
PHYSICAL REVIEW E MAY 1997VOLUME 55, NUMBER 5
Solving the Langevin equation with stochastic algebraically correlated noise
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The long time tail in the velocity and force autocorrelation function has been found recently in molecular
dynamics simulations of peripheral collisions of ions. Simulation of those slowly decaying correlations in the
stochastic transport theory requires the development of new methods of generating stochastic force of arbi-
trarily long correlation times. In this paper we propose a Markovian process, the multidimensional kangaroo
process, which permits the description of various algebraically correlated stochastic processes.
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I. INTRODUCTION

Dynamics of a classical many-body system can be inv
tigated using either the molecular dynamics approach or
kinetic rate equations. Both approaches have their semic
sical counterparts and can be modified to incorporate also
Pauli exclusion principle for fermions. In the latter case, o
considers, for example, different variants of the Boltzma
or Boltzmann-Langevin equations, whereas in the form
case the ‘‘quantal’’ version of the molecular dynamics, t
so-called antisymmetrized molecular dynamics@1# has been
proposed. Chaotic properties of atomic nuclei have been
cussed in the framework of the classical molecular dynam
~CMD!. For central collisions where fusion processes do
nates, it has been demonstrated@2,3# that both the velocity
autocorrelation functionC(t)5^v(t0)v(t01t)& and the force
autocorrelation functionC̃(t)5^F(t0)F(t)& decay exponen-
tially in time. The equilibration time is short, allowing th
statistical properties of the compound nucleus to show u
the early stage of the reaction. On the contrary, in the per
eral collisions of ions, the algebraic, long time tail;t2g

(g51) was found in both the velocity and force autocor
lation functions@2,3#. Moreover, the survival probability is
given by a power law@4#.

The Fourier transform ofC(t) gives the power spectrum
S(v). For the peripheral collisions@2#, C(t);t21 and
hence S(v);u lnvu . The mean square displacement
configurational space is in this case@2# s2(t)[^@r (t)
2r (t0)]

2&}t ln(t/t0)2t1t0. The diffusion is anomalously
enhanced ~superdiffusion! and the diffusion rate
D[ limt→`s2(t)/t diverges logarithmically; i.e., the dissipa
tion rate does not stabilize, as would be the case for a nor
diffusion (D5const). The same dependence holds also
the mean-square displacement in the velocity space.

The logarithmic power spectrum and the enhanced di
sion have been found for the periodic Lorentz gas~PLG! of
hard disks~the extended Sinai billiard! @5#. From the point of
view of transport phenomena, many physical systems ca
reduced to a simple lattice of periodic potentials. Besides
CMD in the orbiting regime, the dynamics of electrons
crystals moving in a magnetic field or the ballistic-electr
dynamics in lateral superlattices are other examples that
551063-651X/97/55~5!/5126~8!/$10.00
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be modeled in terms of periodic two-dimensional~2D! lat-
tices @6,7#. The similarity of the diffusive behavior for sys
tems as different as the CMD and the PLG follows from t
fact that the power-law tail of the velocity autocorrelatio
function is due to the existence of long free paths. This
havior is universaland insensitive to the details of the po
tential, in particular to its short distance features. Such u
versality allows one to describe phenomena involving lo
free paths in the framework of the Langevin equation w
algebraically correlated noise@3#. Inclusion of effects con-
nected with the antisymmetrization of the wave function
fermions does not modify this picture qualitatively. The no
locality of the Pauli potential destroys cantori in the pha
space and the diffusion process, for sufficiently large latt
spacing, is dominated by long free paths and hence its po
spectrum is logarithmic at small frequency limit@8#. This
finding makes the purely classical description more reliab

The relevance of the Langevin approach for the desc
tion of an induced fission process has been realized a
time ago@9#. The slow collective motion with its high mas
parameter is treated as a Brownian particle, whereas the
nucleonic degrees of freedom form the heat bath. In gen
alized Brownian motion theory@10#, the Hamilton equations
can be rewritten in the form of the Langevin equation
making use of the projection operator technique. The to
force acting on a Brownian particle is divided into a syste
atic part and a random part. The slowly varying part d
scribes the evolution of macroscopic variables. The f
varying part leads to the fluctuations around the most pr
able path. In the conventional Langevin approach, it is u
ally assumed that the time evolution of the fast varying ra
dom part is stochastic and the time rate of change is m
faster than that of the systematic part. Consequently, i
assumed that the correlation function of the random par
d correlated or decays exponentially.~For a recent review of
stochastic theories with the colored noise see Ref.@11#.!

