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Horseshoe templates with global torsion in a driven laser

G. Boulant* M. Lefranc! S. Bielawskit and D. Deroziet
Laboratoire de Spectroscopie Hertzienne, URA CNRS 249, Centted#E et de Recherches Lasers et Applications,
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We perform a topological analysis of chaotic signals from a Nd-doped fiber laser with pump modulation at
different values of the modulation frequency. In this experiment, the system displays chaotic behavior in three
regionsCy,1, Cy3, andCyy, of parameter space, located around the subharmenids w,/3, andw,/2 of the
relaxation frequencyw, . We observe that the topological structures of the chaotic regimes inside a given
regionC,,, are described by the same template. However, templates corresponding to different regions display
different global torsionsé,, which we find to be related to the order of the subharmonics by
04(Cypn) =n—1.[S1063-651X97)09804-9

PACS numbgs): 05.45:+h, 42.65.Sf, 42.55.wd

[. INTRODUCTION dimensional system with many longitudinal modes oscillat-

ing simultaneously. Hence, in Sec. Il we describe the experi-

Template analysis allows a relevant classification andnental system and check that topological analysis is
comparison of chaotic attractors according to their topologi-applicable by estimating the Lyapunov dimension of the at-
cal properties and provides a clear-cut characterizatiotfactors. Then, Sec. Ill is devoted to the extraction of UPO
thereof by a set of integer topological indiddd which are  from experimental data and the computation of their topo-
robust with respect to variations in control parameters. Irlogical invariants. We show there how careful signal pro-
particular, attractors observed experimentally in variousessing can greatly help in extracting topological information
fields such as chemistfi2,3], mechanicg4], nuclear mag- from noisy time series of finite length and precision. Finally,
netic resonancgs], and optics[6—8|, have been shown to in Sec. IV, we determine the templates of the different at-

belong to the same class, namely, that of the Smale’s hors&actors, compare them, and relate them to the values of the
shoe with zero global torsion. Let us note, however, thatmodulation frequency. In particular, we show that these tem-
nonhorseshoe dynamics has been reported by Firle, Natiellplates have a nonzero global torsion, and that this torsion
and Eiswirth[9] and that other structures have been pre-increases by one full turn when the period of modulation
dicted to be observable in experimeht®),11]. increases by 2/w, . This observation is in close agreement
In this paper, our aim is to use topological analysis inwith the theoretical studies of modulated nonlinear oscilla-

order to study and compare the attractors of a single syste@rs by Gilmore and McCalluriilQ].

(a modulated Nd-doped fiber lageat different values of a

pontrol para_metetthe .mod_ulatlon frequencg)). We dp thls Il. THE EXPERIMENTAL SYSTEM

in an experimental situation where chaotic behavior is ob-

served whenw lies near the subharmonics 1/2, 1/3, and 1/4 The experimental setup is a Fabryr®telaser cavity. The

of the natural relaxation frequenay,, the highest linear active mediuma 4 mlong silica fiber doped with 300 ppm

resonance frequendgee, e.g.[12,13) of the system. Nd3*, is pumped by a laser diode emitting a single polarized
Let us briefly recall the principle of the method. A chaotic mode at 810 nm. The optogeometrical properties of the fiber

attractor has typically embedded in it a dense set of unstablmake the laser transversally monomode at the operating

periodic orbits(see, e.g.[14]) which cannot intersect be- wavelengthA =1.08 um. However, the large cavity length

cause of the deterministic nature of the evolution laws. Thusnd the broad inhomogeneous gain profl@0 cm™ 1) allow

the way the unstable periodic orbi(tPO) are linked to- some 10 000 longitudinal modes to oscillate simultaneously.

gether can be characterized using concepts from knot theorin addition, in the absence of polarization selective elements

provided the attractor is confined to a three-dimensi¢dia) in the cavity, each mode is split into two eigenstates of po-

manifold. The existence of a two-dimensional manifold, thelarization depending on the birefringence of the fib&5s).

