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Horseshoe templates with global torsion in a driven laser

G. Boulant,* M. Lefranc,† S. Bielawski,‡ and D. Derozier§

Laboratoire de Spectroscopie Hertzienne, URA CNRS 249, Centre d’E´ tudes et de Recherches Lasers et Applications,
Universitéde Lille I, F-59655 Villeneuve d’Ascq Cedex, France

~Received 26 December 1996!

We perform a topological analysis of chaotic signals from a Nd-doped fiber laser with pump modulation at
different values of the modulation frequency. In this experiment, the system displays chaotic behavior in three
regionsC1/4, C1/3, andC1/2 of parameter space, located around the subharmonicsv r /4, v r /3, andv r /2 of the
relaxation frequencyv r . We observe that the topological structures of the chaotic regimes inside a given
regionC1/n are described by the same template. However, templates corresponding to different regions display
different global torsionsug , which we find to be related to the order of the subharmonics by
ug(C1/n)5n21. @S1063-651X~97!09804-8#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.55.Wd
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I. INTRODUCTION

Template analysis allows a relevant classification a
comparison of chaotic attractors according to their topolo
cal properties and provides a clear-cut characteriza
thereof by a set of integer topological indices@1# which are
robust with respect to variations in control parameters.
particular, attractors observed experimentally in vario
fields such as chemistry@2,3#, mechanics@4#, nuclear mag-
netic resonance@5#, and optics@6–8#, have been shown to
belong to the same class, namely, that of the Smale’s ho
shoe with zero global torsion. Let us note, however, t
nonhorseshoe dynamics has been reported by Firle, Nati
and Eiswirth @9# and that other structures have been p
dicted to be observable in experiments@10,11#.

In this paper, our aim is to use topological analysis
order to study and compare the attractors of a single sys
~a modulated Nd-doped fiber laser!, at different values of a
control parameter~the modulation frequencyv). We do this
in an experimental situation where chaotic behavior is
served whenv lies near the subharmonics 1/2, 1/3, and 1
of the natural relaxation frequencyv r , the highest linear
resonance frequency~see, e.g.,@12,13#! of the system.

Let us briefly recall the principle of the method. A chao
attractor has typically embedded in it a dense set of unst
periodic orbits~see, e.g.,@14#! which cannot intersect be
cause of the deterministic nature of the evolution laws. T
the way the unstable periodic orbits~UPO! are linked to-
gether can be characterized using concepts from knot the
provided the attractor is confined to a three-dimensional~3D!
manifold. The existence of a two-dimensional manifold, t
template, such that all UPO can be placed on it while pr
serving their invariant linking properties, allows one then
describe concisely the global topological organization of
attractor under study.

The fiber laser~FL! is known to be a possibly high
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dimensional system with many longitudinal modes oscill
ing simultaneously. Hence, in Sec. II we describe the exp
mental system and check that topological analysis
applicable by estimating the Lyapunov dimension of the
tractors. Then, Sec. III is devoted to the extraction of UP
from experimental data and the computation of their top
logical invariants. We show there how careful signal pr
cessing can greatly help in extracting topological informat
from noisy time series of finite length and precision. Final
in Sec. IV, we determine the templates of the different
tractors, compare them, and relate them to the values of
modulation frequency. In particular, we show that these te
plates have a nonzero global torsion, and that this tors
increases by one full turn when the period of modulati
increases by 2p/v r . This observation is in close agreeme
with the theoretical studies of modulated nonlinear osci
tors by Gilmore and McCallum@10#.

II. THE EXPERIMENTAL SYSTEM

The experimental setup is a Fabry-Pe´rot laser cavity. The
active medium, a 4 mlong silica fiber doped with 300 ppm
Nd31, is pumped by a laser diode emitting a single polariz
mode at 810 nm. The optogeometrical properties of the fi
make the laser transversally monomode at the opera
wavelengthl51.08 mm. However, the large cavity lengt
and the broad inhomogeneous gain profile~100 cm21) allow
some 10 000 longitudinal modes to oscillate simultaneou
In addition, in the absence of polarization selective eleme
in the cavity, each mode is split into two eigenstates of p
larization depending on the birefringence of the fiber@15#.
On output, the two polarization eigenstates of the cavity
separated by a polarizing beam splitter combined with
half-wave plate to select the direction of analysis. In typic
operating conditions, the low laser threshold allows us
reach pump parameters~i.e., the ratio of the pump power to
its value at threshold! up to 5 and to explore a wide range o
parameters.

