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Solving the Langevin equation with stochastic algebraically correlated noise
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The long time tail in the velocity and force autocorrelation function has been found recently in molecular
dynamics simulations of peripheral collisions of ions. Simulation of those slowly decaying correlations in the
stochastic transport theory requires the development of new methods of generating stochastic force of arbi-
trarily long correlation times. In this paper we propose a Markovian process, the multidimensional kangaroo
process, which permits the description of various algebraically correlated stochastic processes.
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I. INTRODUCTION be modeled in terms of periodic two-dimensioiiaD) lat-
tices[6,7]. The similarity of the diffusive behavior for sys-
Dynamics of a classical many-body system can be investems as different as the CMD and the PLG follows from the
tigated using either the molecular dynamics approach or théact that the power-law tail of the velocity autocorrelation
kinetic rate equations. Both approaches have their semiclaganction is due to the existence of long free paths. This be-
sical counterparts and can be modified to incorporate also theavior is universaland insensitive to the details of the po-
Pauli exclusion principle for fermions. In the latter case, ongtential, in particular to its short distance features. Such uni-
considers, for example, different variants of the Boltzmanrversality allows one to describe phenomena involving long
or Boltzmann-Langevin equations, whereas in the formefree paths in the framework of the Langevin equation with
case the “quantal” version of the molecular dynamics, the@lgebraically correlated noig@]. Inclusion of effects con-
so-called antisymmetrized molecular dynanits has been nectt_ad with the antlsymmet_rlza_tlon of the_que function for
proposed. Chaotic properties of atomic nuclei have been did€rmions does not modify this picture qualitatively. The non-

cussed in the framework of the classical molecular dynamiciPcality of the Pauli potential destroys cantori in the phase

(CMD). For central collisions where fusion processes domiShace and the diffusion process, for sufficiently large lattice

nates, it has been demonstrafédd] that both the velocity spacing, is dominated by long free paths and hence its power

. . = spectrum is logarithmic at small frequency lini&]. This
autocorrelation functlo@(t)—(v(to)v(t0+t)> and the force finding makes the purely classical description more reliable.

autocorrelation functiorC(t) =(F(to)F(t)) decay exponen-  The relevance of the Langevin approach for the descrip-
tially in time. The equilibration time is short, allowing the tjon of an induced fission process has been realized a long
statistical properties of the compound nucleus to show up afme ago[9]. The slow collective motion with its high mass
the early stage of the reaction. On the contrary, in the periphparameter is treated as a Brownian particle, whereas the fast
eral collisions of ions, the algebraic, long time taitt™”  nucleonic degrees of freedom form the heat bath. In gener-
(y=1) was found in both the velocity and force autocorre-alized Brownian motion theorl10], the Hamilton equations
lation functions[2,3]. Moreover, the survival probability is can be rewritten in the form of the Langevin equation by
given by a power law4]. making use of the projection operator technique. The total
The Fourier transform o€(t) gives the power spectrum force acting on a Brownian particle is divided into a system-
S(w). For the peripheral collisiong2], C(t)~t~! and atic part and a random part. The slowly varying part de-
hence S(w)~|Inw| . The mean square displacement inscribes the evolution of macroscopic variables. The fast
configurational space is in this cad@] o?(t)=([r(t) varying part leads to the fluctuations around the most prob-
—r(tg)]?)=t In(t/ty)—t+t,. The diffusion is anomalously able path. In the conventional Langevin approach, it is usu-
enhanced (superdiffusion and the diffusion rate ally assumed that the time evolution of the fast varying ran-
D=lim,_.o?(t)/t diverges logarithmically; i.e., the dissipa- dom part is stochastic and the time rate of change is much
tion rate does not stabilize, as would be the case for a norméster than that of the systematic part. Consequently, it is
diffusion (D =const). The same dependence holds also foassumed that the correlation function of the random part is

the mean-square displacement in the velocity space. 6 correlated or decays exponentialiizor a recent review of
The logarithmic power spectrum and the enhanced diffustochastic theories with the colored noise see Ref].)
sion have been found for the periodic Lorentz §akG) of A hypothesis of the rapid decay of the force correlations

