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Fluctuations far from equilibrium: Hyperbolic transport
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The problem of the statistical properties of fluctuations in systems far from equilibrium is addressed. The
discussion is based on a variational approach to hyperbolic transport equations built in a space spanned by the
usual thermodynamic properties plus a set of potential functions associated with them. The enlarged space
characterizes the far from equilibrium states of the system and fluctuations in the potential functions satisfy the
Chapman-Kolmogorov equation. Well known results on processes near equilibrium are recovered in the para-
bolic transport limit[S1063-651X%97)05004-9

PACS numbd(s): 05.70.Ln, 05.70.Ce, 05.60w, 44.60:+k

I. INTRODUCTION appearing in the extremum conditions of the variational prin-
ciple and made it possible to discuss some relevant statistical
Nowadays it is recognized that fluctuations may have armproperties of fluctuations. Grabert and Green showed that
organizing role in nonequilibrium systems as, for instance, irfluctuations in nonlinear systems constitute a Markov pro-
pattern formation, coherence, self-organizing, etc. Theess when the phenomenological coefficients depend on the
schemes developed to study equilibrium or near equilibriunthermodynamic state. Independently, Grahdinvorked out
systems have the implicit idea that fluctuations constitute justhe irreversible processes making use of the method of path
a noise around the equilibrium state and that in any case thaptegrals in a more mathematical fashion.
break down the order if they are augmented. The view we Let us remark that the Grabert-Green procedure implies in
assume here is that fluctuations are responsible not only fdact the introduction of an additive stochastic term in the
order, but we consider that fluctuations are the mechanisrdynamic equations of the system. The physical interpretation
through which systems transit to ordered states where thef such a term is made in two senses. On the one hand, it is
final state depends on the initial one and on the dynamics ainderstood as a stochastic thermodynamic force, and on the
fluctuations[ 1]. other, such a force is the momentum in the space of conju-
The description of irreversible processes based on thgated variables of the system. Once the stochastic modifica-
fluctuations of the thermodynamic properties in a mesotion of the dynamic equations has been made it only remains
scopic level dates back to Onsager and MacHRip who  to find the variational expressions for the transition probabil-
established the connection between these two levels of déy in terms of the Lagrangian function of the variational
scription for aged systems. These are described in terms off@inciple whose stationary conditions are the modified dy-
set of extensive properties with the fluxes taken as the timaamic equations and the time evolution equation of the con-
derivatives of the extensive properties. The formulation lequgated momenta.
Onsager and Machlup to variational expressions for the tran- In this paper we search for the statistical properties of
sition probability among states whose extremum value is théluctuations in systems far from equilibrium. Following
corresponding maximum probability for the average thermo-Grabert and Green, we would first ask if a variational ap-
dynamic path of the system. They also derived an expressigoroach exists for the time evolution equations of the system.
for the probability for one state which coincides with Ein- This is not a trivial problem because of the presence in the
stein’s formula for the probability of equilibrium thermody- equations of non-self-adjoint differential operators which do
namic states based on Boltzmann’s relation. The statisticaiot permit the construction of classical variational principles
properties of the stochastic process associated with fluctuder them [5,6]. Our first step is then to find a theoretical
tions were completely specified in this way. The scheme inframework which allows us, on the one hand, to construct a
troduced by Onsager and Machlup gave as a result the exlassical variational formulation circumventing the problem
pressions of the transition probabilities in terms of an actiorof the presence of non-self-adjoint differential operators in
functional for the system, with extremum properties whilethe time evolution equations, and on the other, to deal with
the system is changing through thermodynamic states neaystems evolving far from equilibrium for time scales com-
equilibrium. Grabert and Gred8] extended the formalism parable to the characteristic relaxation time. Next we would
to the case of transport coefficients depending on the exterattempt to construct a path integral scheme for far from equi-
sive thermodynamic properties by using a variational prindibrium transport process within such a framework by taking
ciple for the phenomenological equations. These authoradvantage of the variational structure of the theory.
showed that fluctuations in nonlinear systems constitute a Hyperbolic transport equationgerived from first prin-
Markov process when the phenomenological coefficients deziples by Nettletori 7] and other$8]) have been shown to be
pend on the thermodynamic state. Furthermore, their worla useful tool in the fields of generalized hydrodynanjigk
provided a consistent stochastic interpretation of the termsolid state physic§10], and irreversible thermodynamics
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[11,12). They describe systems beyond the domain of the 1 Lji

linear approach of irreversible processes, specifically for a Ujut ;Fj,tzz — AL, 1)
time scale of the order of the relaxation time of the system. ! b

