend to become actual discontinuities
e50.041. At such values, the attractor loses smoothness
becomes ‘‘strange’’@17–28#. The attractor shown in Fig. 10
is nothing but nonchaotic as the maximum Lyapunov exp
nent works out to bel1520.0123. To confirm further abou
this behavior, we carry out some other characterizations
low. On further increase of the value ofe to 0.0413, we find
the emergence of a chaotic attractor, which though visi
similar to the nonchaotic strange attractor has a posit
Lyapunov exponent (l150.0013). It is shown in Fig. 11.
The chaotic behavior persists as the value ofe is increased
further.

FIG. 13. Separation of two nearby points vs iteration.~a!
Strange nonchaotic attractor (e50.0410); ~b! chaotic attractor
(e50.0413).
-
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C. Characterization of nonchaotic and chaotic attractors

1. Lyapunov exponent

In Fig. 12, the largest Lyapunov exponent is plotted a
function ofe for a range ofe values. This figure summarize
the four major dynamical events that occur as the system
taken from two-frequency quasiperiodicity to chaos. T
peak neare50.0317 corresponds to the torus-doubling bifu
cation. Such peaks in Lyapunov exponents are well-kno
occurrences at bifurcation points. The second peak n
e50.0353 corresponds to the torus merging bifurcation. T
peak just beyonde50.0399 coincides with the appearance
discontinuities on the attractor. The transition to chaos
curs ate50.0413.

2. Correlation dimension

We have also estimated correlation dimensionDc of the
attractors shown in Figs. 10 and 11, using the algorithm p
posed by Grassberger and Proccacia@30#. The correlation
dimension of the strange nonchaotic attractor shown in F
10 is estimated as 1.77, while for the chaotic attractor of F
11 it is 1.86.

3. Power spectral analysis

The occurrence of a strange nonchaotic attractor is fur
confirmed by a power spectrum analysis. For a strange n
chaotic attractor the number of peaksN(s) in a power spec-
trum exceeding a threshold amplitudes scales@20# as

N~s!}s2a, 1,a,2. ~10!

The power spectrum of the attractor is obtained using the
Fourier transform with 8192 points. From the log10N(s) ver-
sus log10(s) plot the value of the scaling exponent is es
mated as 1.63. This is in agreement with the power-law s
ing relation~10!.

4. Separation of nearby points

Sensitive dependence on initial conditions can be verifi
by looking at the separationDk between two orbits starting
from two nearby initial conditions. Two nearby points on th
attractor (xi ,yi ,f i) and (xj ,yj ,f j ) are chosen and thei
separation

Dk5A~xi1k2xj1k!
21~yi1k2yj1k!

2 ~11!

is monitored at each forward stepk. For regular behavior
Dk will decay to zero ast→`. However, it will vary irregu-
larly with time for chaotic nature. Figure 13 is a plot ofDk
versusk for two values,e50.0410 and 0.0413. Figure 13~a!
shows thatDk for the valuee50.0410 diminishes to zero
after short-lived irregular variation. For comparison F
13~b! shows thatDk for the valuee50.0413 exhibits more
frequent and longer lived strong excursions. Hence
former case clearly supports the loss of sensitive depend
on initial conditions, which corresponds to the strange n
chaotic attractor, while the latter one corresponds to a cha
attractor.

To sum up the above investigation, the attractor evolut
has been found to follow the following route ase is in-
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FIG. 14. Phase portrait (x-ẋ) of Eq. ~6!: ~a! Symmetric period-T orbit at f50.213; ~b! asymmetric period-T orbit at f50.321; ~c!
f50.537;~d! f51.7; ~e! f52.832;~f! f53.781.
en

os.
of
ets
the
creased: two-frequency quasiperiodicity→ torus doubling
→ torus merging→ strange nonchaotic attractor→ strange
chaotic attractor.