hard diskgthe extended Sinai billiayd5]. From the point of  holds for central collisions and the CMD yields in this case
view of transport phenomena, many physical systems can lfast decaying correlations in both velocity and acceleration
reduced to a simple lattice of periodic potentials. Besides théforce) [2]. However, for peripheral reactions and/or strongly
CMD in the orbiting regime, the dynamics of electrons in elongated shapes, the correlations decay algebraif2)ly
crystals moving in a magnetic field or the ballistic-electronSuch slowly decaying correlations are known in various phe-
dynamics in lateral superlattices are other examples that camomena including the chemical reactions in solutiph2],
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ligand’s migration in biomolecule$13], atomic diffusion tential well. Finally, the most important results of this work
through a periodic latticg14], Stark broadenindg15], and are summarized and concluded in Sec. V.

many others. This regime is certainly beyond the standard

Langevin approach and requires the consideration of the col-

ored noise of arbitrarily long correlation time. The first im- Il. PERIODIC LORENTZ GAS AND THE CORRELATIONS
portant step in this direction was the theory of line shapes FOR OPEN AND CLOSED HORIZONS

and relaxation in magnetic resonance systems through the

study of the so-called Kubo oscillat¢L6]. More recently, to remind the reader of the most essential properties of the
thg Kubo-Andgrson prqce{&?] with the slowly decaying PLG (or the extended Sinai billiayd As state% bF()-Z‘fOI’e, the
hoise correlation function, the _so-called _kar_lgaroo Procesg, s was used to generate event by event the erratic chaotic
E)TE; dEzln?]r; g[vi/%s used to explain the noise-induced Starkfor(.:e acting on Brpwnian parti.cle[§]. Thg PLG _consistslof_
Recently W'e have proposed a method that extends tha single point particle moving in a two-dimensional periodic
S e . rray of fixed circular scatterers of radiRq 19]. The lattice
Langevin approach for phenomena with either exponentlallyépacirlg is assumed to be equal to two, then the separation
or a_IgebraicaIIy d(_ecayin_g force correlgtiovﬁz]_. In these .between disk bordells=2—-2R. The point'mass is scattered
StUd'e.S’ wde hayq |nvest|gatepl a t_wo-d|.mer13|onal I‘angev'%Iastically from scatterers and the particle velocity has a unit
equation, describing stochastic trajectoni¢s): length. The patrticle is reflected upon hitting an arc of hard
dr disks or meets the periodic boundary condition when it
FTaL passes between hard disks, crossing a straight line linking
their centers. The phase space is spanned by the arc length
D s with 0<s<L=2wR+4l and by the tangential momentum
dv aV(r) p, v_vhich is_ related to the reflectiqn angde p_=cos¢. The
“a(t): —Bv(t)— +F(1), orbit consists of thg succession of pa||{sn(so,po):
Pn(So.Po)} corresponding to thath bounce when the initial
condition was{sy,po}- This dynamics is a mappind of the
phase spacés,p} onto itself[20]:

Before discussing the KP and its generalization, we want

ar

where the spherically symmetric potenth{r=|r|) gener-
ates a conservative forcg, is the friction constant, ang
stands for the mass of the system. The external n@ite

chastic forcg F(t) has algebraically decaying correlations (Sn+1) (Sn)
= . 3
F(O)F(0)~ 11, prer) ' py ®
(
2
(F(1))=0. The sequence of iteratg8) is uniquely determined as a

function of the initial value. The separation between disks

These conditions do not determine the noise uniquely. In ou¢ompletely determines the behavior of the systenR¥1
earlier studies, we have proposed simulatif(g) by deter-  (“the high-density regime” of the PL&then the disks over-
ministic time series of the particle velocity in the PLG. In the lap and the particle is trapped in a region bounded by four
present work, we investigate the possibility of simulatingarcs of circles. This situation corresponds to the closed hori-
algebraically correlated noigg(t) by a Markov process, and zon as the particle trajectory is bound.RK 1 (“the low-
for this purpose we shall study the generalized KP. In spitélensity regime” of the PL® the particle sees an infinite
of fundamental differences, there are some similarities behorizon and may move to an arbitrarily long distance be-
tween these two realizations of the algebraic noise. For bottween subsequent collisions; i.e., the length of free paths is
processess, algebraic correlations involved are due to the ednbounded.
istence of “long free paths,” i.e., the value of the stochastic The PLG, for bothR<1 andR=1, belongs to the cat-
process(velocity of the particle in the case of the PL@-  egory of so-calleK systemg19], for which the nearby tra-
mains constant for long time intervals. jectories diverge exponentially and the metric entropy is