The main l’eSU|t Of the mOde| iS the prediction Of a f|n|te Where thd‘] (J :1, L. ,r) are a set Of thermodynamic prop_
velocity for the perturbations giving a description which in- erties of the system; is the relaxation time associated to the
cludes thermal inertial effects. Apart from these merits, hyrespective flux;, L; are the transport coefficients consid-
perbolic transport equations are known to also present limiered here as constantd, is the Laplace operator, and a
tations[13,14]. Nevertheless, their interest for us arises fromcomma denotes partial differentiation.

the fact that it is possible to construct a classical variational Mention must be made of some differences between Eg.
principle for the dynamic equations of the system in terms of1) with respect to equations of the hyperbolic transport
a set of new physical fields, the so-called potential functiongroblem set up by Nyi [17] (Eq. 44, p. 50,

[15], which together with the thermodynamic properties de-

scribes the time evolutjon qf the system .for a tim_e scale of 2 (@ Tt Bl i— i AT =0,

the order of the relaxation time. With the introduction of the K ' '

potential functions associated to each thermodynamic prop- ) )

erty, we enlarge the thermodynamic space and through }here we can observe the coupling between the time change
variational principle for the new dynamic equations an©f the thermodynamic properties which arises from adding
equivalent description of the system is obtaifd6—1§. all the first _and second time der_lvat|ves of thefields on the
Then the variational equations may be reinterpreted as thi€ft hand side of the last equation. In our hyperbolic scheme
conditions which give the average path in the conjugated'® haveai = 7Sk, Bik= ik, andyy=Lix (with & being
variables space constituted by the potential functions and th#!€ Kronecker delta as may be seen if we start with the
thermodynamic properties which have the role of the conjuMaxwell-Cattaneo-Vernotte equations for the fluxes

gated momenta. Thus it should be possible to construct a

pr_obability f!elq for the thermodynamic transitions and op— — Tja_Jj:Jj+E L VI, 2)
tain the statistical properties of the fluctuations of the conju- at i

gated variables without the introduction of any stochastic _ _ _

term in the transport equations. and combine Eq92) with free source balance equations of

We start in Sec. Il by establishing the basic equations othe form
hyperbolic transport as derived from the combination of a set
of balance and constitutive equations of the Maxwell- i}
Cattaneo-Vernotte type. We proceed then to represent both at
these equations and the ones arising in parabolic transport _ )
(the usual domain of linear irreversible thermodynamics Clearly, from Eqgs.(2) and (3) we arrive directly at Eq.
[19] in a joint variational scheme. Among other results, we(1). We proceed now to expose in some detail the variational
show that a unique Lagrangian function, written in terms ofscheme for Eq(1) in order to use it later in the study of the
the potentials associated with the thermodynamic propertiegfatistics of fluctuations. _ o _
of the system, yields the transport equations as the Euler- The first attempts at the classical variational formulations
Lagrange equations of a Hamilton type variational principle for irreversible thermodynamics may be found in the exten-
The next section is then devoted to discussing some aspecins of Hamilton’s principle to nondissipative fluids, where
of the thermodynamics of hyperbolic transport particularlythe internal energy is added to the Lagrangian function. The
where, as we will see, the existence of Onsager's reciprocitfn@ss conservation and the condition of reversibility are in-
relations between the transport coefficients is supported frorfoduced as subsidiary conditions in the variational principle.
two different points of view. Our scope at this point will be These schemes have the energy and momentum equations as
the use of the variational formulation to establish a mesothe stationary conditiong20].
scopic approach to far from equilibrium transport phenom- Th(_a inclusion of dissipative effects in the variatiOﬂaI for-
ena. The use of the hyperbolic model for the transport pheMulation depends on the assumed thermodynamic frame-
nomena permits us to extend the study of fluctuations beyon#ork [19,21]. There is, however, a common feature in all of
the conditions of local equilibrium. The paper is closed inthese schemes. The initial thermodynamic space is enlarged

Sec. V with some comments and final remarks. to include new independent properties of the system. As ex-
amples we mention the already exposed cases of the

Onsager-Machlup and Grabert-Green variational formulation
for near equilibrium systems as well as the Lagrangian for-
mulation of equations for the same kind of systems with
second-order time derivatives originally done by Landau and
Lifshitz [22]. Noteworthy in this last formulation are the
From a macroscopic point of view, hyperbolic transportfacts that it can also be cast in Hamiltonian form and, what is
equations are obtained by combining a set of balance equaaore relevant to the contents of this paper, that Onsager
tions for the thermodynamic densities of the system withreciprocity and Lagrangian formulation are intimately re-
Maxwell-Cattaneo-Vernotte equations for the associatedated. We will come back to this point later on. The most
fluxes. The hyperbolic equations we consider here may bgeneral classical variational principle for nonequilibrium
written as thermodynamics[23] considers the thermohydrodynamic

aT|

Il. THE VARIATIONAL APPROACH
TO FAR FROM EQUILIBRIUM
TRANSPORT EQUATIONS
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space enlarged with the entropy flux. In this case, the sub- -
sidiary condition is the mass conservation and the formalism Ll¢]= fDF(ﬁ{fl’}-X)dT 9
permits one to make use of Bther’'s theoreni24] to obtain

the conservation equations of the system. In this scheme tr}%s the extremum condition
closing equations are obtained from an analysis of the en-

tropy production term. Within extended irreversible thermo- F
dynamics it has been shown that the time evolution equations ‘"7~ —0. (10)
have a Hamiltonian structure@5]. Grmela and co-workers AL