Under modulation of a control parameter, this laser exh
its chaotic oscillations@16#, reached via period doubling cas
cade or quasiperiodicity. In our experiment, we modul
sinusoidally the pump parameterA(t)5A0(11mcosvt)
5082 © 1997 The American Physical Society



m
-
in

en
ch

rs
ot
ncy

of
at
ed
re-

hile
ally
h

hat
n of
les
of
e-
ly-
nce
he

s a
ins

ri-
cal
of
tion
an
the

h-
ic
a

act
e-
al to

ajor
ier-
or-
er
m-
the

in
s.

u
e

55 5083HORSESHOE TEMPLATES WITH GLOBAL TORSION IN . . .
around an average valueA052.7 with a ratem50.6. The
frequency is chosen as a control parameter and swept fro
to the relaxation frequencyv r , which, under these condi
tions, is about 36 kHz. The bifurcation diagram, shown
Fig. 1, displays a sequence of three chaotic windowsC1/4,
C1/3, andC1/2 located aroundv1/4'9 kHz, v1/3'12 kHz,
andv1/2''18 kHz, respectively. The notations have be
chosen to emphasize the harmonic relation between the
otic frequencies andv r

v r'2v1/2'3v1/3'4v1/4. ~1!

FIG. 1. Experimental bifurcation diagram for increasing mod
lation frequency. Note the localization of the three chaotic regim
aroundv r /4, v r /3, andv r /2.
0

a-

This bifurcation structure is common in nonlinear oscillato
~see, e.g.,@10#! except that, in the present case, we do n
observe chaotic behavior around the relaxation freque
v r .

To verify that, in spite of the great number of degrees
freedom, the dynamics is sufficiently low dimensional so th
template analysis can be applied, we have perform
Lyapunov exponent estimates for regimes in the three
gions using the programDLIA by Briggs @17#. Table I dis-
plays the results obtained for three sample regimes. W
the numerical values should be taken with caution, especi
for the negative exponent~the regimes appear to be muc
more dissipative than indicated by this analysis!, they defi-
nitely show that there is only one unstable direction and t
three-dimensional volumes are contracted under the actio
the flow. This means that most of the dynamical variab
relax so quickly that they are enslaved by a few number
collective variables which are confined to a thre
dimensional manifold. This motivates the topological ana
sis carried out in the sequel of this paper, whose releva
will, furthermore, be confirmed by the consistency of t
measured topological invariants@18#.

III. TOPOLOGICAL ANALYSIS

As complex as it may appear, a strange attractor i
highly organized geometrical object. In particular, it conta
an infinite number of unstable periodic orbits~UPO!, densely
embedded in it~see, e.g.,@14#!: the neighborhood of any
point of the attractor, however small it is, is visited by pe
odic orbits. As it evolves on a strange attractor, a typi
chaotic trajectory visits the neighborhood of a number
these UPO, approaching them along their stable direc
and leaving them along the local unstable direction, after
interval of time whose duration depends on how closely
periodic orbit has been approached.

In low-dimensional attractors, the crossing of the neig
borhood of an UPO of relatively low period by a chaot
trajectory shows itself clearly in the temporal signal as
burst of almost periodic behavior. This allows one to extr
approximations of periodic orbits from experimental time s
ries. Some examples of such sequences, with a high sign
noise ratio, can be found, for instance, in Ref.@7#.

Unstable periodic orbits have been recognized as a m
tool to analyze chaotic systems. Indeed, they provide a h
archical approximation of a strange attractor: low-period
bits model the global structure of the attractor, while fin
details can be resolved using high-period orbits. One pro
ising and powerful method based on this approach is

TABLE I. Estimated Lyapunov exponents of sample regimes
C1/4, C1/3, andC1/2 regions, given in modulation frequency unit
dL is the Lyapunov dimension defined asdL521ul1 /l3u accord-
ing to the Kaplan-Yorke conjecture@29# and is believed to estimate
the dimension of the attractor.

Regime l1 l2 l3 dL

C1/4 0.37 20.06 20.57 2.6
C1/3 0.34 20.00 20.92 2.3
C1/2 0.52 20.03 20.66 2.7

-
s
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5084 55BOULANT, LEFRANC, BIELAWSKI, AND DEROZIER
topological analysis proposed by Mindlinet al. @1#, which
proceeds as follows.

Periodic orbits are associated with closed curves in
phase space of the system. When this phase space is
dimensional, these curves can be characterized using
mathematical framework of knot theory~see, e.g., Ref.@19#!.
The latter associates with a three-dimensional closed c
~or a set of such curves! topological numbers which are in
variants with respect to isotopy, i.e., which remain u
changed when the curve is continuously deformed with
intersecting itself.

The relevance of these invariants stems from the de
ministic nature of chaotic behavior. Indeed the uniquen
theorem~see, e.g., Ref.@20#! implies that a periodic orbit
cannot intersect itself or another orbit without violating d
terminism at the point of intersection. As a result, invaria
from knot theory are well defined and are insensitive to
formations induced by modifying a control parameter. F
example, the relative placement of a pair (a,b) of unstable
periodic orbits can be characterized on its whole domain
existence in parameter space by several topological qu
ties such as the linking numberlk(a,b), which indicates
how many timesa winds aroundb.