The main goal of this work is to investigate and comparepositive. This system is known to be ergodic in two dimen-
the Langevin processes for these two different ways of gensions and numerical experiments in higher dimensions also
erating the stochastic force. For that purpose we shall comindicate its ergodicity21]. Despite this, the PLG exhibits
pare the most relevant physical quantities such as the enerdgng-time correlations that are typically associated with the
spectrum of the particles and their escape time distributioexistence of tori in the phase space. P 1, there exist
obtained with the different generators of the external noisdamilies of trajectories that do not collide with hard scatterers
F(t). In Sec. Il we shall recall the most essential features ofind correspond to a regular motion. The existence these
the PLG process that can be used to generate both algebrd@milies is a reason for the long-time tails in the correlation
and exponentially correlated deterministic ndi8¢ Sec. Il functions: the velocity autocorrelation function changes from
is devoted to the discussion of the KP. In Sec. Ill B wea stretched exponential decfgl] for the closed horizon
discuss the multidimensional, norm-conserving generalizasituation to algebraic decd®2] [C(t)~t~*] for the infinite
tion of this stochastic process, which can be directly comhorizon situation. Consequently, the self-generated diffusion
pared with the norm-conserving PLG process. We perfornprocess changes from an ordinary diffusion process
this comparison in Sec. IV, solving the Langevin equation[ D(t) =cons] to a superdiffusive proce$® (t)~Int] when
(1) for particles escaping from the spherically symmetric po-the horizon for a wandering particle is opened. In the latter
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case, the distribution of free path lengths is algebraic:y .
S(s)~s~* for larges [21], independent of the dimensional- Z-P(m.t)
ity of the billiard.

At aroundR=1, many quantities, including the probabil-
ity density of free path lengtB(s) and the velocity autocor- = lim U PKp(m,At|m’,O)Is(m’,t)dm’— P(m,t)
relation functionC(t), exhibit a critical behavior that re- At—0
sembles a second-order phase transition. In particular, the (A=0)
correlation length diverges and the length scale disappears. X (At)~1 (6)

One can also define the order parameter
=—y(m)|5(m,t)+(“g(m)f p(m)P(m’,tydm'.
(r¥(v)

, (7)
t Int

lim
t—oe

The stationary probability densi§y(m) of m(t) is related to
which is zero forR>1 and changes to a finite valiiy, for Q(m) by
R<1.

A(m) = vimpP(m) V(n?;(m)

(8)
ll. THE KANGAROO PROCESS f v(m")P(m")dm’

The stepwise constant random functiorgt) is called a

Kubo-Anderson process if the jumping timeg; . , A )
(i=—, ... +) are uniformly and independently distrib- the summation of a series to take into account the possible

uted with densityv in the interval (%, +%), andm(t) isa  Occurrence of an arbitrary number of jumps between 0 and
constantm(t)=m; in the intervalt;<t<t;,,. m(t) is the t. For thatlet us calculate the Laplace transforni'¢f):
stationary Markov process with the probability density .

|5(m). Assuming(m)=0, one obtains for the covariance of f(z):f exp(izt)f(t)dt, 9)

this process: 0

The calculation of the covarian(fé(t) of the KP requires

~ ) which will allow one to relatev(m) and |5(m) for a given
L([t=t')=(mt)m(t"))=(m7)exp —v|t—t']). (4) T(1). It becomeq18]

2

Both the probability densit$(m) and the correlation time 'f(z): m—
Teon=v * for the Kubo-Anderson process may be chosen v(m)—iz
arbitrarily. However, the functional form of the covariance is 1 5
always exponential. —(iz< v(m) > ) (< m > )

