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Synchronization of chaotic systems by using occasional coupling
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We present a method for the synchronization of chaotic systems by using occasional coupling. In this
method we assume that a chaotic drive system and a response system to be synchronized with the drive system
are given. We also assume that a scheme that results in exponentially fast synchronization is dfidilable
synchronizatioh Then we present an occasional-coupling scheme in which the drive and response systems are
coupled in some intervalsynchronization phasgand decoupled in some intervdutonomous phasgs.e.,
the response system is switched to an autonomous system. We prove that if the lengths of these intervals are
appropriately chosen, then under some mild conditions synchronization can be achieved. We also show that the
proposed scheme is robust with respect to noise and parameter mismatch under some mild conditions.
[S1063-651%97)03804-X

PACS numbds): 05.45+b

I. INTRODUCTION autonomous phase intervals are chosen appropriately, then
the synchronization can be achieved exponentially fast in the
Recently the idea of synchronization of chaotic systemsdeal case(i.e., when the synchronization link is not cor-
has received a great deal of interest from scientists of variousipted with noise and parameters of drive and the response
fields[1-11]. The configuration we consider for the synchro- systems are known exactiyWe also show that the proposed
nization of chaotic systems consists of two parts, a generat@cheme is robust with respect to noise in the synchronization
of chaotic signalgdrive system and a receivefresponse link and parameter mismatch, i.e., the synchronization error
system. This configuration is the one most commonly dis- remains bounded, and this bound decreases to zero as the
cussed in the literature, due to its possible applications imoise and the parameter mismatch magnitudes decrease to
secure communications. The response system is usually zro.
duplicate of a partlor the whole of the drive system. A There may be various reasons for using autonomous
chaotic signal generated by the drive system may be used ghases. As mentioned in R¢fl1], in some cases it may be
an input in the response system to synchronize the commampossible to use only synchronization at all times and,
signals of both systeni2]. One motivation for synchroniza- moreover, to use synchronization in some intervals only may
tion is the possibility of sending messages through chaotiprove to be more cost effective than using synchronization at
systems for secure communicatitsee, e.g.[5,7,9)). all times. Another reason might be the possibility of sending
In this paper we present a synchronization scheme fochaotically masked or coded messages for communication in
chaotic systems. As in most synchronization schemes, wihe autonomous phasgs4].
assume that a drive and a response system are given. The We note that a related idea for synchronization of chaotic
drive system generates chaotic signals and some of thesgstems was proposed in REE1], where drive variables are
signals are used in the response system for synchronizationot used in the response system at all times. Instead, for a
We also assume that a synchronization scheme, for whicfinite time stepr at instances=nr, for n=0,1.2..., the
the synchronization is achieved exponentially fast, is availtesponse system states corresponding to the drive variables
able, i.e., the synchronization error decays exponentially taised for synchronization are set to the values of the corre-
zero. We note that this requirement is satisfied in many synsponding drive system variables, and it was shown that, for
chronization schemes proposed in the litera{@®@,8. Re-  sufficiently small values ofr, synchronization is possible.
cently, a synchronization scheme that guarantees this propdoreover, in the limit of~—0, this method reduces to the
erty and is applicable to a broad class of chaotic systemmethod proposed in Ref2]. Hence, in the scheme proposed
under some mild conditions has been propds&]13. The in Ref.[11], the synchronization is achieved at discrete times
occasional-synchronization scheme proposed in this papéi.e., not in a time interva) whereas in our scheme the syn-
consists of the application of two phases, namely, the synehronization is achieved in an interval. We note that the
chronization and autonomous phases continually followindength of this interval is of crucial importance for the stabil-
each other. In the synchronization phases, the exponentiity analysis in our scheme. Both of these schemes use an
synchronization scheme mentioned above is used to synchrautonomous phase interval, and as in the scheme proposed in
nize the drive and the response systems and in the auton®ef.[11], when only a synchronization phase is usiegl, no
mous phases the response system is switched to an autorsstonomous phageour scheme reduces to the scheme pro-
mous system. We show that if the synchronization and thg@osed in Ref[2]. There are other schemes that use different
occasional coupling for synchronization of chaotic systems,
see Ref[15] and the references therein.
*Fax: 90-312-266 41 26. Electronic address: This paper is organized as follows. In Sec. Il we introduce
morgul@bilkent.edu.tr our scheme and prove that under some mild conditions, in
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the ideal casé.e., noise is not present and the parameters ofirive system is chaotic, then the solutions of B, that are
drive and response systems mat@xponential synchroniza- of interest to us, are bounded in a region and, hence, in this
tion can be achieved, provided that the lengths of the synregion Eq.(4) is satisfied.