[26] defined a Poisson bracket to express the dynamic equa-

tions in the form of a general time equation in which the The first-order equation

movement generator is a free energy. It has also been shown

that the closing time equations for the nonconserved vari- JF

ables may be obtained as the stationary conditions of a varia- W =u (1)
tional principle of the restricted typ@7]. Mention must be

made, however, that this kind of principle loses the extre- ... ==& ; ; ;
) X with y=L{ ¢}, yields Egs(4) and(10) to be identical. Equa-
mum property of the functional in the enlarged thermody-,[ion (yll) i{sd)k}ngwn as '?he characteristic equation of I%@

namic space, which disqualifies it for use in the description, i+ 4otermines the dependence of the Lagrangiavith

o il;](gurig?: Si'deas we use in this section on the otentia):eSpeCt 0 the variablg as well as the relation ofi with
P espect to the potentiap.

e e e e aralona] bl 0 The metho s beenspplie b G i 1]
) q y P'®4 the parabolic transport equations of linear irreversible

\s/!ggls V(\gl?(grﬁts[aﬁr: :g‘ygg]e I?Etrh(:fd 'Pii;ti(;)r:;g:jnelg ;hg_fcf(lae:?- thermodynamics. Within the irreversible thermodynamic
ical p ! ¥ 11, | : : scheme the parabolic equation can be written18%

ential equation obtained through the subsequent application

of linear differential operators on the unknown functioiby

means of a finite number of steps > (LikAT = pS Ty ) =0, (12
. :

L{u(x)}=0, 4
wherel' are a set of intensive thermodynamic properties of
with £ the resulting linear differential operator, then the the system, the (;oefficienST(l andL;, are constants, and
functional .t indicates partial derivation with respect to time. Mention
must be made that the sign of the first time derivative in Eq.
L[u]:f F(L{u(x)},x)d7 5y (12 differs from the sign used by Garhbano! I_\/I'ak_us,
D mainly because we address our effort to describing irrevers-
ible processes, where the propertiés are bounded func-
defined on the domaib is an extremum if the function tions for all time.
As we mentioned, the main difficulty in obtaining a clas-
Su(e)=L[u(x) +en(x)] (6)  sical variational formalism either for parabolic or hyperbolic
transport lies in the presence of non-self-adjoint operators,
namely, the first time derivative, in the transport equations.
7(X). . In order to deal with fluctuations in nonequilibrium situa-
The necessary condition in order fofu] to be an extre-  tjons within a general formalism, let us separate such a first-
mum becomes order derivative from the self-adjoint part of the transport

is an extremum ine=0 for all the admissible functions

pr= equations by defining two differential operators as follows:
L',( —] =0, (7)
dLu LA, parabolic case
where we have assumed that the variations at the domain Dij=1 Lj 7 . 13
. . ~ . —A—6—=3, hyperbolic case
frontier vanish. The operatat is the adjoint ofL. Ti at

The structure of Eq(7) restricts the type of equations of
the form (4) which may be obtained through the variational and
problem. One may introduce a new functigrrelated to the
i J
functionu through the operato®, as pSi_lﬁ. parabolic case

u=Q{e(x)}, ) Ki=y 1 5 (14)
— —, hyperbolic case.

in such a way that the equation for is equivalent to an T ot’

equation of the form(7), which of course may be obtained

from a variational principle based on the functigh By Clearly, the transport equations given by Eds.and(12)
virtue of Eq.(8) the function¢ is called the potential of. can be rewritten by using these operators in the form

To specify the operato@, let us observe that the varia-
tional problem (Djj—K)I'=0. (15
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Note thatD;; andK; are linear and that additionaly;; is ~ where
self-adjoint as stated above. It must also be noted that the

first-order coupling in time of Eq(12) has been omitted. (p~'S)?  parabolic case
Then we consider a set of potential functiopsfor the I'; a;= TJ.Z, hyperbolic case,
fields defined through the relation

_1 .
p “SL;, parabolic case
Flz_KJ¢I_EI D|]¢| (16) J:[ 1=

7, hyperbolic case.

