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Scaling limit of the Ising model in a field
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The dilute A; modelis a solvable interaction round a face model with three local states and adjacency
conditions encoded by the Dynkin diagram of the Lie algefyalt can be regarded as a solvable spin-1 Ising
model at the critical temperature in a magnetic field. One therefore expects the scaling limit to be governed by
Zamolodchikov’s integrable perturbation of the- 1/2 conformal field theory. Indeed, a recent thermodynamic
Bethe ansatz approach succeeded in unveiling the correspongisguBture under certain assumptions on the
nature of the Bethe ansatz solutions. In order to check these conjectures, we perform a detailed numerical
investigation of the solutions of the Bethe ansatz equations for the critical and off-critical models. Scaling
functions for the ground-state corrections and for the lowest spectral gaps are obtained, which give very precise
numerical results for the lowest mass ratios in the massive scaling limit. While these agree perfectly with the
Eg mass ratios, we observe one state that seems to violate the assumptions underlying the thermodynamic
Bethe ansatz calculation. We also analyze the critical spectrum of the dilgtenodlel, which exhibits
excitations with a finite gap on top of the massless spectrum of the Ising conformal field theory.
[S1063-651%97)04204-9

PACS numbes): 05.50+q, 11.25.Hf, 75.10.Hk

I. INTRODUCTION direct information about the higher masses and the scattering
amplitudes from the finite-size behavior of the lower masses
The Ising model[1] is, without doubt, one of the most [21,20. Another, rather different, approach employs a trun-
frequently studied and best understood lattice models of clagated conformal Hilbert spa¢@2,23, which, however, does
sical statistical mechanics. Although Onsager’s soluf®h not make the connection to the lattice model.
of the two-dimensional2D) Ising model without external Similar theoretical and numerical investigations have also
field dates back half a century already, no analytic solutiorheen performed for a variety of lattice models such as the
of the 2D Ising model in a magnetic field has been found. eight-vertex mode[24], the quantum Ising chaifil6], the
However, the situation is somewhat different if consid- Lee-Yang mode[22], the three-state Potts modél5], the
ered from the viewpoint of field theory. The critical 2D Ising tricritical |Sing or the B|ume-Cape| modeL respectivm_
model corresponds to the=1/2 conformal field theory 28] the Ashkin-Teller mode[29], the Z(N) models[30],
(CFT) [3-6] of a massless Majorana fermion. It was and the integrable restricted solid-on-solid mod8s]. Re-
Zamolodchikov [7-9] who noticed that a(symmetry-  cently, this has been extended to the study of form factors
breaking perturbation of this CFT with the relevant spin and correlation functionf32—37 and nonintegrable pertur-
density operator [which has conformal dimensions pations[38].
(A,A)=(1/16, 1/16) preserves infinitely many conserva-  The discovery of a new class of lattice modEk@—41]
tion laws and therefore leads to an integrable quantum fielthat are solvable in the presence of a symmetry-breaking
theory. The corresponding minimal theory contains eighffield [40] has changed the situation considerably. Although
massive particles with factorize@burely elasti¢ scattering  we still cannot solve the 2D Ising model in a magnetic field,
[10-19; the particle masses and tlsematrix elements are we now know a solvable moddthe so-called dilute A
related to the exceptional Lie algebrg. E mode) that belongs to the same universality class: it has a
This integrable field theory describes an appropriate scaleritical point of Ising type[40,42, and it is solvable in a
ing limit of the 2D Ising model in a magnetic field. Numeri- symmetry-breaking field that corresponds to the spin density
cally, the predictions for the lowest mass ratios have beeperturbation of the CFT43]. Therefore, one expects this
verified by several authofd6—20. As these results rely on model to show the same properties in the scaling limit as the
relatively small size transfer matrix calculations or on Montenonintegrable Ising model in a magnetic field. The dilute
Carlo simulations, they provide rather crude checks for theA; model is a spin-one Ising modél.e., with three local
lowest mass ratios only. Furthermore, the larger masses castates, sayse{+1,0,—1}) with interactions between the
not be obtained directly as these lie above the two-particléour spins on the corners of an elementary square of the
threshold of the lightest particles and hence are buried in thittice.
continuum of scattering states. However, one can extract in- The dilute A, models are solvable by the Bethe ansatz
(BA) [44,45. By a thermodynamic Bethe ansdf®BA) ap-
proach[44], the mass ratios an8 matrix of the E field
*Electronic address: u.grimm@physik.tu-chemnitz.de theory have been obtained. However, this approach relies on
Electronic address: nienhuis@phys.uva.nl assumptions on the nature of the BA solutions, which could
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not be substantiated by numerical solution of the BA equasumptions about the form of the BA solutions formulated in

tions (BAE) at criticality. Connections between the ;A Ref.[44] are summarized.

model and the exceptional Lie algebra, &e also revealed Section Il contains the results of our numerical investi-

by the existence of corresponding Rogers-Ramanujan identgations. After a b_nef descn_ptlon of our numerical approach,

ties[46]. we commence with the critical case, where not only are the
For our numerical investigation of the off-critical BAE, Scaling dimensions predicted by CFT considered, but also

our main motivation was to check the assumptions on th@dditional massive excitations in the spectrum are identified.

conjectured string structure of the BA solutions. This could Then, we show how the BA solutions behave as one goes

be achieved for the states with lowest masses, yielding at th@Vay from criticality. Finally, we present our numerical scal-

