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S. Benkaddd, S. Kassibrakig, and R. B. White
Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543

G. M. Zaslavsky
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012
and Physics Department, New York University, 4 Washington Place, New York, New York 10003
(Received 6 September 1996; revised manuscript received 12 Decembgr 1996

Anomalous transport is investigated for the standard map. A chain of exact self-similar islands in the vicinity
of the period 5 accelerator island is found for a particular value of the map parameter. The transport is found
to be superdiffusive with an anomalous exponent related to the characteristic temporal and spatial scaling
parameters of the island chain. The value of the transport exponent is compared to the theory. The escape time
distribution and Poincareecurrence distribution are found to have powerlike tails and the corresponding
exponents are obtained and compared to the th¢81063-651X97)03605-3

PACS numbes): 05.45+b, 47.52+j, 05.60+w, 47.53:+n

I. INTRODUCTION tems, like the standard map, is the existence of islands, mak-

ing phase space a complicated mixture of small nonchaotic
The standard mafdl] is one of the most frequently occur- domains and stochastic regions. The presence of the islands

ring models in many different applications. Written in the implies much stronger deviations in long time asymptotics
form than can be described by simply a change in the diffusion
constant. The existence of anomalous transport of a nondif-
Prs1=Pn—KSINXy,  Xnt1=Xn+ Prst (1.1  fusional character for values &t taken in the vicinity of a
set{K.} which includesKk~1 and accelerator mode values

it has become a paradigm for the study of properties of chal@S Peen previously conjecturgd-11]. A new understand-
otic dynamics in Hamiltonian systems. In spite of its appar—'”g of the anomalous transport for the stanqiard map was
ent simplicity, unexpected difficulties in attempts to write PrOPosed where the connection to the so-calledyLiéghts
down a kinetic model for Eq(1.1) brought researchers back Process was establishgd2,13. It was previously shown
to the problems of characterizing chaquer seand describing  that the islands have a strong effect if the paramétes
chaotic trajectories. More specificially, in studying the occur-{Ken near some critical values suchkas 1 (transition to
rence of chaos one has to deal with local properties of thglobal chao$8,2,14), the large peaks ner,=2n (accel-
trajectory dynamicglocal instability, Lyapunov exponents, €'ator modeg15]), and some other fractional accelerator
bifurcations, etd. At the same time the typical object of m.ode‘i[_7,9,1q. In this article, the connection will be “visu-
research is to find large scale properties of the trajectorie@iz€d” in an explicit and quantitative way.
and characterize the kinetics and the evolution of moments in 1h€ @nomalous transport for the model given by @)
large time asymptotics. can be expressed in general as superdiffusion described by
The first surprise was the numerical discovityand the  the second moment gf,
corresponding theorj2—6] that the diffusion constar is a N
guasioscillating function of the parametérin Eq. (1.2) for (p=ct” (t=), (1.2
K>1. The corrections are of order one and remain signifiy,,
cant up to values ok ~40. The oscillations are due to cor-
relations which persist well above chaotic threshold, but the 1<p<?2 1.3
motion is diffusive, and can be described by a diffusion con-
stant D, with oscillatory dependence oK given by the in contrast to normal transpaofdiffusion) with w=1. In fact
theory. the expression in Eq1.2) is the global result of some deeper
A more fundamental difference between “perfectly cha-properties of anomalous transport, characterized by specific
otic” systems, like Sinai’s billard, and more realistic sys- Lévy type processegl6] which occur in numerous physical
applications(see, for example, a previous revi¢t7] where
such processes were named “strange kinetics”
*Permanent address: Equipe Turbulence Plasma, Univeisite The origin of anomalous transport has been connected to
Provence, CNRS URA 773, Institut Mierranen de Technologie, the local topological properties of the phase space domain
F-13 451 Marseille Cedex 20, France. near islands(the boundary layer[18] and a self-similar
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structure of the domaifil9]. Self-similar structure of island b
chains has been extensively discussed for the quadratic map [ N

[20,21]. It is known that there are universal numbers describ- "
ing the various island sequences for values of the map pa- « [
rameter giving self-similar island chains. A quantitative -
theory for the transport has been proposed using a fractional |