The study of the problem of stochastic Stark broadening v(m)—iz v(m)—iz '
[15], where the covariance is proportional td &hd is not S S
integrable, has led to modifying the Kubo-Anderson process (10

by requiring that the frequency of jumping timegm) is a ) ) N
function of the value of the process itself. This process ha¥/here( )s denotes averaging over the stationary probability
been called the “kangaroo proceséP). The KP is a step- distribution P(m). If P(m) and »(m) are even functions,
wise stationary Markov process, whose transition probabilitythen

depends only on time differences. This probability is given

for infinitesimal time intervalsit by < m >

v(m)—iz =0

S
Pyp(m,Atjm’,0)={1—»(m")At}5(m—m") or, equivalently

+Q(m)»(m')At, 5 (mexd —v(m)t])s=0

where Q(m) is a given probability density to be specified and Eq.(10) simplifies to

below. Pxpdm is the probability that the KP at timAt is 5

betweenm andm+dm, knowing that it was equal tm’ at f(z)=< m : > _ (12)
time t=0. The first term on the right-hand side of E§) is v(m)—iz [

the probability that no jump occurred in the time interval

(0,At). The termv(m’)At is the probability that one jump The covariance of the KP is then

occurred. Immediately after such a jump, the probability

density of m becomesQ(m). The Focker-Planck equation f(t): f+wm2ﬁ’(m)exp[—v(m)|t|]dm, (12)
for the KP read$23,1§ —
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i.e., the ordinary variance (ff(m) conditioned by the prob- dv )a

ability exr[ v(m)|t|] that no jump occurs between 0 and szm P(m),

GivenP(m) and the covanancE(t) the jumping frequency

v(m) can be obtained as follows. Let us assume tifat) is ~ and therefore

a monotonic increasing function ¢fn| such thaty(e)=co.

Then, takingr as a new integration variable, one obtains R(v)= % (20)

~ to dm
F(t)=ZJ O)mzP(m)Eexp(—vlthv. (13 The free paths distribution is then

¥(

Calculation of v(m) requires then the inversion of the S(s)=R(») ﬂ :R(V(S))_ (21)
Laplace transformation and the solution of a simple differen- S s?

tial equation. For some probability distr@utior@(m),
v() can be finite. In this case the covariaddg) is prop-
erly reproduced by the above procedure asymptotically, i.e.
in the limit of larget.
It is always possible to construct the KP with an arbitrary
probability distributionP(m) and a quite arbitrary covari- . [1 for |m|<1
ancel’. For the exponential correlations, m

In order to see whether and how details of the chosen prob-

ability den5|tyP(m) influence the properties of the KP, in
particular the free path distribution, let us now consider a
few simple examples. First, let us take

“lo for |m|>1. 22

Pt=t'h=(mt)mt"))~exp(—volt—t']), (14 e jump frequency in this case igm)=3m|3, and the
frequency distribution isR(»)~»~?°. Consequently, the

we have free path distribution becomes

v(m) = vy=const. (15 S(s)~s 43, (23

For the most interesting, algebraic correlations, Now, let us consider a general algebraic distribution:
~ I'(1/k)
F(|t—t'|)~|t_(T|m (k>0), (16) . 0 for |m|<e

m)= (a—1)e* Ym|~@ for |m|>e, 24

singular fort=t’, we have L .
9 wherea>1 to ensure a correct normalization. We consider

|m| R K two cases:(i) «#3 and (i) «=3. In case(i), the jump
v(m)z(zf m’ZP(m’)dm’) . (17 frequency is
0
A 2(&’—1) a—1 3—a 3—a
[ in Eq. (16) is the gamma function anB(m) is an even v(m)=————&* H(|m*"“—&>"%) (25
function.
and the frequency distribution is
A. One-dimensional kangaroo process
R 1 3—a 2(a—3)
In the following, we shall assume that boB(m) and R(v)=2—2(1 a=1) —21;) (26)
v(m) are even functions. Fol'(t)=14, the frequency
v(m) is Consequently, the free path distribution becomes
[m| . _ 2(a—3)
’ ! ’ 3 o
v(m)=Zf m’2P(m’)dm’. (18 _ 21
0 S(S) 25282 1+ 2(0{—1) & S (27)
The “free path” length can be defined as Therefore, in the limit of long path$§(s)~s~2 . This is the

fastest decaying free path distribution that can be obtained
with the one-dimensional KP. Far>3, Eq.(27) implies a
low-s cutoff in the free path length:

s=1/v. (19)