same time very accurate numerical results not only for th ng functions for' th‘? lowest gaps and t'he numerical results
mass ratios, but also for the complete scaling functions " the mass ratios in the massive scaling limit.
I—_Iowever, we also fo_un_abne discrepancwvith_ the predic- II. THE DILUTE A ; MODEL
tions of Ref.[44]. Within the range of scaling parameter
values considered, the characteristic string type for a particle Because an immediate specialization to the cAse does
of massm, does not match the proposed structure. not considerably simplify the equations, we keep the first
As a by-product of our investigation, we found that the part of this section on a more general level and consider the
critical spectrum also containmassiveexcitations besides dilute A. models. A detailed discussion of another member
the well-known conformal spectrum. This is one propertyof this series, the dilute Amodel, will be presented else-
that distinguishes the dilute /Amodel from the Ising model, where[47].
which does not have such excitations. However, this does not The dilute A models are IRRinteraction round a fage
contradict universality as that only concerns the universaimodels[48] of RSOS(restricted solid-on-solidtype [49] on
properties of the systems in the vicinity of the critical point, the square lattice with adjacency conditions encoded by the
which are the same for both models. The BA solutions corDynkin diagram of the Lie algebra A In contrast to the
responding to the massive excitations show the same type osual(nondilute RSOS models built on this adjacency graph
strings as those conjectured for the massive scaling limitithese are the Andrews-Baxter-Forrester modég), the
Already for relatively small systems, these solutions lie veryeffective adjacency graph of the dilute, Anodel contains
close to singularities of the BAE, which makes the numericaloops that connect each node to itself, see Fig. 1. In other
treatment difficult. Estimates of the corresponding mass rawords, one considers configurations bf local states or
tios, which show no resemblance to the; &ructure, are ‘“heights” (labeled 1,2, ..,L) on the vertices of the square
presented. lattice subject to the additional requirement that states on
This paper is organized as follows. In Sec. Il, the diluteneighboring(adjacent lattice sites may diffeat mostby 1.
A; model is introduced and the BAE are presented. ThéDne then defines a statistical model by assigning Boltzmann
critical spectrum predicted by CFT and the behavior in theweights to the elementary plaqueti¢aces of the lattice.
massive scaling limit are described. Furthermore, the as- The face weights of the dilute ;Amodels ard40]

wl® AL BN WOGBA W (Sery Ba(2AN-5N) | Si g Du(28N+5M)) 91(W) (3N —u)
a a'l”T 969,30 1S, 9h2an+n) | S, 9a(2ah—N) | 9.(6N)91(3N)
atl a a a T1(BN—u)Jy(£2aN+A—U)
W ul=Ww = ,
a a a*l F1(3N) F(E2aN+1N)
WL WL axll | (S| % 91(u)Oy(=2an—2)+u)
ax1 a"/ la al|'7\s 91030 Oa(=2aNTN) "
a a*l W atl axl| | [9,(x2an+3N),(=2aN—N)|Y? 1) 91 (3N—u)
a ax1"/"" a  a Y7 92(=2an+\) 9.(20) 91(3N)
axl a ~ 01(2h—u)91(3N—u)
a ax1'|T T % (2n0.30)
a avl | (8,81 9w -u)
ax1 a |U/” =4 91(20) 91(3N)
a a*l _ﬂl(BA—u)ﬁl(i4a)\+2)\+u)+Satl F(u) Y (E4aN—N+u)
axl a || (3N (x4an+2\) S, 91(3N) 9. (=4an+2n)

013N U) Oy (H4aN—4N+U)  [Spzy 91(4N)  Du(=2aN—5N)| 94(U) 9y(=dar—A+u)
T 9,.(3N) 9 (+dan—4n) S, 0.(2N)  Ua(t2an+N) | 9,(3N) T, (=dan—4an)

(2.1
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In general, the dilute A models have four different
Q Q Q branches for any value df [40], distinguished by two pos-
sible values ofA with two regimes each for the spectral

1 2 3

parametem. Here, we are only interested in the dilute; A
model L=3) in a particular branch40,42,44 where the

FIG. 1. Effective adjacency diagram of the dilute; sodel. model behaves like the Ising model in a magnetic field. For
this caseA =57/16 and the spectral parameteties in the
Here,a=1,2,...,L labels the heights, and the possible val-interval 0<u<3\, in which the Boltzmann weighi®.1) are
ues of the variabla are determined bi [40]. The crossing positive. The spectral parameter controls the spatial anisot-
factorsS, are given by ropy of the weights, with the isotropic pointa&3\/2. The
spin statesse{+1,0,—1} are given bys=a—2. It is the
J1(4aN) parameterq that acts like a magnetic field, breaking the
Sa=(~ 1)am (2.2 s— —s symmetry; and the Ising critical point corresponds to
q=0.

and 94(u), 9,(u) are standardy functions of nomeg with
|g|<1 [50]. These face weights satisfy the Yang-Baxter

equation and therefore lead to an integrable lattice model. A. Bethe ansatz equations

The corresponding row transfer matrice48] for a fixed The eigenvalues\ (u) of the row transfer matrix for a
value of g form a one-parameter commuting family in the system of sizé\ with periodic boundary conditions have the
spectral parametaer. following form [44,45:
|
AW /( ﬁl(u—Z)\)ﬁl(u—S)\)>N N9y (u—ujt) ( 91w (u—30) NN 9 (u—u) 9y (u—u;—3\)
u = R [—
( @ F1(2N)94(3N) j=1 T (U—u;—N) B1(2N) 91(3N) | j=1 F(u—uj—N) P (Uu—u;—2N)
0w u—N) N 9 (u—uj— 4N 2
@ ~ 92(20)94(3N) j=1 O (U—uj—2N)° 23
wherew=exdin/(L+1)], and where thes;, j=1, ... N, form a solution of the set dfl coupled BAE:
/(01(uj—x) v N 920Uy — U= 20) 9 1(U; — U+ ) 24
F1(uj+N) k=1 U1(Uj— U+ 2N) 1 (uj—u—N) '
|
Here,/=1,... L labels a sector related to the braid limit  More interesting is the result of addimgr7 (neZ) to a

eigenvalues of the row transfer matrix at criticality=£0).  rootu; . In this case, one obtains a solution of E2.4) with
Whereas it is believed to be true that all eigenvalues of they” replaced by exp@@i\)w”. Moreover, from Eq(2.3) it is
transfer matrix are of the forif2.3), the converse is certainly evident that these two solutions correspond to the same ei-
wrong (at least off criticality — the BAE (2.4) in general  genvalue. This means that the “sectorg’™=1, ... L lose
allow for many additional solutions that do not correspond toyneir significance in the off-critical case ¢ 0) since we can
proper eigenvalues of the transfer matrix. For any numerizays adjust” by adding or subtracting suitable multiples
cally found .solutlon of Eq._(2.4) one thus has to check. of 77 to some of the roots. Of course, this also yields many
whether it gives a proper eigenvalue of the transfer rn""tmi)ossibilities in which the phase factors cancel, and hence Eq.
(see Sec. Il b.EIOW . (2.4) is recovered without any alteration, which means that a
The ¥ function 94(u) shows thegquas) periodicity prop- : . .
erties[50] s!ngle_: solution 91_‘ the BAE can b_e presented in many ways
differing by addition and subtraction of suitable multiples of
77 to some of the roots.
Y(ut )= —F1(u) =9 (—u), (2.59 For the case of interest, it turns out that the largest eigen-
value Ag(u) of the transfer matrix is given by a purely
1 imaginary solution of the BAE2.4) in the sector/=1.
H(u+7r)=——e 2UY,(u) (2.5p  Therefore, in place of the roots;, we prefer to use
q vj=iu; in what follows; thus the largest eigenvalue corre-
sponds to a set of real BA roots. General solutions to the
whereg=exp(w7) (0<g<1) with reiR. Consider a solu- BAE will, however, involve complex roots, which in the
tion {uy, ...,u\} of the BAE (2.4) in sector/. Clearly, largeN limit typically arrange themselves into so-called
nothing is changed if a multiple of is added to any of the strings (subsets of roots with approximately the same real
rootsu; . part, in terms of the;). This is shown schematically in Fig.
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X o whereIl(2z) is the generating function of the number of
X « partitions

