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Self-similarity and transport in the standard map
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Anomalous transport is investigated for the standard map. A chain of exact self-similar islands in the vicinity
of the period 5 accelerator island is found for a particular value of the map parameter. The transport is found
to be superdiffusive with an anomalous exponent related to the characteristic temporal and spatial scaling
parameters of the island chain. The value of the transport exponent is compared to the theory. The escape time
distribution and Poincare´ recurrence distribution are found to have powerlike tails and the corresponding
exponents are obtained and compared to the theory.@S1063-651X~97!03605-2#

PACS number~s!: 05.45.1b, 47.52.1j, 05.60.1w, 47.53.1n
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I. INTRODUCTION

The standard map@1# is one of the most frequently occu
ring models in many different applications. Written in th
form

pn115pn2Ksinxn , xn115xn1pn11 ~1.1!

it has become a paradigm for the study of properties of c
otic dynamics in Hamiltonian systems. In spite of its app
ent simplicity, unexpected difficulties in attempts to wri
down a kinetic model for Eq.~1.1! brought researchers bac
to the problems of characterizing chaosper seand describing
chaotic trajectories. More specificially, in studying the occ
rence of chaos one has to deal with local properties of
trajectory dynamics~local instability, Lyapunov exponents
bifurcations, etc.!. At the same time the typical object o
research is to find large scale properties of the trajecto
and characterize the kinetics and the evolution of moment
large time asymptotics.

The first surprise was the numerical discovery@1# and the
corresponding theory@2–6# that the diffusion constantD is a
quasioscillating function of the parameterK in Eq. ~1.1! for
K.1. The corrections are of order one and remain sign
cant up to values ofK;40. The oscillations are due to co
relations which persist well above chaotic threshold, but
motion is diffusive, and can be described by a diffusion co
stant D, with oscillatory dependence onK given by the
theory.

A more fundamental difference between ‘‘perfectly ch
otic’’ systems, like Sinai’s billard, and more realistic sy
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tems, like the standard map, is the existence of islands, m
ing phase space a complicated mixture of small noncha
domains and stochastic regions. The presence of the isl
implies much stronger deviations in long time asymptot
than can be described by simply a change in the diffus
constant. The existence of anomalous transport of a non
fusional character for values ofK taken in the vicinity of a
set $Kc% which includesK;1 and accelerator mode value
has been previously conjectured@7–11#. A new understand-
ing of the anomalous transport for the standard map w
proposed where the connection to the so-called Le´vy flights
process was established@12,13#. It was previously shown
that the islands have a strong effect if the parameterK is
taken near some critical values such asK;1 ~transition to
global chaos@8,2,14#!, the large peaks nearKn52pn ~accel-
erator modes@15#!, and some other fractional accelerat
modes@7,9,10#. In this article, the connection will be ‘‘visu-
alized’’ in an explicit and quantitative way.

The anomalous transport for the model given by Eq.~1.1!
can be expressed in general as superdiffusion describe
the second moment ofp,

^p2&5c•tm ~ t→`!, ~1.2!

where

1,m,2 ~1.3!

in contrast to normal transport~diffusion! with m51. In fact
the expression in Eq.~1.2! is the global result of some deepe
properties of anomalous transport, characterized by spe
Lévy type processes@16# which occur in numerous physica
applications~see, for example, a previous review@17# where
such processes were named ‘‘strange kinetics’’!.

The origin of anomalous transport has been connecte
the local topological properties of the phase space dom
near islands~the boundary layer! @18# and a self-similar
4909 © 1997 The American Physical Society
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4910 55BENKADDA, KASSIBRAKIS, WHITE, AND ZASLAVSKY
structure of the domain@19#. Self-similar structure of island
chains has been extensively discussed for the quadratic
@20,21#. It is known that there are universal numbers desc
ing the various island sequences for values of the map
rameter giving self-similar island chains. A quantitati
theory for the transport has been proposed using a fracti
generalization of the diffusion~Fokker-Planck-Kolmogorov!
equation@22,23#. The renormalization group was used to o
tain an explicit expression for the transport exponentm in
Eq. ~1.2! as a function of space-time scaling constants
islands in the boundary layer. For some values of the m
parameter there is a self-similar hierarchy of subislands
the boundary layers. For these values a theoretical expres
for m

m5 lnlS / lnlT ~1.4!

can be derived, wherelS is a scaling parameter for the islan
area andlT is a scaling parameter for the rotation frequen
of orbits within the island@22,23#. Recently these result
were confirmed for the web map

un115vn , vn1152un2K sinvn ~1.5!

using simulations requiring very exact numerical metho
@24,25#.