chronization and the autonomous phase intervals are chosen Assumption 2 is not very restrictive and is satisfied in
accordingly. We then consider the nonideal case and provemany synchronization schemes proposed in the literature
that the proposed scheme is robust with respect to noise and,3,9].

parameter mismatch under some mild conditions, provided Assumption 3 might seem restrictive. However, this con-
that the synchronization and autonomous phase intervals adition is also satisfied in many synchronization schemes pro-
chosen appropriately. In this case the synchronization error igosed in the literaturgl,3,8. Recently, a general synchro-
bounded, and the bound depends linearly on the magnitudgzation scheme that guarantees exponential synchronization
of the noise and the parameter mismatch. Then we presenonder some mild conditions, and is applicable to a broad
some simulation results, and finally give some concludingclass of chaotic systems, has been propdéedi3.

remarks. We now state our occasional-synchronization scheme. Let
the intervals T;>0 and T,>0 denote the occasional-
II. OCCASIONAL COUPLING IN THE IDEAL CASE synchronization and autonomous phase intervals, respec-
] o tively. Our scheme is as follows=1,2,...).
Assume that the drive system is given as follows: (i) (ith occasional-synchronization phase For

(I—=1)(Tg+T)<t<iT¢g+(i—1)T,, use the drive system
given by Eq.(1) and the response system given by B).
where f(-):R"XRP—R" is a differentiable functionyeRP (i) (ith autonomous phage For iTs+(i—1)T,st
is a parameter vector. We assume thds such that system <i(Ts+T,) use the drive system given by E@), and for
(1) exhibits chaotic behavior. In the response system, somi1€ response system use the following:

signals generated by E(L) will be used for synchronization. .

Tg simpgllify the nota)t/ior?,l-)let us define an “())/utpub’ corre- w=gh(w),w, u)=F(W, ). @)
sponding to the system given by E@G) as follows:

u=f(u,u), ueR", weRP, (1)

Hence, in our scheme, occasional-synchronization and au-
o=h(u), ucR" o0eR™ @) tonomous phases follow each other. Note that with (aq._
the response system becomes an autonomous system in the
whereh(-): R"=R™ is a differentiable function. For the re- autonomous phase. Since, in the synchronization phase, the

sponse system we consider the following: error decays to zero exponentially fdsee Eq.(6)], at the
end of this phase the error becomes extremely small, pro-
w=g(o,w,u), weR", (3)  vided thatTy is sufficiently large. Hence, in the autonomous

phase we could switch the signals of the drive system used
where g(-): R™XR"XRP—R" is a differentiable function. for synchronization with the corresponding signals of the
Note that Eq(3) signifies the fact that some of the signals of response system, which is the rationale behind usingHg.
the drive system are used for synchronization in the respongastead of Eq(3).

system. At this point, we compare our scheme with tha{2fand
For the drive and the response systems given above, wa 1]. If we chooseT =0 (i.e., the synchronization phase in-

assume that the following conditions hold. terval does not existsetT,=r, and use the synchronization
Assumption 1: The following Lipschitz condition is sat- at discrete timesir, n=0,1, ...,then the scheme presented

isfied: above reduces to that g¢fl1]. On the other hand, if we

chooseT,=0 (i.e., the autonomous phase interval does not
exish and use only the synchronization phdse., T;=),
(4) then the scheme presented above reduces to tHaf.ofve

wherek>0 is a Lipschitz constant and the noffj is the note that the nonzero length >0 is of crucial importance
standard Euclidean norm. for our stability analysigsee Theorem 1, Eq§l4) and(15),

