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Modeling the optical constants of solids using acceptance-probability-controlled simulated
annealing with an adaptive move generation procedure
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The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an
optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move
generation procedure was compared against the random move generation procedure on seven multiminima test
functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the
algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was
then applied to fit the model dielectric function to data for platinum and aluminum.@S1063-651X~97!13003-3#

PACS number~s!: 02.70.2c, 78.20.Ci, 78.66.2w
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I. INTRODUCTION

The interpretation of optical spectra is often accomplish
by fitting the model to experimental data. It is usually hard
provide good initial values for adjustable parameters of
model. However, all fitting routines based on classical o
mization algorithms, require initial parameter values close
the final values to provide meaningful solution. Practically
is necessary to rerun the fitting routine many times, wh
changing the initial model-parameter values, before an
ceptable fit is obtained. Even then, there is always a do
whether the obtained solution is really the global minimu

In this paper we propose an efficient and fully automa
alternative to conventional fitting routines, an interesti
simulated annealing-based technique. Due to the natur
this algorithm, initial parameter values are not required. U
like its purely numerical counterparts, this seminumeri
technique efficiently finds the global minimum and acc
rately determines all the adjustable parameters of the mo
without any external supervision.

The simulated annealing algorithm@1# ~SA!, has its ori-
gins in the work of Metropoliset al. @2#. It is based on the
analogy with annealing of solids: the function to be min
mized, called the cost function, is analogous to the ene
regardless of its physical nature. Based on this analog
control parameter, called temperatureT, with the same units
as the cost function is introduced. Starting from an arbitr
initial state, the algorithm generates a sequence of ran
changes of model parameters, or ‘‘moves’’ in parameter s
space. Downhill moves are always accepted, while the
ceptance probability~AP! of an uphill move is given by
Boltzmann distributionp5exp(2DE/T), whereDE is the
change of the cost function andT is the temperature. The
simulated annealing algorithm is actually a reiteration of M
tropolis algorithms, evaluated at decreasing values of
control parameterT @3#. The literature to date@4–11# de-
scribes several different cooling schedules.

In the present work we propose two significant modific
tions to the SA algorithm for functions of continuous va
ables.First, we use the AP rather than the temperature
control the annealing schedule@12#. That means that the AP
551063-651X/97/55~4!/4797~7!/$10.00
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is varied in a prescribed manner in time while the tempe
ture is adaptively changed in accordance with the aver
change in cost function. Therefore, our schedule requires
casionally increasing the temperature to melt the system
zen in local minimum. This feature makes acceptan
probability-controlled simulated annealing~APCSA!,
superior to classical SA in terms of its ability to escape fro
local minima.Second, we improve the move generation pro
cedure. The generator of changes is the important and, p
ably, the most problematical element of the SA algorith
@13#. It was already noted@7,12# that in optimization prob-
lems with a large number of variables, moves which requ
changes in all variables can cause the instabilities in the
lution. The number of variables to be changed in one mov
therefore reduced, and sometimes is chosen randomly@7,14#,
or even reduced to only one variable per move, as in R
@15#. In this paper we propose the adaptive move genera
procedure, based on the idea that the frequency of ma
the move along a certain direction should depend on
sensitivity of the cost function with respect to that variab

In Sec. III we describe the employed model of the optic
constants of metals. Section III is devoted to the descript
of the APCSA algorithm with the adaptive move generati
procedure, while Sec. IV describes tests and application
this algorithm.

II. MODEL FOR OPTICAL DIELECTRIC FUNCTION

It is well known that the optical properties of solids ca
be described in terms of complex optical dielectric functi
ê r(v)5e r1(v)1 i e r2(v). It was shown@16,17# that ê r(v)
could be expressed in the form which separates explicitly
intraband effects~usually referred to as free electron effect!
from interband effects~usually associated with bound ele
trons!. In this paper the following model is used:

ê r~v!5 ê r
~ f !~v!1 ê r

~b!~v!. ~1!