X

x X
X x s 1

X 1-strings

. s ) . y(2)= 1 11— (2.8
5-string 2-string 4-string m=1 z

FIG. 2. Sketch of a typical arrangement of the Bethe ansat

. Moreover, the central charge=1/2 manifests itself in the
rootsv; in the complex plane.

finite-size corrections of the largest eigenval6g]

2, where the horizontal line represents the real axis. The

unknownsu; of the BAE are(up to a trivial transformation

th«_a momenta of ex0|tat|or($]ua3|partl_cle)srelatlve to a spe- _ In(AEJO))Z Nfo+ W_C+O(N71) 2.9
cific eigenstate of the transfer matrix. The relation between 6N

momentum and the; is such that real values of; corre-

spond to real momenta. Therefore the strings are complexes

of quasiparticles with the same real part of the momentumywheref, denotes the bulk free energy far=3\/2.

and can thus be viewed as bound states of quasiparticles.

Note that the “string content” of a particular solution might

well depend on the variable, an example of this behavior C. Scaling limit

will be given in Sec. IlI C below. Taking into consideration the parametgr one can ap-
proach the critical point by simultaneously performing the
B. Conformal spectrum at criticality two limits g—0 andN— keeping the scaling variable

The dilute A model has a critical point of Ising type at — qN15% (2.10
g=0. Thus its critical limit(given byg=0, N—») is de- K ’
scribed by thec=1/2 CFT with scaling dimensiong&
e{0, 1/16, 1/2. This has drastic consequences for the spec
trum of the transfer matrix in the critical limit. Consider the
scaled spectral gaps

constant. Hereu=0 corresponds to the critical limit dis-
cussed above, an@g— gives the massive limit where
Zamolodchikov's F field theory results apply. In the scal-
N ing limit, the appropriately scaled spectral gaps
szﬂln(Ago)/AJ(O)), (2.6)

_ ~—8/1
where A{%) are the eigenvalues of the transfer matrix with Fi=a ®Mn(Ao/A)) (2.13

periodic boundary conditions at the isotropic point
u=3\/2, A(()O) being the largest eigenvalue. In the critical
limit, the spectrum of scaling dimensiong consists of
“conformal towers” of states labeled by pairs
(A+r,A+r) with_scaled energy;=A+r+A+r, confor-
mal spins;=A—A, and momentump;=r—r, wherer,r Fo=0 ¥ In(Ag)+Nf,] 2.12
e Np. They form representations of two commuting Virasoro

algebras with central charge=1/2. The degeneracies of the

descendent states can be read off from the character fungsy the finite-size corrections of the largest eigenvalue, where
tions of their irreducible representations with highest weightf — jim [ —In(Ay)/N] is the bulk free energy again. Note

become functions of the scaling varialle alone. For the
largest eigenvalue, we can also define a scaling function

A. These can be written in the forfB1] that the face weight€2.1) for nomeq and —q are related by
, symmetry, thus it suffices to consider positive values of the
Xo(2)= 2, 2" MIy(2%) nome. o _
nez In the massive limit ft—o), the ratios
=1+22+ 284274+ 225+ - - (2.7a
an2+3n+(1/2) 2 R = Fit (2.13
Xl/Z(Z):nEZ z (z9) ITTF, :

=7Y(1+z+ 22+ 2B+22%+.-.) (2.7b
approach the particle mass ratios of the corresponding mas-
116 - m sive field theory. The masses of the eight stable particles are
X1162) =2 ml_:ll (1+2%) proportional to the entries of the Perron-Frobenius eigenvec-
tor of the Cartan matrix of the Lie algebragEand their
=781+ z+22+228+27*+...), (2.70 ratios(ordered by magnitudeare given by
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i
U(kt):v(t)+3_2(AE<t)+ 16&l), (2.19

wherev® denotes the center of the string on the real line.

FIG. 3. The & Dynkin diagram. lIl. NUMERICAL RESULTS

m;/m=1, For the numerical treatment of the BAR.4) we used a
modified Newton method53]. The calculations were per-
m,/m=2 cog 7/5)=1.618034- -, formed in extended precisiorORTRAN (with 16 byte real

numbers on an IBM workstation.

As a first step, we solved the BAE at criticalitg € 0) for
small system size and compared the corresponding eigenval-
ues (2.3 to those obtained by direct diagonalization of the
m, /m=4 cog m/5)cos 7m/30) = 2.404 867 - -, transfer matrix using high precision arithmetic. This also

(2.14  served as a test of the performance of our programs. In par-
ticular, thecompleteset of solutions corresponding to zero-

mz/m=2 cog 7/30)=1.989044- -,

ms/m=4 cog w/5)cog27/15) =2.956 295 - -, momentum eigenstates of the transfer matrix for systems of
size N<6 was obtained. In this way, the structure of the
mg/m= 4 cog 7/5)cog w/30)=3.218340 - -, solutions for the largest eigenvalues could be identified.
These solutions were followed as a function of the elliptic
m, /m=8 cog(/5)cog 7m/30)=3.891157- -, nomeq. The results of this analysis were then generalized to
larger system size by looking for solutions of the same type
mg /m=8 coZ(/5)cod 2m/15)=4.783386- -, that differ by additional real roots only.

Since we are mainly interested in the mass ratios in the
fscaling limit, we exclusively considered zero momentum
states. For solutions of the BAE, the momentum is obtained
from the eigenvalue\ (0) (2.3 at spectral parameter=0,
where the transfer matrix reduces to a shift operator. The
é}umerical data for the gaps are taken at the isotropic point

wherem=m; defines the mass scale. The Dynkin diagram o
Eg is shown in Fig. 3, where our labeling of nodes follows
the ordering of the masses.