The requirement on the; functions in this case is that It may be showri18,29 that a Poisson structure exists for
they must be four times differentiable in their arguments. Itthe dynamic equations of the conjugated variables for both
is important to emphasize that since we want to present parabolic and hyperbolic transport. In fact, if we define a
unified scheme for parabolic and hyperbolic transport, conPoisson bracket as
trary to what happens with the transport equations, we are
forced to consider potential functions for the latter which do PO ﬁ@_z 9Q P
not reduce to those of parabolic transport in the limit {P.Q}= T 8p; Op; T 6 Op;’
7j— 0. Let the Lagrangian function

(23

whereP andQ depend on the conjugated variables and the

L=L(#j ®jt: it & xxs Diyy: 920 functional derivativess/ §¢; and 6/ 6p; are given by
be given by the expression 5 9 9 9 2 9 p P
T YT -V. +A ,
1 2 8¢y ¢ Ot ddy T Iy Ve, T IN,
LZEEJ.: _Kid’J_Z Dij¢;| - (17) (24)
L 6 4 J 4 N #? 9 v d A d
The variational problem 50~ ap 9 9P e - 7, Thp

(25

the dynamic equations, Eq$l8) and (19), are particular
cases of the general time evolution equation

A=J J L dV dt=extremum, (18

with the functionL given by Eq.(17), has the following
Euler-Lagrange conditions for thg, : P={P,H}, (26)

L a9 dL 9% aL L with P a function of the conjugated variables and the Hamil-
b A dbes I Iy TN b =0. (19  tonian given by Eq(22). . _
‘ ' Particularizing to the hyperbolic case, we can rewrite the

If we substitute the expression for the Lagrangian, Eqdynamic equations, Eq¢15) and (16), in the Hamiltonian
(17), we obtain Eq(15) by virtue of Eq.(16). form by considering the modified Hamilton variational prin-

One may make the description in terms of the Hamil-Ciple
tonian functionH obtained through the Legendre transform

A=J f (2 ¢j,tpj—H)dV dt=extremum. (27)
H=2 ¢p;-L, (20 !
: By introducing the momenta; in the Legendre trans-

where the conjugated momentum to the potentigis given ~ form, Eq.(20), and using definitior{16) we obtain
as usual by

1 1
, H=-> Z¢ I'i-> =I'T;. 2
aL pS 'T'j, parabolic case EJ: 7| Sy E,: 2 17 8)
= = 1 21
P; A ¢ - 71"1 . hyperbolic case. @D Let us observe that
i
Let us note that the conjugated momemtahave a clear bj =~ 7] FﬁZ Dij¢i)’ (29

physical meaning and that we have translated the description

of the nonequilibrium transport processes to a new physicalng therefore we may write the Hamiltonian as
space whose components aeg (p;). The potential charac-

ter of the ¢; functions is well exposed by E@16). 1
In both cases the Hamiltonian of E(20) may be repre- H= 52 szpi DJ_Z 2 7iPiDji i -
sented by the expression
Observe that

1
H=32 PP~ 2 2 0RO, (@2 H=H(p; A by 30
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while Eq. (27) explicitly becomes

oH
J JdV dt[; pj5¢j,t+; ¢j,t5pj_; r5pj

P;
2 SA 2 M,
&A ¢] ¢j 0~,¢ o ¢)] tt
and finally, after a little algebra we arrive at
f f dv d:{ b~ )5pJ
2 L gH 4% oH o
PiaT 294 b e I | =0-

(31

Since d¢; and 6p; are independent variations E@1) is
satisfied only if

¢ - (32

j.t apj’
A oH 9* oH a3
Pie=— NG, I Iy (33

In order to illustrate the physical content of this kind of

5037

to the general problem and introduce the definition of a func-
tion of the conjugated momengg, which may well play the
role of a thermodynamic potential. This will allow us to dis-
cuss the basis to build the thermodynamics of hyperbolic
transport associated with Eq4d.5) and (16).

Ill. THE THERMODYNAMICS
OF HYPERBOLIC TRANSPORT IN THE FRAMEWORK
OF POTENTIAL FUNCTIONS

Let us then consider the following function of the space of
conjugated variables:

1
P:E 5 Pip;-
]

As we know, its time evolution is given by E¢(R6) with the
Hamiltonian given as in Eq22).

By substituting the expression &, Eq.(37), in Eq.(26)
we obtain

(37

01
e 52 pjpj)=i2j Lji(Api)pj_; 7iPj uPj - (38

We can rewrite the first term on the right-hand side of this
last equation as
Li(Ap)p;=

LiiV-[(Vp)p;]—L;iVpi-Vpj, (39

formulation we consider the particular example of hyperbolic
transport of heat in a rigid conductor solid where the heat i¢Vhile the second term is written as
propagating by conduction through waves at finite speeds.