In this article we follow the same procedure to find t
transport exponentm for the standard map. There is a si
nificant difference between the standard map and the
map. While the flights in the web map are of spiral type a
symmetric in theu or v directions in phase space, they are
a parabolic and nonsymmetric type for the standard map
fact the absence of a symmetry leads to a correspon
modification of the result of Eq.~1.4! and this generalization
will be given below.

In this work we present a number of results for the st
dard map. In Sec. II we give an example of a self-simi
hierarchy of islands in the boundary layer. This example
used to display results which we believe have a very gen
character. In Sec. III we describe the numerical techniq
used to investigate long time asymptotic behavior. In Sec
the scaling properties of the hierarchy including the isla
areas, rotation frequencies, escape time distributions, and
statistical properties of trajectories are discussed. In Se
the renormalization of the escape time according to the g
eration of islands in the hierarchy is examined. We sh
how all these properties are related to the transport expo
m in Eq. ~1.2! and how the anomalous transport occurs. O
results confirm the previously discovered property of chao
trajectories to be not ‘‘sufficiently chaotic’’@18,19,22,23#,
i.e., to have long lasting memory for the major part of t
trajectory @9,10# unless the value of the control parame
K is taken in specific locunas~or even at a point! where the
islands collapse@25#. We also find the anomalous expone
to be related to the characteristic temporal and spatial sca
parameters of the island chain. Finally in Sec. VI we g
some concluding remarks.

II. SELF-SIMILAR HIERARCHY OF ISLANDS
IN THE BOUNDARY LAYER

The existence of a fine structure of the island pattern
phase space and its properties are fundamental in the stu
ap
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anomalous transport. Indeed the existence of such isla
and their boundaries alters the pattern of diffusion dynam
Because of the Poincare´-Birkhoff theorem@4#, in the neigh-
borhood of a generic periodic orbit there are satellite ellip
orbits of smaller sizes, each of which in turn has satel
elliptic orbits, and so forth. These elliptic orbits are order
forming a chain of islands around islands. For particular v
ues ofK the island chain can assume a self similar chara
@20#. In order to make explicit this self-similarity of island
we found values of the perturbation parameterK for which
there is a self-similar hierarchy of subislands in the bound
layer. In Fig. 1 is shown four generations of islands related
the accelerator mode of period 5. The generation 0 islan
the accelerator island of period 5, top right, and subsequ
generations are seen by proceeding counterclockwise.
small rectangle in each plot shows the domain which
blown up in the next generation. We will refer to this cha
as a boundary island chain~BIC!. Small changes in the per
turbation parameter produces different chains, with vary
numbers of islands in each generation. To obtain this
ample we searched in the vicinity of the critical perturbati
parameter value related to this accelerator mode, until
found three generations of the BIC of 11 islands each
Kc56.476 939. This set of islands is the first such se
similar BIC hierarchy found for the standard map. Anoth
example of a BIC hierarchy with eight islands will be pu
lished soon@25#. The Poincare´ plots were obtained by initi-
ating a point near anX point and advancing many steps. Th
island boundary is much darker than the surrounding dom
because of the long time necessary for the orbit to esc
from it. In fact for the higher generation islands the orb
takes a very long time to escape. This stickiness occur
any generation of the BIC. The number of generations can
increased further by adjusting the value ofKc through the
addition of more digits.