In the TBA calculation of Ref[44], each of the corre-
sponding eight massive particles is associated to a particular
string in the BA solution. In addition, it is assumed that, U=3\/2.

apart from these eight strings and the one-strings forming the Becatlgsf we r\]/vant tto foIIowt?r?Iutlolns lfotr. va;qug\llvhlch
vacuum solutions, no other string types occur in thermody—means at we have 1o repeat the caiculation for a farge num-
er of values ofg, we limited ourselves to systems of size

namically e Ieva_nt quantities. With these as.sur_nptio_ns, th =<100. However, in certain cases the numerical accuracy of
TBA equations imply that the hole-type excitations in thethe calc.ulations b,ecomes the major problem. This happens
one-strings have vanishing density. The density of one; ™. ; ) : '
: - : C ok F for instance, for BA solutions that contain roots that are ver
strings can be eI|m|nat¢d from t.he calculation, \-NhICh flna"yclose to singularities of the BAE, or for solutions where dif—y
leads tc;] the & 8 scattering matrix of the Hactorized scat- ferences between roatsr their reél partsbecome extremely
tering theory{44]. N . : .
IngTabIeyI[ tr]1e hine string types are given, labeled bysmaII. These situations typically show up if one considers
t=01. .. 8’in theorder used in Ref[44] whi,ch corre- large values of the elliptic nomg (where the meaning of
spor;d’s to t,he usual labeling of the Eynkin'diagram rather “I_arge” qte?_ends ??hthe ?’St?g?l St')ZEbUt a:jsci ch.)r the m da.s'
than that used in Fig. 3. From the data of Table I, the strinog'\éﬁ eli(ICBI 1323\,0% ?a(r:r:';llsc?lve Iclj';\r? ingotrleerelsgrljeszilyl?wo
i ® - - ,
of typet consists ofn™ roots of the form ways to go beyond the limitations imposed by these numeri-
cal problems; either by using higher precision arithmetic, or,
to a lesser extent, by adjusting the program according to each
specific type of BA solutiorfiwhich we did to some extent by
ORI A5 treating the ubiquitous complex conjugate pairs of BA roots

TABLE |. The nine thermodynamically significant string types
of Ref. [44] and the corresponding masses.

Mass ¢ with imaginary parts close ta- 117/32 in a special way

0 0 1 0 (0)

my 1 2 1 (-1, o

m, 7 4 0 (—3-1,1,3 A. Critical conformal spectrum

mj 2 4 0 (—4,-2,2,9 In the critical limit (q=0, N—x), the largest eigenvalues
m, 8 5 1 (-12,-8,0,8,12 of the transfer matrix are organized according to the charac-
ms 3 6 1 (-7,-5-1,1,5,3 ters of representations of the Virasoro algebra with central
Mg 6 7 1 (—14,-6,—2,0,2,6,1% chargec=1/2 as described in Sec. || B above. Schematically,
my 4 8 0 (—10,~8,—4,—2,2,4,8,10 the resulting values for the scaling dimensionis the zero-

Mg 5 10 1 (-13-11,~7,-5~1,1,5,7,11,18 momentum sector and their distribution into the three sectors

labeled by/'=1,2,3 are shown in Fig. 4.
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FIG. 4. Low-energy part of conformal zero-momentum spec-

trum for the critical dilute A model.
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B. Massive excitations at criticality

Analyzing the spectrum of largest eigenvalues of the
transfer matrix, one observes that, in addition to the confor-
mal spectrum discussed above, the spectrum contaass
sive excitations. More precisely, these are states with eigen-
valuesA () for which the quantities

Yie=In(ARAL) (3.1

converge to a nonzero limiimass as N—o; compare Eq.
(2.6) for the conformal states where this limit gives zero.
Apparently, a number of different masses is involved,
which are again characterized by particular strings in the BA
solutions. Strikingly, the strings that we observed are among
those listed in Table I. We have found explicit solutions
containing strings of typé=1, 2, 3, 4, and 7. In all cases,
the roots forming these strings are — even for small systems
— located extremely close to the singularity of the BAE,
which they approach foN—oo. This requires a careful nu-
merical treatment, and severely limits the system sizes we
can treat. With the numerical accuracy of our program, we

In Table I, numerical values for the central charge andwere able to get reliable results for systems of at most 20—30
the lowest scaling dimensions obtained from the correspondites, depending on the particular solution.
ing solutions of the BAE for systems of different sizes are  An example is given in Table Ill. Here, the solutions ob-

presented. Here, Eq2.9) with the exact value of the bulk
free energy{54,55 of the dilute A model was used. All

tained by adding a number of “massive” two-strings
(t=1) to the ground-state solution of a system of size

zero-momentum states with a critical scaling dimension of\— 4 are presented. From the eigenvalues for larger systems,

x<7 have been foundcompare Fig. &1 except one of the
four excitations with conformal dimensions (1A8,

one can see that each additional “massive” two-string just
adds the same mass, thus substantiating our interpretation in

1/16+ 3) for which, despite some effort, we have not been, s of massive particles.

able to find the corresponding solution of the BAE. In par-

ticular, this includes all cases without degeneracy, i.e., wherﬁ1

only a single zero-momentum state of a certain scaling di
mension occurs in the conformal tower.

To keep the three remaining BA solutions with scaling
dimensionxg=6+1/8 apart, we distinguish them by sub-
scriptsa, b, andc. Actually, it turns out that the two solu-
tions denoted by andc yield the same eigenvalue even for
finite systems, which remains true also off criticality. Thus,

Apparently, it is possible to add arbitrary numbers of
ese “massive” strings not only to the ground state, but to
eachsolution corresponding to a conformal state. This means
that the spectruntat the critical pointq=0) contains infi-
nitely many copies of the complete conformal spectrum,
shifted with respect to the ground state by a mass determined
by the collection of “massive” strings.