The theoretical importance of the problem may be appreci-

ated in the extensive review of Joseph and PreZib4j. In

this case, we take the temperature as the intensive variable
i.e., I'=T, and Eq.(1) takes the form of the telegrapher

equation, namely,

1
Tt —T=Cc?AT,
q

(34

where 7,
=K/pC,7q, with K the thermal conductivity an€, the
specific heat.

In the Hamiltonian context the heat conductor is then de-

scribed by the conjugated field variabl¢sandp as

1
T:_T_¢,t+¢,tt_czA¢- (39
q
1
p=——T. (36)
Tq

The dynamic behavior ofp andp is given by the extre-
mum conditions of the variational principle ER7) or by
the general evolution equation@2) and (33) with the
Hamiltonian densityH defined as

H(p.¢)=5 (qu) —14P(d = C*A ).

is the relaxation time of the heat flux and

ijj,ttpj:TjE(Pj,tpj)—ijj,tpj,t- (40)

" Introducing Eqs(39) and (40) in Eqg. (38) we arrive at

J (1
" 52 ijj"'; TiPj tPj

+V.

iEj piL;iVp;

:; ijj,tpj,t_izj Vpi-L;iVp;. (41)

Let us note that this equation has the form of a balance
equation provided we identify

1
ing pjpj+§j: 7iPj +Pj » (42
JF:iEj p;iL;iVpi, (43
UF:; ijj,tpj,t_izj Vpi-L;iVp;, (44)

whereJg and o are the flux and production of the thermo-
dynamic functionF, respectively. As a matter of fact, the
structure of the thermodynamic functidn reveals that it
consists of two different kinds of terms. The first one on the
right hand side is related to the near equilibrium entropy as
was shown by Mekus and Gambrg 18]. The second term is

These are the Hamiltonian forms of the hyperbolic dy-a nonequilibrium contribution which vanishes in principle
namic equations of the system. In the next section we returawhen 7; tends to zero.
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It is worthwhile to mention that the production term, Eqg. [(1,m)=1, (46)
(44), is an invariant under global phase transformations if the

reciprocity relations between the transport coefficients are

satisfied. In fact, if one considers the global phase transforlf the field ¢; is multiplied by the left by the fields; [which
mation on the fieldsp; [18,30, is assumed to depend on thg, according to Eq(45)], and

¢j’:2 5j|¢|—2| PL()Th e, (45) I(l,m)=-1, (47)

where the infinitesimal paramete#8 do not depend on the if the field gbl-’ is multiplied by the right by the fieldp;
spatial coordinates'ljﬁ are the transformation generators and[which is assumed to depend on thg, according to Eq.
the order operatok(l, ) is defined as (45)], then the Lagrangian function transforms as

1 P by Py 1 _ dd 1 o
r— = kA p I Nl ) Zgp p 2P
- fdvzg [2 Ol ¢ ?.‘ PIL)Th 2 Z‘ 7j e +§.‘ Tjg HIOTh

e P 1 99
=2 Li| 2 Skl =2 MK TAA G || 2 Sm—ze = 2 01 M) T —ot = ) — S —
i k q,k m ot r,m ot m TJ ot

1 I
+;n?0fl(m,)ﬂm%—z Ljn(g SngS bg— > 05I(g,)TﬁgA¢g”. (48)

i .9

We may then show by using the properties of the order50), are satisfied and we change-i in the second term
operator and taking up to first order in the parameters that within the last bracket on the left-hand side of E§8), we
the Langrangian is invariant under the global phase transforebtain

mation
19 1 32 Lyi
ot —T—k¢k,t toa| ben L
I
L'=L. (49)
=2 — Al g —Agi|=0. (51)
i Tk T

In a similar fashion and after a cumbersome algebra one

may show that the production term of the thermodynamic In this last equation for the potential functiogg all of

function F is an invariant under global phase transforma-the differential operators are of the self-adjoint kind. More-

tions, Eq.(45), if the transport coefficients;; satisfy Onsag- Over, we see that the conditions for the existence of varia-

er's reciprocity relations in the form tional principles for a set,of differential equations as ex-
pressed by Finlaysdfb], Nyiri [17], and Ichiyanag[32] are
equivalent statemen{§].