6.4

6.2 .
L BN o e e

generalization of the diffusiofFokker-Planck-Kolmogorov
equation22,23. The renormalization group was used to ob-
tain an explicit expression for the transport expongnin

Eqg. (1.2) as a function of space-time scaling constants for
islands in the boundary layer. For some values of the map
parameter there is a self-similar hierarchy of subislands in
the boundary layers. For these values a theoretical expression
for u
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can be derived, whenes is a scaling parameter for the island

area and\ 1 is a scaling parameter for the rotation frequency
of orbits within the island[22,23. Recently these results N B
were confirmed for the web map : 1.655 166 x 1.66 1.6605

I BRI ST N S

6.236 6.238

6.2401 6.2402 6.2403 ©

O N I R B

Up11=0Up, Upy1=—Up—Ksimw, (1.5 FIG. 1. Four generations of self-similar islands related to the

. . . .. . accelerator modes =6.476 939.
using simulations requiring very exact numerical methods

[24,25. ; ;
In this article we follow the same procedure to find theanomalous transport. Indeed the existence of such islands

transport exponeni for the standard map. There is a sig- and their boundaries alters the pattern of diffusion dynamics.

nificant difference between the standard map and the we ecause of the Pomca&_rkh_off th_eorem[4], in the _nelgh_- .
orhood of a generic periodic orbit there are satellite elliptic

?an?fn\é\{zgﬁr:r;ﬁgl?)?ts ('jri'rg:;g\rl]est}nmiggéesogiglr;:;ypaieagforbits of smaller sizes, each of which in turn has satellite
ay arabolic and nong mmetric t e?for thepstan,dardyma IeIIiptic orbits, and so forth. These elliptic orbits are ordered
P y yp P. orming a chain of islands around islands. For particular val-

2gtdi:‘ihceat%?1 s(e)?f[:hee ?fesilf)é;nlgno[e:{rZ) [:r?otljfhitso aen(‘:aorgﬁzs;t?g:mges ofK the island chain can assume a self similar character
' 9 [20]. In order to make explicit this self-similarity of islands

will be given below. . :
In this work we present a number of results for the stan'© found values of the perturbation paramefefor which

dard map. In Sec. Il we give an example of a seIf-simiIarthere is a self-similar hierarchy of subislands in the boundary
. p. M L 9 P . . layer. In Fig. 1 is shown four generations of islands related to
hierarchy of islands in the boundary layer. This example 'Stpe accelerator mode of period 5. The generation 0 island is

used to display results which we believe have a very 9enerdh e accelerator island of period 5, top right, and subsequent

character. In Sec. Ill we describe the numerical teChmquesenerations are seen by proceeding counterclockwise. The
used to investigate long time asymptotic behavior. In Sec. g ; y P 9 . S
mall rectangle in each plot shows the domain which is

the scaling properties of the hierarchy including the islan : . . . .
. . . S 2 lown up in the next generation. We will refer to this chain
areas, rotation frequencies, escape time distributions, and the . :
o i ! . . S a boundary island cha{BIC). Small changes in the per-
statistical properties of trajectories are discussed. In Sec. : ) . . .
I . : urbation parameter produces different chains, with varying
the renormalization of the escape time according to the 9en: mbers of islands in each generation. To obtain this ex
eration of islands in the hierarchy is examined. We show 9 ’

how all these properties are related to the transport exponeﬁ;\l{npIe we searched in the vicinity of the critical perturbation

in Eq. (1.2 and how the anomalous transport oceurs Ourparameter value related to this accelerator mode, until we
M q. (1.2 : ; P '~ found three generations of the BIC of 11 islands each for
results confirm the previously discovered property of chaotui< —6.476 939. This set of islands is the first such self-
trajectories to be not “sufficiently chaoticf18,19,22,23 Co .
. : . similar BIC hierarchy found for the standard map. Another
i.e., to have long lasting memory for the major part of the

trajectory[9,10] unless the value of the control parameterexarnple of a BIC hierarchy with eight islands will be pub-
K is taken in specific locuna®r even at a poijtwhere the lished soon25]. The Poincareplots were obtained by initi-

islands collaps¢25]. We also find the anomalous exponent ating a point near al point and advancing many steps. The

L ' . island boundary is much darker than the surrounding domain
to be related to the characteristic temporal and spatial scalin : .
. i i ; - Pecause of the long time necessary for the orbit to escape
parameters of the island chain. Finally in Sec. VI we give