The keystone of topological analysis is that any set
periodic orbits embedded in the attractor is associated
set of orbits with identical topological invariants on a tw
dimensional manifold, called thetemplate@21–23,1#. This
surface can be viewed as aknot holderon which all the
periodic orbits extracted from the attractor can be laid do
via a continuous deformation without crossing. Thus
template provides a simple and complete description of
global topological organization of the flow.

In this section, we describe the steps we have followed
extract UPO from experimental signals of the FL and
compute their topological invariants. The determination
the corresponding templates will be presented in Sec. IV

To perform a topological analysis, a time seriesX(t) has
to be embedded in a three-dimensional phase space, so
knot theory can be applied. In Sec. III A, we first descri
the particular phase space we have used. Due to the
tively complex nature of the signals coming from the FL,
has been necessary to process them using analog techn
— which we present in Sec. III B — in order to obtain a tim
series suitable for topological analysis. Indeed, compu
the topological invariants of the UPO detected in the ti
series requires an embedding phase space where orbit
well separated. If two orbits are too close to each othe
some region of the attractor, the experimental noise and
slight uncertainty in their precise localization~we use orbits
approximating the true UPO! may result in unreliable mea
surements of their relative positions and, thus, of their lin
ing invariants. In Sec. III C, we briefly review the clos
return technique used to extract the unstable periodic or
from the time series. Last, we classify the detected or
using symbolic dynamics and compute their topological
variants for chaotic regimes inside theC1/4, C1/3, andC1/2
chaotic regions in Sec. III D.

A. Embedding phase space

As mentioned above, topological analysis requires that
time seriesX(t) under study be embedded in a 3D pha
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space. In our experiments, we have used a phase space

coordinates@X(t),Ẋ(t),f(t)#, wheref(t)5vt(mod 2p) is
the phase of the period-T modulation. This phase spac
which is schematically displayed in Fig. 2, is topologica
equivalent to a solid torusD23S1 (D2 being the unit disk
and S1 the unit circle!. This is a natural geometry for a
modulated system, as a Poincare´ section of the attractor can
be readily obtained by means of a stroboscopic sampl
Moreover, this topology restricts isotopy moves to a sma
class, namely, regular isotopy, and allows one to make us
more powerful invariants, such as the relative rotation ra
introduced by Solari and Gilmore@24,25#, which provide a
finer description of the relative rotation of the UPO than t
linking number.

X(t) and its time derivatives are natural variables to d
scribe a dynamical system. There is, however, one more

son for choosing the time derivativeẊ(t) as the second co
ordinate. Indeed, the topological structure of a periodic o
a of periodTa can then be completely analyzed by plottin
its representative time series segmentXa(t), t
P@ t0 ,t01Ta# as a function off5vt(mod 2p) @7#. As il-
lustrated in Fig. 2, this plot can be seen as a projection of

orbit onto theẊ50 cylinder along theẊ direction, and pre-
sents the orbit as a braid onn strands. Topological informa
tion is preserved provided that we know at each cross
which of the two strands passes over the other in the
space. This is, in fact, trivial since the strand with the grea
slope corresponds to the higher value ofẊ.

As a result, listing the successive crossings asf increases
from 0 to 1 provides an algebraic description of the top
logical structure of the orbit, from which any topologic
invariant can be readily computed. As a simple examp
computing the linking number of two orbits amounts
counting the number of crossings between the strands
these two orbits in aX(f) plot ~see the example of Fig. 2!.

FIG. 2. 3D differential embedding phase space.X(t) is a dy-
namical variable andf the modulation phase. The topological in
formation ~contained in overcrossings and undercrossings! is com-
pletely preserved in a plot ofX vs f. For example, the two
crossings in the latter reflect the fact that each orbit winds one t
around the other, which corresponds to a linking number of 1.
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55 5085HORSESHOE TEMPLATES WITH GLOBAL TORSION IN . . .
Clearly, evaluating this number requires that differe
strands be well separated, particularly because of the lim
resolution of the eight-bit transient digitizer used in the e
periments. This is not necessarily so when directly record
a natural variable of the system, for example, the laser in
sity. In this case, the signal has to be processed using an
techniques before the topological analysis of digitized d
can be carried out.

B. Signal processing

As Fig. 3~a! shows, the intensityI of a polarization eigen-
state is not a suitable variable, because it almost comple
vanishes during long periods of time. In these regions of l
intensity, the different orbits are indiscernible and we can
determine whether some crossings occur. As advocate
Ref. @26#, this problem can be overcome by using a logari
mic amplifier which delivers an output signalL(t)
5 ln(I(t)1I0). Let us note that this procedure, successfu
followed in previous topological investigations of the mod
lated CO2 laser@7,8#, preserves the topological informatio
sinceL(t) is a monotonic function ofI (t).