The intraband partê r
( f )(v) of dielectric function is a well

known free electron or Drude model
4797 © 1997 The American Physical Society
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ê r
~ f !~v!512

Vp
2

v~v1 iG0!
, ~2!

while the interband part of the dielectric functionê r
(b)(v) is

a simple semiquantum model resembling the Lorentz re
for insulators

ê r
~b!~v!52(

j51

k f jvp
2

~v22v j
2!1 ivG j

, ~3!

wherevp is the plasma frequency,k is the number of inter-
band transitions with frequencyv j , oscillator strengthf j and
lifetime 1/G j , while Vp5Af 0vp is the plasma frequenc
associated with intraband transitions,f 0 is oscillator strength
for electrons contributing to intraband processes, andG0 is
the intraband damping constant.

We used the following objective function for the mod
parameter estimation:

E~p!5 (
i51

i5N FUe r1~v i !2e r1
exp~v i !

e r1
exp~v i !

U1Ue r2~v i !2e r2
exp~v i !

e r2
exp~v i !

UG2.
~4!

In common situations, at least some of the frequencies of
interband transitions are known from the band structure
culations or can be anticipated from the visible structure
tical constants. Therefore, it is possible to make valid
sumptions only for thev j initial values, while for the other
parameters even the order of magnitude is unknown.

III. DESCRIPTION OF THE ALGORITHM

The APCSA algorithm used here has two nested loops
the outer loop the decrease of the AP is performed dire
@12#, while the control of the acceptance function is return
to the temperature in the inner loop. The outer loop ter
nates if the solidification criterion is satisfied@12,6#, or if an
initially specified maximal number of iterations is reache
The inner loop terminates when the equilibrium condition
satisfied@8#. The quality of the solution obtained by the S
depends not only on the cooling schedule, and move
size, but on the number of parameters to be altered in
iteration as well.

The domain P containing the parameter vecto
p5„p(1),p(2), . . . ,p(N)… is determined by setting th
lower and upper boundaries for each parameter,pl(k) and
pu(k). The efficiency of the generator of changes in the c
figuration depends largely on two elements:~a! number of
variables to be changed in one move, and~b! the move-step
adjustment.

As was mentioned above, in optimization problems wit
large number of variables, moves which require the cha
in all variables~here, parameters of the model! can cause
instabilities in the solution. The number of variables to
changed in one move is often reduced, and sometime
chosen randomly@7,14,12#, or even reduced to only one var
able per move, as in Ref.@15#. However, the random state
generation procedure is far from optimal. We demonstr
here that convergence of the algorithm is accelerated by
ing into account the sensitivity of the cost function with r
spect to the variables. Our algorithm shows the probability
lt
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taking the move along a certain coordinate direction prop
tional to the sensitivity of the cost function with respect
that variable~the adjustable parameter of the model!. This
improves the mobility of the system, which now shows
preference for steeper slopes in either uphill or downhill
rections. Therefore, this generator shows a strong bias
ward the moves that cause the greatest energy differenc

The impact of the step size on the quality of the soluti
has been frequently addressed. Coranaet al. @15# changed
the components of the move-step vector adaptively in or
to maintain an acceptance ratio close to 0.5, at all temp
tures. Most authors considered it important to decrease
move step during the annealing in order to reduce the fl
tuations in the final stage@8,10,11,18,19#. The initial step
size has to be comparatively large to provide a suffici
mobility of the algorithm to cover the entire parameter spa
Here we adopted the suggestion of Catthoor, de Man,
Vandewalle@8#, and reduced the step size in a ‘‘nearly i
verse quadratic’’ manner. When the ratioD(k)/p(k) is less
than 0.005, a further reduction of the move step for t
parameter is stopped.