template such that all UPO can be placed on it while pre-On output, the two polarization eigenstates of the cavity are

serving their invariant linking properties, allows one then toseparated by a polarizing beam splitter combined with an

describe concisely the global topological organization of thenalf-wave plate to select the direction of analysis. In typical

attractor under study. operating conditions, the low laser threshold allows us to
The fiber laser(FL) is known to be a possibly high- reach pump parametefse., the ratio of the pump power to

its value at thresholdup to 5 and to explore a wide range of

parameters.
*Electronic address: Guillaume.Boulant@univ-lillel.fr Under modulation of a control parameter, this laser exhib-
TElectronic address: Marc.Lefranc@univ-lilled.fr its chaotic oscillation$16], reached via period doubling cas-
*Electronic address: Serge.Bielawski@univ-lillel.fr cade or quasiperiodicity. In our experiment, we modulate
$Electronic address: Dominique.Derozier@univ-lille1.fr sinusoidally the pump parameteh(t)=Ay(1+ mcoswt)
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TABLE I. Estimated Lyapunov exponents of sample regimes in
Cy, Cy3, andCy, regions, given in modulation frequency units.
d, is the Lyapunov dimension defined ds=2+|\;/\3| accord-
ing to the Kaplan-Yorke conjectuf@9] and is believed to estimate
the dimension of the attractor.

Regime N1 N, N3 d.

Cua 0.37 ~0.06 ~057 2.6
Cus 0.34 ~0.00 -0.92 2.3
Cup 0.52 -0.03 ~0.66 2.7

X, (arb. units)

This bifurcation structure is common in nonlinear oscillators
(see, e.9.[10]) except that, in the present case, we do not
observe chaotic behavior around the relaxation frequency
Wy

To verify that, in spite of the great number of degrees of
freedom, the dynamics is sufficiently low dimensional so that
template analysis can be applied, we have performed
Lyapunov exponent estimates for regimes in the three re-
gions using the programLiA by Briggs[17]. Table | dis-
plays the results obtained for three sample regimes. While
the numerical values should be taken with caution, especially
for the negative exponerithe regimes appear to be much
more dissipative than indicated by this analysthey defi-
nitely show that there is only one unstable direction and that
three-dimensional volumes are contracted under the action of
the flow. This means that most of the dynamical variables
relax so quickly that they are enslaved by a few number of
collective variables which are confined to a three-
dimensional manifold. This motivates the topological analy-
sis carried out in the sequel of this paper, whose relevance
will, furthermore, be confirmed by the consistency of the
measured topological invarian8].

X, (arb. units)

Ill. TOPOLOGICAL ANALYSIS

As complex as it may appear, a strange attractor is a
highly organized geometrical object. In particular, it contains
an infinite number of unstable periodic orb{t$PO), densely
embedded in it(see, e.g.[14]): the neighborhood of any
point of the attractor, however small it is, is visited by peri-
odic orbits. As it evolves on a strange attractor, a typical
, , chaotic trajectory visits the neighborhood of a number of

14 16 18 20 22 these UPO, approaching them along their stable direction
® (KHz) and leaving them along the local unstable direction, after an
interval of time whose duration depends on how closely the

FIG. 1. Experimental bifurcation diagram for increasing modu- periodic orbit has been approached.
lation frequency. Note the localization of the three chaotic regimes In low-dimensional attractors, the crossing of the neigh-
aroundw,/4, /3, andw,/2. borhood of an UPO of relatively low period by a chaotic
trajectory shows itself clearly in the temporal signal as a

rst of almost periodic behavior. This allows one to extract
approximations of periodic orbits from experimental time se-
ries. Some examples of such sequences, with a high signal to
noise ratio, can be found, for instance, in Ré&f.

Unstable periodic orbits have been recognized as a major
tool to analyze chaotic systems. Indeed, they provide a hier-
rchical approximation of a strange attractor: low-period or-
its model the global structure of the attractor, while finer
details can be resolved using high-period orbits. One prom-
0 =~2w1~3wyr~4w,. (1) ising and powerful method based on this approach is the

X, (arb. units)

around an average valuk,=2.7 with a ratem=0.6. The
frequency is chosen as a control parameter and swept from
to the relaxation frequency,, which, under these condi-
tions, is about 36 kHz. The bifurcation diagram, shown in
Fig. 1, displays a sequence of three chaotic wind@ys,
Cy3, andC,, located aroundv,,~9 kHz, w;5~12 kHz,
and wq,~~18 kHz, respectively. The notations have been
chosen to emphasize the harmonic relation between the ch
otic frequencies and,
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topological analysis proposed by Mindlit al. [1], which
proceeds as follows.

Periodic orbits are associated with closed curves in the
phase space of the system. When this phase space is three
dimensional, these curves can be characterized using the
mathematical framework of knot theofyee, e.g., Ref19]).

The latter associates with a three-dimensional closed curve
(or a set of such curvegopological numbers which are in-
variants with respect to isotopy, i.e., which remain un-
changed when the curve is continuously deformed without
intersecting itself.

