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Evolution of wave packets in quasi-one-dimensional and one-dimensional random media:
Diffusion versus localization

F. M. Izrailev,1,2,* T. Kottos,2 A. Politi, 3 and G. P. Tsironis2
1Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

2Department of Physics, University of Crete and Research Center of Crete, P.O. Box 2208, 71003 Heraklion-Crete, Greec
3Istituto Nazionale di Ottica, 50125 Firenze, Italy

and INFN, Firenze, Italy
~Received 8 November 1996; revised manuscript received 17 January 1997!

We study numerically the evolution of wave packets in quasi-one-dimensional random systems described by
a tight-binding Hamiltonian with long-range random interactions. Results are presented for the scaling prop-
erties of the width of packets in three time regimes: ballistic, diffusive, and localized. Particular attention is
given to the fluctuations of packet widths in both the diffusive and localized regime. Scaling properties of the
steady-state distribution are also analyzed and compared with a theoretical expression borrowed from the
one-dimensional Anderson theory. Analogies and differences with the kicked rotator model and the one-
dimensional localization are discussed.@S1063-651X~97!11603-8#

PACS number~s!: 05.45.1b, 71.55.Jv
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I. INTRODUCTION

The main approach to a statistical description of the sp
tra in complex quantum systems originates from the pione
ing works of Wigner~see in@1#!, who conjectured that ran
dom matrices could represent the simplest meaningful mo
for studying heavy nuclei. Currently, random matrix theo
~RMT! has become a very effective tool in a large variety
physical applications. Until recently the matrices in th
theory were assumed to be homogeneous, i.e., all matrix
ements were taken to have identical statistics. This simp
cation is mainly dictated by mathematical reasons since
corresponding ensembles of random matrices are rotati
invariant, a property that simplifies the theoretical analys

For a long time, the RMT had no concrete physical ba
in the sense that conditions for its applicability were n
specified. It was believed that the systems under consi
ation had to be extremely complex in order to have a go
agreement with the predictions of the RMT@1–3#. The situ-
ation has changed with the progress of the so-called quan
chaos theory which deals with dynamical Hamiltonian s
tems exhibiting chaotic motion in the classical limit. One
the main results of this theory is that in the extreme ca
when classical motion is strongly chaotic and no influence
quantum localization is taken into account, statistical prop
ties of both spectra and eigenfunctions are well described
the RMT. This statement has been thoroughly studied
confirmed both for autonomous systems, such as chaotic
liards @4#, and for time-dependent models, such as the kic
rotator model~KR! @5,6# and the kicked tops@7#. Moreover,
there are many physical examples where ‘‘complexity’’ o
quantum system is not maximal, but, nevertheless, a sta
cal description applies pretty well.

To describe the consequences of quantum localizatio
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the presence of strong classical chaos, a new type of ran
matrices has been introduced when studying the KR@6,8#.
The distinctive feature of these matrices is their bandl
structure, which is related to the finite range of interactio
in a given basis. In a sense, the ensembles of band ran
matrices~BRM! can be regarded as an extension of the c
ventional random ensembles, since the latter are recov
by just setting the band sizeb equal to the matrix sizeN.
Currently, the interest in BRM raised significantly due
their close relationship with quasi-one-dimensional~quasi-
1D! models with random potentials@9#, or 1D systems with
long-range hoppings between neighboring sites. In the
interpretation, the band sizeb corresponds to the hoppin
range while in the quasi-1D case, it is associated with
number of transverse channels for electron wave propaga
along a thin wire. Recent numerical and analytical studies
BRM ~see @9,10# and references therein!, led to numerous
results regarding the structure of eigenstates. In particu
the localization length has been shown to depend only on
scaling parameterb2/N, so as the statistical properties of th
eigenstates that are directly related to the fluctuation pro
ties of the conductance.

However, much less is known about the evolution
wave packets in models described by BRM. One should n
that even in the ‘‘simple’’ case of Anderson-type models
1D, only the short- and the long-time scales, correspond
to ballistic spread and saturation of the packet width, resp
tively, have been successfully studied@11#. In quasi-1D~or
1D with long-range hoppings! models, the picture is both
more complicated and more interesting with respect to
Anderson case. Indeed, while the diffusion time scale is
sent in 1D models of Anderson type, since the mean f
path is of the order of the localization length, classical d
fusion alters the ballistic spread in quasi-1D systems, be
being eventually suppressed by localization effects.

In dynamical systems, the influence of strong localizat
on classical diffusion in momentum~or energy! space has
been studied, in detail, in the framework of the KR. It w
4951 © 1997 The American Physical Society
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found that the time scale of the wave-packet spreading th
analogous to classical diffusion is much longer than the lo
rithmic time scale over which the complete corresponde
between classical and quantum description holds@5,6,12,13#.
The entire diffusive process, including the final saturat
proved to exhibit remarkable scaling properties@6,13#. In
particular, the diffusive time scale is proportional to the
calization length of those eigenstates which are involved
the dynamics. In view of the analogies existing between
namical and Anderson-type localization, the results obtai
in the study of wave-packet evolution in the KR will repr
sent the touchstone for the present investigation of pa
dynamics in quasi-1D disordered models. However, beca
of the existence of basic differences as well~see Refs.@6,13–
16#!, it is not presently clear to what extent the similari
between dynamical and disordered systems can be pu
forward.

In this paper we extend a previous study@17# of initially
d-like wave packets in a quasi-1D geometry, with particu
attention to their width and fluctuations on different tim
scales. We show that the scaling ansatz for the temp
scale has to be modified with respect to Ref.@17# in order to
guarantee a convincing overlap of the results obtained
different bandwidthsb, also presenting an argument to ju
tify this new choice.

The paper is structured in the following way. In Sec.
the model is introduced and discussed together with the m
properties of spectra and eigenstates of BRM. In Sec. III b
ballistic and diffusive time scales are analyzed and the s
ing properties of packets in terms of bandwidthb are estab-
lished. The effect of noise in the destruction of coherenc
also briefly discussed. Section III terminates with the res
for the suppression of classical diffusion due to the locali
tion of eigenstates. In Sec. IV, we focus on the problem
fluctuations of the shape of packets both for the diffusive a
relaxation time scales. In Sec. V, a phenomenological
scription of the asymptotic shape of the packets is giv
based on results for the 1D Anderson model. Moreover, fl
tuations along the asymptotic profile of packets are stud
The conclusions are summarized in Sec. VI.