This type of route to chaos seems to be rather differ
 t

from the earlier studies on the torus-doubling route to cha
In the earlier studies, it has been found that a variation
bifurcation parameter leads to the doubled torus, which g
wrinkled and becomes strange nonchaotic on touching
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FIG. 15. Bifurcation diagram (f -x) of the system~6!: ~a! Period doubling, periodic windows, and period halving:fP(4.8,5.8); ~b!
period-5 bubble:fP(5.2,5.6). The other parameters arev0

251.0, l50.5,a50.2,v51.0.
n
rg
no
rin -
separatrix. However, in the present case, before the stra
nonchaotic attractor appears, the doubled torus gets me
and then becomes wrinkled. Such a route to a strange
chaotic attractor has very recently been investigated in a
map @27,28#. Further, over a wide range of values off and
ge
ed
n-
g

e, it has been found that the system~8! also exhibits the other
two known types of routes to chaos:~1! two-frequency qua-
siperiodicity→ torus doubling→ wrinkling→ strange non-
chaotic attractor→ chaos;~2! two-frequency quasiperiodic
ity → strange nonchaotic attractor→ chaos.
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FIG. 16. Poincare´ map in the (x-ẋ) plane of Eq.~6!: ~a! 5-band chaotic attractor atf55.2993; ~b! widened chaotic attractor a
f55.2995.
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IV. CHAOTIC DYNAMICS OF THE NONLINEAR
HARMONIC OSCILLATOR

Let us now consider the dynamics of the nonlinear h
monic oscillator under the influence of damped and driv
forces. For this purpose, we integrate Eq.~6! numerically by
keeping the parameters fixed asv0

251.0, l50.5, a50.2,
v51, and vary the value off .

For small values off a stable fixed point occurs in th
-
n

phase plane, which obviously corresponds to the damped
cillatory solution. At the value off50.213, a stable sym
metrical limit cycle occurs. Further increasing thef value the
symmetric orbit@Fig. 14~a!# loses its stability and a stabl
asymmetric orbit appears@Fig. 14~b!#. As the value off is
continuously increased further, changes in the number
loops in the (x,ẋ) plane~Fig. 14! occur.

When the driving value is increased to 4.8621, the fi
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5146 55A. VENKATESAN AND M. LAKSHMANAN
period-doubling bifurcation is observed~Fig. 15!. It is again
preceded by a symmetry-breaking bifurcation.

On increasing the value off further to 5.123, one ob
serves a complete cascade of bifurcations and a chaoti
gion as shown in Fig. 15. The above chaotic region is in
rupted by period-5 windows in the region 5.215, f,5.517.
Beyond the forcing value 5.623, as the value off is in-
creased, reverse bifurcations occur through period halv
~Fig. 15!.

A. Antimonotonicity

Also we notice from Fig. 15~b! in the window region
5.215, f,5.517, antimonotonicity can be observed in a w
quite different from the one discussed in Sec. II. This can
clearly seen from the bifurcation diagram@Fig. 15~b!#. As f
is increased a tangent bifurcation of the periodic orbit w
period 5 is followed by a complete sequence of perio
doubling bifurcations. Then after an interval with chao
behavior, there is a reverse period-doubling sequence, en
in a periodic orbit with period 5. Such a pattern is called
period-5 bubble.

B. Crisis-induced intermittency

In the above range of the period-5 window, we also s
that an attractor widening crisis occurs. Whenf is increased
through f * cs55.2994, the attractor undergoes a sudd
change. The event causing this change is an interior c
@29#. To see the reason behind it, we note that at the be
ning of the window, there is a tangent bifurcation creati
-

k

tt
re-
r-

gs

e

-

ing

e

n
is
n-

both period 5T attractor and unstable 5T orbit. At the crisis
point f5 f * cs55.2994, the unstable period 5T collides with
five pieces of the chaotic attractor~Fig. 16!.

V. CONCLUSIONS

In this paper, we have shown that the velocity-depend
damped, driven systems~5! and ~6! exhibit a rich variety of
bifurcations phenomena. It includes the familiar perio
doubling bifurcations, preceded by a symmetry-breaking
furcation. Besides the period-doubling route to chaos, in
mittency, and antimonotonicity exist in the mechanic
system~5! while in ~6!, antimonotonicity and crisis phenom
ena are observed. We have also investigated the dynami
Eq. ~8!. Motivated by the detection of a strange nonchao
attractor in experimental systems, we have also investiga
the transition from smooth two-frequency quasiperiodic
behavior to strange nonchaotic~and chaotic! behavior as the
driving parameter is increased. So far it is believed that
torus doubling followed by strange nonchaotic attractor
quite general. However, in the present case, a new typ
transition, namely, the crisis of the torus~merging of doubled
torus! results before the consequent appearance of a str
nonchaotic attractor.
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