The relevance of these invariants stems from the deter-
ministic nature of chaotic behavior. Indeed the unigqueness
theorem(see, e.g., Ref{20]) implies that a periodic orbit
cannot intersect itself or another orbit without violating de-
terminism at the point of intersection. As a result, invariants ¢
from knot theory are well defined and are insensitive to de-
formations induced by modifying a control parameter. For g 2 3p differential embedding phase spaxét) is a dy-
example, the relative placement of a pair, ) of unstable  namical variable and the modulation phase. The topological in-
periodic orbits can be characterized on its whole domain oformation (contained in overcrossings and undercrossifggom-
existence in parameter space by several topological quantiietely preserved in a plot oK vs ¢. For example, the two
ties such as the linking numbék(«,B), which indicates crossings in the latter reflect the fact that each orbit winds one time
how many timesx winds arounds. around the other, which corresponds to a linking number of 1.

The keystone of topological analysis is that any set of

periodic orbits embedded in the attractor is associated to g‘pace In our experiments, we have used a phase space with
set of orbits with identical topological invariants on a two- ' ’

dimensional manifold, called theemplate[21-23,1. This  coordinateg X(t),X(t),¢(t)], where ¢(t) = wt(mod 2r) is
surface can be viewed askmot holderon which all the the phase of the perio@-modulation. This phase space,
periodic orbits extracted from the attractor can be laid downvhich is schematically displayed in Fig. 2, is topologically
via a continuous deformation without crossing. Thus theequivalent to a solid torup?x S' (D? being the unit disk
template provides a simple and complete description of th@nd S' the unit circle. This is a natural geometry for a
global topological organization of the flow. modulated system, as a Poincaextion of the attractor can
In this section, we describe the steps we have followed tde readily obtained by means of a stroboscopic sampling.
extract UPO from experimental signals of the FL and toMoreover, this topology restricts isotopy moves to a smaller
compute their topological invariants. The determination ofclass, namely, regular isotopy, and allows one to make use of
the corresponding templates will be presented in Sec. IV. more powerful invariants, such as the relative rotation rates
To perform a topological analysis, a time serdg) has introduced by Solari and Gilmorg4,25, which provide a
to be embedded in a three-dimensional phase space, so thgfer description of the relative rotation of the UPO than the
knot the_ory can be applied. In Sec. Il A, we first describejinking number.
the particular phase space we have used. Due to the rela- x 1) and its time derivatives are natural variables to de-

tively complex nature of the signals coming from the FL, it s¢rine 5 dynamical system. There is, however, one more rea-
has been necessary to process them using analog techniques for choosing the time derivativé(t th d
— which we present in Sec. Ill B— in order to obtain a time son for choosing the time derivativé(t) as the second co-

series suitable for topological analysis. Indeed, computiné’rdinatej Indeed, the topological structure of a periodic (_erit
the topological invariants of the UPO detected in the time® ©f periodT, can then be completely analyzed by plotting
series requires an embedding phase space where orbits & representative time series segmenkK,(t), t

well separated. If two orbits are too close to each other in€[to.to+T,] as a function of¢=wt(mod 27) [7]. As il-
some region of the attractor, the experimental noise and thiistrated in Fig. 2, this plot can be seen as a projection of the
slight uncertainty in their precise localizatiéwe use orbits orbit onto theX=0 cylinder along theX direction, and pre-
approximating the true UPQmay result in unreliable mea- sents the orbit as a braid enstrands. Topological informa-
surements of their relative positions and, thus, of their linktion is preserved provided that we know at each crossing
ing invariants. In Sec. Il C, we briefly review the close- which of the two strands passes over the other in the 3D
return technique used to extract the unstable periodic orbitgpace. This is, in fact, trivial since the strand with the greater
from the time series. Last, we classify the detected orb|t§|ope corresponds to the higher valueXof

“Sif‘g symbolic dynami(_:s an(_j c_ompute their topological in- As a result, listing the successive crossinggbdacreases
variants for chaotic regimes inside )y, Cys, andCi2  fom 0 to 1 provides an algebraic description of the topo-
chaotic regions in Sec. Il D. logical structure of the orbit, from which any topological
invariant can be readily computed. As a simple example,
computing the linking number of two orbits amounts to
As mentioned above, topological analysis requires that theounting the number of crossings between the strands of
time seriesX(t) under study be embedded in a 3D phasethese two orbits in &(¢) plot (see the example of Fig)2

A. Embedding phase space
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whereé, (¢(t)) andé_(¢4(t)) are, respectively, the high and
low envelopes of (t) computed from a record of about 1000
modulation periods

& (po)lresp.é_( o) ]=maxresp. min{L(t); d(t)= ¢o}.