If(u,p) = F(w, )| <kllu—w], uweR", peRP,

: . T fFian- below).
Assumption 2: The following is satisfied:
P g For simplicity, we define the beginning oth synchroni-
ghh(w),w,u)=f(w,u), weR", ueRP. (5) zation and autonomous phasg$ and T?, respectively, as
follows:

Assumption 3: The drive system given by Edl) and
the response system given by E8) are exponentially syn-  T7=(i—1)(Ts+T,), Ti=iTg+(i—-1)T,, i=12,... .

chronized, i.e., there exist constars>0 and 5>0, such (8)

that for any initial timet, and for any initial conditions ) L

u(ty), w(to) eR", the following is satisfied: We also define the synchronization eregt) as follows:
Jut)—w(t)|<Me™ = Du(ty) ~w(to)]. () e(t) =u(t) ~wit). ©

From Eq.(6) it is clear that the following holds in thi&h

Remark 1:The Lipschitz condition given by E@4) might ) -
P g y Ed#4) mig occasional-synchronization phase:

seem restrictive. However, sindé-) is differentiable, Eq.
(4) is satisfied in any compact ball, i.e., for agy>0, Eq.(4) s
is satisfied fofju|<e¢, and|w|<e, . If we assume that the leHl=Me =" Tlle(Ty)], Ti<t<T{. (10
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From Egs.(1) and (7) it follows that the following holds in  ning of preceding synchronization phase. Basically, for this

theith autonomous phase: reason we can find an exponentially decaying function that
t bounds the error.
—a(Ta _ Remark 3: In the development presented above we as-
e(t)=e(Ti)+ fo[f(u(T)"u) fw(m).wldr, sumed that the interval lengthls; and T, are the same in

each synchronization and autonomous phases. However, we
Ti<t<T},;. (1D could choose different interval lengths in each synchroniza-
tion and autonomous phases and the results of Theorem 1
By using Eq.(4), taking norms, and using the Bellman- will be valid, provided that Eqs(14) and(15) are satisfied.

Gronwall lemma[16], we obtain The development presented above could be used to derive
a further results. For example, assume that the initial error sat-
le(t)|<e<tTD|e(T?)|, Ta<t<T?,,. (120  isfies|e(0)||<e, for somee >0, and it is required that the

_ _ _ error satisfy|e(t)| <e in ith autonomous phase, whesz0
By using Eqs(12) and(10) successively, and noting that the is 4 given precision level. From E¢L3) it follows that this
error is continuous at switching instanc® and Tf, we  requirement can be satisfied, provided that the interval

obtain lengthsT, and T, are chosen as follows:
le(H]|=e Tlle(Tll, Ti<t<Tp,, INM + (1/i)Ine /e
Ts> : 17
<MeTeaTa)g(T9)| @
<(MekTa=aT9)i||e(0)]. (13 aTs—InM— (1/i)Ine /€
T,.<— » iy (18

Now we state our first result.

Theorem 1: Let Assumptions 1-3 be satisfied and con-pnpote that, if we take the limit whein—o, Egs.(17) and(18)
sider the occasional-synchronization scheme presenta@dduce to Eqs(14) and(15).
above. Let the synchronization and autonomous phase inter-

valsTs andT, be chosen as Ill. ROBUSTNESS WITH RESPECT TO NOISE
In M AND PARAMETER MISMATCH
TS>T’ (14) Consider the drive and the response systems given by
Egs. (1) and (3), respectively. Because of the exponential
aTs—In M synchronization assumptiofb), we expect that for the dy-
a<T’ (15 namical system governing the behavior of the efia., er-

ror dynamic$, e=0 is an exponentially stable equilibrium
then, for any initial erroe(0), the synchronization error de- point. We note that this assumption holds in most of the
cays to zero asymptotically, i.e., ljm..|e(t)]|=0. Moreover, synchronization schemes proposed in the literaf@;é,8].