In this paper, we wish to analyze more closely the eff
this BIC self-similarity has on a chaotic orbit. In other word

FIG. 1. Four generations of self-similar islands related to
accelerator mode,K56.476 939.



u
o

e
t

ris
nd

re
th
s
ly
d
m
o
e
h

g

sti
th
te

e
a
ain
io
he
t b
-
he
th
he
rte
d

e

g

an

th

e
o

tric

nce
in
ting
,
e
it
de-

cky
nd

. If
sh

nd

u-
tent
nd
ear
s for

x-

-
use
by

u-

d-
ds.

bit

ro-
g
e

i-
he
ired

is
-

55 4911SELF-SIMILARITY AND TRANSPORT IN THE STANDARD MAP
we want to determine the stickiness of the island. Beca
we concentrate only on the behavior near the island,
approach is mainly a local one.

Besides the number of islands in each generation, th
are two quantities for characterizing a BIC. One is related
the area of islands and the other is related to a characte
time scale of the islands which can be for instance the wi
ing frequency of an orbit about the islandO point.

III. NUMERICAL CONSTRUCTION OF STICKY DOMAINS

In order to investigate the spatiotemporal properties
lated to self-similarity we need to determine accurately
phase space domains embedding the accelerator mode
susceptible to contain the BIC’s. Long time trapping is on
caused by such domains, and for numerical reasons the
main of initial conditions used should correspond to the
To make rapid numerical calculations of trapping time
exit time for a given set, we divide that part of phase spac
interest intoN3N domains with a rectangular grid wit
boundariesx1,x11Dx andp1,p11Dp. The grid provides an
immediate coarse graining of phase spacex,p into i ,j with

j5~x2x1!*N/Dx11, ~3.1!

i5~p2p1!*N/Dp11. ~3.2!

To construct domains for the study of long time trappin
we have developed a suitable numerical procedure@26,14#.
This procedure consists of initiating a point in the stocha
sea, applying the map a large number of times, allocating
value 1 to all nonvisited cells and the value 0 to the visi
ones, thus constructing a matrixn( i , j )50 in the stochastic
sea, andn( i , j )51 otherwise. This matrix simply defines th
coarse grain evaluation of the extent of the stochastic sea
the islands which are distinguishable with the coarse gr
ing used. It depends only on the value of the perturbat
parameterK and the mesh location and size. Clearly t
number of visits to the domain covered by the mesh mus
much larger thanN3N, otherwise there will remain ele
mentsn( i , j ) equal to 1 which should be 0. We then sort t
matrix n( i , j ) according to each distinct island domain, wi
n( i , j )5k within island k, zero otherwise, and measure t
area of each island. There results a list of all islands, so
according to area. We select afterwards an island for stu
and construct a boundary setB of this island, consisting of
all i , j in the stochastic sea, but within a distanced0 of some
point k,l within the island, i.e., the minimum distance to th
island is less thand0 . Define a matrixb( i , j )51 within B
and zero otherwise. The setB quantifies the concept of bein
close to the island in question.

Rapid examination of trapping times, escape times,
recurrence times is now possible with the matrixb( i , j ). Ad-
vance a point initiated in the stochastic sea according to
map. At each stept evaluateb(t)5b( i , j ). Then note that
b(t)2b(t21)51 if the point has just enteredB, 21 if it
has just left, and is zero otherwise. Each such instanc
recorded, giving a data set consisting of the distribution
trapping times and recurrence times for the domainB. This
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procedure eliminates the necessity of evaluating any me
quantities~such as distance from an island! during the simu-
lation.

We measure orbit averaged trapping times and recurre
times by following a long orbit initiated outside the doma
B in the stochastic sea. Escape time, calculated by initia
many orbits inside the domainB and measuring first exit
biases the result according to the density assumed insidB,
and cannota priori be expected to be equal to the orb
averaged value. We have used uniform initial density to
fine escape times.

We also used a second method for constructing sti
domains. It consists simply in initiating a point near an isla
boundary, typically near anX point, and letting it evolve
under the mapping sufficiently long to generate the setB, but
not long enough for it to escape far into the stochastic sea
necessary,B can be then enlarged by adding to it all me
points within some rangeD i , D j .

The long time tail in the distribution of escape times a
recurrence times is independent of the domainB provided
only thatB contains the island boundary domain. It is n
merically convenient that this set be as small as is consis
with this requirement, to optimize computing efficiency, a
to be certain that many data points in the sticky domain n
the island boundaries are present to obtain good statistic
the long time tails.