Figure 3c) displays theL; correction corresponding to the
signal of Fig. 3b).
This periodic signal is then generated with a program-

I (arb. units)

L

-
~ mable synthesizer phase locked on the modulation, and sub-
tracted from the output of the logarithmic amplifier. The final

d signal, shown in Fig. @), clearly displays the topological

5 information and provides a suitable dynamical variable. In

[ the following, the time serieX(t) will, thus, always desig-

N nate the dynamical variable

0 2m

X(H)=L(t) = Ly(e(1)) ()

o . ~and the embedding 3D phase space will be@4e S! torus
FIG. 3. Enhancement of the topological information of the sig-

nal by analog processinga) A polarization eigenstate intensity: I. [X(1),X(1), #(t)].
(b) Logarithmic amplification of this signal-=In(l). (c) The un- _ o _
wanted periodF oscillationL+ . (d) The final signalX=L—Lr. C. Detection of the unstable periodic orbits

The extraction of periodic orbits embedded in the attractor

Clearly, evaluating this number requires that differentis carried out by applying to time series ¥{t) the close-
strands be well separated, particularly because of the limitetgturn technique proposed in Rg2]. The latter proceeds by
resolution of the eight-bit transient digitizer used in the ex-looking for time series segmengX(t);te[ty,to+pT]} sat-
periments. This is not necessarily so when directly recordindsfying
a natural variable of the system, for example, the laser inten-
sity. In this case, the signal has to be processed using analog
techniques before the topological analysis of digitized data
can be carried out.

¢

IX(t+pT)—X(t)|<e  forty<t<ty+pT. (4)

Such a sequence indicates that the trajectory in phase
space is shadowing a peri@dF orbit and can be used as an
approximation of this orbit, as better asis smaller.

In our experiments, with a signal to noise ratio in the
As Fig. 3a) shows, the intensity of a polarization eigen- order of 1%, we have chosento be 5% of the maximum
state is not a suitable variable, because it almost completelgmplitude ofX(t) and have narrowed the search to orbits of

vanishes during long periods of time. In these regions of lowperiod pT up to p=10.
intensity, the different orbits are indiscernible and we cannot Due to ergodicity, an infinitely long chaotic trajectory
determine whether some crossings occur. As advocated ipasses arbitrary close to any UPO. On the contrary, a finite
Ref.[26], this problem can be overcome by using a logarith-experimental time series can only approach a finite number
mic amplifier which delivers an output signal(t) of periodic orbits. Furthermore, the presence of noise will
=In(I(t)+1p). Let us note that this procedure, successfullyprevent higher-period orbits to be shadowed over a sufficient
followed in previous topological investigations of the modu- interval of time. Therefore, only a relatively small number of
lated CG; laser[7,8], preserves the topological information orbits can, in practice, be extracted, except when the signal
sincelL (t) is a monotonic function of(t). to noise ratio is high. For each attractor we have recorded
As can be seen in Fig.(B), this first step improves the signals over 10 000 modulation periods, which typically con-
quality of the signal to some extent but yet does not sufficetained some hundred almost periodic sequences, correspond-
Indeed, the resulting signal(t) displays a strong periodic ing to about ten distinct UPO for th&,,, andC; regions. In
component at frequency Tl/which masks the rest of the the C,;, region, we have observed the chaotic regimes to be
dynamics: the signal remains confined to a narrow bandnuch less dissipative than in the two former ones. This ad-
around this period- oscillation. Fortunately, any versely affects the detection of the UPO for two reasons: the
T-periodic transformation of the form(t)—L(t)+f(¢(t)) time needed before entering the neighborhood of a given
does not modify the relative positions of crossings andUPO is significantly increased, and the influence of noise is
hence, leaves isotopy invariants unchanged. strengthened. This explains why the results we present for
Experimentally, one simple way to proceed is thus to subthis part of the parameter space are obtained from a smaller
tract aT-periodic signalL(t) =L(¢(t)) from L(t), where = number of periodic orbits than for th&;,, andC,3 regimes.
L+(t) approximates the unwanted periddescillation. In  We are currently trying to design an alternate detection
our experiments, we have chosef(t) to be method to overcome this limitation.