the decay is exponential. Since exponentially stable systems are robust with respect to
Proof: From Eq.(13) it is obvious that, if small perturbations in the dynamics, and since our scheme
yields exponentially fast synchronization in the ideal case,

MelkTa=aTo <1, (16)  we expect that the synchronization scheme proposed here is

] also robust with respect to small perturbati¢hg|, pp. 191—
then we havele(T?, 1))[|<[le(T?)[. By using Eq.(16), we 209,
obtain Eg. (15. To guarantee thatT,>0, we need To justify the robustness properties analytically, we need
aTs—In MfOT; hence, Eq(14) follows. From Eq.(14) we {5 specify the error dynamics. First, let us assume the ideal
obtain Me™“'s<1; hence, from Eq.(10) it follows that  case j.e., noise is not present and the parameters match ex-
le(THII<lle(T?). By using this result Eq€13) and(16), it actly. For simplicity we assume that the error dynamics is as

follows that lim_..[[e(t)[ =0. given below

For exponential decay, note that E@.3) is valid for
Ta<t<T},,, which implies thatt/(T,+ T, <i. Let us de- e=F(o,u,e,u), (19
fine p=MekTa=2T9 From Eq.(13) we obtain

whereF is a differentiable function of its arguments, u,
and u are as defined before. We note that the form of the
error dynamics given by Eg19) is not the only possible
form to conclude the robustness results. We choose this form
where A=—Inp/(T,+T,). Note that, sincep<l [see Eg. because it could be expected from E¢b. and(3) and, for
(16)], we haven>0. By using this result and Eq10), it the synchronization schemes given in R¢856,8], the error
follows that the error decays exponentially to zero. dynamics can be put in the form given by Efj9). Note that
Remark 2: Theorem 1 does not imply that the error con- u can be considered an exogenous signal for the error dy-
tinually decreases to zero. In fact, in autonomous phasesamics; hence, we can view EQ9) as a time-varying sys-
obviously the error increases. However, sincetem.
le(T?)I<|le(T?)|, it follows that the error at the end ofan ~ Since we assume exponential synchronization, it follows
autonomous phase is strictly less than the error at the begitkhate=0 is an exponentially stable equilibrium point of Eq.

le(O)|<e ™), TP<t<Ty,y,

l t||<(1
e(t)||= p
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(19). Hence, by a well-known result in the Lyapunov stabil-

ity theory, there exists a Lyapunov functidh RXR"—R,
which satisfies the following:

cillel?<=V(t,e)<c,|e|?, (20)

v N + N F 2 21
= —_— R g —

ot Je C3||e|| ’ ( )

N _ ”s

| =Calel (22)

for some positive constants, c,, c3, ¢4 [17,18. We note
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A. Robustness in the occasional synchronization phase

By using Egs(1) and(3) we obtainF(o,u,e,u) =f(u,u)
—g(o,w,u) in the ideal case. Hence, by using E¢&9) and
(23) we obtain the following error dynamics for the nonideal
case:

e=F(o,u,e,u)+[g(o,w,u)—g(o,w,u")]

+[g(0’W’M,)_g(0+n’W'lbl’,)]' (28)

In the ideal case we have=0 andu=u', and Eq.(28)
reduces to Eq(19). Since the latter is exponentially stable,
the terms in square brackets in E88) represent perturba-
tions to an exponentially stable system. By using the expo-

that the existence of such a Lyapunov function is both necnential stability of the error dynamics in the ideal case, we

essary and sufficient for exponential stability, $8€], p.
180. Moreover, the constants in E@) can be given as

=.C,/c, and a=c5/2¢c,.

can now prove the following robustness result for E2§).
Theorem 2:Consider the error dynamics given by Eq.
(28). Assume that Eq925) and (26) hold. Let the noisen

In the nonideal case, the occasional synchronizatioﬁatiSfYHn(t,)||$nm for somen,>0 for t=0 and let us define
scheme presented in the preceding section takes the followds=p— . Then the error asymptotically.e., ast—e) sat-

ing form.