II. BAND RANDOM MATRICES: MAIN PROPERTIES

A. Definitions and applications

Since its birth, random matrix theory has been mai
dealing with statistical properties of ‘‘full’’ random matrices
for which all matrix elements are independent and distr
uted according to the same law. In physical applications
implies that interactions are assumed to be so strong
complex that no other parameter, apart from the symmetr
matrices, is to be taken into account. As a result, such
trices are associated with the extreme case of maximal c
which is known to appear in various physical systems, s
as heavy nuclei, atoms, metallic clusters, etc. Furtherm
full random matrices represent a good model for the desc
tion of local statistical properties of spectra and eigensta
in some range of the energy spectrum, typically, in the se
classical region.

On the other hand, the conventional RMT is both una
to describe important phenomena such as localization
eigenstates, and to characterize the spectra of physical
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tems influenced by strong localization effects. For this r
son, much attention has been recently paid to the so-ca
band random matrices, which are characterized by the
parameterb defining the effective band width of a Hami
tonian. Such random matrices with elements decaying a
from the main diagonal, appear to provide more realis
models for the Hamiltonian of ‘‘complex’’ quantum system
~see, e.g.,@9,10# and references therein!. The simplest type of
BRM is given by matricesHnm with zero elements outside
the band (un2mu.b), while inside the band (un2mu<b),
matrix elements are assumed to be independent and dis
uted according to a Gaussian law,

P~Hnm!5
1

snmA2p
exp~2Hnm

2 /2snm
2 !,

snm
2 [^Hnm

2 &5
s0
2

2
~11dnm!, ~1!

where dnm is the Kronecker symbol ands0
252, implying

that the variance of the off-diagonal matrix elements
equal to 1. The BRM ensemble can be regarded as a ge
alization of the standard Gaussian orthogonal ensembl
the former reduces to the latter whenb5N. Analogous gen-
eralizations can be introduced for the unitary and symple
ensembles of band random matrices@9#.

The limit caseb50 corresponds to diagonal matrice
while b51 corresponds to tridiagonal Hamiltonians wi
both diagonal and off-diagonal disorder. The latter case
well known in the physics of disordered media; the ma
properties of such matrices are relatively well understo
The general case of BRM, where the variance of the ma
elements decreases with the distance from the main diago
introduced in@18#, is also amenable to an analytic treatme
They are not, strictly speaking band matrices, but an eff
tive band sizeb can be defined from the shape of the env
lope @19#.

In what follows, we consider large values ofb@1 and
assume thatN@b2. The first condition implies a large num
ber of nearby states coupled by the interaction. The sec
condition allows us to neglect finite size corrections aris
from the finiteness of the samples.

Considerable interest towards the ensemble of BRM w
stimulated by the investigation of the quantum behavior
periodically driven Hamiltonian systems. A paradigma
system in this class is the kicked rotator model. Indeed,
unitary matrixU yielding the time evolution between tw
consecutive kicks has, in the angular momentum represe
tion, a bandlike structure with an effective bandsize appro
mately equal to the strengthk of the kicks. Outside the band
the matrix elements ofU decrease extremely fast, while in
side the band they can be treated as pseudorandom entr
the corresponding classical evolution is chaotic@6#. As a
consequence, both spectra and eigenstates of BRM of
type ~1! are expected to have statistical properties similar
those of the KR. A number of data substantiate this be
@9,10#. Recently, it has also been rigorously shown that
BRM model can be reduced to the more general nonlin
s model @18#. As a consequence, BRM turn out to play a
important role in the understanding of quasi-1D disorde
media.
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The above relationships gave a boost to the investigat
of statistical properties of eigenstates and eigenvalues
BRM as they also allow us a better understanding of
properties of the KR, as well as of quasi-1D and 1D mod
with long-range random interactions.

B. Density of states and structure of eigenstates

As was first numerically shown in@20# and later analyti-
cally proved in@18#, the density of statesr(E) for infinite
BRM (N→`) obeys the semicircle law

r~E!5
1

4pbv2
A8bv22E2; uEu<R05vA8b, ~2!

with r(E)50 for uEu.R0 . The parameterv is just the stan-
dard deviation of the distribution of off-diagonal elemen
v25^Hnm

2 &5s0
2/2; it does not influence the statistical pro

erties of the spectra as well as the structure of the eigenst
since it can be scaled out. Forb5N, expression~2! reduces
to the well known Wigner semicircle law derived in conve
tional RMT.

In infinite BRM, all eigenstateswE(n) are known to be
exponentially localized@9,10,20#,

uwE~n!u;expS 2
un2n0u
l`~E! D , n→6`, ~3!

wheren0 is the ‘‘center’’ of an eigenfunction in the basis i
which the random matrices have been defined. The qua
l`(E) is the localization length defined as the inverse of
asymptotic spatial decay rate of the amplitude of the co
sponding eigenfunction. Numerically,l`(E) can be deter-
mined by implementing the transfer matrix method. It is im
portant to recall that the localization lengthl` describes the
decay of the eigenfunction only in the tail and not in t
central region of size'b2. This region is characterized by a
effective numberl; l` of ‘‘principal components’’ which
are usually defined in terms of the inverse participation ra
and of the so-called entropic localization lengthl H ~see@6,9#
for details!.

In finite samples, one more parameter comes into p
the rankN of the matrices. In such a case, all relevant pro
erties of spectra and eigenstates are parametrized by the
l5b2/N @9,10#. Upon changingl, one can accurately fol
low the transition from the completely localized (l!1) to
the delocalized (l@1) regime. Numerous studies of th
BRM allowed us to unravel the dependence of the statist
properties of eigenfunctions on this scaling parameter.
particular, in finite bases of sizeN, all eigenstates are ex
tended ifl@1, and all their properties are very similar
those for the standard RMT. Our interest here is devote
the opposite limitl!1 of very localized eigenstates whe
finite-size effects can be neglected. Based on the results
tained for the KR@6,20#, it was predicted that the localiza
tion lengthl` is proportional tob2. A rigorous analysis@18#
has confirmed this prediction and established the depend
l`;r2b2 of the localization length on the energy. In the ca
of BRM with a general envelope functiona(k) for matrix
elementsHnm ,
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l`~E!52F12S ER0
D 2GB; B5

(
k52`

`

a~k! k2

F (
k52`

`

a~k!G2 ,
k5n2m, ~4!

whereB is the second moment of the functiona(k). In case
~1!, i.e., for a sharp band of sizeb, one obtainsB5b2/3 and,
thus,

l`~E!5
2

3 F12S ER0
D 2Gb2. ~5!

At variance with the KR, the localization length of the eige
states of BRM depends on the energyE.