As can be seen in Fig. 3~b!, this first step improves the
quality of the signal to some extent but yet does not suffi
Indeed, the resulting signalL(t) displays a strong periodic
component at frequency 1/T which masks the rest of th
dynamics: the signal remains confined to a narrow b
around this period-T oscillation. Fortunately, any
T-periodic transformation of the formL(t)→L(t)1 f „f(t)…
does not modify the relative positions of crossings a
hence, leaves isotopy invariants unchanged.

Experimentally, one simple way to proceed is thus to s
tract aT-periodic signalLT(t)5LT„f(t)… from L(t), where
LT(t) approximates the unwanted period-T oscillation. In
our experiments, we have chosenLT(t) to be

FIG. 3. Enhancement of the topological information of the s
nal by analog processing.~a! A polarization eigenstate intensity: I
~b! Logarithmic amplification of this signal:L5 ln(I). ~c! The un-
wanted period-T oscillationLT . ~d! The final signalX5L2LT .
t
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LT~ t !5
j1„f~ t !…1j2„f~ t !…

2
, ~2!

wherej1„f(t)… andj2„f(t)… are, respectively, the high an
low envelopes ofL(t) computed from a record of about 100
modulation periods

j1~f0!@resp.j2~f0!#5max~resp. min!$L~ t !;f~ t !5f0%.

Figure 3~c! displays theLT correction corresponding to th
signal of Fig. 3~b!.

This periodic signal is then generated with a progra
mable synthesizer phase locked on the modulation, and
tracted from the output of the logarithmic amplifier. The fin
signal, shown in Fig. 3~d!, clearly displays the topologica
information and provides a suitable dynamical variable.
the following, the time seriesX(t) will, thus, always desig-
nate the dynamical variable

X~ t !5L~ t !2LT„f~ t !… ~3!

and the embedding 3D phase space will be theD23S1 torus

@X(t),Ẋ(t),f(t)#.

C. Detection of the unstable periodic orbits

The extraction of periodic orbits embedded in the attrac
is carried out by applying to time series ofX(t) the close-
return technique proposed in Ref.@2#. The latter proceeds by
looking for time series segments$X(t);tP@ t0 ,t01pT#% sat-
isfying

uX~ t1pT!2X~ t !u,« for t0,t,t01pT. ~4!

Such a sequence indicates that the trajectory in ph
space is shadowing a period-pT orbit and can be used as a
approximation of this orbit, as better as« is smaller.

In our experiments, with a signal to noise ratio in th
order of 1%, we have chosen« to be 5% of the maximum
amplitude ofX(t) and have narrowed the search to orbits
periodpT up to p510.

Due to ergodicity, an infinitely long chaotic trajector
passes arbitrary close to any UPO. On the contrary, a fi
experimental time series can only approach a finite num
of periodic orbits. Furthermore, the presence of noise w
prevent higher-period orbits to be shadowed over a suffic
interval of time. Therefore, only a relatively small number
orbits can, in practice, be extracted, except when the sig
to noise ratio is high. For each attractor we have recor
signals over 10 000 modulation periods, which typically co
tained some hundred almost periodic sequences, corresp
ing to about ten distinct UPO for theC1/4 andC1/3 regions. In
theC1/2 region, we have observed the chaotic regimes to
much less dissipative than in the two former ones. This
versely affects the detection of the UPO for two reasons:
time needed before entering the neighborhood of a gi
UPO is significantly increased, and the influence of noise
strengthened. This explains why the results we present
this part of the parameter space are obtained from a sm
number of periodic orbits than for theC1/4 andC1/3 regimes.
We are currently trying to design an alternate detect
method to overcome this limitation.

-
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FIG. 4. Two-dimensional projections of at
tractors~on the left! and their corresponding firs
return diagram (Xn11 ,Xn), whereXn is the stro-
boscopically sampled variable Xn5X(f0

12np). ~a! RegimeC1/4. ~b! RegimeC1/3. ~c!
RegimeC1/2. Note that these return diagrams a
well approximated by a unimodal map, and ca
be used to perform a symbolic encoding of th
orbits. On diagram~a! is plotted thexxy5x2y
period-3T orbit, on ~b! the x2y3 period-5T orbit,
and on~c! the xy period-2T orbit.
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D. Spectrum of periodic orbits and computation
of the topological invariants

Template analysis is significantly easier when the
tracted periodic orbits can be classified using symbolic
namics. Symbolic dynamics is a powerful approach of c
otic behavior and proceeds by representing a cha
trajectory as a sequence of symbols while retaining mos
the dynamical information. Most topological investigation
so far, have been carried out in cases where symbolic co
could be obtained by means of 1D first return maps@2,5–7#,
with the exception of Ref.@8#.