Lij=Ly . (50) In the next section we develop a mesoscopic description

of hyperbolic transport focusing on the probability associated
with paths in the phase space within which we have derived

To close this section a fact which reveals another side oﬁhe dynamic equations as the Euler-Lagrange conditions of a

the profound role that the Onsager’s reciprocity reIations(:l""sg"caI variational principle.

have in the domains of irreversible thermodynamics is also

mentioned(a review on reciprocity in extended thermody- IV. THE PATH INTEGRAL FORMULATION
namics may be found in the work of Nettlet81]). Let us FOR TRANSPORT PHENOMENA
consider again a system described by the set of thermody- FAR FROM EQUILIBRIUM

namic prOpeI’tieSFj y which has a set of potentia| functions To S|mp||fy we assume a System described by On'y one

¢; defined through Eq(16). The Euler-Lagrange equations thermodynamic property’. The dynamical equation fof
of the variational problem, Eq.18), show the presence of (free of sourcesis

non-self-adjoint differential operators which might be con-

sidered a contradiction with the fact that only self-adjoint (D-K)I'=0. (52
operators admit a derivation from a variational principle.
Some of the non-self-adjoint operators in E4§8) are ¢y We change the description to a phase space of conjugated

or A ¢y ;. Observe, however, that if Onsager’s relations, Eqvariables ¢,p) defined through the relation
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(D+K)p=-T, (53
and Eq.(21).

5039

initial conditions determined in terms of the conjugated vari-
ables. This physical ensembl@3] will be described in the
“phase space” of the conjugated variabl¢sandp and the

The dynamical equations for the conjugated variables areefinition of the probability field of paths must be in accor-

written in the Hamiltonian form as

B oH
¢,t_ ap ’ (54)
B dH
p’t__D(?D(ﬁy (55)

where the Hamiltonian functioHl is given by Eq.(22) and
as before

LA, parabolic case

2

J
c’A—

el hyperbolic case,

with ¢c?=L/7, the signal transmission velocity artl the
characteristic time constant of the system. Equati(5®%
and(55) are equivalent to equations

(D+K)¢=bp, (56)
(D=K)p=0, (57
where the constarii is

p SL,
7., hyperbolic case.

parabolic case
b=

dance with the fact that the actidgnmust be a maximum for
the path obtained as the solution of E¢E6) and(57), since

it represents the most probable behavior of the system. In
what follows we develop the adopted point of view in terms
of the physical ensemble to describe the influence of fluctua-
tions in the temporal behavior of the system.

Let us circumvent the question of how to modify the
mean dynamic equations to introduce fluctuations and con-
sider then a thermodynamic system described by two conju-
gated variablesp and p which are intrinsically stochastic
properties, due to the underlying molecular processes as
mentioned above and whose time evolution is described in
the average by Eq$56) and(57). We ask then for the prob-
ability that the system follows a given path between two
given thermodynamic statesp(p)and (¢',p’). The pres-
ence of fluctuations implies that this path is not unique in
such a way that we must assign a probability to each admis-
sible path between the same two thermodynamic states sepa-
rated by a times. As usual, we divide the intervalin small
time intervals7 which are smaller than the hydrodynamic
time scale but bigger than the kinetic time scale.

Let us define the transition probability between states as
the conditional probability that the system will be in the state
¢' at timet= 7 given that at timet=0 it was in the state

b,

exd — (1K)A(¢'/$)]opl i’
Jdp exd —(1k)A(¢,p)]

PAo'l$)= (58)

With the above we have translated the description of the

where the action has the form

system to a space enlarged with the poteniiakince the
conjugated momentum becomes essentially the thermody-
namic propertyl". It is well known that the solution of Eq.
(56) diverges fort—oo. This is physically correct since the
description of the equilibrium state is completely defined in
terms ofl", but the nonequilibrium states require a new vari-
able which is the potential functio. Then ¢ must not be
defined for the asymptotic limit— . In this way, the physi-

AT<¢'/¢>=fOTdt<p¢,t—H>

:font(p¢,t_;ap2+pr¢ , (59

cal interpretation of¢ cannot be found in equilibrium. At With

this point we just know that its partial derivatives are related e .

to the thermodynamic properties of the system through Eq. _ (p~79)%  parabolic case
(56) which is at the same time the grounds for their physical |72, hyperbolic case,
meaning.

To introduce Eqs(56) and (57) within the context of and we have to choos¢, ¢', and r as independent vari-
stochastic processes we consider the potential fungtiand  ables. In this waygp/d¢’ from Eq. (58) is the Jacobian of
momentump as intrinsically fluctuating variables of the sys- the transformation
tem. The origin of this property must be found in the fact that
the system is out of equilibrium and therefore uncontrollable p=p(¢p,d’',7). (60
inner processes exist which cause random microscopic im-
pacts from internal subsystems. We remark that this assump- Expression(58) is understood as the probability that a
tion does not imply the necessity of new nonequilibriumfluctuation carries the system from the initial stateat time
variables for the system, but its thermodynamic state can still=0 to the final statep’ during the time interval. This
be described through the local equilibrium properties of theprobability is normalized through the factor
conjugated space.