As to the observed “massive” strings, they fall into two

we do not need to consider them separately unless we aféasses: fot=1, 3, and 7, we have a single solution of the
interested in the BA solutions, which of course are different;BAE, whereas fot=2 and 4 the solutions belong to eigen-

see Sec. I C below.

values that are doubly degeneréier finite systems Label-

While the numerical data are in perfect agreement withing the masses associated to the “massive” string typg
the exact values, it should be noted that the string structur®!;, we obtain the numerical estimates

of the critical BA solutions has no apparent similarity to
those proposed in R€f44]. We shall come back to this point

later. M,/M;,~1.85186, M3/M;~3.17213 3.2

TABLE II. Finite-size approximants for central chargeand smallest scaling dimensiors.
N c X X2 X3 X4 X5 Xg X7 Xg X9a Xgb,c X10
10 0.499681  0.125080  1.014498 2.196 3.148 4.272 4.417 5.449  6.608 6.771 6.804 7.942
20 0.499920  0.125020  1.003543 2.142 3.034 4.062 4.191 5.098 6.142 6.274 6.274 7.196
50 0.499987  0.125003  1.000563 2.128 3.005 4.010 4.135 5.015  6.022 6.148 6.148 7.030
75 0.499994  0.125001  1.000250 2.126 3.002  4.004 4.130 5.007 6.010 6.135 6.135 7.013
100  0.499997 0.125001  1.000141 2.126 3.001  4.002 4.128 5.004  6.005 6.131 6.131 7.007
o 1/2 1/8 1 2+1/8 4 4+1/8 6+1/8 6+1/8 7
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TABLE lIl. Example of Bethe ansatz solutions at criticality in sector 1, which differ from the ground-state solution for system size
N=4 by a number of “massive” two-strings. Here,=i7/32.

N=4 N=6 N=8 N=10 N=12 N=14

1.977 471 499
0.575 364 766

1.980 014 437
0.577 361 036

1.982 321 219
0.579 176 248

1.984 408 860
0.580 821 977

1.986 312 526
0.582 324 931

1.988 062 914
0.583 708 690

—0.105 369 741
—0.886 306 204

—0.105 850 465
—0.888 679 105

—0.106 289 271
—0.890 833 363

—0.106 688 316
—0.892784 131

—0.107 053 693
—0.894 563 861

—0.107 390 875
—0.896 200 997

—0.000 000 072 0.020 936 09% 0.035 854 325% 0.047 525 71% 0.057 153974
10.999 999 764 10.999 999 615  10.999 999 488 10.999 999 373 10.999 999 263
—0.020936 294 —0.000 000 132 0.014 769 565 0.026 242 96%
10.999999 736  10.999 999 576 10.999 999 458 10.999 999 326
—0.035854 556 —0.014 769 86% 0.000 000 17%
10.999 999 718 10.999 999 564 10.999 999 444
—0.047 525 96& —0.026 243 304
10.999 999 712 10.999 999 563
—0.057 154 256
10.999 999 706
and until they form a complex conjugate pair of rogtsence a
two-string, which then persists for large values @f
M>/M;~1.78, M4/M;~3.78 (3.3 Comparing systems of different size, this mechanism al-

for th . fth ith h I ways stays the same, the additional real roots just play the
or the ratios of the masses with respect to the smallest maggq spectators. Moreover, the transition from one string

that is associated to the two-strmg_:(l). Note that these t¥pe to another takes place at approximately the same value
numbers are calculated from the eigenvalues of the transfef h i 51 h L
matrix with spectral parameter= 3A/2 of the scaling parametes (2.10 as the system size is in-

' creased. More precisely, the scaling parameter values ap-

b a:(-jhIrsnggg?tl\(l)vﬂjes?r:learh?svwv? 't?poebssﬂfv ee(iéir;;t?gnguggproach a nonzero limit as the system size tends to infinity.

o " : ! This implies that althoughj— 0 in the scaling limit, for large
called “holons” (carrying charge but no spinand values ofu (and in particular for the massive scaling limit
“spinons” (carrying spin but no chargg56,57. Generi- K P 9

cally, both excitations are massless, and the correspondir{é_m)’ the two-string is the relevant type of solution.

field theory consists of two coupled=1 CFT. However, if . The same scenario applies to the other excitations we con-
- . . " sidered. In Table IV, we compiled numerical values of the
the filling fraction (number of electrons per lattice sites

chosen to be precisely 1, the holons become massive Wh”réonreal BA roots for systems of si2¢=100, both at criti-

the spinons stay massless. At low energies, this theory &2y (4=0, i.e., u=0) and for a rather large value

; _ : " : 7 u~39.4 of the scaling parametefcorresponding to
:gggndsti;g]nbed by @=1 CFT with additional massive exci g=7/1000 forN=100). Note that forg#0 the real part of

the rootsv; can be shifted by multiples ofi77=—In(q)
eR, (0<g<1) as discussed in Sec. Il A above. Using this
property, we arranged the solutions such that the values of
As mentioned above, the string structure of the BA rootsthe nonreal roots have a real part in the intef\@lIn(q)].
at criticality does not seem to agree with the predictions ofActually, as Table IV suggests, all nonreal roots are located
Ref.[44]. However, if one follows a particular solution as a in the vicinity of —In(q)/2 for sufficiently large scaling pa-
function of the nomeg, one finds that in many cases one rametersu. This also distinguishes these solutions from the
encounters singularities of the BAE where the string struc:‘massive” strings at criticality considered above, whose
ture changes. centers are located close to the origin. Furthermore, the val-
The simplest example is given by the second largest eiues of the nome where changes in the string patterns for
genvalue, which corresponds to the conformal spin densitid= 100 occur are also indicated in Table IV. All five single-
field with dimensions (1/16, 1/16) in the critical limit and to particle states show at least one such point, whereas some of
the lightest massive particle in the massive scaling limit. Atthe two-particle states do not changegais varied.
criticality, the corresponding solution of the BAE differs  Although the relation between the scaling exponents on
from that of the largest eigenval@erhich contains real roots one end and the content of massive particles on the other is
v; only) by a single root with imaginary paet/2. However, determined by the field theory, we are not aware that it has
as can been seen from Fig. 5, @ss increased frong=0, been calculated. Our results given in Table IV give an un-
the complex root and one real root approach each other, untiimbiguous connection for the lowest states, but they do not
their real parts agree. At that point, the real parts of the twasuggest an obvious pattern that can be generalized to the
roots stay the same, but they move in the imaginary directiomigher excitations.

C. Bethe ansatz roots off criticality
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1.0

0.8 : Re(vy)/[-In(g)]
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0.2 1 Re(v2)/[-In(g)] Im(vy)/n

0.0

0.2 Im(va)/n

-0.41
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-0.8

—-1.04
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FIG. 5. Solution of BAE for the second largest eigenvalue for varying ngm&hick lines denote the real parfsormalized by
—In(g)] and thin lines the imaginary part® units of 7r) of the BA roots.