For each regime of the FL, the 1D first return diagra
(Xn ,Xn11), where theXn5X(t01nT) are obtained by a
stroboscopic sampling, is well approximated by a unimo
map of an interval onto itself:Xn115P(Xn), as can be seen
in Fig. 4. The theory of symbolic dynamics for such maps
well established~see, e.g., Ref.@27#! and thus can be use
here to encode periodic orbits.

A unimodal map has a single critical pointXc which sepa-
rates the regions with positive and negative slope. ApT
orbit, identified by p samples X15X(t1), X25X(t1
1T), . . . , Xp5X(t11(p21)T), is encoded by a binary

string s1s2 . . . sp, where si5x ~respectively, y) when
Xi,Xc ~respectively,Xi.Xc). As an example, the period
-
-
-
ic
of
,
ng

l

s

3T orbit yxx5yx2 of a C1/4 regime, the period-5T
yxxyy5yx2y25x2y3 of a C1/3 regime, and the period-2T
xy of theC1/2 regime are displayed in Figs. 4~a!–4~c!. The
relevance of this symbolic encoding will fully appear in Se
IV.

Once the periodic orbits have been extracted and cla
fied according to symbolic dynamics, one can proceed
compute their topological invariants. For each periodic or
we have computed its self-linking number and self-relat
rotation rates, while pairs of orbits have been characteri
by their linking number and relative rotation rates. Note th
with the exception of the linking number, these invariants
available thanks to the toroidal topology of the phase spa

~Self-!linking numbers are determined by counting cros
ings inX(f) plots as described in Sec. III A: the self-linkin
~respectively, linking! number is simply the sum~respec-
tively, half-sum! of the number of crossings of the orbit wit
itself ~respectively, the other orbit!.

As for the relative rotation rates, let us briefly recall tha
period-pT orbit a and a period-qT orbit b can be character
ized by p3q relative rotation rates $Ri j(a,b);
i51, . . . ,p and j51, . . . ,q%. If the intersections ofa and
b with a Poincare´ section are labeledX1

a , . . . ,Xp
a and

X1
b , . . . ,Xq

b , theRi j relative rotation rate is defined as th
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TABLE II. Relative rotation rates of UPO extracted from theC1/4 regime. The exponents indicate the relative weight of the given val
For example, the pair (5Tb,5Tc) is characterized by 535525 rotation rates, of which 155335 ~respectively, 105235) take the value
17/5 ~respectively, 16/5). Blank entries correspond to measurements whose exact value could not be ascertained.

Orbits T 2T 3Ta 3Tb 4T 5Ta 5Tb 5Tc

T5y 0

2T5xy 7
2 0,72

3Ta5xy2 10
3

10
3 0,(103 )

2

3Tb5x2y 10
3

10
3

10
3 0,(103 )

2

4T5xy3 7
2

13
4 ,

7
2

10
3

10
3 0,134 ,(

7
2)
2

5Ta5x2y3 17
5

33
10

49
15

10
3

67
20 0,(165 )

2,( 175 )
2

5Tb5x2yxy 17
5

10
3

67
20 0,(165 )

2,( 175 )
2

5Tc5xyxy2 17
5

17
5

10
3 ( 165 )

2,( 175 )
3 ( 165 )

2,( 175 )
3 0,(175 )

4

6Ta5x2y2xy 10
3

10
3

19
6 ,(

10
3 )

2 10
3

10
3

33
10

33
10

10
3

6Tb5x2y4 10
3

10
3

19
6 ,(

10
3 )

2 10
3

10
3

33
10

33
10

10
3

6Tc5x2yxy2 10
3

10
3

10
3

10
3

33
10

8T5x2y3x2y 27
8

13
4 ,

27
8

6Ta 6Tb 6Tc 8T

6Ta5x2y2xy 0,196 ,(
10
3 )

4

6Tb5x2y4 0,196 ,(
10
3 )

4

6Tc5x2yxy2 19
6 ,(

10
3 )

5 0,196 ,(
10
3 )

4

8T5x2y3x2y 0,(278 )
3,( 134 )

4
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number of times trajectories starting fromXi
a andXj

b wind
around each other until both return simultaneously to th
initial condition, divided by the number of elapsed period
Self-relative rotation rates are similarly defined for sing
orbits with the convention thatRii (a,a)50. The reader may
find a more detailed exposition in Refs.@24,25,5,28#. In prac-
tice their determination amounts to evaluating partial su
of crossings.

Inside each of theC1/4, C1/3, andC1/2 regions of param-
eter space, we have analyzed several chaotic regimes, an
present below the spectra of orbits and the measured in
ants for three sample regimes. Table II collects the symb
sequences and~self-!relative rotation rates for the one lo
cated in theC1/4 region. Table III displays the correspondin
ir
.

s

we
ri-
ic

linking numbers, which are computed from the relati
@24,25,28#

lk~a,b!5(
i51

p

(
j51

q

Ri j ~a,b!. ~5!