(i) (ith occasional-synchronization phase For
Ti<t<T}, the drive system is given by Eql) and the
response system is given by the followifdf. Eq. (3)]:

w=g(o+n,w,u'), (23
whereo is the output of the drive system given by Ef), n
represents the noise acting on the output, ahds the pa-

isfies the following inequality:

le(t)]|<Canm+ CollAull, (29
whereC,>0 andC,>0 are some constants.

Proof: Let us consider the Lyapunov function which sat-
isfies Egs.(20)—(22). Since the error dynamics is exponen-
tially stable in the ideal case, such a function always exists.
By differentiatingV along the solutions of Eq28), we ob-

rameter vector of the response system. We note that the noi&dn

could be an arbitrary function of time.
(i) (ith autonomous phageFor T<t<T},,, the drive

system is given by Eq(l) and the response system is
switched to an autonomous system. Therefore, in this phase,
the drive system is not affected by the noise in the synchro-

nization link and is given bycf. Eq. (7)]

w=f(w, ). (24)

For the robustness analysis, we need the following as-

sumptions:

Assumption 4The following Lipschitz conditions are sat-

isfied for some positive constaritg, k,, ks:
lg(o1,w, ) —g(0z,W, )| <kq[lo1 =04,
weR",

OlIOZERm! ME va (25)

lg(o,w, ) —g(o,w,u")[|<kgllpe— |,

0eR™, weR", u,u’eRP, (26
||f(u,,u)—f(u,M')||$k3||,u,—,u,’||, UEan Iu’w“’ER(;%)

where|-|| represents the standard Euclidean norRThR™,
or RP.

AVAY

. AV
V= % F+ e [g(o,w,u)—g(o,w,u")]

oV . ,
+ % [g(O,W,,LL )_g(O+n,W,,lL )]

Cyq
=—cglel|lel = (kanm+ kol Aul) . (30

where we used Eq$21), (22), (25), and(26). From Eq.(30)
it follows that if ||€]|>(c4/c3) (Kynm+Ko||Aull), thenV<O
and, hencey and, by Eq.(20), error e decrease along the
solutions of Eq.(28). It then follows from the standard in-
variance arguments that asymptotically E29) is satisfied
[17, p. 187, Theorem 4]8In particular, we could choose
C,>(c4/cg)k, and C,>(c4/cy)k,, wWherecy and ¢, are
given by Eqs(21) and(22), respectively.

Remark 4:It follows from Eq. (29) that if n,, and A
are sufficiently small, then the error will be asymptotically
small(cf. Theorem L Hence, we can conclude that synchro-
nization schemes for which the error dynamics is exponen-
tially stable, is also robust with respect to noise and param-
eter mismatch. We note that this result is the basic reason for
the robustness of many schemes proposed for synchroniza-
tion in the literature. Hence, we can view Theorem 2 not
only as a result related to the synchronization scheme pro-
posed here, but also as a general result related to any syn-

We note that these requirements are not very restrictivechronization scheme, provided that its assumptions are satis-
Since we assume that the signals are chaotic, and therefofied. We also note that the above result is only asymptotic in
bounded, Eqgs(25)—(27) may be considered a consequencenature and the required synchronization lengttcannot be

of differentiability of g with respect to its arguments.

specified in general. To estimate the required further
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assumptions on the form of the error dynamics given by Eq. t
(19 may be necessary. For example,[i?] and[13], the le(t)|<lle(Te)|+kall Al (t—Ts) + JT kle(n)|dr,
following chaotic drive systems are considered: s

=AU+ (U,w), (31) t=Ts.