C. Numerical procedure

Although considerable progress has been made in the
scription of the eigenstate structure~see @9,10# and refer-
ences therein!, the evolution of wave packets is still poorl
understood even in the limit of infinite samples. The ma
ematical model we consider below is the time-depend
Schrödinger equation on a 1D lattice,

i
dcn~ t !

dt
5 (

m5n2b

n1b

Hnmcm~ t !, ~6!

wherecn(t) is the probability amplitude for an electron to b
at site n and Hnm is a symmetric BRM of the type~1!.
Equation~6! has been integrated numerically using a fini
time step (dt.102321024) fourth order Runge-Kutta algo
rithm on a self-expanding lattice in order to eliminate finit
size effects@21#. Whenever the probability of finding the
particle at the edges of the chain exceeded 10215, 10b new
sites were added to each edge. The initial condition w
taken to be ad-like state located in the middle of the chai
i.e., cn(t50)5dn,0 . At each time step, the normalizatio
condition for the total probability,(nucn(t)u251, was
checked observing fluctuations smaller than 1024.

A further check of the accuracy of our calculations h
been performed by reversing the time-axis direction a
2000 time units~for b510). The difference between the in
tial probability distribution and that obtained after integrati
for 200012000 units was found to be less than 10213. In all
the cases discussed below, a large number of disorder
izations has been considered~more than 150! in order to get
rid of sample-to-sample fluctuations.

III. DIFFUSION OF WAVE PACKETS

The time-evolution of a quantum wave packet in the l
tice is naturally described by the mean-square displacem

M ~b,t !5^u~ t !&[K (
m

m2ucm~ t !u2L , ~7!

where^•••& stands for the average over different realizatio
of the frozen disorderHnm . The time dependence o
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M (b,t) provides a qualitative description of the dynamic
regime: a power-law evolutionM (t);tn, wheren,1 corre-
sponds to a subdiffusive behavior~hinting at a possible,
eventual localization!, n51 corresponds to ordinary diffu
sion, whilen.1 to superdiffusion (n52 characterizes bal
listic motion!.

As mentioned above, BRM can be regarded as a g
model for dynamical quantum systems such as the KR in
region of strong classical chaos. In the classical limit, t
model exhibits an unbounded diffusion in angular mom
tum space if the kick strength exceeds some critical value
was discovered that even in the deep semiclassical dom
quantum effects can suppress classical diffusion@5# giving
rise to a phenomenon that is closely related to Ander
localization of a quantum particle in random potentials@22–
24#. This effect of ‘‘dynamical localization’’ was claimed to
be experimentally observed in the ionization of hydrog
subject to a monochromatic field@25#. A formal connection
with a 1D tight-binding model has been found in@26#, thus
reviving a general interest for localization in on
dimensional systems.

We have investigated the behavior ofM (b,t) by numeri-
cally integrating Eq.~6! for different values ofb. The results
of our analysis have been compared with both theoret
predictions of the 1D Anderson model and numerical fin
ings for the KR.

A. Ballistic time scale

The essential difference between periodic and disorde
quantum lattice structures mostly lies in the localizati
properties of their electronic states. In the periodic case
the states are perfectly extended Bloch waves, while
strongly disordered samples, the packets are asymptotic
localized in time because of quantum interference effe
However, even in the latter case, there exists a ballistic
gime, occurring on time scales of the order of the elas
scattering timetb , i.e., the time for an electron to move b
an amount corresponding to the mean free pathl m . In
quasi-1D systems,l m is known to be equal to the number o
transverse channels.

In order to investigate the scaling behavior of the pac
size withb, we have numerically integrated Eq.~6! for very
short times;tb and different values ofb in the range
b520–45. The behavior of the mean-square displacem
M (b,t) is reported in Fig. 1 with the scaling assumption

M ~b,t !5b2M̃ ~ tAb!. ~8!

The very good data collapse confirms the scaling anz
Equation ~8! can be understood by estimating the ballis
time scaletb . Let us start by noticing that the leading co
tribution to the wave packet spreading over short-time sc
comes from the 2b sites which are directly coupled with th
site n50 where the wave packet is concentrated at ti
t50. By evaluating the Schro¨dinger equation and thereb
determiningM (b,t), one obtains

M ~b,t !5 (
n52b

b

n2uHn,0u2t2'b3t2. ~9!
l
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The above type of evolution terminates when the aver
width AM of the packet becomes of the same order as
bandsizeb, so that farther sites come into play. By substitu
ing back in Eq.~9!, one finds that the ballistic spread occu
on the time scale

t<tb'
1

Ab
. ~10!

Accordingly, the ballistic time scale shrinks to zero for i
creasing the interaction rangeb. Notice that the ballistic re-
gime is entirely new with respect to the analogous probl
in the KR where, at small times, an exponentially fast spre
of the packet takes place.

B. Diffusive time scale

In 1D Anderson-type models, wave packet saturat
starts immediately beyond the ballistic time scale, since
mean free pathl m and the localization lengthl` are of the
same order (l`'2l m). Accordingly, no intermediate diffu-
sive regime can be observed. In the case of a large band
b@1, the localization lengthl`;b2 is much larger than the
mean free pathl m;b, so that a diffusive time scaletD ap-
pears. In order to estimatetD , we shall follow the scaling
arguments developed from the theory of quantum ch
where they have been successfully introduced to explain
well known ‘‘quantum suppression of classical diffusion’’ i
the KR @12#.

The first crucial observation is that the eigenfunctio
wE(n) are exponentially localized in the standard basis
all energy valuesE in the spectrum@consequently, there is a
pure-point spectrumr(E)#. Let us proceed by noticing tha
an initial statecn(t50) excites an effective, finite numbe
Neff of eigenstates with corresponding energiesEi . Accord-
ingly, the spectrum of those eigenstates participating to
evolution of the packet is characterized by a mean level sp
ing Deff;R0 /Neff whereR0

258bv2 is the radius of the semi
circle, see Eq.~2!.

FIG. 1. Scaling behavior ofM (b,t) vs time in the ballistic time
scale. The reported values ofb areb520, 25, 30, 35, 40, and 45
The inset shows the lost of scaling fort.tb .
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55 4955EVOLUTION OF WAVE PACKETS IN QUASI-ONE- . . .
Therefore, for timest,1/Deff , the packet evolution doe
not ‘‘feel’’ the discreteness of the spectrum, which is r
solved over longer time scales and eventually leads to lo
ization. A typical evolution is reported in Fig. 2, where th
dependence of the mean-square displacementM (b,t) for
b512 is shown on a very large time scale. However, as lo
as tb<t<tD , with

tD'Neff /R0 ~11!

the motion of the particle is analogous to the standard~clas-
sical! diffusion. This means thatM'Dt, whereD is the
diffusion constant andM can be interpreted as the square
the number of effectively excited, unperturbed states. T
regime is clearly seen in the inset of Fig. 2, where the e
lution of M is reported in a doubly logarithmic plot.