: from it. In fact for the higher generation islands the orbit
some concluding remarks. . 0
takes a very long time to escape. This stickiness occurs at
any generation of the BIC. The number of generations can be
increased further by adjusting the value Kf through the
addition of more digits.
The existence of a fine structure of the island patterns in In this paper, we wish to analyze more closely the effect
phase space and its properties are fundamental in the study ifis BIC self-similarity has on a chaotic orbit. In other words

Il. SELF-SIMILAR HIERARCHY OF ISLANDS
IN THE BOUNDARY LAYER
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we want to determine the stickiness of the island. Becausprocedure eliminates the necessity of evaluating any metric
we concentrate only on the behavior near the island, ouguantities(such as distance from an islgralring the simu-
approach is mainly a local one. lation.

Besides the number of islands in each generation, there We measure orbit averaged trapping times and recurrence
are two quantities for characterizing a BIC. One is related tdimes by following a long orbit initiated outside the domain
the area of islands and the other is related to a characteristi® in the stochastic sea. Escape time, calculated by initiating
time scale of the islands which can be for instance the windmany orbits inside the domaiB and measuring first exit,
ing frequency of an orbit about the isla point. biases the result according to the density assumed irside

and cannota priori be expected to be equal to the orbit

averaged value. We have used uniform initial density to de-
IIl. NUMERICAL CONSTRUCTION OF STICKY DOMAINS fine escape times.

In order to investigate the spatiotemporal properties re- e also used a second method for constructing sticky
lated to self-similarity we need to determine accurately thelomains. It consists simply in initiating a point near an island
phase space domains embedding the accelerator modes d¢ndary, typically near ax point, and letting it evolve
susceptible to contain the BIC’s. Long time trapping is onlyunder the mapping sufficiently long to generate theSsdiut
caused by such domains, and for numerical reasons the dfot long enough for it to escape far into the stochastic sea. If
main of initial conditions used should correspond to themNecessaryB can be then enlarged by adding to it all mesh
To make rapid numerical calculations of trapping time orPOINts within some rangai, Aj. _
exit time for a given set, we divide that part of phase space of The long time tail in the distribution of escape times and
interest intoNXN domains with a rectangular grid with recurrence times is independent of the domiprovided

boundarie;,x, + Ax andpy,p,+Ap. The grid provides an ©nly thatB contains the island boundary domain. It is nu-
immediate coarse graining of phase spageintoi,j with merically convenient that this set be as small as is consistent

with this requirement, to optimize computing efficiency, and
to be certain that many data points in the sticky domain near

J=(X=x1)*N/AX+1, (3.)  the island boundaries are present to obtain good statistics for
the long time tails.

i=(p—py)*N/Ap+1. (3.2
IV. SPATIOTEMPORAL SELF-SIMILARITY

. i . OF THE ACCELERATOR MODE ISLANDS
To construct domains for the study of long time trapping,

we have developed a suitable numerical procedffg14]. The self-similar property of the BIC's areas can be ex-
This procedure consists of initiating a point in the stochastigoressed in the form

sea, applying the map a large number of times, allocating the

value 1 to all nonvisited cells and the value 0 to the visited AS-1=NAS, As>1 (4.9
ones, thus constructing a matmi,j) =0 in the stochastic

sea, andh(i,j)=1 otherwise. This matrix simply defines the wherek is the order of generation of the BIC, aAd, is the
coarse grain evaluation of the extent of the stochastic sea ardea of all islands in th&th generation of the BIC. To pro-
the islands which are distinguishable with the coarse grainvide a more precise determination of the area scaling we use
ing used. It depends only on the value of the perturbatiorfor generatiork the area of the 11 sided polygon defined by
parameterK and the mesh location and size. Clearly thethe O points of the islands of thek{+ 1)st generation. The
number of visits to the domain covered by the mesh must beosition of theO points can be obtained to very high accu-
much larger tharN X N, otherwise there will remain ele- racy by iteration.