Comparing with the proposed string types of Rgf4] ticular, we are interested in the question of whether there are
given in Table | and by Eq(2.15, one finds that the solu- holes in the one-strings in this case. To see this, we consider
tions for large scaling parameter agree with the predictionshe “phase function”
apart from the two states that contain a particle of mass
m,. Here, in place of a five-string with imaginary parts 1 _ [ F1(iv+N)
+ /4, +37/8, and /2, the solution found numerically on ¢(v)=5dnl —w™ F(iv—N)
first view looks more like a seven-string with imaginary parts
*+ /32, = 77/32, £ 137/32, andw/2. However, in compari- N 9y(iv—ive—2N)Fy(iv—iv,+ )
son to the. other smg!e-partlcle states, the real parts .of the Xk:l S(iv—ivt20)94(iv—ivg—N)
roots forming this “string” are quite far apart, which might
be an indication of another change of pattern occurring at a
larger value ofg, which of course we cannot exclude on the which is basically the logarithm of the BAR.4), but now
basis of our numerical data. v denotes the roots of our particular BA solution, and we

Let us have a closer look at the single particle state withconsidere as a function of the complex variabde By defi-
massmy. Figures 6 and 7 show the BA roots of the corre-nition, ¢(v;) € Z for all the rootsv;, j=1, ... N. Restricted
sponding solutions for systems with=10 andN =20 sites, to real values ob, ¢(v) therefore takes integer values at all
respectively. For convenience, we plotted the real and imagireal solutionsy =v; € R, hence for all one-strings.
nary parts of the roots, normalized byin(g) and by as in Figure 8 showsp(v) for the solution under consideration.
Fig. 5, againstu®'°=q®>N. There are two obvious points Here, the size of the systemlié=20, andq=1/5. The hori-
(indicated by the arrows in Figs. 6 andl Where nonanalyt- zontal lines are drawn at integer valéise precise numbers
icities occur at approximately the same value of the scalingire not relevant as they depend on the choice of branch in
parameter for the two different sizes. These singularities ar&q. (3.4)], and the crosses located on intersections of these
associated with the coincidence of two of the roots. How-ines with the graph ofp(v) denote the position of the real
ever, Fig. 6 may suggest that another change will occur at eoots. The vertical lines are placed at the real parts of the
larger value ofu than numerically accessible by our rou- remaining seven nonreal roots. As observed above, the single
tines, as the real parts of one real root and one of the tworoot with imaginary partr/2 lies somewhat separated from
strings approach each other. But, comparing with the samthe three complex conjugate pairs, which are very close to-
region of Fig. 7, no indication of this behavior remains, andgether(such that the three vertical lines appear as one thicker
the same holds true for the larger systefap to N=100) line in the figur@. Moreover, the location of this single root
that we examined. From this, we conclude that either there isoincidespreciselywith a hole in the one-strings, which may
no further change in the string pattern, or it has to occur foiseem to disagree with the findings of Rgf4]. However, the
a very large value of the scaling parametgrwhich, how-  behavior of the roots as a function of parameters ¢ksug-
ever, seems rather unlikely to us. gests that the roots with imaginary part2 are simply an

Though this result is somewhat inconclusive, let us examalternative locus of the one-string.
ine the string pattern of this solution in more detail. In par- On the basis of the numerical data, it thus seems that the

N

, (3.9
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TABLE IV. Numerically observed string solutions for systems of $ize100 for nomeq=0 (x=0) andgq=7/1000 (x~39.4).Only
the values of the nonreal root§ are given. Herep = —In(q)=—iwrando=im/32. Forthose roots whose real part is very closept@
or whose imaginary part is almost an integer tirmesuch that the number of digits given is not sufficient to see the slight differences, the
superscripts+ and — indicate on which side the actual data lie. We also include rangesvafiues within which changes of the string
patterns are observed. The three solutions that correspond to a critical scaling dimensioh/8f &e labeled by subscripés b, andc,
where the latter two yield identical eigenvalues for finite systems.

(A+r,A+r) Mass Nonreal roots a=0 Nonreal roots atj=7/1000 Pattern change
(0,0 0
(&%) m, 5.277 01416 o 0.500 000 @+11.000 000 & 0.000 138—0.000 139
0.000 161-0.000 170
:-ZL% m, —4.123 856t 7.024 17 0.500 000 o+ 4.999 98& 0.000 560-0.000 640
—4.052 796+16 o 0.500 000 ¢*+15.000 012
(1—16—1-1,1—16+1) ms —3.791 098+16 o 0.500 0000 0+12.011 549 0.000 440-0.000 450
3.719 808:11.045 724 0.500 000 o+ 9.988 451 0.000 580-0.000 640
(%+1,%+1) my —3.51790714.671 11& 0.485 95 =+ 0.992 13% 0.000 340-0.000 350
—3.458 496t 5.430 53% 0.486 9049 = 7.000 002 0.002 900-0.002 950
3.981 24416 ¢ 0.486 9049 =*+12.999 99&%
0.500 000 p+16 o
2,2 2m; —3.245 499-10.982 954 0.482 282 =*=11.000 000 ¢
3.237 651+10.937 39% 0.517 71® =*=11.000 000 ¢
(5+2,5+2) my+my, —3.282 380-10.815 346 0.500 000 p+11.000 000 & 0.001 000-0.001 100
3.304 60710.953 71& 0.500 002 =*=15.000 054 0.001 410-0.001 420
4.238 695+16 o 0.500 002 = 4.999 94@
(3+23+2) ms —3.356 336:12.564 943 0.500 000 o+ 8.998 67% 0.000 800-0.000 900
—3.326 604 8.981 386r 0.500 000 ¢*+11.000 000 & 0.001 275-0.001 475
3.297 948+16 o 0.500 000 p+13.001 324
(3,3) 2my —2.875085:11.000 662 0.45557® =11.000 000 o
2.875 191 11.000 554 0.544 424 +11.000 000 o
(%+3,5%+3), m;+mg —-2.890111+11.001 019 0.500 000 ¢=+11.000 000 o 0.000 430-0.000 440
2.889 954+-11.000 849 0.500 00000+11.928 013 0.000 520-0.000 550
4.741 946+16 o 0.500 000 0=10.071 98% 0.003 750-0.004 100
(1—16—1-3,1—16—1-3)[) m;+m, —3.555 509 8.138 45% 0.471 689 *=11.000 000 ¢ 0.000 370-0.000 380
—3.317 682+16 o 0.517 53® = 5.000 04