The quantity M reaches its maximal valueMmax at
t'tD . The valueMmax

1/2 is of the same order as the tot
numberNeff of eigenstates that participate to the packet e
lution. Let us finally notice that the packet width is asym
totically of the order of the localization length of the eige
functions, i.e.,Neff; l`;b2 ~the energy dependence is he
irrelevant and can be dropped!. Accordingly, the following
scaling relations hold:

tD; l` /R0 , D; l`R0, ~12!

whereR0 is the width of the spectrum. The second estim
in Eq. ~12! corresponds to the well known relation betwe
the localization length and the diffusion coefficient in t
theory of disordered solidsl`'prD, wherer is the density
of states~see, for example,@9#!. Accordingly, Eq.~12! sug-
gests the following scaling relation for the mean-square
placementM (b,t)

M ~b,t !5b4M̃ ~ t/b3/2!. ~13!

The numerical results obtained for quite large values of
bandwidth (b525, 30, 35, 40, and 45! are reported in Fig. 3
according to the above ansatz. The very good overlap ind
confirms the expected scaling dependence. There are

FIG. 2. An example of wave-packet diffusion beyond the b
listic time scale forb512. The same curve is reported~in a doubly
logarithmic plot! in the inset, magnifying the early stages of diffu
sion, to testify the linear behavior.
-
l-

g

f
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-
-

e

-

e
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nly

minor deviations at small times which are to be attributed
the crossover to the ballistic regime. Notice that the scal
factor of the temporal axis is different from the value co
jectured in Ref.@17# (t→t/b2), on the basis of smallb simu-
lations.

Equation~12! seems to suggest that there is a substan
disagreement with the value of the diffusive time obtained
the KR model. However, this discrepancy is to be attribu
to the choice of the time units adopted in model~1!. Indeed,
in dimensionless units, we recover the results obtained in
KR model, i.e.,

t̃D[
tD
1/R0

; l` , D̃[D/R0; l`. ~14!

C. Diffusion suppression and scaling properties

One of the most important peculiarities of the time ev
lution of wave packets in 1D and quasi-1D random potent
is the saturation of the widthM for t→`. In analogy with
the evolution of wave packets in the KR@6# and from the
localization properties of the stationary problem~the local-
ization length grows asb2), one expects that forb@1 the
limiting valueM`(b) grows asb

4. In order to confirm this
prediction, we have performed detailed numerical expe
ments, in the rangeb54–12. The asymptotic valueM`(b)
has been accurately determined by averagingM (b,t) over a
long time after an initial transient. From our data we ha
found that the dependence ofM` onb is slightly slower than
expected,M`;ba with a'3.8760.02. This anomalous be
havior is presumably to be attributed to the presence of fi
band-size corrections which are not negligible in the range
b values that has been numerically investigated (b<12). Our
results are reported in Fig. 4, whereM (b,t) andt are divided
by the asymptotic valueM` andM`

3/8, respectively. While
the scaling ansatz forM follows straightforwardly from the
detailed knowledge of the localization properties, the resc
ing of time axis follows from Eq.~13! ~we have preferred to

-

FIG. 3. Scaling ofM (b,t) vs time in the diffusive time scale
The reported values ofb areb525, 30, 35, 40, and 45.
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4956 55IZRAILEV, KOTTOS, POLITI, AND TSIRONIS
scale the data with reference toM` , rather than tob as the
former choice appears to better account for finite-‘‘size’’ co
rections!.

Anyway, the nontrivial evolution during the late stages o
the diffusive regime confirmed by a direct investigation
Since generic properties of eigenstates in quasi-1D mod
have been found to be similar to those of strictly 1D diso
dered models@9#, it is natural to expect that the similarity
extends to the dynamics of wave packets as well. Howev
even in 1D geometry, the analytical treatment is very diffi
cult. Analytical results are available only in the two opposi
regimes,t!1 and t@tD . For example, the asymptotic de
pendence of the mean-squared displaceme
^u(t)&[^x2(t)& of packets in the long-time limit is given by
@11#,

^u~ t !&.a0l m
2 S 12

ln~ t/2tm!

t/2tm
D , t@tm ~15!

wherel m and tm are the mean free path and the correspon
ing time between consecutive back scattering processes. T
estimate is based on the expression for the quantum diffus
coefficient obtained in@24#. The logarithmic singularity in
Eq. ~15! follows from resonant transitions occurring betwee
pairs of the so-called Mott states@27,28#. Such states have a
peculiar structure characterized by two humps lying at a d
tance much larger than their effective width. Since Mo
states appear in pairs, the corresponding energies are v
close to each other and this results in a resonant tunne
over large distances. The influence of Mott states on ele
tronic properties of disordered 1D models has been stud
in @29#, where the clustering of energy levels was discover
and attributed to these states.

The effect of these states has been included in the study
the long-time behavior of wave packets in the KR@30#,
where an expression similar to Eq.~15! has been introduced
to describe the evolution of the mean-square displacem
M (t) in the momentum representation,

FIG. 4. Mean-square displacementM for b54–12. The smooth
curve corresponds to the phenomenological expression~18!. In the
inset the same quantities are shown for shorter times.
-

f
.
ls
-

r,
-

nt

-
his
on

-
t
ery
ng
c-
d
d

of

nt

R̃[
dM

dt
;
D2ln@ t/~2D !#

@ t/~2D !#2
, t@2D ~16!

whereD is the classical diffusion coefficient. Numerical da
seems to confirm the expectations@Eq. ~16!#, although the
presence of very large fluctuations prevent us from drawin
convincing conclusion. Despite the better statistics of o
data, the presence of the logarithmic correction cannot
definitely assessed in BRM too.

Another approach to the problem of quantum diffusion
the presence of strong localization has been recently s
gested in@31# ~see further developments in@14#!: it is essen-
tially based on a phenomenological diffusion equation
Green’s function, which takes into account backward scat
ing. At large times, the relaxation rate is given by@14#

R̃;
D2ln3/2@ t/~2D !#

~ t/2D !2
, t@2D ~17!

which differs from Eq.~16! by a further logarithmic factor.
At the moment, all available numerical data for the KR
not allow us to draw a final conclusion in favor of eith
expression. In any case, let us again remark that the quan
localization in the KR is of a dynamical nature~there is no
randomness in the model!, so that it is not clear to wha
extent it is similar to the localization of Anderson type.

Instead of focusing on the question of the exa
asymptotic dependence (t→`) of the mean-square displace
mentM (b,t), it is, for the time being, more useful to limi
ourselves to provide an effective description of the wide ti
region that also includes the crossover from classical di
sion to complete saturation. In the absence of any theory
make use of the phenomenological expression suggeste
@32# ~see also@6#!