mentsn(i,j) equal to 1 which should be 0. We then sort the To display the temporal self-similarity, we use the wind-
matrix n(i,j) according to each distinct island domain, with ing number which is a characteristic frequency of the islands.
n(i,j) =k within island k, zero otherwise, and measure the Let us denote it asw, and compute it in the interior of the
area of each island. There results a list of all islands, sortetsland. It is indeed the rotation frequency of a stable orbit
according to area. We select afterwards an island for studyy=1/At with At the time interval(steps required to com-
and construct a boundary sBtof this island, consisting of pletely circle the islan@® point. It is computed as a function
all i,j in the stochastic sea, but within a distamgeof some  of the distance from the center of the island so that it pro-
pointk,|I within the island, i.e., the minimum distance to the vides the profild27] w(x). For the simulation corresponding
island is less thanl, . Define a matrixb(i,j)=1 within B to the BIC displayed in Fig. 1, we typically let the orbit make
and zero otherwise. The sBtquantifies the concept of being 50 rotations and used iitial conditions for computing the

close to the island in question. internal rotation frequency. The initial conditions are uni-
Rapid examination of trapping times, escape times, andfiormly distributed on a segment linking the center of the
recurrence times is now possible with the mab{x,j). Ad-  island to its external boundary. The number of steps required

vance a point initiated in the stochastic sea according to thto circle theO point is N=1/w and thus the error in the
map. At each step evaluateb(t)=Db(i,j). Then note that determination ofw due to the finite number of steps is
b(t)—b(t—1)=1 if the point has just entered, —1 if it p[1/N—1/(N+1)]=pw?, with p the number of steps re-
has just left, and is zero otherwise. Each such instance iguired to return to the particular island examin@eriodic-
recorded, giving a data set consisting of the distribution ofity). Requiring that the orbit circle th® point 50 times gives
trapping times and recurrence times for the donirThis  an error ofpw?/50 in the determination ab. Figure 2 shows
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(k=2,3) the scaling parameters characterizing the self-
similarity are approximately constant and given by

i
£

.002

As=29.3+0.1, A;=10.5+0.2. (4.9
If the islands were exactly self-similar to all generations
would equal the ratio of the number of islands in neighboring
generations 11. For the quadratic map the area scaling pa-
rameter for the primary island sequence 11-11-11has
been found[20] to be Ag=32.7 (\g=£/11 in Table Il of
that work), not far from our result ol s=29.3 for the se-
~— guence 5-11-11-11 - for the accelerator island in the stan-
dard map. However, our proceedure is to adjust the value of
K to produce a given island sequence, in this case the se-
quence 5-11-11-11 -, whereas in the referenced work the
map parameter is adjusted to be at the accumulation point of
n tuplings of the map, strictly producing the island sequence
11-11-11 - -, not exactly the same case considered by us.
There is another kind of self-similarity of the system,
which is related to the moments of the probability distribu-
tion function. There are two ways to consider the particle
transport in the standard map: on the cylinden{od 27) or
in the infinite phase space mandp. Let us mention that in
the rotation frequency profiles for the four generations of thenumerous publications on transport in the standard map, the
BIC shown in Fig. 1. The determination af becomes very moments concern only transport in thelirection. However,
noisy near the island edge as the separatrix is approachethis map being asymmetric it is of interest to consider both
We use the value at th® point, w\(0) to characterize the directionsx andp in transport computations. Indeed in some
time scale of islandk, and at this point we evaluate,(0) physical problems one needs to know the phase evolution,
very accurately by finding the eigenvalues of the linearizedvhich can be derived only in the latter case. Actually both
mapping[28]. The self-similar property of the winding num- representations were considered in this study. Before dis-
bers of the islands can be written as cussing the results of the simulations, let us emphasize the
differences between these representations. For that we shall
consider the transport near the accelerator mode in an exactly

The scaling parameteks; and\ ¢ are, respectively, the char- self-similar BIC.

e . On the cylinder, for the normal diffusion cagp®)~t as
acteristic parameters of the spatial and temporal self- 2 3 .
A . . . } does(x“+p~). The angular brackets denote averaging over a
similarity of the chain of islands under consideration. o "
. : . large number of initial conditions. For the accelerator mode
To illustrate the existence of the scaling related to th