, p nxn . Now assume that the autonomous phase takes place in the
where, for a fixedueR", A(u)eR"™" is a constant matrix jyieryal T,<t<T.+T,. Then, by using the Bellman-
andr: R"XRP—R" is a differentiable function. For this sys- Gronwall inequality, we obtain

tem, the outpub is chosen a®=Cu, whereCeR™ " is a
constant matrix. Then the response system is chosen as leI<(le(Tyll+ks|Au|T)e T, T<t<Te+T,.

(37

Now assume thdte(T,)||< e, and we requirde(t)| < e, for
whereK e R"™ ™ is a constant gain matrix to be determined. Ts<t<Ts+ T, for some precision levelg>0, €,>0. Obvi-
This scheme is called observed based synchronization andatisly we should have,> €. Then, from Eq(37) it follows
was shown i 12] and[13] that, for a wide class of chaotic thatT, should satisfy
systems, this scheme yields exponentially fast synchroniza-
tion under some mild conditions. In this case, the error dy- ekTac a
namics is given bycf. Eq. (19)] est kg Au|Ty

w=A(u)W+r(w,u)+K(o—Cw), (32

€

(38

e=[A(n)—KCle+r(u,u)—r(w,u). (33  There exists a7 >0 such that Eq(38) is satisfied for all
T,<T. To see that, note that E(B8) is satisfied forT,=0.
By an appropriate choice of the gain mat#x it could be  Since the left and right sides of E(B8) are strictly increas-
shown that the error decays exponentially to zero, i.e., Eng and decreasing functions @f,, respectively, it follows
(6) is satisfied for som& >0 anda>0. In the nonideal case, €asily that such 3>0 exists.
it was shown in[13] that the error satisfies the following: Note that in the ideal case we havku=0 and &
=Me “Ts¢,, where|e(0)||<e, [see Eq(6)]. If T, satisfies
le(t)|<=C(1—e Y +Me “Ye(0)|, t=0, (34 Eg.(14), thenMe “Ts<1; hence, we can choosg=c¢, .
With this choice, Eq(38) reduces to Eq(15) in the ideal
where C=An,,+ BJ||Au/| for some positive constants and  case.
B. By comparing Eqs(34) and(29), we see that asymptoti- From the analysis presented above, it is clear that if we
cally the latter is satisfied with=(c,k;/c3), B=(c4k,/c3).  chooseT sufficiently large,T, sufficiently small, and apply
From Egs.(34) and(29) it follows that the latter is satisfied our occasional synchronization scheme, it is possible to keep
ast—o. Assuming that Eq34) holds, we could estimate the the error below a reasonable precision level. From a practical
required synchronization lengfh, in order to bound the er- point of view, T and T, should be chosen sufficiently larger
ror by a given precision leved;. Let such a levek,>0 be  and smaller than the bounds given by E@s) and (15),
given and let the initial error satisfye(0)|<e, for some respectively.
€>0. Then it follows from Eq(34) that we havele(t)| < e,

for t=T where IV. SIMULATION RESULTS
1 (Me—C For an application of the ideas given above, we consider
T= P In( c—C ) (35  the well-known Lorenz system for the drive systgaj,
S

For Eg.(35) to be meaningful, we need,>C. Hence, the x=o(y=x),

required synchronization length should sati3fy=T. Note U= — X7+ X — 39

that in the ideal caséi.e., ny,=0, Au=0), if we choose y 4 39
e.=¢ (i.e., Me ?Ts<1, see Theorem)lthen Eq.(35) re- 7=xy—bz

duces to Eq(14).
We choose the parametess r, andb, so that the system
B. Robustness in the autonomous phase (39) is in the chaotic regime as=10,r=20,b=1. We note
that Eqg.(39) is in the form of Eq.(1). The solutionx(t) of
Eq. (39 will be used to synchronize the solutions of the
following response systef8]:

By using Egs(1) and(24), we obtain the following in the
autonomous phase:

o) =e(Ty+ [ [1(u(r).1— 1 (), w))dr = a(y,—X),
TS
t Yr=—Xz+rx—y,, (40
+f [FW(r) )~ fw(r)u)]dr, t=Te.  (36) |
Ts z,=xy,—bz.