The pseudocode of the APCSA algorithm and the mo
generation procedure are shown in Figs. 1 and 2, res
tively. At each temperature, for each parameterp(k), we
determine the average of the absolute change in cost func
^uDEuk& by making many random moves for parame
p(k), keeping other parameters fixed. Then, for eachk,
k51, . . . ,N we compute the frequency of changef (k) @cor-
responding to the parameterp(k)# using

f ~k!50.8
^uDEuk&

^uDEuk&max
, ~5!

where^uDEuk&max5max(̂ uDEuk&, k51, . . . ,N). If the fre-
quencyf (k) for changing the parameterp(k) is greater than

FIG. 1. Pseudocode of the APCSA algorithm.
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randomly generated numberpchP@0,1#, parameterpi(k) is
altered topj (k),

pj~k!:5pi~k!1rD~k!, ~6!

wherer is an integer chosen randomly in the set (21,1), and
D(k) is the step size for parameterpi(k). If state pj (k) is
outside the specified boundariespl(k) and pu(k), pj (k) is
assigned the value of the nearest boundary.

In each outer loop, the acceptance probability is lowe
according to the cooling schedule@12#. Acceptance prob-
abilities depending on the outer loop counterM are given by
the normal distribution

pM5p initexp~2M2/2s2!. ~7!

The temperatureTM is then determined as

TM52
^uDEuacc&
ln~pM !

, ~8!

where pM is the desired acceptance probability, a
^uDEuacc& is the average of the absolute change in the c
function at the preceding temperature. This cooling sched

FIG. 3. Cost function vs normalized number of iterations~bot-
tom axis! and number of iterations~top axis! for the functionr (x)
for xiP@220,20#, i51 to 20, with initial values
(25,5,0,25,5)34.

FIG. 2. Pseudocode of the adaptive move generation proced
d

st
le

enables occasional rises of the temperature, where the
notonously decreasing function@21/ln(pM)# provides the
needed average reduction of the temperature.

IV. TESTS AND RESULTS

A. Test functions

In Sec. III we described our APCSA algorithm with th
adaptive move generation procedure. As we have alre
stated, there are two independent features of this algori
that make it superior to other SA algorithms in terms
convergence rate and robustness: first, the replacement o
temperature control of the cooling schedule with direct co
trol of the acceptance probability; and, second, the introd
tion of an efficient move generation mechanism. To inve
gate independently the effect of these two elements,
compared the performance of four algorithms: the APC
algorithm with the adaptive move generation proced

FIG. 4. Cost function vs normalized number of iterations~bot-
tom axis! and number of iterations~top axis! for the function
g(x) for xiP@220,20#, i51 to 20, with initial values
(210,5,10,20)35.

FIG. 5. Cost function vs normalized number of iterations~bot-
tom axis! and number of iterations~top axis! for the function
g(x) for xiP@220,20#, i51 to 50, with initial values
@(210,5,10,20)312,210,5#.

e.
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~APCSA1!; the APCSA algorithm which uses the rando
move generation procedure, proposed by Hsu, Chang,
Chan @7#~APCSA2!; corresponding temperature-controlle
SA algorithms with an adaptive move-generation proced
~CSA1!; and a random move-generation procedure~CSA2!.
Algorithms have been tested on a set of seven multimin
test functions. The first five functions have been taken fr
the literature, while the last two functions are new.

The first two tests were made on the Rosenbrock func
in four and 20 dimensions (R4 andR20), given by

r ~x!5(
i51

n

100~xi112xi
2!21~12xi !

2. ~9!

This function was investigated by Pronzatoet al. @20# for
two, and by Coranaet al. @15# for two and four variables. We
defined the admissible domain of the functionR4 as xi
P@2200,200#, i51 and 4, and for R20 as xi
P@220,20#, i51 and 20. It was interesting to compare o
results forR4 with the results of Coranaet al. Their SA
locates the global minimum for all the starting points trie
achieving the final cost function value of approximate
1027 in all cases. However, their algorithm required 1.3 m

FIG. 6. Cost function vs normalized number of iterations~bot-
tom axis! and number of iterations~top axis! for the function
g(x) for xiP@220,20#, i51 to 100, with initial values
(25,5,0,25,5)320.