M ~b,t !5M`~b!S 12
1

~11t/tD!bD , ~18!

whereM` , tD , andb are the three independent paramet
to be determined. The first one is obviously obtained fro
the asymptotic evolution, while the short-time classical d
fusion ~here, we neglect the ballistic time scale which
indeed negligible for largeb) provides a further constraint to
be fulfilled. In fact, fort!tD , Eq. ~18! reduces to

M ~b,t !5
bM`

tD
t5Dt, ~19!

which allows us to expresstD in terms of the last unknown
b which can be determined by fitting the global behavior
M (b,t).

The main idea behind the phenomenological express
~18! is the repulsion of the energy levels participating in t
evolution of the packet. As was previously discussed,
diffusion rate is proportional to the mean spectral density a
it remains unchanged fort<tD , according to the uncertainty
principle. However, fort>tD it decreases, since the onl
eigenstates that continue to contribute~‘‘operative eigen-
states’’! are those whose energy level spacings satisfies the
relation s<tD /t. The relative number of such spacing
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~hence, the relative diffusion rate! is given by the spacing
distributionp(s) for the operative eigenstates,

D~ t !

D
;E

0

s

p~s8!ds8;sb11;S tDt D b11

, ~20!

where t@tD is assumed. The above time dependence
large times is the core of the phenomenological expres
~18! ~see details in@6,32#!.

According to the above relation, the parameterb charac-
terizes an effective repulsion between those eigenst
which are excited by the initial wave packet. It is clear th
these eigenstates strongly overlap. As a result, the valu
b can be expected to be quite close to 1. Although th
arguments are no longer valid for very long times, when
level clustering@16,33# due to the influence of Mott state
becomes important, Eq.~18! can still provide a sufficiently
good description of the packet dynamics. Numerical exp
ments done for the KR@6,32# yield quite a small value of
b (b'0.3). This result, which is somehow contradicto
with other studies~see the discussion in@31#!, is probably
due to the insufficiently long times considered in the sim
lations.

Our detailed numerical experiments with BRM, pe
formed on a much longer time scale and with high statist
reveal quite a good correspondence with the scaling de
dence~18! ~see Fig. 4!. The best fit of Eq.~18! gives the
following values:b'0.9 andtD.b1.5. Since the values o
the band sizeb are not very large, the limiting valueM` has
been purposely rescaled to the same level for the diffe
b values. By neglecting the residual weak deviations from
perfect scaling, we obtainD'0.83b2.5. The most important
point of the above analysis is that the value of the repuls
parameterb is quite close to 1. This means that even f
very large times close to the relaxation, the approxim
power dependence 1/t0.9 for the difference
DM5M`(b)2M (b,t) mimics the correct dependenc
DM; ln(t)/t @see Eq.~15!#. As a result, one can treat th
scaling dependence~18! as a good description of both cla
sical diffusion and its suppression due to strong localizat
of eigenstates.

The asymptotic localization of the wave packet is entir
a consequence of the frozen character of the disorder in
Hamiltonian. However, in reality, physical systems are a
subjected to time-dependent noise~this is, for instance, the
case of applications to nuclear physics@34#!. In the KR, the
influence of a time-dependent noise was discussed for
first time in @35# ~see also the detailed investigation in@36#!,
finding that if the strength of the noise exceeds some crit
value, then it destroys coherent effects of quantum local
tion and pure classical diffusion is recovered.

The addition of noise to the BRM provides an alternat
method to determine the diffusion coefficientD from the
direct computation of the linear growth ofM (b,t). It is first
interesting to notice that the computation ofD cannot be
easily performed in practice without the presence of no
The reason is that in the absence of a time-dependent n
corrections to the linear behavior ofM (b,t) arise already at
short times, thus preventing an accurate determination of
coefficient of the linear growth. In other words, cohere
effects of quantum localization come into play even on
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time scale of classical diffusion and this results in a rat
smooth transition from classical diffusion to complete rela
ation ~see Fig. 4!.

In order to estimate the critical value of the noise stren
gcr
2 which completely destroys quantum coherence and le
to pure classical diffusion, one needs to compare the shif
levels induced by the additional noise, with the mean le
spacing between operative eigenstates. Since the latter
out to be proportional to 1/b1.5, one can see that if the shif
DE'g2tD is larger than 1/b1.5, localization will be com-
pletely destroyed. Accordingly, effects of quantum coh
ence should be observable only when the condit
g2>1/b3 is satisfied. Our numerical simulations confirm th
estimate: the data in Fig. 5, which refer tob58, show that
for g5gcr55 ~in units of b21.5! we haveD/b2.5'0.86 in
good agreement with the value found from the fit of t
scaling dependence given by Eq.~18!. We would like to
stress that diffusion due to the noise occurs also
g,gcr ; however, the rate of such diffusion is different fro
that given by the classical diffusion determined in the lim
b→` ~for details see, e.g.,@36#!.

IV. FLUCTUATIONS OF PACKET WIDTH

In any statistical process, the analysis of average qua
ties provides a limited description of the underlying prop
ties. At least the variance should be considered in orde
achieve a more complete characterization of the phenome
of interest. In the present case, we shall consider the fluc
tions of M (b,t) in both the diffusive (tb<t<tD) and the
relaxation (t@tD) regime. The relevant quantity to be dete
mined is the size of sample-to-sample fluctuations,

DM ~b,t ![@^u~ t !2&2^u~ t !&2#1/2, ~21!

where the bracketŝ•••& denote the average over differe
realizations of the HamiltonianHnm . A meaningful way to
present the numerical data is through the relative amplit
m[DM /M of the fluctuations. Its scaling properties withb
are discussed in the Secs. IV A and IV B.

FIG. 5. Diffusion of packets with additional noise forb58. The
diffusive constant is determined from simulations performed
different noise strengthsg2.
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A. Diffusive time scale

As the diffusive time scale is relatively short, we ha
been able to determinem for quite largeb values~namely,
b<45), so that finite band-size corrections should be d
nitely negligible. In our numerical experiments, we have
tegrated Eq.~6! up to a timetm5b3/2/2 for more than 1000
realizations of the disorder. The results are reported in Fi
under the scaling assumption

m~b,t !'b2hm̄~ t/b1.5!. ~22!

By performing a least-square fit of lnm versus lnb at fixed
time t5b3/2/2, well inside the diffusive regime, we have e
timated h which turns out to be approximately 0.960.02
~see the inset in Fig. 6!. One should notice the reasonab
agreement with the value of the exponent recently obtai
in the KR @37#, h'1.0. This scaling parameter has be
conjectured to be related to the mesoscopic fluctuation
the diffusion coefficient@37#. However, the connection ha
not been entirely clarified.

B. Relaxation time scale

The next important issue concerns fluctuations around
so-called steady-state distribution of the wave packet in
asymptotic regimet@tD . If one assumes that the stead
state distribution ofcn(t→`) is characterized by an ergod
spread of the packet over some finite sizeNs , and if the
componentscn are statistically independent, then

m[
DM

M
'

1

ANs

. ~23!