2 2, 12 2 ;
spatiotemporal self-similarities given by E@d.1) and(4.2), g;hérgl >c:23 <o); ;eﬁ_gi;?ﬂf t?:né V(\)/ﬁ[ ?;naixpgfét?ﬁg%?ue
let us consider the set of subislands which belong to the maicﬁ)f the exponent of the anomalops diff s'y shc; ld be
island of the accelerator mode of period 5 displayed in Fig Xp jous drfiusin u .
1. Variables related to these islands will be labeled “0” bounded by the exponents relative to these two cases, that is

while for the next generations of islands we use “1,2, 1<’“.<2.'. .
..., as shown in Fig. 1. Table | shows the island-set prop- In infinite phase space, these moments dzo not scale in the
erties. The second column gives the number of islands in th ame manner. For normal diffusionp®)~t while

2 2\ _+3 2y _¢2
generation of ordek. The exponential dependence krof X+ p >2 t 2and4for the accelerator mode chafp®)~t
the island area and winding frequency is clearly seen. while (x*+p%)~1" so that for a general case of anomalous

The total area of all islands at generatioiis transport in the pllane we obtain<3u<4. Define u, and
up by the expressions
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FIG. 2. w profiles—four generations of self-similar islands.

wk,lz)\ka, )\T> 1. (42)

AS=n6S, 4.3
(p?)=cytte, x(mod2m),
where 8S, is the area of a single island of ordkr When
both k, k—1 refer to island sets containing 11 islands (X2+p?y=cythx, (t—o0). (4.5
TABLE I. Spatiotemporal parameters of island chain.
k nk a)k(O) )\T (SSk ASk )\S
0 5 2.343% 1072 - 5.5606< 1072 2.7803< 1072 -
1 5x 11 2.425% 1073 9.6603 3.451610°° 1.8938< 102 14.646
2 5x11x11 2.263% 104 10.718 1.0762 1077 6.5110< 10°° 29.156
3 5x11x11x11 2.187%10°° 10.345 3.325%10° 10 2.2131x10°° 29.421
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FIG. 3. Second order moments @f°), (p>+x?) on the cylin- FIG. 4. Higher order moments, anomalous diffusion, using 10

der and the plane, using A thitial conditions,K =6.476 939. initial conditions,K=6.476 939.

Figure 3 shows these moments for computations done in thﬁeriod five (K=K, =6.476 939) and a case of normal diffu-
.=6.

case ththe islar:jd chain of Fig. 1, i.K= KC:6'47?]93QH sion (K=6.0). The powerlike law Eq4.9) is confirmed. In
From the map definition Eq(1.1) one can see that the Fig. 6 we plotu,, as a function oim. The numerical results

change ofxzper step isAx=p(t), and this, together with EQ.  ¢qrrespond to anomalousolid squaresand normal(tri-
(4.5) for (p%), gives angles diffusion. We observe a linear dependenceugf on
(PP~ ()~ t2 (t—o0) 46 M

and M= M. (4.10

. L ! o For normal diffusionu,=1, while for anomalous diffusion
This relation is confirmed, within the errors of slope deter-io \41ue ofu, is given by Eq.(1.4) within the error bars
mination, by the computations of the moments, plotted ingy5\wn on thelfigure. o

Fig. 3, which provides the values

pp=1.42+0.15, u,=3.66+0.1. (4.9

The analytic expression given by Eq1.4) gives 3 .
u=1.44+0.02 which is in excellent agreement with the 30 -
value of u, obtained from Fig. 3. - .

Similar results, giving good agreement between the pre- - 1
dicted value of the anomalous diffusion exponent BEgd) - T
and its directly computed value have been obtained also for -
the web map24]. However, due to the symmetry of the web
map,u has to be compared @, while for the standard map
it is compared tou,. Another value ofK. in the standard
map corresponding to an eighth-order resonance set was con- r i
sidered[25] giving also good agreement between E({s4) m=2
and (4.9). or 7

We have also considered higher moments of the probabil-
ity distribution function. For large time asymptotics of these I m=1
moments R?™) with R?=x2+ p?, it is shown from the simu-
lations that |

log(M3),,

—

M2mE<R2m>~CtMm (t—o0). (4.9 log(t)

Figures 4 and 5 show, respectively, these moments for the
case of anomalous diffusion near the accelerator mode of  FIG. 5. Higher order moments, normal diffusiéin=6.
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FIG. 6. u, as a function ofm for normal (K=6, triangle$ and
anomalous K = 6.476 939, squargsliffusion, using 18 initial con-
ditions.