IV. SPATIOTEMPORAL SELF-SIMILARITY
OF THE ACCELERATOR MODE ISLANDS

The self-similar property of the BIC’s areas can be e
pressed in the form

DSk215lSDSk , lS.1 ~4.1!

wherek is the order of generation of the BIC, andDSk is the
area of all islands in thekth generation of the BIC. To pro
vide a more precise determination of the area scaling we
for generationk the area of the 11 sided polygon defined
theO points of the islands of the (k11)st generation. The
position of theO points can be obtained to very high acc
racy by iteration.

To display the temporal self-similarity, we use the win
ing number which is a characteristic frequency of the islan
Let us denote it asvk and compute it in the interior of the
island. It is indeed the rotation frequency of a stable or
v51/Dt with Dt the time interval~steps! required to com-
pletely circle the islandO point. It is computed as a function
of the distance from the center of the island so that it p
vides the profile@27# v(x). For the simulation correspondin
to the BIC displayed in Fig. 1, we typically let the orbit mak
50 rotations and used 103 initial conditions for computing the
internal rotation frequency. The initial conditions are un
formly distributed on a segment linking the center of t
island to its external boundary. The number of steps requ
to circle theO point is N.1/v and thus the error in the
determination ofv due to the finite number of steps
p@1/N21/(N11)#.pv2, with p the number of steps re
quired to return to the particular island examined~periodic-
ity!. Requiring that the orbit circle theO point 50 times gives
an error ofpv2/50 in the determination ofv. Figure 2 shows
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4912 55BENKADDA, KASSIBRAKIS, WHITE, AND ZASLAVSKY
the rotation frequency profiles for the four generations of
BIC shown in Fig. 1. The determination ofv becomes very
noisy near the island edge as the separatrix is approac
We use the value at theO point, vk(0) to characterize the
time scale of islandk, and at this point we evaluatevk(0)
very accurately by finding the eigenvalues of the lineariz
mapping@28#. The self-similar property of the winding num
bers of the islands can be written as

vk215lTvk , lT.1. ~4.2!

The scaling parameterslS andlT are, respectively, the char
acteristic parameters of the spatial and temporal s
similarity of the chain of islands under consideration.

To illustrate the existence of the scaling related to
spatiotemporal self-similarities given by Eqs.~4.1! and~4.2!,
let us consider the set of subislands which belong to the m
island of the accelerator mode of period 5 displayed in F
1. Variables related to these islands will be labeled ‘‘0
while for the next generations of islands we use ‘‘1
. . . ,’’ as shown in Fig. 1. Table I shows the island-set pro
erties. The second column gives the number of islands in
generation of orderk. The exponential dependence onk of
the island area and winding frequency is clearly seen.

The total area of all islands at generationk is

DSk5nkdSk , ~4.3!

wheredSk is the area of a single island of orderk. When
both k, k21 refer to island sets containing 11 islan

FIG. 2. v profiles—four generations of self-similar islands.
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(k52,3) the scaling parameters characterizing the s
similarity are approximately constant and given by

lS529.360.1, lT510.560.2. ~4.4!

If the islands were exactly self-similar to all generationslT
would equal the ratio of the number of islands in neighbor
generations 11. For the quadratic map the area scaling
rameter for the primary island sequence 11-11-11••• has
been found@20# to be lS532.7 (lS5j/11 in Table III of
that work!, not far from our result oflS529.3 for the se-
quence 5-11-11-11••• for the accelerator island in the stan
dard map. However, our proceedure is to adjust the valu
K to produce a given island sequence, in this case the
quence 5-11-11-11•••, whereas in the referenced work th
map parameter is adjusted to be at the accumulation poin
n tuplings of the map, strictly producing the island sequen
11-11-11•••, not exactly the same case considered by us

There is another kind of self-similarity of the system
which is related to the moments of the probability distrib
tion function. There are two ways to consider the parti
transport in the standard map: on the cylinder (x mod 2p) or
in the infinite phase space inx andp. Let us mention that in
numerous publications on transport in the standard map,
moments concern only transport in thep direction. However,
this map being asymmetric it is of interest to consider b
directionsx andp in transport computations. Indeed in som
physical problems one needs to know the phase evolut
which can be derived only in the latter case. Actually bo
representations were considered in this study. Before
cussing the results of the simulations, let us emphasize
differences between these representations. For that we
consider the transport near the accelerator mode in an ex
self-similar BIC.