Knowing P(m) we want to determine the probability density
of jump frequencyR(v), as well as the free path distribution a—3

S(s). SinceP(m)d|m|=R(»)dw, then S=Smin= 3 (a—1)°

In the second cas@ ), the jump frequency is

m

R(v)=P(m) ) |
V(m)=482|n? (29

From Eq.(18) we have
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and the frequency distribution is given by the Poisson distriasymptotic angular distribution of the processes, an impor-
bution tant quantity for many applications. As a simple example of
highly nonisotropic processes, it could be enough to sample

R(v)= exd — 4 (29) ¢ uniformly only in the interval[0,7/2] and then to ran-
262 2e2) domly choose signs ofn; and m, coordinates. The long
paths correspond then thy~0 and ¢~ , being restricted
Consequently, the free path distribution becomes to one direction. A more isotropic distribution can be ob-

tained by dividing the full angle on sectors of size
(30) A ¢=m/n, where the integen may be arbitrarily large. One

1 1
S<S>:mexp(‘z—zs nest in the
€ € definesP () only in the interva[ 0,77/n] and then chooses
2 the sector itself, with the uniform probability. In this case,

Also in this case, in the limit of long path§(s)~s™~. X
. ) " the long paths will be found at around,=2wk/n
In d dimensions witlindependenand the same kangaroo [k=0,1,....01—1)]. If n=4 then the free path distribution

processes in ald directions, the path-length distribution is similar to that in the PLG with the infinite horizon for

— d
S(s) becomesSy(s) =[Sy(s) ', whereSy(s) stands for the o, long paths are found a~0, 7/2, 7, and 3/2r. The

one-dimensional free path distribution. One should stress, . | fd d he phvsical bl id
however, that the norm for such a proceshn| precise value oh depends on the physical problem consid-

—(=;m)"2 is not conserved during the evolution. More- ered and, in particular, on the geometry involved in this

over, |m| does not have any specific and physicall moti_problem. For example, in the fission-fusion dynamics of an
P . 1y specil phy y atomic nucleus with a preferred direction of the collective
vated distribution, which is a serious drawback of the

(dx 1)-dimensional kangaroo processes process specified by the glongation parameter, one expects
: that the long path distribution should be strongly nonisotro-
o ) o pic and, hence, the case=2 is more realistic.
B. Multidimensional generalization of the kangaroo process The above stochastic process can be easily generalized to
In this section, we will present the multidimensional gen-still higher dimensions. For example, in three dimensions
eralization of the KP and discuss in details the two-One has two angles and, given by the probability distri-
dimensional case. The value of the process is now a vectdsutions Pg(6) and P4 (), respectively. Ifv=1(6), inde-
m=[m,,m,] with coordinatesn;,m, and a constant norm: pendent of the angle, then the covariance of the KP be-
|m|=1. Hence, the KP takes random values on a unit circl&comes
and the coordinates; = cosp andm,=sin¢ , as well as the
frequencyw, are expressed in terms of a single random angle
¢ (0= »<2m). Let us denote the probability distribution of

this process by (). The covariance of the KP in this case
becomes

F(t):f Po(0)Po(p)exd — v(6)|t|]sinedod e, (34)

where the integration is performed over both angles. Since
the probability distribution must be an even function, there-

fore, Po(0)=Pgo(7m—60) and Py(p)=Pe(m+ ). For a

5 » do
Hy= f ) Po(¢) g, exa—v[t)dv. @D ormalized probabilityP 4 () in (34), we obtain

14

Analogously to the one-dimensional case, the above formula Pe(0)sing(dé/dv)=1
leads to
and
N dv| 1!
P<p(¢)(—) =1,

do ()= faﬁ@(a')sina'de'. (35)
0

which resolves itself into

s Since R(v)dv=|5@(9)sin6d0, the free path distribution is
( ¢):J’ Po(¢p)dg'. (32 S(s)~s~?, as in the above two-dimensional KP. The same
0 holds for an arbitrary number of dimensions providing the
. frequencyr of the KP depends only on one angle.
SinceR(v)dv=Pg4(¢)d¢, we come to the conclusion that  The multidimensional generalized KP can be also easily
R(v) = const, independent of the form Bf,( ). Obviously,  applied to generate stochastic processes with any algebraic
the free path distribution becomes in this case covariancd (t) ~|t| =¥ (x>0). In two dimensions, the fre-

quencyv of the stochastic process becomes
S(s)~s~ 2. (33

Since the probability distribution must be an even func- V=< Jo¢ﬁ’¢(¢’)d¢’> (36)
tion, P4 () satisfies the conditioR (@) =Pg(d+ 7). Ac-
cording to Eq.(32), the frequency becomes zero f¢p=0, and
which means the infinitely long path. A particular form of
Po(¢) is unimportant if one looks at the probability distri- dv (J