V. RENORMALIZATION FOR THE EXIT TIME
DISTRIBUTION

FIG. 7. Escape time distributions at short times, generations
1,2,3 using 10 trajectories K =6.476 939.

then the probabilityP, to exit from the domain should be
similarly dependent ohand should satisfy the self-similarity
condition.

Characteristic times have already been used by several !N order to formulate this property, we examine different
authors to describe chaotic motion in relation to local struc-Self-similar domainsi €, in the BIC of the corresponding
tures in phase spa¢@,29-32,11,12 In this section we use 9eneration order«0,1, ... .This means that they obey the
a new method developed for the web map and standard mdgw ©of self-similarity of the areas of Eqd4.1). Figure 7
[24,25). In order to further investigate the sticking propertiesShOWS the exit time distribution functions for the generations
of the orbits near the border of the self-similar chains of0,1,2 of the BIC. _
islands we carried out detailed computer calculations of the These distributions are computed with the use of the nu-

distribution s(t) of times it takes an orbit with initial coor-
dinates placed close to a BIC to reach the chaotic sea.

To defineys(t) let us consider a small domaix() in the
phase space of a system andyét; AQ) be the correspond-
ing probability density to escape fro() in a time interval
dt. Then

Pe(t;AQ)=Jt¢(T;AQ)dT (5.9
0

is the probability for particles to leave the domaiif) dur-
ing the time intervat. The survival probability is

Y(t;00)=1—P(t;AQ)=1— ftap( 7, AQ)dr
0

= ftww(f;AQ)dT, (5.2

where we used Ed5.1) and the condition of normalization
Pe(t—;A0)=1. (5.3

It is important to note that the functiong, ¥, and P, are
locally defined for a small domaia () and can depend on
the shape and location of this domain. If, for examplé€), is
taken in a domaim\ Q)¢ of a singular zone around an island,

merical method described in Sec. Ill. Orbits with initial con-
ditions which belong to the internal part of a resonance is-
land of higher generation simply never escape, and thus do
not contribute to the escape time statistics. They do, how-
ever, contribute to computing effort, and this is the reason
for the careful choice of the initial domaiB.

In the logarithmic scale there is a shift between the distri-
butions of two successive self-similar generations. This shift
is observable in Fig. 7, which shows the escape time distri-
butions at short times so that the third generation can also be
displayed. The value of this shift is of the order of
N1=10.5(shift of ~1 in logarthmic plox which is the typi-
cal value of the temporal scaling parameter. It is apparent
from Fig. 8 that the distribution of exit times follows a power
law with an exponent of the order of 3.5, the slope of the
line shown for comparisonThe normalizations of the dis-
tributions differ between Fig. 7 and Fig. 8, since the data sets
are not equal.Note that in short time computations the slope
is about— 1.6, but it changes drastically at large times. This
result shows that the effect of long time memory which in-
duces anomalous transport is indeed obtained only in large
time computations, and is essentially due to the visits of the
orbit to higher order generation islands of the BIC. Previous
computationg12] for the standard map and for the accelera-
tor mode have found a smaller slope of abetit.6 and we
find the samédFig. 7), but this value changes significantly at
large times as can be seen in Fig. 8.
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FIG. 8. Escape time distributions at large times, generations FIG. 9. Recurrence time distribution, stochastic sea initial con-
0,1,2, using 10 trajectories K =6.476 939. ditions, using 5< 10* trajectories K =6.476 939.