A hypothesis of the rapid decay of the force correlatio
holds for central collisions and the CMD yields in this ca
fast decaying correlations in both velocity and accelerat
~force! @2#. However, for peripheral reactions and/or strong
elongated shapes, the correlations decay algebraically@2#.
Such slowly decaying correlations are known in various p
nomena including the chemical reactions in solutions@12#,
5126 © 1997 The American Physical Society
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55 5127SOLVING THE LANGEVIN EQUATION WITH . . .
ligand’s migration in biomolecules@13#, atomic diffusion
through a periodic lattice@14#, Stark broadening@15#, and
many others. This regime is certainly beyond the stand
Langevin approach and requires the consideration of the
ored noise of arbitrarily long correlation time. The first im
portant step in this direction was the theory of line sha
and relaxation in magnetic resonance systems through
study of the so-called Kubo oscillator@16#. More recently,
the Kubo-Anderson process@17# with the slowly decaying
noise correlation function, the so-called kangaroo proc
~KP! @18#, was used to explain the noise-induced Sta
broadening@15#.

Recently, we have proposed a method that extends
Langevin approach for phenomena with either exponenti
or algebraically decaying force correlations@2#. In these
studies, we have investigated a two-dimensional Lange
equation, describing stochastic trajectoriesr (t):

dr

dt
5v,

~1!

m
dv

dt
~ t !52bv~ t !2

]V~r !

]r
1F~ t !,

where the spherically symmetric potentialV(r[ur u) gener-
ates a conservative force,b is the friction constant, andm
stands for the mass of the system. The external noise~sto-
chastic force! F(t) has algebraically decaying correlations

^F~0!F~ t !&;1/t,
~2!

^F~ t !&50.

These conditions do not determine the noise uniquely. In
earlier studies, we have proposed simulatingF(t) by deter-
ministic time series of the particle velocity in the PLG. In th
present work, we investigate the possibility of simulati
algebraically correlated noiseF(t) by a Markov process, and
for this purpose we shall study the generalized KP. In sp
of fundamental differences, there are some similarities
tween these two realizations of the algebraic noise. For b
processess, algebraic correlations involved are due to the
istence of ‘‘long free paths,’’ i.e., the value of the stochas
process~velocity of the particle in the case of the PLG! re-
mains constant for long time intervals.

The main goal of this work is to investigate and compa
the Langevin processes for these two different ways of g
erating the stochastic force. For that purpose we shall c
pare the most relevant physical quantities such as the en
spectrum of the particles and their escape time distribu
obtained with the different generators of the external no
F(t). In Sec. II we shall recall the most essential features
the PLG process that can be used to generate both alge
and exponentially correlated deterministic noise@3#. Sec. III
is devoted to the discussion of the KP. In Sec. III B w
discuss the multidimensional, norm-conserving general
tion of this stochastic process, which can be directly co
pared with the norm-conserving PLG process. We perfo
this comparison in Sec. IV, solving the Langevin equat
~1! for particles escaping from the spherically symmetric p
rd
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tential well. Finally, the most important results of this wo
are summarized and concluded in Sec. V.

II. PERIODIC LORENTZ GAS AND THE CORRELATIONS
FOR OPEN AND CLOSED HORIZONS

Before discussing the KP and its generalization, we w
to remind the reader of the most essential properties of
PLG ~or the extended Sinai billiard!. As stated before, the
PLG was used to generate event by event the erratic cha
force acting on Brownian particles@3#. The PLG consists of
a single point particle moving in a two-dimensional period
array of fixed circular scatterers of radiusR @19#. The lattice
spacing is assumed to be equal to two, then the separa
between disk bordersl5222R. The point mass is scattere
elastically from scatterers and the particle velocity has a u
length. The particle is reflected upon hitting an arc of ha
disks or meets the periodic boundary condition when
passes between hard disks, crossing a straight line link
their centers. The phase space is spanned by the arc le
s with 0,s,L52pR14l and by the tangential momentum
p, which is related to the reflection anglef: p5cosf. The
orbit consists of the succession of pairs$sn(s0 ,p0),
pn(s0 ,p0)% corresponding to thenth bounce when the initia
condition was$s0 ,p0%. This dynamics is a mappingM of the
phase space$s,p% onto itself @20#:

S sn11

pn11
D 5M S snpnD . ~3!