Our problem is then to define the probability field associ- 1 f do exd — E A(.D)
ated with the paths of the system in the conjugated space pex k/°'T é.p
(¢,p). In order to do this, we consider a collection of repli-
cas of the original system, each one prepared with the sanie Eq. (58).
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In order to compute the transition probability for small By substituting in the transition probability, E¢68), we
time intervalsr we expand the conjugated variables in aobtain
Taylor's series

P& I6)= p[ L2 ax (- g2
1 - “ Vo™ k|22 ¢
P)=d+ dt+ 5 dut+- -, (61) "
1
—b*D¢<¢'—¢>+§c*T<D¢>2”. (66)
1
t)=p+pt+sput+---, 62
PIU=PHP, 2p’“ 62 It must be noticed from this last result that the transition

probability is determined by potential differences and their
where the coefficients are valuedtgt=0. We now consider derivatives. Therefore we assure the existence of this prob-
small 7 and by using the expansiqB1) write the transfor- ability field for all times. In this sense the nonbounding prop-
mation (60) up to the lowest order im. We obtain erty of the potential function does not affect the transition
probability. The equilibrium state is then characterized only
1 by the limiting value of the conjugated momentum, since the
p=-a*(¢'—¢)+b*De, (63)  potential function is not defined fdr—cc. This is consistent
T with the fact that the equilibrium state is completely charac-
terized by the thermodynamic propeity

where We now show that the transition probability, E@6),
satisfies the Chapman-Kolmogorov equat|@d]. First we
(pS™1H?, parabolic case approximate this probability as
=2 hyperbol [a 1
——, hyperbolic case, o 1l =
T T Pd'ld)= kaexp[ 5Kk C (D ¢) ]
—pS7IL, parabolic case a* | b*— |
p P Xex;){—ﬁﬂﬁ —$)’+ 1 Dh(' — ).,
b*=4 1 )
?r, hyperbolic case. 67)
and therefore the Jacobian becomes whereD ¢ is the value ofD ¢ at the pointi(¢’ + ¢). This

choice is motivated by our desire to incorporate information
on the most probable trajectory. In the absence of any other

E(ps—l)z, parabolic case physical insight as to what to choose this seems to be a
p )T reasonable guess.
ap’ | 1 (64) Explicitly the Chapman-Kolmogorov equation is

?T, hyperbolic case.
f d¢'P.(¢"I¢" )P (' I$)=P($"$). (68
Since 7 is small the system does not appreciably deviate
from the mean path and we may then use E56) and(63) By direct substitution of Eq(67) in Eq. (68) it may be
in the action, Eq(59). The result is seen that this last equation is satisfied identically. The alge-
bra is briefly sketched in the Appendix for the hyperbolic
1 case.
’ _ 2 2 '
A" ¢)= Ea*(¢ ~—¢)°~b*Dé(d'—¢) For the finite lapses we may find an expression for the
transition probability between the statésand ¢’ by using

1 the Chapman-Kolmogorov equation, E§8). If we divide
- 2 ,
+ ZC* (D)%, (65 the intervals in N subintervalsr we have then that
with Po('16)= [ dor- -0 PL(B Ty 0
»_|[ 5L paraboliccase XP(dy-1/dn-2) P $r/d), (69
1, hyperbolic case.

wherer=s/N.

With the above result, we know that either parabolic or
hyperbolic transport is a stochastic process which satisfies
the Chapman-Kolmogorov equation in the framework of the
a* new physical fields represented by the potential functions
2k’ associated with the thermodynamic properties of the system.

Finally, the normalization factor is given by
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Is it a Markov process? The answer is not necessarily and wethere the fluxes are the time derivatives of the thermody-
will give some additional comments on this point in the nextnamic properties. The stochastic nature of the systems dealt

section. . with by these authors arises from an external stochastic agent
_ For the parabolic case we may, however, go on. The tranwhich confers the same property to the system.
sition probability Eq.(67) is written explicitly as The virtues of a description for irreversible processes
— ) based on path integrals are well knoj4j. Among them we
Ty — (pS™) _ E i 2 remark that it gives a rationale of nonequilibrium thermody-
PAd'l$) ex (Ag) i . o ‘
2k 2 k namics and that in the near equilibrium case the Lagrangian

1 is related to the entropy production and the principle of mini-
X exp{ ——(pS H%(p' - ¢)? mum entropy production may be derived from the variational

2kt principle. The technique used here to describe the dynamics
of nonequilibrium systems is also based on the probability

LA@(op'— ¢)] ) (70) density of a complete path in the space spanned by a new set
of thermodynamic properties of the system: the so-called po-

pS~t

TR

tential functions and the set of local equilibrium properties.
She variational scheme is, as has been sh¢@wd4], the

heart of the path integral description of irreversible pro-
Mlzf do' APpP (' 1 Pp) cesses. For the linear case this description is equivalent to

that made in terms of the Langevin equation or the Fokker-
Fy I— ) Planck equation of the works of Onsager and Machlup and
(89 } (7)) Grabert and Green.