On the cylinder, for the normal diffusion case^p2&;t as
does^x21p2&. The angular brackets denote averaging ove
large number of initial conditions. For the accelerator mo
both ^p2& and^x21p2& scale ast2. We can expect that in a
general case of self-similar transport for any BIC, the va
of the exponent of the anomalous diffusionm should be
bounded by the exponents relative to these two cases, th
1,m,2.

In infinite phase space, these moments do not scale in
same manner. For normal diffusion̂ p2&;t while
^x21p2&;t3 and for the accelerator mode chain^p2&;t2

while ^x21p2&;t4 so that for a general case of anomalo
transport in the plane we obtain 3,m,4. Definemx and
mp by the expressions

^p2&5c1t
mp, x~mod2p!,

^x21p2&5c2t
mx, ~ t→`!. ~4.5!
TABLE I. Spatiotemporal parameters of island chain.

k nk vk(0) lT dSk DSk lS

0 5 2.343331022 – 5.560631023 2.780331022 –
1 5311 2.425731023 9.6603 3.451631025 1.893831023 14.646
2 5311311 2.263231024 10.718 1.076231027 6.511031025 29.156
3 5311311311 2.187731025 10.345 3.3254310210 2.213131026 29.421
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55 4913SELF-SIMILARITY AND TRANSPORT IN THE STANDARD MAP
Figure 3 shows these moments for computations done in
case of the island chain of Fig. 1, i.e,K5Kc56.476 939.
From the map definition Eq.~1.1! one can see that th
change ofx per step isDx5p(t), and this, together with Eq
~4.5! for ^p2&, gives

^x21p2&;^x2&;tmp12 ~ t→`! ~4.6!

and

mx5mp12. ~4.7!

This relation is confirmed, within the errors of slope det
mination, by the computations of the moments, plotted
Fig. 3, which provides the values

mp51.4260.15, mx53.6660.1. ~4.8!

The analytic expression given by Eq.~1.4! gives
m51.4460.02 which is in excellent agreement with th
value ofmp obtained from Fig. 3.

Similar results, giving good agreement between the p
dicted value of the anomalous diffusion exponent Eq.~1.4!
and its directly computed value have been obtained also
the web map@24#. However, due to the symmetry of the we
map,m has to be compared tomx while for the standard map
it is compared tomp . Another value ofKc in the standard
map corresponding to an eighth-order resonance set was
sidered@25# giving also good agreement between Eqs.~1.4!
and ~4.8!.

We have also considered higher moments of the proba
ity distribution function. For large time asymptotics of the
momentŝ R2m& with R25x21p2, it is shown from the simu-
lations that

M2m[^R2m&;Ctmm ~ t→`!. ~4.9!

Figures 4 and 5 show, respectively, these moments for
case of anomalous diffusion near the accelerator mod

FIG. 3. Second order moments of^p2&, ^p21x2& on the cylin-
der and the plane, using 105 initial conditions,K56.476 939.
he
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or
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period five (K5Kc56.476 939) and a case of normal diffu
sion (K56.0). The powerlike law Eq.~4.9! is confirmed. In
Fig. 6 we plotmm as a function ofm. The numerical results
correspond to anomalous~solid squares! and normal~tri-
angles! diffusion. We observe a linear dependence ofmm on
m

mm5m1m. ~4.10!

For normal diffusionm151, while for anomalous diffusion
the value ofm1 is given by Eq.~1.4! within the error bars
shown on the figure.

FIG. 4. Higher order moments, anomalous diffusion, using 15

initial conditions,K56.476 939.

FIG. 5. Higher order moments, normal diffusionK56.
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V. RENORMALIZATION FOR THE EXIT TIME
DISTRIBUTION

Characteristic times have already been used by sev
authors to describe chaotic motion in relation to local str
tures in phase space@7,29–32,11,12#. In this section we use
a new method developed for the web map and standard
@24,25#. In order to further investigate the sticking properti
of the orbits near the border of the self-similar chains
islands we carried out detailed computer calculations of
distributionc(t) of times it takes an orbit with initial coor
dinates placed close to a BIC to reach the chaotic sea.