The sequence of iterates~3! is uniquely determined as
function of the initial value. The separation between dis
completely determines the behavior of the system. IfR.1
~‘‘the high-density regime’’ of the PLG! then the disks over-
lap and the particle is trapped in a region bounded by f
arcs of circles. This situation corresponds to the closed h
zon as the particle trajectory is bound. IfR,1 ~‘‘the low-
density regime’’ of the PLG! the particle sees an infinite
horizon and may move to an arbitrarily long distance b
tween subsequent collisions; i.e., the length of free path
unbounded.

The PLG, for bothR,1 andR>1, belongs to the cat-
egory of so-calledK systems@19#, for which the nearby tra-
jectories diverge exponentially and the metric entropy
positive. This system is known to be ergodic in two dime
sions and numerical experiments in higher dimensions a
indicate its ergodicity@21#. Despite this, the PLG exhibits
long-time correlations that are typically associated with
existence of tori in the phase space. ForR,1, there exist
families of trajectories that do not collide with hard scatter
and correspond to a regular motion. The existence th
families is a reason for the long-time tails in the correlati
functions: the velocity autocorrelation function changes fro
a stretched exponential decay@21# for the closed horizon
situation to algebraic decay@22# @C(t);t21# for the infinite
horizon situation. Consequently, the self-generated diffus
process changes from an ordinary diffusion proc
@D(t)5const# to a superdiffusive process@D(t); lnt# when
the horizon for a wandering particle is opened. In the lat
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5128 55M. PŁOSZAJCZAK AND T. SROKOWSKI
case, the distribution of free path lengths is algebra
S(s);s23 for larges @21#, independent of the dimensiona
ity of the billiard.

At aroundR51, many quantities, including the probab
ity density of free path lengthS(s) and the velocity autocor
relation functionC(t), exhibit a critical behavior that re
sembles a second-order phase transition. In particular,
correlation length diverges and the length scale disappe
One can also define the order parameter

lim
t→`

^r 2~ t !&
t lnt

,

which is zero forR.1 and changes to a finite valueD0 for
R,1.

III. THE KANGAROO PROCESS

The stepwise constant random functionm(t) is called a
Kubo-Anderson process if the jumping timest i
( i52`, . . . ,1`) are uniformly and independently distrib
uted with densityn in the interval (2`,1`), andm(t) is a
constantm(t)5mi in the interval t i<t,t i11. m(t) is the
stationary Markov process with the probability dens
P̂(m). Assuming^m&50, one obtains for the covariance o
this process:

G̃~ ut2t8u![^m~ t !m~ t8!&5^m2&exp~2nut2t8u!. ~4!

Both the probability densityP̂(m) and the correlation time
Tcorr5n21 for the Kubo-Anderson process may be chos
arbitrarily. However, the functional form of the covariance
always exponential.

The study of the problem of stochastic Stark broaden
@15#, where the covariance is proportional to 1/t and is not
integrable, has led to modifying the Kubo-Anderson proc
by requiring that the frequency of jumping timesn(m) is a
function of the value of the process itself. This process
been called the ‘‘kangaroo process’’~KP!. The KP is a step-
wise stationary Markov process, whose transition probab
depends only on time differences. This probability is giv
for infinitesimal time intervalsDt by

PKP~m,Dtum8,0!5$12n~m8!Dt%d~m2m8!

1Q̂~m!n~m8!Dt, ~5!

where Q̂(m) is a given probability density to be specifie
below. PKPdm is the probability that the KP at timeDt is
betweenm andm1dm, knowing that it was equal tom8 at
time t50. The first term on the right-hand side of Eq.~5! is
the probability that no jump occurred in the time interv
(0,Dt). The termn(m8)Dt is the probability that one jump
occurred. Immediately after such a jump, the probabi
density ofm becomesQ̂(m). The Focker-Planck equatio
for the KP reads@23,18#
:

he
rs.

n

g

s

s

y

l

]

]t
P̂~m,t !

5 lim
Dt→0

~Dt>0!