By taking norms in Eq(36), and by using Eqg4) and(27), In our notation we haveo=x, hencem=1, and, with
we obtain u=(xy2", we haveo=Cu with C=(100). Also note that
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the response syste0) is of the form given by Eq(3), 2 , —————
moreover, Eqs4) and(5) are satisfied. It was shown in Ref. : : : : : : : : :
[8] that the signals of Eq$39) and (40) are asymptotically SO0 IS N KOOI R N0 O
synchronizedsee also Ref.2]). However, here we empha- _1 N N R S N ;
size that the synchronization is in fact exponential, which is 0 0 20 3 40 S0 60 70 680 90
important for the scheme proposed in this work. Let the error
terms be defined ag,=x—Xx,, e,=y—y,, ande,=z—z,.
From Eqgs.(39) and (40), we obtain the following error dy-

namics. 0 10 20 30 4 S0 60 70 80 80

(a) switch

( b)error(x)

éx= —oectoey,

(c)errorly)

e,= —e,—Xe,, (41

e,= —be,+xey.

Let us choose the following Lyapunov function,

(d) error(z)

V=1(yei+pe;+pel), (42)

time

where y>0 and p>0 are constants to be determined. By
d'ﬁerent'at'nzg Eg].(42) along Eq.(41) and u_smg the simple FIG. 1. Master-slave synchronization of the Lorenz system,
fact 2pq<p“+q° for any p, geR, we obtain ideal case(a) The switch alternates between the synchronization
phase and the autonomous phabg Evolution of the error magni-
(43) tude|e,|. (c) Evolution of the error magnitude,|. (d) Evolution of
the error magnitudée,|.

Ve T W

2 2

2 2
e, —pbe;.

By choosingp>0 andy>0 su_ch_ that a>. Yo, It follloyvs that we chosex(0)=0.8,y(0)=0.1, z(0)=2 for the drive system,
Eq_s.l (20—(22) _alre_ i Clz_im'n{y’p}’ and we chose 0 initial conditions in the response system. The
Co=2maX{y,p}, Cg=:zmin{oy,2p—70,2pb}, Ca=maXypl.  oqits of the simulation are shown in Fig. 1. Figui@1
Hence, Eq(6) is sgﬂsﬁgd WithM = C, /¢, andafc3(2c2. shows the synchronization and autonomous phase intervals.
Since the functiorf given by Egs(1) and(39) is differ- 5, yhe synchronization phase intervals the switch value is
entl_able_, it follows that Eq(4) IS safisfied in any compact equal to 1, and on the autonomous phase intervals, the switch
region in state space. In particular, we havesug||sf/ 546 is equal to 0. Figureg)—1(d) show the evolution of
aul[llul}<r} for any r>0. : . . the magnitude of the erroes,, e, , ande,, respectively. We
_ Next we present some numerical simulation results thaf e that, since the errors are extremely small, it was not
indicate that the suggested method can be used for Supcessﬁgssible to obtain meaningful figures on a linear scale, hence
synchronization. Since the state variables in &) vary in we used logarithmic vertical scales in these figures. It is clear

a wide dynamical range, for simulation purposes following,oy these figures that the errors asymptotically decrease to
Ref. [8], we use the scaling/10, y/10, andz/20, which ..

results in the following “scaled” Lorenz system: In the second set of simulations we considered the non-
X=ao(y—x) ideal case and chosg;=15 andT,=9. As for the initial
' conditions, we chose&(0)=0.8, y(0)=0.1, z(0)=2 for the

y=—20xz+rx—V, drive system, and we chose O initial conditions in the re-
sponse system. The parameters in the drive system are cho-