In fact, the value of the escape expenenin the prob- a power law with an exponent of the order-e8.5 whichis
. o compatible with the power law tail of the escape time distri-
ability density bution described above. Let us emphasize that at large times,
the long time memory effects are mainly due to the visits
() =117 (5.4) of the orbits to the island generations of higher order
and thus affect similarly all the characteristic times of the
stem.
defined in Eq(5.1) is not trivial, as there is normally multi- g Let us remark that in previous publications different ex-
scale behavior. It is more accurate to speak of multiscalonents have been reported for characteristic times. In the
spectral function$33] or of a scale for a specified time in- case of the separatrix map, Chirikov and Shepeliari8®y
terval. That our case of=3.5 is related to a much longer computed the survival probabilitl#(t), which is the prob-
time interval is evident from Figs. 7 and 8. The obtainedability that a particle near the KAMKolmogorov, Arnold,
value can be easily interpreted on the basis of a theory aMosel) surface, will still be “near” that surface at time
ready reported24,25. This theory is based on the explicit Up to normalization, this quantity is the Poincaegurrence
expression for the transport exponentgiven in Eq.(1.4) distribution as referred to in their paper. They found that
and it gives F(t) follows a power law with an exponent-1.34 for
1<t<10°. They also looked at the standard map for
y=2+pu. (5.5 K=K:=0.971635, and found an exponent0.975 for
10°<t<10°. For the quadratic map, and initializing particles
in the stochastic sea, outside the stable island for this system,
The formula(5.5) is obtained with the help of a renormal- Karney[7] obtained a power law with an exponent..45 for
ization equation which is applied to the islands-around-1<t<1(®. Finally Meiss and Otf21], using a Markov tree
islands structure. Fou=1.44 Eq. (5.5 gives y=3.44, model of transport in area-preserving maps, predicted that
which is in good agreement with the observed valuethe distribution of first return times follows a power law with
y=3.5. an exponent—1.96 (when they include in the model the
Let us now investigate the distribution of the Poincarelargest island chajrand claimed that this exponent is indeed
cycles and compare it to the escape time distribution. Coneloser to previous numerical work29,7], when they im-
sider a small domaiI' in the phase space of the system proved the approximations responsible for the discrepancy
and take an initial conditionxg,p,) belonging to this do- between numerical experiments and their model. This variety
main. Poincareecurrence is the phenomenon of the trajec-of power law exponents of characteristic times related to
tory passing through the domaixl™ infinitely many times. different area preserving maps and different ranges of sto-
For the numerical computation of the probability distribution chasticity parameters shows that there is not yet a self-
function of the Poincarecycles P.(t), we started with consistent theory predicting universality of these exponents.
4x 10% initial conditions in a square box in the stochastic seaAlso a hierarchy of a different type has been proposed by
and found the return time distribution using’liGerations of ~ Melnikov [34]. Different maps and different island se-
the map. Figure 9 showR, (t) which has a Poisson distribu- quences and, as we have shown in this paper, different time
tion for short times but has a long time tail. This tail follows intervals can give different asymptotic behavior.
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VI. CONCLUSIONS which tend to be anomalous because of long lasting memory

The fine structure of the phase space of Hamiltonian sy (_aff_ects introduced by this self-similarity..The present calcu-
tems is the primary origin of anomalous fransport. Long ation was performed only for.the specific \_/alues of Fhe sto-

lation effects occur from visits of orbits to E)ound—c.ha.S ity parameter for which there exist specific .s.elf-
rangle corret the vicinity of islands. This ph -~ similar island chains near an accelerator island of sufficient
ary 1ayers in the vicinity ot I1slands. 1his phenomenon IsIength and strong stickiness during the observation time.

generally refered to as the stickiness of the 'Slfinds' we hav&lose to these parameter values there exist values for which
shown that for small changes of the stochasticity paramet

strong topological changes can occur in the phase ortraitet e chain has a different sequence of islands or even
g topolog 9 P P as collapsed and another transport law pertains, perhaps re-

the system. As a concrete example we considered in thi : :
paper kinetic properties of the standard map near the thresr%ted to much longer time scales. By scanning through pa

old of the accelerator mode of period 5 and found a value O¥ameter values and observing the birth and destruction
. ot P . ) . f particular types of island chains we conjecture that the
K producing an exact self-similar chain of islands associate

: . . . “Island sequence type is fractal or even multifractal, making
with this accelerator mode. Spatiotemporal properties of th'?he transport a very complex function of the map parameter.

island chain have been numerically determined. We havfet us conclude by remarking that we have investigated

shown that the kinetics is anomalous. near the accelera-t 5cal transport properties of the system for very specific pa-
mode and corresponds to a superdiffusion process witl

a characteristic exponent related to the spatiotempor meter values. These very long time memory effects do not
: . . ffect the global transport properties except at very large
scaling parameters of the island chain. We also foun§ia g port prop P y 1arg

that the asymptotic behavior of the probability distribution mes.
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