HE PKP~m,Dtum8,0!P̂~m8,t !dm82 P̂~m,t !J
3~Dt !21 ~6!

52n~m!P̂~m,t !1Q̂~m!E n~m8!P̂~m8,t !dm8.

~7!

The stationary probability densityP̂(m) of m(t) is related to
Q̂(m) by

Q̂~m!5
n~m!P̂~m!

E n~m8!P̂~m8!dm8

5
n~m!P̂~m!

^n&
. ~8!

The calculation of the covarianceG̃(t) of the KP requires
the summation of a series to take into account the poss
occurrence of an arbitrary number of jumps between 0
t. For that let us calculate the Laplace transform ofG̃(t):

G̃~z!5E
0

`

exp~ izt!G̃~ t !dt, ~9!

which will allow one to relaten(m) and P̂(m) for a given
G̃(t). It becomes@18#

G̃~z!5K m2

n~m!2 iz L
S

2S izK n~m!

n~m!2 iz L
S

D 21S K m

n~m!2 iz L
S

D 2,
~10!

where^ &S denotes averaging over the stationary probabi
distribution P̂(m). If P̂(m) and n(m) are even functions,
then

K m

n~m!2 iz L
S

50

or, equivalently,

^m exp@2n~m!t#&S50,

and Eq.~10! simplifies to

G̃~z!5 K m2

n~m!2 iz L
S

. ~11!

The covariance of the KP is then

G̃~ t !5E
2`

1`

m2P̂~m!exp@2n~m!utu#dm, ~12!
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55 5129SOLVING THE LANGEVIN EQUATION WITH . . .
i.e., the ordinary variance ofP̂(m) conditioned by the prob-
ability exp@2n(m)utu# that no jump occurs between 0 andt.
Given P̂(m) and the covarianceG̃(t), the jumping frequency
n(m) can be obtained as follows. Let us assume thatn(m) is
a monotonic increasing function ofumu such thatn(`)5`.
Then, takingn as a new integration variable, one obtains

G̃~ t !52E
n~0!

1`

m2P̂~m!
dm

dn
exp~2nutu!dn. ~13!

Calculation of n(m) requires then the inversion of th
Laplace transformation and the solution of a simple differ
tial equation. For some probability distributionsP̂(m),
n(`) can be finite. In this case the covarianceG̃(t) is prop-
erly reproduced by the above procedure asymptotically,
in the limit of larget.

It is always possible to construct the KP with an arbitra
probability distributionP̂(m) and a quite arbitrary covari
anceG̃. For the exponential correlations,

G̃~ ut2t8u![^m~ t !m~ t8!&;exp~2n0ut2t8u!, ~14!

we have

n~m!5n05const. ~15!

For the most interesting, algebraic correlations,

G̃~ ut2t8u!;
G~1/k!

ut2t8u1/k
~k.0!, ~16!

singular fort5t8, we have

n~m!5S 2E
0

umu
m82P̂~m8!dm8D k

. ~17!

G in Eq. ~16! is the gamma function andP̂(m) is an even
function.

A. One-dimensional kangaroo process

In the following, we shall assume that bothP̂(m) and
n(m) are even functions. ForG̃(t)51/t, the frequency
n(m) is

n~m!52E
0

umu
m82P̂~m8!dm8. ~18!

The ‘‘free path’’ length can be defined as

s51/n. ~19!

Knowing P̂(m) we want to determine the probability densi
of jump frequencyR(n), as well as the free path distributio
S(s). SinceP̂(m)dumu5R(n)dn, then

R~n!5 P̂~m!S dn

dumu D
21

.

From Eq.~18! we have
-

.,

dn

dumu
52m2P̂~m!,

and therefore

R~n!5
1

2m2 . ~20!

The free paths distribution is then

S~s!5R~n!U dn

dsU5R„n~s!…

s2
. ~21!

In order to see whether and how details of the chosen p
ability density P̂(m) influence the properties of the KP, i
particular the free path distribution, let us now conside
few simple examples. First, let us take

P̂~m!5H 1 for umu,1

0 for umu.1.
~22!

The jump frequency in this case isn(m)5 2
3umu3, and the

frequency distribution isR(n);n22/3. Consequently, the
free path distribution becomes

S~s!;s24/3. ~23!