sen asc=10, r=20, b=1 and in the response system as

0'=10.01,r'=20.02,b’'=1.001, which corresponds to 1%

and we changed the response systdfh accordingly. In the ~change in the parameters. We also added a white noise, gen-
simulations, we use th&iMULAB software package. We first €rated by the computer, to the synchronization signal used in
estimated the bounds given by E@4$4) and (15). By using  the response systefsee Eqs(23) and(40)]; the magnitude
y=1 and p=6 in Eq. (42), we obtainedM=2.44 and Of the white noise is bounded byy=10"* The results of
«=0.16. Also, by using a typical simulation result of Eq. the simulation are shown in Fig. 2. Figure&-2(d) show
(39 and by evaluating the associated Jacobian matrix, wéhe evolution of the magnitude of the erras, e, ande,,
estimated the Lipschitz constant in Ed) ask=18.64. By  respectively. As explained above, we used logarithmic verti-
using these constants in Ed.4) we found thatT=5.35 is  cal scales in these figures. As can be seen from these figures,
required, and, if we choosB;=15, from Eq.(15) we found the errors remain bounded, and the bound on the error is
that T,<0.08 is required. However, in our simulations we comparable to the noise level.
were able to obtain longer autonomous phase intervals. This
shpws that the gstimates given in E¢ls?) and(15) might be V. CONCLUSION
quite conservative.

In the first set of simulations, we considered the ideal case In this paper, we presented a scheme for the synchroniza-
and chosel;=15 andT,=18. As for the initial conditions, tion of chaotic systems by using occasional coupling. As in

z=5xy—bz,
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2 . . . . , , , , , tially fast in the synchronization phases. This requirement

SN SO SN OO SO SO S S implies that, if we use only synchronization phasges., no
autonomous phasgsthen the synchronization is achieved
exponentially fast. This requirement is satisfied in most of
the synchronization schemes proposed in the literature. This
also implies that the error dynamics associated with the dif-
ference of the signals of the drive and response systems is
exponentially stable. We then showed that, if the synchroni-
zation and autonomous phase intervals are chosen appropri-
ately, then the synchronization can be achieved asymptoti-
cally. Moreover, the synchronization error decays
exponentially to zerdsee Theorem)1 We note that the ex-
ponential stability is quite important in the robustness of syn-
chronization schemes, and the robustness of many proposed
synchronization schemes with respect to noise and parameter
mismatch may be considered as a consequence of this prop-
erty.

We also considered the nonideal case, and showed that
the proposed scheme is robust with respect to noise and pa-
rameter mismatch. We showed that, if the synchronization

FIG. 2. Master-glave synchronization_of the Lorenz _system, inand autonomous phase intervals are chosen appropriately,
the presence of noise and parameter misma®hThe switch al-  then the synchronization error remains bounded. Moreover,
ternates betwee'n the synchronlzatloq phase and the gutonomoth?s bound depends linearly on the magnitudes of the noise
phase.(b) Evolgtlon of the error magnltudbex|. (© Evolytlon of and the parameter differen¢eee Theorem )2 We empha-
the error magnitudée,|. (d) Evolution of the error magnitudke, . size that Theorem 2 is applicable to any synchronization

scheme, provided that exponential synchronization require-
most synchronization schemes, we assume that a drive systent holds and can be considered as a consequence of ex-
tem generates chaotic signals and some of these signals grenential stability of error dynamics.
used in the response system for synchronization. Our scheme Several improvements on the scheme proposed in this pa-
consists of the application of two phases, namely, synchroper are possible. The estimates given by Efd) and (15)
nization and autonomous phases continually following eaclappear to be very conservative and may be improved. An
other, and, while the drive and the response systems are syaptimum relation betweefiy and T, may also be obtained.
chronized in the synchronization phases, in the autonomou&n electronic circuit implementation may also be possible
phases the response system is switched to an autonomof{see Ref[8]). As for any synchronization scheme, our syn-
system. We assume that in the ideal cés®, noise is not chronization scheme may also be used for secure communi-
present and the parameters of drive and response systemastion (see Ref[14]). Work along these lines is in progress
exactly match, the synchronization is achieved exponen-and the results will be presented elsewhere.

(b)error(x)

( c)error(y)

{d)error(z)
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