To definec(t) let us consider a small domainDV in the
phase space of a system and letc(t;DV) be the correspond
ing probability density to escape fromDV in a time interval
dt. Then

Pe~ t;DV!5E
0

t

c~t;DV!dt ~5.1!

is the probability for particles to leave the domainDV dur-
ing the time intervalt. The survival probability is

C~ t;dV!512Pe~ t;DV!512E
0

t

c~t;DV!dt

5E
t

`

c~t;DV!dt, ~5.2!

where we used Eq.~5.1! and the condition of normalization

Pe~ t→`;DV!51. ~5.3!

It is important to note that the functionsc,C, andPe are
locally defined for a small domainDV and can depend on
the shape and location of this domain. If, for example,DV is
taken in a domainDVs of a singular zone around an islan

FIG. 6. mm as a function ofm for normal (K56, triangles! and
anomalous (K56.476 939, squares! diffusion, using 105 initial con-
ditions.
ral
-

ap

f
e

then the probabilityPe to exit from the domain should be
similarly dependent ont and should satisfy the self-similarit
condition.

In order to formulate this property, we examine differe
self-similar domainsDVs , in the BIC of the corresponding
generation order k50,1, . . . .This means that they obey th
law of self-similarity of the areas of Eq.~4.1!. Figure 7
shows the exit time distribution functions for the generatio
0,1,2 of the BIC.

These distributions are computed with the use of the
merical method described in Sec. III. Orbits with initial co
ditions which belong to the internal part of a resonance
land of higher generation simply never escape, and thus
not contribute to the escape time statistics. They do, h
ever, contribute to computing effort, and this is the reas
for the careful choice of the initial domainB.

In the logarithmic scale there is a shift between the dis
butions of two successive self-similar generations. This s
is observable in Fig. 7, which shows the escape time dis
butions at short times so that the third generation can als
displayed. The value of this shift is of the order
lT510.5 ~shift of ;1 in logarthmic plot! which is the typi-
cal value of the temporal scaling parameter. It is appar
from Fig. 8 that the distribution of exit times follows a powe
law with an exponent of the order of23.5, the slope of the
line shown for comparison.~The normalizations of the dis
tributions differ between Fig. 7 and Fig. 8, since the data s
are not equal.! Note that in short time computations the slo
is about21.6, but it changes drastically at large times. Th
result shows that the effect of long time memory which
duces anomalous transport is indeed obtained only in la
time computations, and is essentially due to the visits of
orbit to higher order generation islands of the BIC. Previo
computations@12# for the standard map and for the accele
tor mode have found a smaller slope of about21.6 and we
find the same~Fig. 7!, but this value changes significantly a
large times as can be seen in Fig. 8.

FIG. 7. Escape time distributions at short times, generati
1,2,3 using 106 trajectories,K56.476 939.
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55 4915SELF-SIMILARITY AND TRANSPORT IN THE STANDARD MAP
In fact, the value of the escape exponentg in the prob-
ability density

c~ t !.1/tg ~5.4!

defined in Eq.~5.1! is not trivial, as there is normally multi
scale behavior. It is more accurate to speak of multisc
spectral functions@33# or of a scale for a specified time in
terval. That our case ofg53.5 is related to a much longe
time interval is evident from Figs. 7 and 8. The obtain
value can be easily interpreted on the basis of a theory
ready reported@24,25#. This theory is based on the explic
expression for the transport exponentm given in Eq. ~1.4!
and it gives

g521m. ~5.5!

The formula~5.5! is obtained with the help of a renorma
ization equation which is applied to the islands-aroun
islands structure. Form51.44 Eq. ~5.5! gives g53.44,
which is in good agreement with the observed va
g53.5.