B. Signal processing
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D. Spectrum of periodic orbits and computation 3T orbit yxx=yx? of a Cy, regime, the period-5
of the topological invariants yxxyy:yx2y2=x2y3 of a Cy;3 regime, and the period®2

Template analysis is significantly easier when the exxy of the C,;, regime are displayed in Figs(a}—4(c). The
tracted periodic orbits can be classified using symbolic dyrelevance of this symbolic encoding will fully appear in Sec.
namics. Symbolic dynamics is a powerful approach of chajy.
otic behavior and proceeds by representing a chaotic Once the periodic orbits have been extracted and classi-
trajectory as a sequence of symbols while retaining most ofied according to symbolic dynamics, one can proceed to
the dynamical information. Most topological investigations, compute their topological invariants. For each periodic orbit,
so far, have been carried out in cases where symbolic codinge have computed its self-linking number and self-relative
could be obtained by means of 1D first return mgh$—7,  rotation rates, while pairs of orbits have been characterized
with the exception of Ref.8]. by their linking number and relative rotation rates. Note that,

For each regime of the FL, the 1D first return diagramwith the exception of the linking number, these invariants are
(Xn,Xn+1), where theX,=X(to+nT) are obtained by a available thanks to the toroidal topology of the phase space.
stroboscopic sampling, is well approximated by a unimodal (Self-)linking numbers are determined by counting cross-
map of an interval onto itseli,,. ;= P(X;), as can be seen ings inX(¢) plots as described in Sec. Il A: the self-linking
in Fig. 4. The theory of symbolic dynamics for such maps is(respectively, linkingg number is simply the sunfrespec-
well establishedsee, e.g., Refl27]) and thus can be used tively, half-sum) of the number of crossings of the orbit with
here to encode periodic orbits. itself (respectively, the other orbit

A unimodal map has a single critical poidt which sepa- As for the relative rotation rates, let us briefly recall that a
rates the regions with positive and negative slopep®  periodpT orbit « and a periody T orbit 8 can be character-
orbit, identified by p samples X;=X(t;), X,=X(t; ized by pxq relative rotation rates {Rij(a,B);
+T), ..., Xp=X(t1+(p—1)T), is encoded by a binary i=1,... pandj=1,...g}. If the intersections ofx and
string s;S;...S, Where s;=x (respectively, y) when with a Poincaresection are labeled?, ... X and
X;<X. (respectively,X;>X.). As an example, the period- Xf, e ,X'g , the R;; relative rotation rate is defined as the
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TABLE Il. Relative rotation rates of UPO extracted from B¢, regime. The exponents indicate the relative weight of the given values.
For example, the pair (B,,5T) is characterized by 85=25 rotation rates, of which 53 X5 (respectively, 16-2X5) take the value
17/5 (respectively, 16/5). Blank entries correspond to measurements whose exact value could not be ascertained.

Orbits T 2T 3T, 3T, 4T 5T, 5T, 5T,
T=y 0
2T=xy % %
3Ta=xy? 3 3 0.(3)?
3Tp=xy 5 5 5 0.(3)?
AT=xy? : Y 3 3 0.%.(9?
5Ta=x7y? ¥ 1 i 3 2 0.(9)%(5)?
5Typ=x’yxy ¥ E % 0.(5)%(8)?
5T,=xyxy? v g GRE NG SE LS
oToxyxy 2 gy u £ 2 2 g
A S ¥ B

c
8T=x’y"x%y 5 45

6T, 6T, 6T, 8T

6Ta=x2y?xy 05 (D!
6T,=x2y* 0,5 (D4

b= 2y 5 105 5 (3 15 (104
6T =x"yxy’ 6:(3 0%.(3 a1
8T:X2y3xzy 01(5)31(73)4
number of times trajectories starting fro{" andeB wind  linking numbers, which are computed from the relation

around each other until both return simultaneously to theif24,25,28

initial condition, divided by the number of elapsed periods. -

Self-relative rotation rates are similarly defined for single _

orbits with the convention th&;;(a,a)=0. The reader may 'k(“’ﬁ)‘; ,-21 Rij(@.f). ®

find a more detailed exposition in Ref24,25,5,28. In prac-

tice their determination amounts to evaluating partial sums

of crossings. The self-linking number of an orbit is simply given by
Inside each of th&€,,,, C,/3, andC,, regions of param- slk(a)=Ik(a,a). Tables IV and V contain the linking num-

eter space, we have analyzed several chaotic regimes, and Wers for the regimes located inside gz andC,, regions.

present below the spectra of orbits and the measured invari- A variation of a control parameter modifies the spectrum

ants for three sample regimes. Table Il collects the symboliof orbits. This explains why no periodT3orbit appears in

sequences an(self-relative rotation rates for the one lo- Table IV: the corresponding chaotic regime is located before

cated in theC,,, region. Table Il displays the corresponding the 3T periodic window, in contrast with the two other

TABLE lll. Linking and self-linking numbers of the UPO extracted from g, regime. For example,
IK(2T,4T)=4x B+ ax I=27.