Now, let us consider a general algebraic distribution:

P̂~m!5H 0 for umu,«

~a21!«a21umu2a for umu.«,
~24!

wherea.1 to ensure a correct normalization. We consid
two cases:~i! aÞ3 and ~ii ! a53. In case~i!, the jump
frequency is

n~m!5
2~a21!

32a
«a21~ umu32a2«32a! ~25!

and the frequency distribution is

R~n!5
1

2«2 S 11
32a

2~a21!
«22n D 2/~a23!

. ~26!

Consequently, the free path distribution becomes

S~s!5
1

2s2«2 S 11
32a

2~a21!
«22s21D 2/~a23!

. ~27!

Therefore, in the limit of long paths,S(s);s22 . This is the
fastest decaying free path distribution that can be obtai
with the one-dimensional KP. Fora.3, Eq. ~27! implies a
low-s cutoff in the free path length:

s>smin5
a23

2~a21!
«22.

In the second case~ii !, the jump frequency is

n~m!54«2ln
umu
«

~28!
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and the frequency distribution is given by the Poisson dis
bution

R~n!5
1

2«2
expS 2

n

2«2D . ~29!

Consequently, the free path distribution becomes

S~s!5
1

2«2s2
expS 2

1

2«2sD . ~30!

Also in this case, in the limit of long paths,S(s);s22.
In d dimensions withindependentand the same kangaro

processes in alld directions, the path-length distributio
S(s) becomesSd(s)5@S1(s)#

d, whereS1(s) stands for the
one-dimensional free path distribution. One should stre
however, that the norm for such a process,umu
5(( imi

2)1/2, is not conserved during the evolution. Mor
over, umu does not have any specific and physically mo
vated distribution, which is a serious drawback of t
(d31)-dimensional kangaroo processes.

B. Multidimensional generalization of the kangaroo process

In this section, we will present the multidimensional ge
eralization of the KP and discuss in details the tw
dimensional case. The value of the process is now a ve
m5@m1 ,m2# with coordinatesm1 ,m2 and a constant norm
umu51. Hence, the KP takes random values on a unit cir
and the coordinatesm15cosf andm25sinf , as well as the
frequencyn, are expressed in terms of a single random an
f (0<f,2p). Let us denote the probability distribution o
this process byP̂F(f). The covariance of the KP in this cas
becomes

G̃~ t !5E
n~0!

`

P̂F~f!
df

dn
exp~2nutu!dn. ~31!

Analogously to the one-dimensional case, the above form
leads to

P̂F~f!S dn

df D 21

51,

which resolves itself into

n~f!5E
0

f

P̂F~f8!df8. ~32!

SinceR(n)dn5 P̂F(f)df, we come to the conclusion tha
R(n)5const, independent of the form ofP̂F(f). Obviously,
the free path distribution becomes in this case

S~s!;s22. ~33!

Since the probability distribution must be an even fun
tion, P̂F(f) satisfies the conditionP̂F(f)5 P̂F(f1p). Ac-
cording to Eq.~32!, the frequency becomes zero forf50,
which means the infinitely long path. A particular form
P̂F(f) is unimportant if one looks at the probability distr
butions R(n) and S(s). However, P̂F(f) influences the
i-

s,

-

-
-
or

le

le

la

-

asymptotic angular distribution of the processes, an imp
tant quantity for many applications. As a simple example
highly nonisotropic processes, it could be enough to sam
f uniformly only in the interval@0,p/2# and then to ran-
domly choose signs ofm1 and m2 coordinates. The long
paths correspond then tof0'0 andf1'p, being restricted
to one direction. A more isotropic distribution can be o
tained by dividing the full angle on sectors of siz
Df5p/n, where the integern may be arbitrarily large. One
definesP̂F(f) only in the interval@0,p/n# and then chooses
the sector itself, with the uniform probability. In this cas
the long paths will be found at aroundfk52pk/n
@k50,1, . . . ,(n21)#. If n54 then the free path distribution
is similar to that in the PLG with the infinite horizon fo
which long paths are found atf'0, p/2, p, and 3/2p. The
precise value ofn depends on the physical problem cons
ered and, in particular, on the geometry involved in th
problem. For example, in the fission-fusion dynamics of
atomic nucleus with a preferred direction of the collecti
process specified by the elongation parameter, one exp
that the long path distribution should be strongly nonisot
pic and, hence, the casen52 is more realistic.