FIG. 7. Section of functionf (x) along one axis fora50.2,
b50.1, andc52.
nd

e

a

n
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lion function evaluations to reach the minimum. O
APCSA1 algorithm required less than one-third of this nu
ber to achieve a cost function value of approximately 1024,
being actually limited by the final value of the move st
vector. Obviously, this solution is equally good. All the c
ordinates of the minimum are correct to the fourth significa
digit, and from this point finding the minimum with an arb
trary precision is a trivial task for any gradient method. Fu
ther, we compared the APCSA1, APCSA2, CSA1, a
CSA2 on the Rosenbrock function in 20 dimensions (R20).
Results obtained forR20 are presented in Fig. 3. This show
the cost function vs normalized number of iterations, i.e.,
number of iterations divided by the number of variables~bot-
tom axis! and the number of iterations~top axis! for investi-
gated algorithms. Obviously, with the increased number
variables, the advantages of our adaptive move-genera
procedure and direct control of the acceptance probab
became more pronounced.

A further three tests were performed on the test funct
of Alufi-Pentini, Parisi, and Zirilli@21#, later used by Dek-

FIG. 8. Cost function vs normalized number of iterations~bot-
tom axis! and number of iterations~top axis! for the functionf (x)
for xiP@220,20#, i51 to 20, with initial values
(210,15,10,215)35.

FIG. 9. Cost function vs normalized number of iterations~bot-
tom axis! and number of iterations~top axis! for the functionf (x)
for xiP@210,10#, i51 to 50, with initial values
(25,5,0,25,5)310.
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55 4801MODELING THE OPTICAL CONSTANTS OF SOLIDS . . .
kers and Aarts@22# ~their test problemP8),

g~x!5
p

n Fk1sin2py11 (
i51

n21

~yi2k2!
2~11k1sin

2pyi11!

1~yn2k2!
2G , ~10!

where yi5110.25(xi11), k1510, k251, and xi
P@210,10#, i51 andn. This function has roughly 5n local
minima. In the cited references, it was tested for three v
ables. No test of the global optimizing algorithm is comple
unless it includes problems with a very large number of va
ables. The case of 50 and 100 dimensions, which is m
more than reported in the literature so far, should be regar
as such. Therefore, we tested our algorithm on problemP8
in 20, 50, and 100 dimensions. The obtained results are
sented in Figs. 4, 5, and 6, respectively. Finally, we desig
the test function, given by

f ~x!5(
i51

n

axi
21bxi

2sincxi . ~11!

Section of f (x) along one axis for values ofa50.2,
b50.1, andc52 is shown in Fig. 7. This function resemble
in certain features the paraboloidqn(x) of Coranaet al. @15#,
but actually is a more severe test for SA algorithms. It h
wider minima thanqn(x), and has no vertical edges. Sma
width of the rectangular holes in Coranaet al. is qn(x)
~width equals 0.1 for variables in interval@210 000,
10 000#! prevents such local minima from trapping the alg
rithm in the early phase of the annealing when move-s
size is still large. Figures 8 and 9 show the obtained res
for n520 and 50.

FIG. 10. Cost function vs number of iterations for APCSA a
gorithm with adaptive move generation procedure~solid line! and
APCSA algorithm with procedure of Hsu, Chang, and Chan.

TABLE I. Parameter values for platinum.

j 0 1 2 3 4 5 6

f j 1.10 1.44 3.99 0.17 3.14 4.89 12.
G j 0.08 0.79 4.17 1.26 5.66 14.3 12.
v j 0 0.85 2.39 6.21 9.60 12.6 19.
i-

i-
ch
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e-
d
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-
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It can be concluded that the APCSA algorithm with t
adaptive move generation procedure in all cases achieve
lowest cost function value. Furthermore, an adaptive m
generation procedure not only improves the performance
the APCSA algorithm, but also significantly ameliorates t
CSA algorithm, so that the APCSA algorithm with the ra
dom move generation procedure and the CSA algorithm w
the adaptive move generation procedure perform simila
but the results for both algorithms depend on the initial v
ues. In some cases the CSA algorithm with our move g
eration procedure can obtain the same order of magnitud
the cost function as the APCSA algorithm, or even a sligh
lower value, as shown in Fig. 5. The CSA algorithm of Hs
Chang, and Chan@7#, with a random move generation pro
cedure, is in all cases inferior, i.e., it fails to locate glob
minimum, and achieves the highest cost function value,
from the near-optimal one.