Orbits T 2T 3T, 3T, 4T 5T, 5T, 5T, 6T, 6T, 6T, 8T
T=y 0

2T=yx 7 7

3T, =x% 10 20 20

3Tp=xy? 10 20 30 20

4T=xy® 14 27 40 40 4

5T, =x3y® 17 33 49 50 67 66

5Tp=X2yXy 17 50 67 66

5T.=y?Xyx 17 34 50 83 83 68

6T,=x%y’xy 20 40 59 60 80 99 99 100 99
6T,=x%y* 20 40 59 60 80 99 99 100 99
6T, =x2yxy? 20 40 60 80 99 119 99

8T=x%y%x%y 27 53 185
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TABLE IV. Linking and self-linking numbers of the UPO extracted from thg; regime.

Orbits T 2T 4T 5T, 5T, 6T, 6T, 7T, 7T, 7T, 9Ta 9Tb
T=y 0

2T=xy 5 5

4T=xy® 10 19 29

5T, =xy* 12 24 48 48

5T, =XyXxy 12 24 48 60 48

6T,=xy° 15 29 72 72 73

BTp=xyxy’ 15 29 58 72 72 73

7T,=xyxyxy¥ 17 33 67 84 83 101 100 100

7Tp=xy® 17 34 68 84 84 102 118 102

7T=xyxy' 17 34 68 84 84 102 102
9T,=xy>xyxy> 22 43 86 108 130 151 172
9T,=xyxyxyy 22 43 87 174

sample regimes. We have observed that inside a single réapsing the invariant set of the 3D flow along its stable mani-
gion Cy,, topological invariants depend on symbolic se-fold, i.e., by identifying points whose images converge to
qguences only. For example, we have fouk@y,xy)=7 for  each other as time goes to infinity. As, for obvious reasons, a
any Cq,,type regime. Since the linking number of two orbits periodic orbit intersects neither its stable manifold nor those
does not depend on control parameters in their whole domaiaf other periodic orbits, the topological organization is pre-
of existence, this gives strong evidence that a given periodiserved in the process.
orbit is associated to one and only one symbolic sequence Strange attractors are generally not hyperbolic. In particu-
throughout a chaotic regio@, . lar, periodic orbits can be created or destroyed as a control
On the contrary, two orbits with the same symbolic se-parameter is varied. However, existing periodic orbits are
guence, but which belong to two differe@Y, regions, ap- linked as in the hyperbolic limit, since their topological in-
pear to be different, as shown by their topological propertiesvariants do not depend on control parameters, and can be put
For example, we have found thit(y,xy)=7 in theC,, in correspondence with some periodic orbits of the hyper-
region butlk(y,xy) =5 (respectively, 3in the C,/3 (respec-  bolic template. Thus, for experimental systems, the template
tively, C,,,) one. As we will see in Sec. IV, this discrepancy is still a relevant concept but differ from the mathematical
is explained by the fact that these regions correspond to threggfinition by the fact that not all its periodic orbits do have a
different templates, and thus to three different types of topocounterpart in the attractor.
logical organization. One of the most simple chaotic topological structures is
the one described by the horseshoe template, named after the
Smale’s horseshoe, a celebrated paradigm of a chaotic dy-
namical system(see, e.g., Ref[28]). Figure 5 shows the
As we have seen in the preceding section, the first stage dforseshoe template holding & rbit. It is essentially di-
topological analysis yields tables collecting the invariants ofvided into two parts. The most important one models the
orbits and pairs of orbits, from which the global structure offolding and stretching processes organizing the strange at-
the flow is hard to discern. tractor. At its beginning, the surface splits into several
To gain more insight into this structure, the organizationbranches(two in the present cageEach branch may be
of the knotted orbits can be modeled by means of a brancheivisted by an integer number of half turns and/or wind
2D manifold, thetemplate The mathematical definition of a around the other branches. All branches then rejoin each
template(a.k.a. “knot holder’) has been introduced by Bir- other along a common linghe branch ling where they are
man and Williamg 21]. They have proved that the periodic
orbits of a three-dimensional hyperbolic flow exhibiting ~
chaos are in one-to-one correspondence with those of a semi- .
flow defined on the template. The latter is obtained by col-

IV. DETERMINATION OF THE TEMPLATES

TABLE V. Linking and self-linking numbers of UPO extracted
from the C,,, regime.