2.889 954+11.000 849 0.517 53@ *£14.999 95%
4.741 946+16 o

(+3,%+3), my+m, —2.890 111%11.001 01% 0.482 46 * 5.000 04%
3.091 673 5.267 222 0.482 46 *+14.999 953
3.097 274-14.605 702 0.528 31% *11.000 000 o

(3+33+3) m;+m, —3.447 863 6.844 58% 0.485 37%® 0.964 05% 0.003 800-0.003 850
—3.399 45% 16 o 0.486 904 7.000 01%
—3.048 514r11.049 72% 0.486 904 +12.999 98%
3.054 397-11.080 356 0.500 000 ¢=11.000 000 o
0.500 000 0+16 o

*
*

string structure associated to the masg consists of the associated to the three largest masses. Nevertheless, we be-
rather complicated pattern of a seven-string involving thredieve that the main ideas underlying the TBA treatment in
complex conjugate pairs of root&with imaginary parts Ref.[44] are correct, and that only details of the calculation

+ /32, =77/32, and+137/32) and a neighboring root at would be affected.

i7/2, which comes together with a hole in the one-string Before we move on to a discussion of the scaling func-
distribution. Of course, in the infinite size limit the distance tion, two short remarks regarding the BA solutions are in
between the real parts of these roots becomes infinitesimal. ttrder. It should be noted that the “massive” strings men-

is not obvious what happens in the TBA calculation of Ref.tioned previously in Sec. Ill B, which yield the massive ex-
[44] if their string typet=8 (see Table)lis replaced by the citationsat criticality, do not undergo similar changes. These
observed pattern, especially as we did not see the stringgrings are always located very close to singularities of the
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FIG. 6. Solution of BAE corresponding to the single-particle state with masi the scaling limit. The system size lé=10. Thick
lines denote the real paftsormalized by—In(g)] and thin lines the imaginary part& units of 77) of the BA rootsv; . For each real part,
the numbers in square brackets give thpproximatg imaginary partgin units of w/32) for large values of the scaling parameterThe
arrows indicate the positions of the singularities.
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FIG. 7. Same as Fig. 6, but for system shte 20. For clarity, the numbers in square brackets have been omitted for all real roots.
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FIG. 8. The phase functioa(v) [Eq. (3.4)] for the solution of BAE corresponding to the single-particle state with mmass the scaling
limit. The system size idl= 20, q=1/5. Horizontal lines are drawn at integer values, crosses at intersections with the gtat) aenote
the real roots, and vertical lines indicate the positions of the real parts of the other seven roots.

BAE, and move even closer as the nomes increased. D. Scaling functions and mass ratios

Moreover, their centers lie at the origisee e.g., Table 1))

whereas for the states belonging to thg iftegrable field Let us now turn to the results for the scaling functions
theory the strings cluster around the valuén(g)/2. Finally,  Fo(u) [Eq.(2.12] andFj(u) [Eq.(2.1D)]. For the latter, all

let us mention that a similar behavior of BA roots has re-zero-momentum states with a critical scaling dimension of
cently been observed in the solution of tk&XZ Heisenberg Xx=<7 are considered, except the one missing excitation with
chain, where the boundary twist acts as the varying paramsonformal dimensions (1/263, 1/16+3). In all cases, we
eter[59]. use data from systems of sie=50, 75, and 100. For these

In(F, ’
n(O)O

-5 4
—~10 4
-15 4
-20
-25 “\‘\
-30 -
-35
—40 - ..
~45 "
=50 - P,

-55 - ,

u8/15

FIG. 9. Scaling functiorFy(u) [EqQ. (2.12] for the largest eigenvalue obtained from systems of Bize50, 75, and 100. Here, the
logarithm of Fy(u) is plotted againsp.®*°=q®'™N [Eq. (2.10].
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FIG. 10. Scaling function&;(u) [Eq. (2.11] for the excitations obtained from systems of site 100.

sizes and the values gfwe considered, it turns out that the ©®°=q®¥'N [Eq. (2.10]. Apart from the behavior for small
corrections to scaling are so small that one can hardly redq, the plot is nicely linear, showing the exponential decrease

ognize them in our figures. of F, as a function ofu®'® down to about expt60) where
In Fig. 9, the(natura) logarithm of Fy(«) [which as de- the difference between the eigenvalues for the finite sizes
fined in Eq.(2.12 is positivg is shown as a function of and the bulk limit value becomes smaller than our numerical

404 .
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R 1.
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. Rl 2T .....W......auanwuu...nmn~..»~.~-mu..muom«m..mn.u.“»
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: Y . om0 e ainn (49/16,49/16),,
304 iy % ; Lo bome/my
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I LI OV
s % “ECETT
WD k3
'§ .....‘.6./53./..2.)........».» - mg/my
§ ...... “““’*0»»--(}.’*3.3...,, . >
: evrermmmernen 222 T
20 % coeisnILmImnmnnn Fomg/my
H (17/16,17/16)
H
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L v L) v L] v L] v L)
0 5 10 15 20

i

FIG. 11. Ratios of scaling functiorR;(x) [Eq. (2.13]. The individual data points shown stem from systems of Bize50, 75, and
100. Subscripts, b, c distinguish different solutions with identical critical scaling dimensions. ThemBss ratios are indicated.
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TABLE V. Ratios of scaled gaps for three values of the scaling parameter

M N Ry R; Rs R4 Rs Re R, Rea Reb,c Ro
10 1.618 749 1983943 2403558 2.083461 2.616910 2.910107 2.317908 3.123561 2.811391 3.360 590
20 1618037 1983923 2403649 2.081017 2.617335 2.930942 2320478 3.086893 2.781193 3.369 241

10 50 1.618024 1983977 2403797 2.079804 2617468 2934096 2314580 3.078762 2.773762 3.375544
75 1618024 1983984 2403815 2.079550 2.617 482 2.934583 2313631 3.077950 2.772773 3.376215
100 1.618 025 1.983 990 2.403 834 2.079551 2.617 497 2.934617 2.313523 3.077537 2.772605 3.376 509
10 1.623692 1.989 446 2.412 441 2.017 536 2.623 691 2.958 322 2.085027 3.006 016 2.671041 3.411 712
20 1.618144 1987688 2.405009 2.025316 2.618 144 2.954218 2.129306 3.006 016 2.669 638 3.404 917