The self-linking number of an orbita is simply given by
slk(a)5 lk(a,a). Tables IV and V contain the linking num
bers for the regimes located inside theC1/3 andC1/2 regions.

A variation of a control parameter modifies the spectru
of orbits. This explains why no period 3T orbit appears in
Table IV: the corresponding chaotic regime is located bef
the 3T periodic window, in contrast with the two othe
TABLE III. Linking and self-linking numbers of the UPO extracted from theC1/4 regime. For example,
lk(2T,4T)543

13
4143

7
2527.

Orbits T 2T 3Ta 3Tb 4T 5Ta 5Tb 5Tc 6Ta 6Tb 6Tc 8T

T5y 0
2T5yx 7 7
3Ta5x2y 10 20 20
3Tb5xy2 10 20 30 20
4T5xy3 14 27 40 40 41
5Ta5x2y3 17 33 49 50 67 66
5Tb5x2yxy 17 50 67 66
5Tc5y2xyx 17 34 50 83 83 68
6Ta5x2y2xy 20 40 59 60 80 99 99 100 99
6Tb5x2y4 20 40 59 60 80 99 99 100 99
6Tc5x2yxy2 20 40 60 80 99 119 99
8T5x2y3x2y 27 53 185
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TABLE IV. Linking and self-linking numbers of the UPO extracted from theC1/3 regime.

Orbits T 2T 4T 5Ta 5Tb 6Ta 6Tb 7Ta 7Tb 7Tc 9Ta 9Tb

T5y 0
2T5xy 5 5
4T5xy3 10 19 29
5Ta5xy4 12 24 48 48
5Tb5xyxy2 12 24 48 60 48
6Ta5xy5 15 29 72 72 73
6Tb5xyxy3 15 29 58 72 72 73
7Ta5xyxyxy2 17 33 67 84 83 101 100 100
7Tb5xy6 17 34 68 84 84 102 118 102
7Tc5xyxy4 17 34 68 84 84 102 102
9Ta5xy2xyxy3 22 43 86 108 130 151 172
9Tb5xyxyxy4 22 43 87 174
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sample regimes. We have observed that inside a single
gion C1/n , topological invariants depend on symbolic s
quences only. For example, we have foundlk(y,xy)57 for
anyC1/4-type regime. Since the linking number of two orbi
does not depend on control parameters in their whole dom
of existence, this gives strong evidence that a given perio
orbit is associated to one and only one symbolic seque
throughout a chaotic regionC1/n .

On the contrary, two orbits with the same symbolic s
quence, but which belong to two differentC1/n regions, ap-
pear to be different, as shown by their topological propert
For example, we have found thatlk(y,xy)57 in theC1/4
region butlk(y,xy)55 ~respectively, 3! in theC1/3 ~respec-
tively, C1/2) one. As we will see in Sec. IV, this discrepanc
is explained by the fact that these regions correspond to t
different templates, and thus to three different types of to
logical organization.

IV. DETERMINATION OF THE TEMPLATES

As we have seen in the preceding section, the first stag
topological analysis yields tables collecting the invariants
orbits and pairs of orbits, from which the global structure
the flow is hard to discern.

To gain more insight into this structure, the organizati
of the knotted orbits can be modeled by means of a branc
2D manifold, thetemplate. The mathematical definition of a
template~a.k.a. ‘‘knot holder’’! has been introduced by Bir
man and Williams@21#. They have proved that the period
orbits of a three-dimensional hyperbolic flow exhibitin
chaos are in one-to-one correspondence with those of a s
flow defined on the template. The latter is obtained by c

TABLE V. Linking and self-linking numbers of UPO extracte
from theC1/2 regime.

Orbits T 2T 3T 4T 10T

T5x 0
2T5xy 3 3
3T5x2y 4 8 8
4T5x2y2 5 10 15 15
10T5xy2x2y2x2y 13
re-
-
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s.

ee
-

of
f
f

ed

mi-
l-

lapsing the invariant set of the 3D flow along its stable ma
fold, i.e., by identifying points whose images converge
each other as time goes to infinity. As, for obvious reason
periodic orbit intersects neither its stable manifold nor tho
of other periodic orbits, the topological organization is pr
served in the process.

Strange attractors are generally not hyperbolic. In parti
lar, periodic orbits can be created or destroyed as a con
parameter is varied. However, existing periodic orbits
linked as in the hyperbolic limit, since their topological in
variants do not depend on control parameters, and can be
in correspondence with some periodic orbits of the hyp
bolic template. Thus, for experimental systems, the temp
is still a relevant concept but differ from the mathematic
definition by the fact that not all its periodic orbits do have
counterpart in the attractor.