Since the componentscn are directly related to the ampli
tudes of eigenstates and the latter are expected to be ran
on the scale of their localization length, one can conclu
thatNs'^ l`(b)&;b2, i.e.,m'1/b. However, our numerica
data in the rangeb54–12 indicate that

m~ t/b3/2!'
1

bd , ~24!

FIG. 6. Relative fluctuations on the diffusive time scale. T
data is scaled according to Eq.~22!. In the inset, a least-square fi
for the same quantity and differentb values is shown; the time is
fixed, t50.5b1.5.
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with d'0.7 ~see Fig. 7!. A detailed study shows that when
the value ofd is varied by60.1, the superposition of the
various curves on the plateau gets appreciably worse. As
additional check, we have performed a least-square fitting
m versusb after averaging the curves over timest.40b3/2.
The fit presented in the inset of Fig. 7, confirms the valu
d'0.760.01. One should note that this value is in disagre
ment with the result found on the diffusive time scale for th
factorh. This has to be attributed to the spatial structure o
the Mott states~see below! appearing to control the evolution
of the packet for timest@tD . We would like to stress that
the anomalous scaling described by Eq.~24!, is in close
agreement with the numerical data for the KR, where it ha
been observed thatm;b2d with an anomalous exponent
d'0.6 @14#. Note that in the KR, larger values of the effec
tive parameterb have been reached.

In Ref. @14# it was conjectured that the above anomalou
scaling can be considered as an indication of the frac
structure of the quantum steady-state distributioncn(t→`).
More precisely, they argued that the asymptotic shape can
described by an ensemble of onlyNs; l`

0.6 statistically inde-
pendent degrees of freedom (Ns being the number of ‘‘chan-
nels’’ where the amplitude of the wave packet is essentia
different from zero!. The same conjecture can be raised i
the present case as well, although a direct check is an
tremely hard task. Let us finally mention, that such an arg
ment is compatible with the existence of Mott states whic
mainly participate at the structure of the steady state.

In order to better disentangle the question of fluctuation
we have also investigated the temporal behavior ofM (b,t).
The main motivation for this study is the comparison be
tween sample-to-sample and temporal fluctuations for a ty
cal realization of the disorder. In practice, we have integrat
the Schro¨dinger equation for a time up tot5250b3/2, dis-
carding an initial transient timet, t0540b3/2 @which is suf-
ficiently long forM (t) to saturate#. The Fourier power spec-
trum uU(v)u2 of u(t) @let us recall thatM (t)5^u(t)&# has

FIG. 7. Relative fluctuations in the saturation regime. The va
ues ofb are 4, 5, 6, 7, 8, 10, and 12. In the inset, a least squa
fitting is shown for the same quantity which now is averaged ov
time from t540b3/2 up to t5250b3/2.
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55 4959EVOLUTION OF WAVE PACKETS IN QUASI-ONE- . . .
then been averaged over more than 150 realizations.
results forb54, 6, and 8 are reported in Fig. 8 in a doub
logarithmic plot. The best data collapse is obtained by
suming that̂ uU(v)u2&.b§ with §55.8. At ‘‘high’’ frequen-
cies, ^uU(v)u2& exhibits a Lorentzian-type behavior, whic
turns, at low frequencies, into a weak divergence that rev
the presence of nontrivial long-time correlations. In fact,
invoking the Wiener-Kintchin theorem, the low-frequen
tail in the spectrum of̂ uU(v)u2& can be connected with th
relaxation properties ofM (t) towards its asymptotic value
M` . More precisely, the power-law convergence of the ty
t2b assumed in Eq.~18! implies a power-law divergence a
v211b, which is compatible with our data. However, th
low-frequency cutoff due to the finite time of our simulatio
prevents drawing a definite statement about the presence
truly power-law divergence. Nevertheless, we can, at le
determine the crossover frequencyvc separating the two
temporal regimes, which turns out to bevc.0.02/b2. Such a
frequency is approximately 100 times smaller than the m
spacing between the energy levels of the eigenstates w
effectively participate in the evolution of the wave pack
This observation can be taken as an indirect confirmation
the role played by the Mott states in the long-time evolutio
As has already been recalled, Mott states have quite a
cific structure: they appear in pairs and are characterized
two humps, a distanceL apart. This leads to a quasidege
eracy of the order ofDE'exp(2L/l`), whereL is typically
much larger than the localization lengthl` . Accordingly,
over long-time scales, a few Mott states may dominate
packet dynamics.

For what concerns the scaling behavior of the spectr
^uU(v)u2& with respect tob, the estimated exponent§'6.6
is in perfect agreement with Eq.~24!. Indeed, the relation
between the spectral density~or power spectrum! and the
variance of the signalM (t), implies

@DM ~ t !#25(
v

^uU~v!u2&

FIG. 8. The Fourier spectrum̂uU(v)u2& for the casesb54, 6,
and 8. The solid curve with slope 2 is drawn for reference.
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b5.8^uU~vb3/2!u2&5b5.8@DM ~ t/b2!#2.

~25!

By comparing Eq.~25! with Eq. ~24!, one obtainsd'1.1,
instead of the previous estimated50.7. Whether this differ-
ence implies that ensemble averages are different from t
poral averages, or simply that they are affected by~very!
different finite-b corrections, is not clear at the moment.

V. STEADY-STATE DISTRIBUTION

A. General discussion

As mentioned above, the localization of all eigenfunctio
@see Eq.~4!# implies that fort@tD the quantum steady stat
f (n,t)[ucn(t)u2 fluctuates around an average profi
f s(n)5^ f (n,t)&. As the effective number of eigenstate
composing a single wave packet is finite, the average pro
does depend on the disorder realization. However, in
limit b→`, the number of statistically independent comp
nents diverges and sample-to-sample fluctuations are
pected to vanish. In that limit, temporal and ensemble av
ages should coincide as long as the motion is ergodic.

On the basis of diagrammatic techniques, many res
have been obtained for the steady-state distributionf s(x) in
continuous 1D models with white noise potential~here,x
denotes the position of the electron!. In particular, an expo-
nential decayf s(x);exp(2uxu/4l m) has been predicted fo
the tails of f s(x) ( l m , being the mean free path! @24#. A
subsequent more accurate analysis@38# revealed the presenc
of the prefactoruxu23/2. Both findings are included in the
global expression derived in@39#,

f s~x!5
p2

16l m
E
0

`

hsinh~ph!
~11h2!2

@11ch~ph!#2

3expS 2
11h2

4l m
uxu Ddh. ~26!