Orbits T 2T 3T 4T 10T
T=x 0
2T=xy 3 3
3T=x% 4 8 8
4T=x%y? 5 10 15 15
10T =xy?x2y?x?y 13 FIG. 5. The horseshoe template holding %3 period-3T orbit.

Its algebraic representation is given by the matrices in E)s.
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superimposed in a certain order. The remaining part merelinvolving o(t, ), whereo(t) indicates the parity of € Z:
connects the branch line with the one where branches spld(t) =1 (respectively, 0) ift is odd (respectively, even
off. It may display one or more full twists, whose number is  Determining the template structure from the experimen-
called the global torsion of the template. tally measured invariants thus amounts to equating the for-
The horseshoe template is of particular interest not onlynulas yielding the invariants of some extracted orbits with
because of its simplicity but also because it is the only onghe measured values, and then solving for the four unknowns
that has been, so far, clearly observed in experimental syss, t,, I, andm. Four equations should, in principle, suffice.
tems. It has been identified in optical systems, such as COHowever, due to the presence of thg, ,) terms, the com-
lasers with modulated loss¢g,8] or with a saturable ab- putation is usually simpler when using a few more equations.
sorber[6], a NMR laserlike oscillatof5], and other dynami- As an example, we now determine the topological structure
cal systems such as the Belousov-Zhabotinskii chemical resf the C,,, sample regime from the following five equations:
action [2], an electrochemical reactior8], or a vibrating

string [4]. slk(Xy)=2l+m=7, (9a)
To relate experimentally measured invariants to the struc- .

ture of the template, an algebraic description of the latter is Ik(y,Xy)=1+73[t,+o(t,)m]=7, (9b)

needed. As proposed by Mindliat al. [1,2], this can be _

achieved by defining two matrices, thex n template matrix Ik(y,xyy)=1+t,=10, (90

T and the X n insertion matrixZ, wheren is the number of - L

branches of the template. Ik(y,Xyyy) =1+ 3[3t,+o(ty)m]= 14, (9d)

As we will see below, the topological organization of the o N
chaotic regimes described in previous sections, corresponds ~ |K(XY.XXy)=3l+m+t,+3[t,+o(t,)m]=20. (9¢)
to templates with two branches, and we therefore limit our-
selves in the sequel to the=2 case. Let us label the two Combining Eqs(9b) and (9d) yields
branches< andy. We recall that each periodic orbit on the t,=Ik(y,Xyyy) — Ik(y,Xy)="7. (10)
template can be given a unique symbolic nafwhich we Y
write overlined by listing the symbols of the branches that it Substituting this value of, in Eq. (9¢) readily gives
successively visits. For example, t@y? orbits visits branch
X twice, then brancly thrice before returning to its starting |=10-t,=3. (11)
point. In particular, there are two period-1 orbisandy

associated to the two branches of the template. Equation(94) then indicates that

The template matrix is written out as m=7-21=1 (12)
:( ty 2') ©) and, finally, Eq.(9¢) yields the last unknown
21 t,)’
Y ty=20-3l—m—3[t,+o(t,)m]=6. (13

wheret, (respectively,t,) is the local torsion, in units of
7, of the x (respectively,y) orbit, and thus the number of
half-twists of the associated branch, aldlk(x,y) is the

The template and insertion matrices are thus equal to

linking number of thex andy orbits. 6 6 00 9 9
The insertion matrixZ reads T = = +3 x
67 01 22
I:(O m), (7) Nt s e et
horseshoe global torsion

where m=1 (respectively,—1) if the y branch is above
(respectively, beloywthe x branch on the branch line.
For example, the horseshoe structure with zero global tor- =0 1), (140

sion of Fig. 5 is described by the two following matrices: In Eq. (149, the decomposition of shows that the cor-

0 0 responding template has a horseshoelike structure with a glo-
7?132( ) , (83 bal torsion of 3. Indeed, as illustrated by Fig. 6, each element
01 of a template matrix is increased by two when one full turn is
added to the global torsion.
=0 1. (8b) Note that we have found, andt, to be even and odd,
respectively. This could have been expectedxaandy,