One of the most simple chaotic topological structures
the one described by the horseshoe template, named afte
Smale’s horseshoe, a celebrated paradigm of a chaotic
namical system~see, e.g., Ref.@28#!. Figure 5 shows the
horseshoe template holding a 3T orbit. It is essentially di-
vided into two parts. The most important one models
folding and stretching processes organizing the strange
tractor. At its beginning, the surface splits into seve
branches~two in the present case!. Each branch may be
twisted by an integer number of half turns and/or wi
around the other branches. All branches then rejoin e
other along a common line~thebranch line! where they are

FIG. 5. The horseshoe template holding thex2y period-3T orbit.
Its algebraic representation is given by the matrices in Eqs.~8!.
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superimposed in a certain order. The remaining part me
connects the branch line with the one where branches
off. It may display one or more full twists, whose number
called the global torsion of the template.

The horseshoe template is of particular interest not o
because of its simplicity but also because it is the only o
that has been, so far, clearly observed in experimental
tems. It has been identified in optical systems, such as C2
lasers with modulated losses@7,8# or with a saturable ab
sorber@6#, a NMR laserlike oscillator@5#, and other dynami-
cal systems such as the Belousov-Zhabotinskii chemica
action @2#, an electrochemical reaction@3#, or a vibrating
string @4#.

To relate experimentally measured invariants to the str
ture of the template, an algebraic description of the latte
needed. As proposed by Mindlinet al. @1,2#, this can be
achieved by defining two matrices, then3n template matrix
T and the 13n insertion matrixI, wheren is the number of
branches of the template.

As we will see below, the topological organization of th
chaotic regimes described in previous sections, correspo
to templates with two branches, and we therefore limit o
selves in the sequel to then52 case. Let us label the tw
branchesx andy. We recall that each periodic orbit on th
template can be given a unique symbolic name~which we
write overlined! by listing the symbols of the branches that
successively visits. For example, thex2y3 orbits visits branch
x twice, then branchy thrice before returning to its startin
point. In particular, there are two period-1 orbitsx̄ and ȳ
associated to the two branches of the template.

The template matrix is written out as

T5S tx 2l

2l t y
D , ~6!

where tx ~respectively,ty) is the local torsion, in units of
p, of the x̄ ~respectively,ȳ) orbit, and thus the number o
half-twists of the associated branch, andl5 lk( x̄,ȳ) is the
linking number of thex̄ and ȳ orbits.

The insertion matrixI reads

I5~0 m!, ~7!

wherem51 ~respectively,21) if the y branch is above
~respectively, below! the x branch on the branch line.

For example, the horseshoe structure with zero global
sion of Fig. 5 is described by the two following matrices:

Ths5S 0 0

0 1D , ~8a!

Ihs5~0 1!. ~8b!

The four numberstx , ty , l , andm completely describe
the structure of a two-branch template. As a result, the li
ing number of two periodic orbits with given symbolic s
quences, as well as their self-linking numbers, can be
pressed as functions of these numbers using techni
similar to those presented in Ref.@28#. In fact, these formulas
are almost nearly linear, except for the presence of te
ly
lit

ly
e
s-

e-

c-
is

ds
-

r-

-

x-
es

s

involving o(tx,y), whereo(t) indicates the parity oftPZ:
o(t)51 ~respectively, 0) ift is odd ~respectively, even!.

Determining the template structure from the experime
tally measured invariants thus amounts to equating the
mulas yielding the invariants of some extracted orbits w
the measured values, and then solving for the four unkno
tx , ty , l , andm. Four equations should, in principle, suffic
However, due to the presence of theo(tx,y) terms, the com-
putation is usually simpler when using a few more equatio
As an example, we now determine the topological struct
of theC1/4 sample regime from the following five equation

slk~xy!52l1m57, ~9a!

lk~ ȳ,xy!5 l1 1
2 @ ty1o~ ty!m#57, ~9b!

lk~ ȳ,xyy!5 l1ty510, ~9c!

lk~ ȳ,xyyy!5 l1 1
2 @3ty1o~ ty!m#514, ~9d!

lk~xy,xxy!53l1m1tx1
1
2 @ ty1o~ ty!m#520. ~9e!

Combining Eqs.~9b! and ~9d! yields

ty5 lk~ ȳ,xyyy!2 lk~ ȳ,xy!57. ~10!

Substituting this value ofty in Eq. ~9c! readily gives

l5102ty53. ~11!

Equation~9a! then indicates that

m5722l51, ~12!

and, finally, Eq.~9e! yields the last unknown

tx52023l2m2 1
2 @ ty1o~ ty!m#56. ~13!

The template and insertion matrices are thus equal to

I5~0 1!, ~14b!