3 K—l,\
butions R(») and S(s). However, Py () influences the de Pol¢")dé ) Po(¢).

0
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SinceR(v)dv=P4($)de, then 105

1/ (4. 1=« 1
R(V)=;UO P¢(¢’)d¢’> =;v(1’“)’K- 37

104
The free path distribution can now be easily found: =
N
al

S(S)"’S_(1+1/K>. (38)

103
For the exponential covariandd4), the multidimensional
norm-conserving generalization of the KP is trivial because
v in this case is constant. Hence, we have succeeded in for-
mulating the Markovian multidimensional process, which 102 0 20 40 60 80
can approximate the multidimensional extended Sinai bil- E
liard (the PLG both in the situation of the closed horizon
when the correlations are exponential as well as in the situ- FiG. 1. Asymptotic energy distribution of the particles escaping
ation of the open horizon when correlations are algebraic. from the circular attractive potential of depthy= —40 and radius

rg=>50 for the stochastic force with the covariance proportional to

IV. LANGEVIN PROBLEM FOR THE MARKOVIAN 1k. The constant of intrinsic friction ig=0.02. The short-dashed
STOCHASTIC FORCE line _sh_ovys the re§ults for the stochastic force generated by the _de-
terministic, chaotic rule of the PLG. The long-dashed and solid
Let us now consider a dissipative system that consists dfnes exhibit results for the generalized KP in two dimensions with
many particles. Each particle in the system obeys an intrinsio=2 andn=4, respectively(see Sec. Il B. In these cases, the
damping that is independent of the fluctuation term. The stoprobability distributions depending on a random angleare de-
chastic forceF(t) acting on a particle in the dissipative sys- fined on a circle of radiufm|=1 andP4(¢) is sampled uniformly
tem isF(t) =em, wherem=[m,,m,] is the value of the KP  within the angle interval of sizer/n.
ande is a constant force amplitude4].

We shall consider the motion of Brownian particle in the chastic processes but because they are defined on the inter-
circular attractive potential defined as vals of different sizes, they correspond to different degrees of
isotropy.
( r )2 In spite of important differences in the definition of the
s
0 for |r|>rg,

V| 1— for |r|<rg

(39) stochastic force generator, the three curves exhibit similar
features such as, for example, the appearance of the peak for
“prerandomized” particleg3], which is a characteristic fea-
ture of the Langevin approach with long-time correlated

whereV, andrg are the depth and the radius of the potential,ngise and corresponds to the “long free path,” i.e., the long

respectively. Inside the potential, the motion of the particle isime interval (small v) between the subsequent changes of
given by the Langevin equatiofi) with the correlated sto- m jn the stochastic force generator. The Brownian particle
chastic forceF(F). Otherwise the particle is free. Initially escapes as soon as the long free path ends. The second very

(t=0), the particle rests at the bottom of the wéll|&0).  important qualitative similarity between Markoviéthe gen-

At later times, the stochastic for¢gt) accelerates the par- eralized KB and non-Markoviarithe PLG generators cor-

ticle that may eventually escape from the well. At each jumpresponds to the Gaussian shape of the energy tail for random-

in the two-dimensional KP, the direction of the vector jzed particles, which is a benchmark of the algebraic
changes what corresponds to the updat&(@j. Otherwise  (~1/) velocity and force autocorrelation functions. The de-
the value of the force remains constant. The length of theajis of this Gaussian bump(E) ~exp(~E?20?) as quan-
vectorm is [m[=1 and remains constant. tified by the width parametes are obviously different for
The quantities of interest are the energy diStribution Ofthose different generators and equa:’: 30.25 for the non-
escaping particle$(E) and the survival-time distribution parkovian generator, and=47.6,43.4 forn=2,4 for the

N(t). The energy distribution of the Langevin particles es-parkovian generators, respectively. We have checked that

caping from the potential well is shown in Fig. 1 both in the the width of the Gaussian bump remains almost unchanged

case when the stochastic force is generated by the adjoijfhen increasingy aboven=4.