Let us now investigate the distribution of the Poinca´
cycles and compare it to the escape time distribution. C
sider a small domainDG in the phase space of the syste
and take an initial condition (x0 ,p0) belonging to this do-
main. Poincare´ recurrence is the phenomenon of the traje
tory passing through the domainDG infinitely many times.
For the numerical computation of the probability distributi
function of the Poincare´ cycles Pr(t), we started with
43104 initial conditions in a square box in the stochastic s
and found the return time distribution using 107 iterations of
the map. Figure 9 showsPr(t) which has a Poisson distribu
tion for short times but has a long time tail. This tail follow

FIG. 8. Escape time distributions at large times, generati
0,1,2, using 106 trajectories,K56.476 939.
le

l-

-

e

n-

-

a

a power law with an exponent of the order of23.5 which is
compatible with the power law tail of the escape time dis
bution described above. Let us emphasize that at large tim
the long time memory effects are mainly due to the vis
of the orbits to the island generations of higher ord
and thus affect similarly all the characteristic times of t
system.

Let us remark that in previous publications different e
ponents have been reported for characteristic times. In
case of the separatrix map, Chirikov and Shepeliansky@29#
computed the survival probabilityF(t), which is the prob-
ability that a particle near the KAM~Kolmogorov, Arnold,
Moser! surface, will still be ‘‘near’’ that surface at timet.
Up to normalization, this quantity is the Poincare´ recurrence
distribution as referred to in their paper. They found th
F(t) follows a power law with an exponent21.34 for
1!t<105. They also looked at the standard map f
K5Kc50.971 635, and found an exponent20.975 for
102,t,105. For the quadratic map, and initializing particle
in the stochastic sea, outside the stable island for this sys
Karney@7# obtained a power law with an exponent21.45 for
1!t<108. Finally Meiss and Ott@21#, using a Markov tree
model of transport in area-preserving maps, predicted
the distribution of first return times follows a power law wit
an exponent21.96 ~when they include in the model th
largest island chain! and claimed that this exponent is indee
closer to previous numerical works@29,7#, when they im-
proved the approximations responsible for the discrepa
between numerical experiments and their model. This var
of power law exponents of characteristic times related
different area preserving maps and different ranges of
chasticity parameters shows that there is not yet a s
consistent theory predicting universality of these expone
Also a hierarchy of a different type has been proposed
Melnikov @34#. Different maps and different island se
quences and, as we have shown in this paper, different
intervals can give different asymptotic behavior.

s FIG. 9. Recurrence time distribution, stochastic sea initial c
ditions, using 53104 trajectories,K56.476 939.
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VI. CONCLUSIONS

The fine structure of the phase space of Hamiltonian s
tems is the primary origin of anomalous transport. Lo
range correlation effects occur from visits of orbits to boun
ary layers in the vicinity of islands. This phenomenon
generally refered to as the stickiness of the islands. We h
shown that for small changes of the stochasticity param
strong topological changes can occur in the phase portra
the system. As a concrete example we considered in
paper kinetic properties of the standard map near the thr
old of the accelerator mode of period 5 and found a value
K producing an exact self-similar chain of islands associa
with this accelerator mode. Spatiotemporal properties of
island chain have been numerically determined. We h
shown that the kinetics is anomalous near the acceler
mode and corresponds to a superdiffusion process
a characteristic exponent related to the spatiotemp
scaling parameters of the island chain. We also fou
that the asymptotic behavior of the probability distributi
of escape times from boundary domains of the s
similar chain of islands follows a power law, and th
these escape times are renormalized according to the ge
tion of the island considered. Moreover, it was shown t
the exponent of the power law which rules the escape t
distribution is related to the transport exponentm of
Eq. ~1.2!.

Finally, the results of this paper emphasize the link b
tween the self-similarity of the phase space and, hence
topological properties and the kinetic properties of the orb
ys
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which tend to be anomalous because of long lasting mem
effects introduced by this self-similarity. The present calc
lation was performed only for the specific values of the s
chasticity parameter for which there exist specific se
similar island chains near an accelerator island of suffici
length and strong stickiness during the observation tim
Close to these parameter values there exist values for w
the chain has a different sequence of islands or e
has collapsed and another transport law pertains, perhap
lated to much longer time scales. By scanning through
rameter values and observing the birth and destruc
of particular types of island chains we conjecture that
island sequence type is fractal or even multifractal, mak
the transport a very complex function of the map parame
Let us conclude by remarking that we have investiga
local transport properties of the system for very specific
rameter values. These very long time memory effects do
affect the global transport properties except at very la
times.
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