In Eq. ~14a!, the decomposition ofT shows that the cor-
responding template has a horseshoelike structure with a
bal torsion of 3. Indeed, as illustrated by Fig. 6, each elem
of a template matrix is increased by two when one full turn
added to the global torsion.

Note that we have foundtx and ty to be even and odd
respectively. This could have been expected, asx and y,
respectively, correspond to the branches of positive
negative slope of the 1D first return map. Hence, we co
have slightly simplified the calculation by assuming from t
beginning thato(tx)50 ando(ty)51. However, we wanted
to stress that this piece of information is not strictly require

As the reader may have noticed, we have used fewer
pological invariants than have been measured. The rem
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ing ones can, thus, be used to validate the template by v
fying that they are correctly predicted by the soluti
displayed in Eqs.~14!. As an example,

lk~xyxy2,x2y2xy!515l13tx1
9
2 ty

1m$ 62o~ ty!@
1
21o~ tx!# %. ~15!

It can be easily checked that the experimentally measu
value of 100 is obtained by substituting in Eq.~15! the val-
ues oftx , ty , l , andm given by Eqs.~14!. In the same way,
we have verified that all the unambiguous invariants listed
Tables II and III were correctly predicted by the templa
given in Eqs.~14!.

The same procedure has been carried out for the cha
attractors of theC1/3 andC1/2 windows and reveals horse
shoe templates with global torsions of 2 and 1, respectiv
@see Figs. 7~b! and 7~c!#

T1/35S 4 4

4 5D 5S 0 0

0 1D 123S 2 2

2 2D , ~16a!

FIG. 6. Illustration of global torsion. Cutting the left ribbon i
the middle yields the two ribbons on the right. It is easily seen t
the contribution of the latter to the template matrix elementstx ,
ty , and 2l is equal to two.

FIG. 7. Evolution of the template with the control parameter.~a!
C1/4 ~b! C1/3 ~c! C1/2.
ri-

d

n

tic

y,

I1/35~0 1! ~16b!

and

T1/25S 2 2

2 3D 5S 0 0

0 1D 113S 2 2

2 2D , ~17a!

I1/25~0 1!. ~17b!

It should be noted that forT1/2, due to the limited number
of invariants, another template, withty54 instead of 3, is
compatible with the measured topological invariants. W
have, however, discarded this solution as~i! it does not re-
produce the known parities of the two branches,~ii ! a differ-
ence of two between the torsions of the two branches se
incompatible with the existence of a continuous flow.

It thus appears that chaotic regimes located inside
three chaotic regionsC1/2, C1/3, and C1/4 experience the
same stretching and folding mechanisms as those desc
by Smale’s horseshoe, but that they can be distinguis
according to the global torsion of the template. The latte
closely connected to the ratio of the control parameterv to
the linear resonance frequencyv r , as expected from the the
oretical studies on nonlinear oscillators by Gilmore and M
Callum @10#. The reader may verify that the existence of th
global torsion is visible in Fig. 4 where global twists o
respectively, three, two, and one full turns can easily be se

V. CONCLUSION

We have analyzed the topological structure of chaotic
tractors of a pump-modulated Nd-doped fiber laser for va
ous values of the modulation frequency. Under the exp
mental conditions investigated, these chaotic regimes
found in islandsC1/n located around the subharmonic
v r /n (n52,3,4) of the relaxation frequencyv r .

Our main result is that the topological organization of t
regimes found inside theC1/n region is not described by a
simple horseshoe template, but by a horseshoe with a gl
torsionug of n21 in 2p units. This relation agrees with th
theoretical study of the topology of nonlinear driven oscil
tors carried out by Gilmore and McCallum@10#, and should
accordingly hold in other experimental driven systems exh
iting chaos at subharmonic resonances. However, the pre
work provides, to our best knowledge, the first experimen
illustration of this phenomenon, as well as the first expe
mental characterization of a system yielding different te
plates for different regions of the parameter space, in part
lar, templates with a nonzero global torsion.

Let us conclude by noting that more complex templa
than those reported here should be found in other region
parameter space. In the present study, indeed, the succe
resonance tonguesC1/n are separated by stable period-T be-
havior. When leaving theC1/n domain, all periodic orbits
embedded in the strange attractor must be annihilated be
the C1/(n11) region is reached, because their invariants

t
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incompatible with the new topological organization. How
ever, it is well known that resonance tongues may over
when the modulation amplitude is sufficiently increased~see,
e.g., @10#!. In this case, some UPO of theC1/n domain can
coexist in the same attractor with UPO of theC1/(n11) re-
gion. As none of the above-mentioned templates can sup
simultaneously both types of orbits, this calls for the ex
tence of more complex templates with more than t
branches. The hope of observing such a template certa
l.

J.
p

ort
-

ly

motivates further experimental investigations of the fiber
ser and of other modulated class-B lasers.
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