The above stochastic process can be easily generalize
still higher dimensions. For example, in three dimensio
one has two angles,u andf, given by the probability distri-
butions P̂Q(u) and P̂F(f), respectively. Ifn5n(u), inde-
pendent of the anglef, then the covariance of the KP be
comes

G̃~ t !5E P̂Q~u!P̂F~f!exp@2n~u!utu#sinududf, ~34!

where the integration is performed over both angles. Si
the probability distribution must be an even function, the
fore, P̂Q(u)5 P̂Q(p2u) and P̂F(f)5 P̂F(p1f). For a
normalized probabilityP̂F(f) in ~34!, we obtain

P̂Q~u!sinu~du/dn!51

and

n~u!5E
0

u

P̂Q~u8!sinu8du8. ~35!

SinceR(n)dn5 P̂Q(u)sinudu, the free path distribution is
S(s);s22, as in the above two-dimensional KP. The sam
holds for an arbitrary number of dimensions providing t
frequencyn of the KP depends only on one angle.

The multidimensional generalized KP can be also ea
applied to generate stochastic processes with any algeb
covarianceG̃(t);utu21/k (k.0). In two dimensions, the fre
quencyn of the stochastic process becomes

n5S E
0

f

P̂F~f8!df8D k

~36!

and

dn

df
5kS E

0

f

P̂F~f8!df8D k21

P̂F~f!.
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55 5131SOLVING THE LANGEVIN EQUATION WITH . . .
SinceR(n)dn5 P̂F(f)df, then

R~n!5
1

k S E
0

f

P̂F~f8!df8D 12k

5
1

k
n~12k!/k. ~37!

The free path distribution can now be easily found:

S~s!;s2~111/k!. ~38!

For the exponential covariance~14!, the multidimensional
norm-conserving generalization of the KP is trivial becau
n in this case is constant. Hence, we have succeeded in
mulating the Markovian multidimensional process, whi
can approximate the multidimensional extended Sinai
liard ~the PLG! both in the situation of the closed horizo
when the correlations are exponential as well as in the s
ation of the open horizon when correlations are algebrai

IV. LANGEVIN PROBLEM FOR THE MARKOVIAN
STOCHASTIC FORCE

Let us now consider a dissipative system that consist
many particles. Each particle in the system obeys an intrin
damping that is independent of the fluctuation term. The s
chastic forceF(t) acting on a particle in the dissipative sy
tem isF(t)5«m, wherem5@m1 ,m2# is the value of the KP
and« is a constant force amplitude@24#.

We shall consider the motion of Brownian particle in t
circular attractive potential defined as

V~ ur u!5H V0F12S rr BD
2G for ur u<r B

0 for ur u.r B ,

~39!

whereV0 andr B are the depth and the radius of the potent
respectively. Inside the potential, the motion of the particle
given by the Langevin equation~1! with the correlated sto-
chastic forceF(t). Otherwise the particle is free. Initially
(t50), the particle rests at the bottom of the well (ur u50).
At later times, the stochastic forceF(t) accelerates the par
ticle that may eventually escape from the well. At each ju
in the two-dimensional KP, the direction of the vectorm
changes what corresponds to the update ofF(t). Otherwise
the value of the force remains constant. The length of
vectorm is umu51 and remains constant.

The quantities of interest are the energy distribution
escaping particlesP(E) and the survival-time distribution
N(t). The energy distribution of the Langevin particles e
caping from the potential well is shown in Fig. 1 both in th
case when the stochastic force is generated by the ad
PLG ~the short-dashed line! and in the case when the gene
alized KP is applied for this purpose. In the latter case,
consider the two-dimensional generalization of the KP~Sec.
III B ! whereP̂F(f) is uniformly distributed within the angle
interval of sizep/n. The calculations were made with~i!
n52 ~the long-dashed line! for which the long paths are
close to 0,p and with~ii ! n54 ~the solid line! for which the
long paths are near the 0,p/2, p, and 3/2p directions, as in
the PLG. Thus these two cases are essentially the same
e
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chastic processes but because they are defined on the
vals of different sizes, they correspond to different degree
isotropy.