The states far from equilibrium require a characterization

based on the conserved densities and an additional set of

The first and second moments of this probability becom

LTA— 2
TSt gpexp —

Mzzf dop' (AP)2P ('l P) physical fields: the potential functions. It is worthwhile to
remark the physical behavior of the potential functibnAs
Kr 272 was mentioned above, this potential diverges for large times
= — ZeX;{— (A )?|. while I (and therefore the conjugated momentyh ap-
(pS™) K proaches asymptotically to its equilibrium value. This is not

(72) a strange situation in classical field theory. In fact this be-

The remaining moments vanish at orderTherefore we havior was considered as a necessary condition for the physi-

have a Gaussian probability distribution. With mometd cal consistency of the formalism. The hyperbolic transport
and (72), the Fokker-Planck equation for the probability is €dUations contain the first time derivative which is a non-

then that of a diffusive process, self-adjoint operator. Therefore a classical variational formu-
lation does not exist in principle for them. The potential

IP(¢,t) d 1 42 function method circumvents this difficulty. The point we
T=—%(M1P)+ 5&752(sz), (73)  wish to make is that if one observes the Euler-Lagrange

equation for the potentiap one still finds some non-self-

with positive M,. As may be seen, parabolic transport is aadjoint differential operators. It has been shown here that by
stochastic diffusion. The essentials of the results of Onsagdfsorting to Onsager’s reciprocity relations the terms con-
and Machlup for near equilibrium systems are therefore retaining this kind of operators vanish, leaving only those with
covered here. self-adjoint operators. In connection with this point, it is im-
In fact, analogous results may be obtained for the hyperPortant to emphasize the role of Onsager’s reciprocity which
bolic case, namely, the first and second moments derivel§ identical to the one it plays in the original Landau and
from the probability Eq(67) are orderr, while higher mo-  Lifshitz Lagrangian formulatlor{22]._ It must be stressed,
ments vanish at order. So, the statistical properties of the however, that the present formulation is more general than
stochastic process associated to the potedtiaim out to be  that of Landau and Lifshitz since it allows for the inclusion
identical for both parabolic and hyperbolic transport. How-Of Spatial inhomogeneities. _
ever, we have to stress again that, as mentioned in Sec. Il, the The establishment of a mesoscopic approach to hyper-

potential functions themselves are different in each case. bolic transport was also dealt with by Olivares-Robles and
Garca-Coln [35]. The main result of the preceding section

concerning hyperbolic transport coincides with that of
Olivares-Robles and GagsColn, who, starting from the

We have derived a mesoscopic scheme for transport phé&hapman-Kolmogorov equation, obtained the hyperbolic
nomena of intrinsically fluctuating systems based on the exequations as the average dynamic equations of the system
istence of a classical variational principle for the dynamicalunder the only assumption that the intervddetween events
equations which include non-self-adjoint linear differential be finite. This interval of time- has the same meaning for us.
operators. This scheme involves aged systems as well as prohe unavoidable question is then if processes with thermo-
cesses occurring in times of the order of the relaxation timelynamic memory may be described with the Chapman-
of the fluxes. This is the main difference of this work with Kolmogorov equation. Some affirmative answers to this
respect to the ones of Onsager and MachRjpand Grabert question have been givd86], but no doubt this is still an
and Greer[3] which describe aged homogeneous systemsppen problem.

V. DISCUSSION
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The formal aspects of the path integral based formulations

for nonequilibrium processe¢but still near equilibrium
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APPENDIX

On the left hand side of Eq68) we have

1 1 —
| awp 1o P (10~ AR A H,T,exp{— Z—km@ZJ

1 1
X fdd"eXD{— m(¢"—¢')2+ k—Tde’(sﬁ"—d”)]

1 1—
exp{—mw — P+ O —¢)).

The terms that depend on the intermediate sfdtere

1 1 /!2+ 1 2
ex _2k7'r2 7¢ 74)

j do'exp — L
2|(7'2

T ¢72_2 £¢H+i¢ ¢r
7 7T

o] ez

2k777',27'” !
p{Zk (' ¢>}

v, /2k777'27'” ! 77 V2 , )
T”d) 2kT (Fz(b +7_/r r¢ ¢+_2¢)

Then, by substituting this last expression in the above equation we arrive at

1 1—
f d@'P ("' )P (' )= VZk 7, eX Pr T(D¢) ] F{—2k727(¢"—¢)2+ ED¢(¢”—¢)]=PT(¢"/¢’)-
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