PLG (the short-dashed lin@nd in the case when the gener-  As stated above, the existence of the peak for prerandom-

alized KP is applied for this purpose. In the latter case, Wgzed particles is related to the existence of long free paths. Its

consider the two-dimensional generalization of the (88c.  sharpness is due to the assumed norm conservation in the

11 B) wherePg(¢) is uniformly distributed within the angle generalized KP. The qualitative features would remain the

interval of sizew/n. The calculations were made with) same if we would allow for an independent variation of the

n=2 (the long-dashed linefor which the long paths are norm|m| from a given distribution, say Gaussian.

close to O and with(ii) n=4 (the solid ling for which the The escape from the potential requires acceleration by the

long paths are near the 6;/2, 7, and 3/2r directions, as in  stochastic force to climb the well. Frequent changes of the

the PLG. Thus these two cases are essentially the same stpplied force reduce the mean acceleration. This is the case

V()=



5132 M. PLOSZAJCZAK AND T.

for the exponential correlations d¢f(t). For the algebraic
correlations, in the absence of the external potent{al|) or
in the case of small amplitudg(t), all trajectories generated
either by the PLG or by the KP, both long and short ones,
provide a sufficient change of the momentum of the Brown-
ian particle to allow its escape. All those particles that appear
sufficiently close to the absorbing barrier|gt=rg may es-
cape. The survival probability of the system is thus propor-
tional to the number of particlég(t) still inside the potential
well at timet. The time variation of this number depends
only on the phase-space density of particles, which is just
proportional to the number of particled|(t)~N(t); i.e.,
N(t) ~exp(—at), wherea is a constant. This result coincides
with that for the exponential correlations B{t).

The situation is quite different for a large amplitude ran-

SROKOWSKI

105 |

104 F>o

z

103 L

102

102

103

t

104

dom force. The constant random force and the conservative

force from the potential act like the gravitation and elastic FIG. 2. Variation of the particle number inside the circular at-
forces in the problem of the oscillatory motion of a string. tractive potential of depti/o= —50 and radiusg=50. The absorb-
The friction force slows down the Brownian particle, which ing barrier is at|r|=rg. The intrinsic friction constant is
finally stops at the point where the constant random forcer=0.02. The short-dashed line has been obtained for the determin-
compensategxactlythe conservative forcg25]. Since the istic chaotic force generated by the PLG with the open horizon. The
Brownian particle on such trajectories cannot escape, theﬁ?"d Iin_e correspond_s to the cglculations performed with the two-
weight in the ensemble increases in time. The Brownian pardimensional generalized KP with=4 (see Sec. Il B. In both

ticle is at a standstill or moves in a quasiperiodic orbit aScase.s, the .stochastlc }‘orce has the covar!ance proportlgnat.to 1/
long as the value of the stochastic force remains constant. IR liné 1 is shown with the long-dashed line for comparison. For
this case, the balance of forces ensures that the BrowniaH°'® details see the description in the text.

particle remains inside the absorbing barrier. When the long ) ) ) ) )

path finishes, the balance of forces changes and the Browrated by the generalized KP in two dimensions with4

ian particle escapes immediately. Therefore, the particle rethe solid ling. The line 1t is shown with the long-dashed
mains inside the potential well until tinteif the long path in  line for comparison.

the adjoined generator is longer tharHence, for the Mar-
kovian generatorthe generalized KPfor which the path
length is independent of the length of the previous path, the
decay probability for the Brownian particle is for large times
proportional to the path length distributid®(s). Therefore,
the survival probability until time is