B. Synthetic data

The impact of the state generation procedure on the c
vergence and quality of the solution is also investigated
functions describing the model for the optical constants
metals. Two sets of synthetic data were generated. The
of these is a set ofê r

synt(v) values generated from the mod
described by Eqs.~2! and ~3!. Model parameters~called
‘‘target parameters’’! are chosen to produceê r(v) values
resembling the experimental data for a metal; the second
is obtained by corrupting the first set ofê r

synt(v) data with
additive Monte Carlo-generated Gaussian noise with
quency dependent variance as described in@12#. Fitting both
sets of synthetic data~with and without noise! to the model
was performed starting from several points in parame
space, far from the target position. These experiments c

FIG. 11. Platinum: comparison of the tabulated dielectric fun
tion ~from Ref. @23# — open circles! and model dielectric function
calculated in this study~solid line!.

TABLE II. Parameter values for aluminum.

j 0 1 2 3 4

f j 0.498 0.248 0.045 0.196 0.010
G j 0.044 0.304 0.288 1.502 2.794
v j 0 0.133 1.546 1.802 5.707
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firmed that the initial value of the parameter vector has
impact on the final solution. Figure 10 shows the cost fu
tion vs the number of iterations for both algorithms. A
though both APCSA algorithms finally converge toward t
same cost function value, the algorithm with the adapt
move-generation procedure described here shows sig
cantly faster convergence. Keeping in mind the future ap
cations of this algorithm in real time parametrization pro
lems, the importance of the convergence acceleration
obvious.

C. Application to platinum and aluminum

To illustrate the fitting algorithm described above, w
used the data for two metals having qualitatively differe
optical spectra: platinum as a representative of the trans
metals, and aluminum as a metal exhibiting nearly fr
electron behavior. We used the tabulation of the optical c

FIG. 12. Aluminum: comparison of the tabulated dielect
function ~from Ref. @33# —open circles! and model dielectric func-
tion calculated in this study~solid line!.
ce
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stants of Pt given in@23# based on the study of Weaver@24#.
Weaver used reflectance@25–27# and transmittance@28# data
from a number of sources to obtainn andk by the Kramers-
Krönig technique. Interband transitions for platinum are e
pected, according to@29#, at about 6.3, 7.8, 9.3, and 10.8 eV
Structure in optical constants@24# is evident at about 7.4
9.8, and 19.9 eV. Like the other transition metals, platinu
possesses a characteristic minimum ine r2 ~in the case of Pt
located near 13 eV! with an additional structure at highe
energy. We used six oscillators to model the optical sp
trum of Pt in the region between 0.2 and 20 eV.

The obtained parameters are presented in Table I.
oscillator strength values correspond to the plasma freque
\vp 55.14 eV@30#. Figure 11 showse r1(v) ande r2(v) for
platinum. Tabulated data are shown for comparison.

Both the Drude model@31,32# and the semiquantum
model @33,34# were often employed for the parametrizatio
of the optical constants of aluminum. For fitting we used t
tabulated intrinsic optical constants of aluminum from t
recent study of Rakic´ @33#. Interband transitions are expecte
at about 0.4, 1.5, 2.1, and 4.5 eV. Final parameter values
presented in Table II. The values of the oscillator streng
correspond to the plasma frequency\vp 514.98 eV @33#.
Figure 12 shows excellent agreement between tabul
~open circles! and model~solid line! dielectric functions of
aluminum.

V. CONCLUSION

Our principal aim was to improve the APCSA algorith
for the purpose of modeling the optical constants of soli
The algorithm with the adaptive move generation proced
showed faster convergence compared to the procedure
randomly reduced number of parameters to be change
one iteration. This algorithm was employed for fitting th
model dielectric function to the data for platinum and alum
num. We obtained good agreement between the model
the experimental results.
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