In spite of important differences in the definition of th
stochastic force generator, the three curves exhibit sim
features such as, for example, the appearance of the pea
‘‘prerandomized’’ particles@3#, which is a characteristic fea
ture of the Langevin approach with long-time correlat
noise and corresponds to the ‘‘long free path,’’ i.e., the lo
time interval ~small n) between the subsequent changes
m in the stochastic force generator. The Brownian parti
escapes as soon as the long free path ends. The second
important qualitative similarity between Markovian~the gen-
eralized KP! and non-Markovian~the PLG! generators cor-
responds to the Gaussian shape of the energy tail for rand
ized particles, which is a benchmark of the algebr
(;1/t) velocity and force autocorrelation functions. The d
tails of this Gaussian bumpP(E);exp(2E2/2s2) as quan-
tified by the width parameters are obviously different for
those different generators and equals530.25 for the non-
Markovian generator, ands547.6,43.4 forn52,4 for the
Markovian generators, respectively. We have checked
the width of the Gaussian bump remains almost unchan
when increasingn aboven54.

As stated above, the existence of the peak for prerand
ized particles is related to the existence of long free paths
sharpness is due to the assumed norm conservation in
generalized KP. The qualitative features would remain
same if we would allow for an independent variation of t
norm umu from a given distribution, say Gaussian.

The escape from the potential requires acceleration by
stochastic force to climb the well. Frequent changes of
applied force reduce the mean acceleration. This is the c

FIG. 1. Asymptotic energy distribution of the particles escap
from the circular attractive potential of depthV05240 and radius
r B550 for the stochastic force with the covariance proportiona
1/t. The constant of intrinsic friction isg50.02. The short-dashed
line shows the results for the stochastic force generated by the
terministic, chaotic rule of the PLG. The long-dashed and so
lines exhibit results for the generalized KP in two dimensions w
n52 andn54, respectively~see Sec. III B!. In these cases, the
probability distributions depending on a random anglef are de-

fined on a circle of radiusumu51 andP̂F(f) is sampled uniformly
within the angle interval of sizep/n.
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for the exponential correlations ofF(t). For the algebraic
correlations, in the absence of the external potentialV(ur u) or
in the case of small amplitudeF(t), all trajectories generate
either by the PLG or by the KP, both long and short on
provide a sufficient change of the momentum of the Brow
ian particle to allow its escape. All those particles that app
sufficiently close to the absorbing barrier atur u5r B may es-
cape. The survival probability of the system is thus prop
tional to the number of particlesN(t) still inside the potential
well at time t. The time variation of this number depend
only on the phase-space density of particles, which is
proportional to the number of particles,Ṅ(t);N(t); i.e.,
N(t);exp(2at), wherea is a constant. This result coincide
with that for the exponential correlations ofF(t).

The situation is quite different for a large amplitude ra
dom force. The constant random force and the conserva
force from the potential act like the gravitation and elas
forces in the problem of the oscillatory motion of a strin
The friction force slows down the Brownian particle, whic
finally stops at the point where the constant random fo
compensatesexactly the conservative force@25#. Since the
Brownian particle on such trajectories cannot escape, t
weight in the ensemble increases in time. The Brownian p
ticle is at a standstill or moves in a quasiperiodic orbit
long as the value of the stochastic force remains constan
this case, the balance of forces ensures that the Brow
particle remains inside the absorbing barrier. When the l
path finishes, the balance of forces changes and the Bro
ian particle escapes immediately. Therefore, the particle
mains inside the potential well until timet if the long path in
the adjoined generator is longer thant. Hence, for the Mar-
kovian generator~the generalized KP! for which the path
length is independent of the length of the previous path,
decay probability for the Brownian particle is for large tim
proportional to the path length distributionS(s). Therefore,
the survival probability until timet is

N~ t !;E
t

`

S~s!ds, ~40!

and the path length distribution is directly related to the s
vival time distribution inside the potential well.

In general, the surviving probability of the Brownian pa
ticle may depend on the stationary probability distribution
the KP, P̂(m), as well as the dimensionality of the syste
For instance, independent KP’s ind directions yield
N(t);* t

`Sd(s)ds5* t
`@S1(s)#

dds, where S1(s) stands for
the one-dimensional free path distribution.