In fact, the above expression implies that, close to the orig
the spatial dependence is purely exponential,

f s~x!;exp~2uxu/ l m!, x< l m ~27!

while the asymptotic decay is described by

f s~x!;uxu23/2exp~2uxu/4l m!, x@4l m. ~28!

Therefore, the above two equations reveal that the decay
S(x)[@ lnfs(x)#8 ~the prime denotes the derivative with re
spect to the argument!, changes by a factor of 4. One cons
quence of the nonpurely exponential behavior is that the
erage size of the saturated packet is two times smaller
the asymptotic localization lengtĥuxu&52l m . It is interest-
ing to notice also that the asymptotic dependence~28! is
similar to that for the conductance of 1D samples of fin
size@40# in the strong localized regime; in this casex is the
ratio of the sample size with the localization length. As
analytical results are available for quasi-1D systems, in S
V B we shall compare our numerical results with the abo
expressions, by fitting the only free parameterl m .
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4960 55IZRAILEV, KOTTOS, POLITI, AND TSIRONIS
In any case, some information on the steady-state di
bution f s(n) can be obtained from the structure of the eige
states by exploiting the following equality:

f s~n!5(
m

uwm~n0!wm~n!u2, ~29!

wherewm(n) is the nth component of the eigenstate wi
energyEm andn0 is the position of the initiald-like packet.
Therefore, determining the asymptotic shape of a w
packet is tantamount to determining the average correla
properties of single eigenstates. Although no rigorous res
are known in this direction, a phenomenological approa
allowed us to shed some light on the closely related
problem@6,30,32#. Because of the analogies between BR
and the KR, it is instructive to compare the results for t
steady distribution as well. A rough estimation of the tails
f s(n) can be obtained in the following way~see@13,41# for
details!. If one assumes the simple exponential fo
wm(n);exp(2um2nu/l`), for the mth eigenstate, Eq.~29!
leads to the expression

f s~n!;expS 2
2un2n0u

l`
D , ~30!

which, in turn, impliesl s5 l` , where l s is the localization
length of the asymptotic packet@defined from the probability
amplitude, i.e., taking the square root of Eq.~30!#. However,
this result is inconsistent with the numerical data for the K
which instead indicate thatl s'2l` @41#. To explain the latter
result, it was suggested to take into account the large fl
tuations of the eigenstates around their shape,

wm~n!;
1

Al`
expS 2

um2nu
l`

1jmnD , ~31!

wherejmn is a Gaussian noise with a zero mean and a v
ance@41#,

^~Djmn!
2&5Dsum2nu, Ds;1/l`. ~32!

FIG. 9. Asymptotic average profile of the wave packet
b54412 after rescaling. The inset shows the behavior near to
maximum; smooth lines follow from the theoretical express
~26!.
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By inserting the ansatz~31! in Eq. ~29! and averaging over
the noise term, it was found that

^uwm~n!u&;expS 2
un2mu
2l`

D , ~33!

implying that the linear average yields a different localiz
tion length compared to Eq.~30!.

By repeating the same calculations for the express
~29!, one obtains thatf s.exp(un2n0u/l`), which is found to
be in agreement with the numerical results for the KR mo
as it impliesl s52l` .

However, relation ~29! implies that the average
^ufm(n)u2& should be used rather than^ufm(n)u&. In such a
case, the result is

^uwm~n!u2&;expS 2
un2mu
2l`

D , ~34!

which implies thatf s.exp(un2n0u/2l`). The correctness o
this expression is confirmed by the relationl s54l` that it
implies.

B. Numerical data

In order to determine the asymptotic shape of the wa
packet, we have followed the evolution of an initial
d-like packet for timest>120tD . The distributionf s(n) has
then been obtained by averaging over more than 150 rea
tions for severalb values in the rangeb54–12. The results
are reported in Fig. 9 with the by now standard scaling h
pothesis,

f̃ s~x!5b2f s~n!, x5n/b2, ~35!

that is once more confirmed by the good data collapse.
A peculiarity of all our simulations is thatf s(n0) is larger

than the neighboring values by approximately a factor of
The reason for this apparent anomaly can be traced bac
the specificd-like shape of the initial packet@that implies Eq.
~29!# and to the spatial random structure of the eigenvect
Indeed, the latter assumption, together with the observa
that only a finite numberL of channels effectively contribute
to the sum in Eq.~29!, leads to

e

FIG. 10. Logarithm of the steady statef n for b55.
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55 4961EVOLUTION OF WAVE PACKETS IN QUASI-ONE- . . .
f s~n0!'L^w4~n0!&;

f s~nÞn0!'L2^w2~n!&^w2~n!&. ~36!

Since it is known that̂ w4&53/L, while ^w2&51/L for the
eigenfunctions of matrices belonging to the Gaussian
thogonal ensemble@3#, we obtain thatf s(n0)/ f s(n)53 for
n close to but different fromn0. This value of the ratio is in
pretty good agreement with the above mentioned numer
estimate.

Moreover, the numerical results reported in Fig.
strongly suggest that the decay off s(n) in the vicinity of
n0 is definitely faster than in the tails. Therefore, it is ve
tempting to compare this data with the theoretical dep
dence derived for 1D disordered models@Eq. ~26!#. The best
fit of the only free parameter givesl m;0.29; the correspond
ing curve is shown in Fig. 9~see the solid line!. The very
good agreement between the numerical results and the
lytical curve over a broad range ofx values suggests that
properly modified theory to include the determination of t
mean free path from first principles should be able to acco
for the asymptotic properties of packets in quasi-1D syste
as well.

One should also notice that the dependence of the s
on the distance from the centern0 of the packet is an entirely
new feature with respect to the analogous problem in the
@41,13#, where no evidence of two distinct regions of loca
ization has been found. The reason for this discrepancy is
clear: on the one hand it is possible that this reflects an ac
difference between the two models, on the other hand,
possible that the accuracy of the numerical data for the
@41# is not enough to reveal this peculiarity in the associa
profile f s(n).

A further difference is the variation of the localizatio
length of the eigenstates with the energy in BRM@see Eq.
~5!#. Far from the center of the packet, we expect that
decay is dominated by the longest localization len
l`(0)52/3 ~in b2 units!. On the other hand, from Eq.~28!,
we find that l s58l m'2.32, which is only slightly smaller
than 4l`(0)'2.66. Accordingly, the equalityl s54l` found
in the phenomenological theory for KR and explained
invoking the presence of strong fluctuations of the individ
eigenstates@41# appears to also hold in the present case. T
small deviation is presumably to be attributed to the not
vanishing contributions of more localized eigenstates.
stead, if we average over all energies, we obt
^ l`(E)&50.5 ~in b2 units! which results in a localization
length l s54^ l`(E)&52 for the total wave function. More
over, it is interesting to notice that a direct determination
l s by fitting the profiles reported in Fig. 9 with a pure exp
nential law, yieldsl s'2: this means that the multiplicativ
correction 1/uxu3/2 in expression~28! is essential for a correc
estimate ofl s , if the range ofn/b2 is not large enough.