V. CONCLUSIONS

The Langevin approach provides a useful framework in
which complicated multidimensional Hamiltonian problems
can be changed into low-dimensional dissipative problems,
allowing one to separate slow, “collective” degrees of free-
dom from remaining fast variables. In this case, the collec-
tive motion is treated as a Brownian particle embedded in a
heat bath rendering fluctuations around the most probable
“macroscopic” collective path. Technically, the influence of
this “environment” of fast variables on the slow variables is
L taken into account by introducing a stochastic force. Proper-
a_nd th_e path Iepgth d|'str|'but|on IS d|reqtly related to the SUjes of such a force, in particular its autocorrelation function,
vival time distribution |.n'S|de the pqtgnhal well. . must be properly adjusted to fit the “phenomenological”

_ Ingeneral, the surviving probability of the Brownian par- ya¢s e g. 'the CMD datefor a given choice of macroscopic
ticle ma){ depend on the stationary probability distribution Of(collective degrees of freedom. Recent CMD studies for the
the KP,P(m), as well as the dimensionality of the system. peripheral collisions of ions showed that the local force act-
For instance, independent KP's id directions yield ing on the “elementary” particle in the CMD is correlated
N(t)~ J{'Sy(s)ds=J{[S,(s)]ds, where Sy(s) stands for  aigebraicallyC(t)~t L, and is associated with the presence
the one-dimensional free path distribution. o of long free paths. This universal behavior can be described

A multidimensional, norm-conserving generalization of jn the framework of the Langevin formalism including alge-
the KP, as discussed in Sec. Il B, yielsss)~s‘2l inde-  praically correlated stochastic force. In our earlier studies
pendently of the stationary probability distributidh, and  [3], we designed a generator of such force applying time
independently of the degree of isotropy in the long path disseries of point particle velocity in the two-dimensional PLG.
tribution. Hence, in this caseé\l(t)~t~ %, as for the non- This generating process is deterministic and chaotic. In the
Markovian generator based on the PLG with the open horicase of the open horizon, the velocity autocorrelation func-
zon. Figure 2 shows the number of surviving Browniantion of the particle in the PLG is proportional tat 17 hus the
particles inside the spherically symmetric potential both ingenerator has the desired correlation properties but its prac-
the case when the stochastic force is generated by the adjoitital implementation may be cumbersome. Hence, in this
PLG (the short-dashed lineand in the case when it is gen- work we have studied Markovian generators of the stochastic

N(t)~f:€8(s)ds, (40
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force that are based on the KP. For the same covarianagan be made almost identical by an appropriate change of the
L(t—t'[)=(m(tym’(t"))~1/|t—t'|, different possible real- geometry of the PLG, i.e., by changing the raiiiof the
izations characterized by different probability distributionscircular scatterers. These results remain unchanged if one
P(m) are possible. For example, for a simple probability &l0Ws variations ofm (or |uf in the case of the PLIDf the
distribution(23) with =3, one can find the Poisson form of Stochastic process. Hence, we have constructed a reliable and
the frequency distributioiR(»). This particular kind of KP simple generator of the long-time correlated stochastic pro-

process may be important for practical applications. We hav&€SS that in the particular case of thet Tbvariance is
proposed a special, multidimensional generalization of th&duivalent to the deterministic ti¢orrelated process in the
KP, conserving the norm and having the covariancd’LG- The advantage of the Markovian generator lies in its
f(t)~t‘1 as the PLG process for the open horizon case Wélexibility to describe physical situations with a different de-

e ree of isotropy in the distribution of the long free path. One
g?:)eN;aLSZO i;?ﬁgdg;gaﬁgidﬁh ilr?dnfgzngf;?%?tt'ﬁg d?r?]lé?ll_sghould also stress that for both the Markovian and non-

sionality of the problem. Moreove§(s) appears to be in- Markovian generators, the long free paths are responsible for

sensitive to the particular choice of the stationary probambilitythe appearance of the algebraic covariance of the process.

distribution of KP. The path length distribution for the non-
Markovian PLG is also independent of the dimensionality
but in that caseS(s)~s™3. This difference is, however, not
essential for the properties of the Brownian particles. In par- The authors wish to thank Y. Abe and S. Ayik for their
ticular, both the survival probability for the Brownian par- interest in the present work and useful comments. The work
ticle to remain inside the potential as well as the asymptotiavas partly supported by KBN Grant No. 2 P03 B 14010 and
energy distribution of particles are qualitatively the same andsrant No. 6044 of the French-Polish Cooperation.
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