20 50 1.618034 1.987597 2404866 2.026212 2.618034 2954289 2132554 3.003342 2.669 034 3.404 805
75 1618034 1987591 2.404865 2.026286 2.618034 2.954306 2.132780 3.003242 2.668960 3.404 808
100 1.618 034 1987589 2.404 865 2.026315 2.618034 2.954311 2.132871 3.003212 2.668 941 3.404 808
10 1.634823 1.992979 2428402 2.003678 2.634823 2970263 2.021663 2.994370 2.649 653 3.428 399
20 1618424 1988671 2405376 2.012146 2.618 424 2.956329 2.071838 2992915 2.644399 3.405 376

30 50 1.618036 1.988497 2404869 2.013483 2.618036 2.956009 2.078248 2.992952 2.645130 3.404 869
75 1618034 1988489 2.404 867 2.013604 2.618034 2.956007 2.078 742 2.992 957 2.645220 3.404 867
100 1.618 034 1.988 486 2.404 867 2.013644 2.618 034 2.956 007 2.078 950 2.992 958 2.645 248 3.404 867

0 o 1.618 034 1.989 044 2.404 867 2.000000 2.618 034 2.956295 2.000000 2.989 044 2.618 034 3.404 867

precision, which also proves the performance of our numeriansatz solutions, which can be interpreted as massive par-
cal routines. Small deviations from scaling can be seen foticles. In our numerical analysis, we have seen at least five

larger values ofj.

w815=q¥N [Eq. (2.10] on the horizontal axis. Qualita-
tively, the scaling functions agree with the results of previ-
ous numerical calculations for the Ising model in a magneti
field [17—-19 and with the results of the truncated fermionic
space approach; compare the figures given in R3f. The
one-particle states can be recognized by their CharacteristB:
minima [17]. This becomes clearer when we consider their
ratios R;(u) [EQ. (2.13], which are presented in Fig. 11.
Here, we again show individual data points that were o
tained from systems of sizd=50, 75, and 100, which ob-
viously were large enough to keep corrections to scalin
small. The ratioRR;(x), given here against the scaling vari-

The scaling functions for the excitations;(u) [Eg.

such “massive” strings. It is intriguing that all these strings
(showing up in solutionst criticality) are among the con-
(2.11] are displayed in Fig. 10. The curves shown are piecejectured list of “thermodynamically significant string types”
wise linear plots connecting data points obtained from sysin the TBA analysig44] of the massive scaling limit. This is
tems with N=100. For convenience, we again usedstrongly suggestive of a connection between the Lie algebra

Es and the masses of these excitations.
However, these are not the states that yield Zamolodchik-
v's Eg field theory of the Ising model in a magnetic field.
Those correspond to massless excitations at the critical point,
which develop a mass due to the existence of the symmetry-

reaking field. At criticality, the string structure of these
states does not agree with the prediction$4af] — solving
pthis puzzle had been the original motivation for this work.
Our numerical results suggest a scenario that may solve this
pparent contradiction: the string type of the relevant excita-
ions undergoes a number of changes as the field is switched

able u, are labeled by the corresponding conformal dimenM gnd for large systems th.ese reorganizations take place at
sions at criticality. We also indicated the single-particle mas@articular values of the scaling parameer Therefore, the
ratios[Eq. (2.14)] of the E; field theory. Clearly, the agree- string structure entering the massive scaling ligait© is

ment is convincing; more detail on the approach of the masthat observed for large values of the elliptic nome
Numerically, we have been able to identify the single-

sive scaling limit is contained in Table V.

IV. CONCLUSIONS

particle states up to the fifth mass, and a number of two-
particle states. Clearly, our results for the scaling functions
are in complete agreement both with the analytic values of

The spectrum of the dilute Amodel has been studied by the mass ratios and with earlier numerical work on the Ising
numerical solution of the Bethe ansatz equations, both at anthodel in a magnetic field. As to the Bethe ansatz solutions,
off criticality. This gives the correspondence between theapart from one exception, the string structure for large field
lowest states of the conformal spectrum of the critical Isingis that conjectured if44]. The one exception concerns the
model and those of the massive fteld theory(note that the  string type associated to the particle of mass We found
connection given in Ref.17] contains an obvious mistake two states that contain this particle — one being the single-

At criticality, the spectrum consists for one part of mass-particle state with conformal dimensions (3/2, 3/2), the
less excitations described loy=1/2 minimal CFT as in the other a two-particle state that also contains the lightest par-
critical Ising model, but in addition to these it contains mas-ticle and has scaling dimensions (7/2, 7/2) at criticality. In
sive excitations. Obviously, the masses of these excitationgoth cases, the observed string structures agree, but they dif-
are linked to the appearance of particular strings in the Bethéer from the one proposed i4]; compare Table IV. Of
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course, it cannot be ruled out completely that another changs&ion relations have not been studied because we concentrated
of string type appears at a larger value of the scaling paranen momentum zero states throughout this work.
eter, but we found no trace of such behavior for scaling Note added— Recently we learned of the work of Mc-
parameters up ta=<80. This clearly demands further clari- Coy and Orric60]. From this we conclude that our massive
fication, and maybe the investigation of the dilutg model  excitations at criticality represent really the massless par-
can lead the way. In the scaling limit, this model is describedicles at a nonzero value of the momentum. That we see them
by an E theory of factorized scattering, but has so farin the zero-momentum sector as due to an extended Brillouin
eluded a TBA approach analogous to that[4#]. In this  zone scheme, extending not from to 7 but a multiple of
case, we have been able to identdly seven single-particle  that. This phenomenon had been observed before for the ex-
states and observed interesting string solutions, details wilkitations of the antiferromagnetic three-state Potts quantum
be published soof47]. spin chain[61].
A number of interesting questions arise in connection
with the massive excitations of the critical dilute; odel.
This is one property of the dilute ;Amodel that distin-
guishes it from the proper Ising model in a magnetic field,
since the critical Ising model does not show such excitations. U.G. gratefully acknowledges financial support of the
Moreover, we suppose that this phenomenon is not particulZ8amenwerkingsverband FOM/SMC Mathematische Fysica
to the specific model and will show up in the other dilute during his stay in Amsterdam, where most of this work was
models as well. It would be interesting to understand thelone. The authors thank M. Baake, B. M. McCoy, P. A.
physical nature of these excitations, and to obtain analyti®earce, K. Schoutens, and S. O. Warnaar for interesting dis-
predictions for the observed mass ratios. Also, their dispereussions and helpful comments.
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