A further more direct confirmation of the presence
strong fluctuations in the various eigenstates is obtained
determining the localization lengthl s

( l ) of the asymptotic
packet from the logarithmic average@^ ln(fs)&# of the single
packets. The resulting profile, reported in Fig. 10, yie
l s
( l )'1.3 to be compared with the valuel s'2.32, obtained
from the arithmetic average. Interestingly enough, the ra
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between the two lengthsl s
( l ) and l s for the shape of saturated

wave packet, is approximately equal to 2 as known for t
single eigenstates~see the Sec. V A!.

C. Fluctuations of the steady state

In this section we directly investigate the nature of wav
packet fluctuations in the asymptotic regime. This enables
to test the correctness of a conjecture relative to the sin
eigenvectors raised in the context of the KR. Indeed, fluctu
tions are very important in that they allow us to explain th
difference between the decay rate of the wave packet
that of the eigenvectors.

Having in mind Eq.~31!, we computed the logarithm of
f s(n) and studied its variance at a distanceDn56b2 from
the center of the packet~averaging also over a small window
of five neighboring sites, under the assumption that the fl
tuations are nearly constant in such an interval!. As a result,
we have found that the distribution function ofy[ ln(fs) is,
with a good accuracy, a Gaussian~see for instance the his-
togram reported in Fig. 11 which refers to the caseb55 and
is the result of 5000 simulations with independent realiz
tions of the disorder!. This represents a first confirmation tha
the hypotheses made in the KR can be profitably carried o
to the present model.

More complete information is obtained by studying th
fluctuations ofy for different values ofDn. More precisely,
we have computed the variance

s2~n!5^@ lnf s~n!#2&2^ lnf s~n!&2 ~37!

in the steady-state regime. The results for the ca
b55–8 are reported in Fig. 12 with the scaling assumpti
s2(n)5b2s2(x), wherex[Dn/b2. The data show that for
large x, the variance grows linearly withx, indicating that
the logarithm of the profile diffuses around the avera
value. This is a further confirmation of the validity of a re
lation of the type~31! for the wave packet and it is strength
ened by the observation that the estimated slope is appr
mately equal to 1 in scaled units.

This behavior is also analogous to what happens in
disordered models, where it is assumed that the logarithm

FIG. 11. Distribution of lnfn for b55.
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the absolute value of the Green’s function lnuG(m,n;E)u has a
Gaussian probability distribution with the mean equal
2um2nu/ l` and the variance equal toum2nu/ l` @42#.

Another interesting observation concerns the central p
of the packet~i.e., uxu<1), where the variances2 is almost
constant, indicating that the amplitude values are essenti
independent of one another~see also the inset in Fig. 12!.
Accordingly, all numerical findings do confirm the conjec
tures that have been so far utilized to present all the featu
of wave-packet diffusion in a coherent manner. Unfort
nately, so far there are no analytical results concerning
structure of the eigenstates in the middle of their localizati
region, even in the well-studied 1D Anderson case.

VI. CONCLUSIONS

In the present paper we have studied the evolution pr
erties of wave packets in quasi-1D disordered media
scribed by tight-binding Hamiltonians with long-range ra
dom interactions. We have found that the wave packet:~i!
first spreads ballistically, over a time scale of the ord
t;1/b1/2, which becomes negligible in the limitb→`; ~ii !
exhibits a diffusive behavior, for times of the ordert;b3/2;
~iii ! finally, for times larger thantD>b3/2, stops spreading
remaining asymptotically localized.

The scaling properties of the spread of the packet
different in the ballistic@see Eq.~10!# and diffusive@see Eq.
~12!# regime. Beyond the ballistic regime, we propose t
heuristic formula~18! to effectively describe both the diffu-
sive spreading and the eventual saturation. The most in
esting feature of Eq.~18! is the prediction of a power-law
convergence of the wave packet widthM to its asymptotic
value, the deviation going to zero as 1/tb with b.0.9. The
parameterb accounts for the repulsion between those eige
states which are effectively excited by the initial wav
packet. More precisely, the slow convergence ofM is attrib-
uted to the effect of Mott states, that are expected to even
ally give rise to a logarithmic time dependence, that can
be numerically observed.

FIG. 12. Variance of lnfn in the steady state after rescaling th
x axis forb55,6,7,8,10. The straight line is the fit for large value
of x. The inset shows the behavior close to the maximum.
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The ‘‘short’’-time diffusive regime has been investigate
by computing dM/dt when a small amount of time
dependent disorder was superimposed to the quenched d
der. As a result, we found that the diffusion coefficient
dimensionless units is approximately four times larger th
the localization length, after averaging over the energy
pendence. The presence of noise with strengthg2 of the or-
der of a critical valuegcr

2;1/b3, destroys quantum coherenc
and recovers classical diffusion.

Another issue addressed in this paper concerns the
tuations of the size of the packet over different time sca
We found that in the diffusive regime, the relative amplitu
of the fluctuations scales asm[DM /M;1/bh, where
h.0.9. In the saturation regime, instead, we found confl
ing results: ensemble averages suggest an anomalous sc
behavior, i.e.,m;1/bd with d.0.7 ~in close agreement with
the results for the KR!; a frequency analysis suggest th
d.1.1.

The study of the Fourier power spectrum shows that
tails of uU(v)u2 have a Lorentzian-type form. At small fre
quencies, a weak singular behavior foruU(v)u2 has been
detected; this result is in agreement with the power-law c
vergence ofM to its asymptotic value. Furthermore, we ha
been able to extract the crossover frequencyvc , where de-
viations from 1/v2 start inuU(v)u2. Such a frequency is two
orders of magnitude smaller that the mean average separ
between the energy levels which participate in the evolut
of the wave packet. This is a further confirmation of t
participation of Mott states to the long-time evolution.

For what concerns the asymptotic shape of the w
packets, we found that the scaling law~35! is well verified
already for relatively largeb values. Moreover, the analyti
expression derived in the context of the 1D Anderson mo
@see Eq.~26!# reproduces pretty well the shape of the avera
profile, upon fitting a single parameter. A further interesti
result of our numerical analysis concerns the difference b
factor of 4 between the decay rate of the asymptotic pro
around the origin and that along the tails. Moreover,
difference between the localization length estimated from
average of the logarithm of the profile and that obtained fr
the linear average of the profile confirms the relevance
fluctuations. This observation is reinforced by the asympto
linear growth of the variances2 of the logarithm of the
profile versus the distance from the center of the packet.
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