The four numberd,, t,, I, andm completely describe respectively, correspond to the branches of positive and
the structure of a two-branch template. As a result, the linkhegative slope of the 1D first return map. Hence, we could
ing number of two periodic orbits with given symbolic se- have slightly simplified the calculation by assuming from the
quences, as well as their self-linking numbers, can be exbeginning thab(t,)=0 ando(t,)=1. However, we wanted
pressed as functions of these numbers using techniqués stress that this piece of information is not strictly required.

similar to those presented in RE28]. In fact, these formulas As the reader may have noticed, we have used fewer to-
are almost nearly linear, except for the presence of termpological invariants than have been measured. The remain-
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J \ K Ty5=(0 1) (16b)

and

—

- 2 2 0 0 2
= +1X , 17
\ / ¥2=l2 3/ \o 1 2 2 (73
)
FIG. 6. lllustration of global torsion. Cutting the left ribbon in
the middle yields the two ribbons on the right. It is easily seen that
the contribution of the latter to the template matrix elements It should be noted that fdf;,,, due to the limited number
ty, and 2 is equal to two. of invariants, another template, with=4 instead of 3, is

. ) compatible with the measured topological invariants. We
ing ones can, thus, be used to validate the template by veriave, however, discarded this solution(asit does not re-
fying that they are correctly predicted by the solution produce the known parities of the two branch@s,a differ-

displayed in Eqs(14). As an example, ence of two between the torsions of the two branches seems
incompatible with the existence of a continuous flow.
Ik(xyxy?,x?y?xy) = 15 + 3t,+ 3t It thus appears that chaotic regimes located inside the

three chaotic region€,,,, Cy;3, and Cy, experience the
+m{ 6-o(ty)[3+0(t,)] }. (15  same stretching and folding mechanisms as those described
by Smale’s horseshoe, but that they can be distinguished
It can be easily checked that the experimentally measuredccording to the global torsion of the template. The latter is
value of 100 is obtained by substituting in E45) the val-  closely connected to the ratio of the control parameteio
ues oft,, t,, I, andm given by Egs(14). In the same way, the linear resonance frequeney, as expected from the the-
we have verified that all the unambiguous invariants listed iroretical studies on nonlinear oscillators by Gilmore and Mc-
Tables Il and Il were correctly predicted by the templateCallum[10]. The reader may verify that the existence of this
given in Eqgs.(14). global torsion is visible in Fig. 4 where global twists of,
The same procedure has been carried out for the chaotiespectively, three, two, and one full turns can easily be seen.
attractors of theCq;3 and C;, windows and reveals horse-
shoe templates with global torsions of 2 and 1, respectively,

[see Figs. ) and 7c)] V. CONCLUSION
4 4 0 0 2 2 We have analyzed the topological structure of chaotic at-
Tis= ) =( +2X ) (163 tractors of a pump-modulated Nd-doped fiber laser for vari-
4 5 01 2 2 ous values of the modulation frequency. Under the experi-

mental conditions investigated, these chaotic regimes are
found in islandsCy;, located around the subharmonics
o, /In (n=2,3,4) of the relaxation frequenay, .

Our main result is that the topological organization of the
regimes found inside th€,,, region is not described by a
simple horseshoe template, but by a horseshoe with a global
torsion gy of n—1 in 27r units. This relation agrees with the
theoretical study of the topology of nonlinear driven oscilla-
tors carried out by Gilmore and McCalluft0], and should
accordingly hold in other experimental driven systems exhib-
iting chaos at subharmonic resonances. However, the present
work provides, to our best knowledge, the first experimental
illustration of this phenomenon, as well as the first experi-
mental characterization of a system yielding different tem-
plates for different regions of the parameter space, in particu-
lar, templates with a nonzero global torsion.

Let us conclude by noting that more complex templates
than those reported here should be found in other regions of
parameter space. In the present study, indeed, the successive
resonance tongues, ,, are separated by stable periddse-
havior. When leaving the&C,;,, domain, all periodic orbits

FIG. 7. Evolution of the template with the control parametar. embedded in the strange attractor must be annihilated before
Cy4 (b) Cyy3 () Cypp. the Cy,+1) region is reached, because their invariants are
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incompatible with the new topological organization. How- motivates further experimental investigations of the fiber la-
ever, it is well known that resonance tongues may overlager and of other modulated claBslasers.

when the modulation amplitude is sufficiently increagsek,

e.g.,[10]). In this case, some UPO of tt@,,, domain can ACKNOWLEDGMENTS
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