A multidimensional, norm-conserving generalization
the KP, as discussed in Sec. III B, yieldsS(s);s22, inde-
pendently of the stationary probability distributionP̂, and
independently of the degree of isotropy in the long path d
tribution. Hence, in this case,N(t);t21, as for the non-
Markovian generator based on the PLG with the open h
zon. Figure 2 shows the number of surviving Browni
particles inside the spherically symmetric potential both
the case when the stochastic force is generated by the ad
PLG ~the short-dashed line! and in the case when it is gen
,
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erated by the generalized KP in two dimensions withn54
~the solid line!. The line 1/t is shown with the long-dashe
line for comparison.

V. CONCLUSIONS

The Langevin approach provides a useful framework
which complicated multidimensional Hamiltonian problem
can be changed into low-dimensional dissipative proble
allowing one to separate slow, ‘‘collective’’ degrees of fre
dom from remaining fast variables. In this case, the coll
tive motion is treated as a Brownian particle embedded i
heat bath rendering fluctuations around the most proba
‘‘macroscopic’’ collective path. Technically, the influence
this ‘‘environment’’ of fast variables on the slow variables
taken into account by introducing a stochastic force. Prop
ties of such a force, in particular its autocorrelation functio
must be properly adjusted to fit the ‘‘phenomenologica
data~e.g., the CMD data! for a given choice of macroscopi
~collective! degrees of freedom. Recent CMD studies for t
peripheral collisions of ions showed that the local force a
ing on the ‘‘elementary’’ particle in the CMD is correlate
algebraically,C̃(t);t21, and is associated with the presen
of long free paths. This universal behavior can be descri
in the framework of the Langevin formalism including alg
braically correlated stochastic force. In our earlier stud
@3#, we designed a generator of such force applying ti
series of point particle velocity in the two-dimensional PL
This generating process is deterministic and chaotic. In
case of the open horizon, the velocity autocorrelation fu
tion of the particle in the PLG is proportional to 1/t. Thus the
generator has the desired correlation properties but its p
tical implementation may be cumbersome. Hence, in t
work we have studied Markovian generators of the stocha

FIG. 2. Variation of the particle number inside the circular a
tractive potential of depthV05250 and radiusr B550. The absorb-
ing barrier is at ur u5r B . The intrinsic friction constant is
g50.02. The short-dashed line has been obtained for the deter
istic chaotic force generated by the PLG with the open horizon. T
solid line corresponds to the calculations performed with the tw
dimensional generalized KP withn54 ~see Sec. III B!. In both
cases, the stochastic force has the covariance proportional tot.
The line 1/t is shown with the long-dashed line for comparison. F
more details see the description in the text.
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force that are based on the KP. For the same covaria
G̃(ut2t8u)[^m(t)m8(t8)&;1/ut2t8u, different possible real-
izations characterized by different probability distributio
P̂(m) are possible. For example, for a simple probabil
distribution~23! with a53, one can find the Poisson form o
the frequency distributionR(n). This particular kind of KP
process may be important for practical applications. We h
proposed a special, multidimensional generalization of
KP, conserving the norm and having the covarian
G̃(t);t21 as the PLG process for the open horizon case.
have also found that the path length distribution equ
S(s);s22 in the generalized KP, independent of the dime
sionality of the problem. Moreover,S(s) appears to be in-
sensitive to the particular choice of the stationary probabi
distribution of KP. The path length distribution for the no
Markovian PLG is also independent of the dimensiona
but in that caseS(s);s23. This difference is, however, no
essential for the properties of the Brownian particles. In p
ticular, both the survival probability for the Brownian pa
ticle to remain inside the potential as well as the asympt
energy distribution of particles are qualitatively the same a
tt.
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can be made almost identical by an appropriate change o
geometry of the PLG, i.e., by changing the radiiR of the
circular scatterers. These results remain unchanged if
allows variations ofumu ~or uuu in the case of the PLG! of the
stochastic process. Hence, we have constructed a reliable
simple generator of the long-time correlated stochastic p
cess that in the particular case of the 1/t covariance is
equivalent to the deterministic 1/t-correlated process in th
PLG. The advantage of the Markovian generator lies in
flexibility to describe physical situations with a different d
gree of isotropy in the distribution of the long free path. O
should also stress that for both the Markovian and n
Markovian generators, the long free paths are responsible
the appearance of the algebraic covariance of the proce
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