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Modeling the optical constants of solids using acceptance-probability-controlled simulated
annealing with an adaptive move generation procedure
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The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an
optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move
generation procedure was compared against the random move generation procedure on seven multiminima test
functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the
algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was
then applied to fit the model dielectric function to data for platinum and alumif8t063-651X97)13003-3

PACS numbd(s): 02.70—c, 78.20.Ci, 78.66-w

I. INTRODUCTION is varied in a prescribed manner in time while the tempera-
ture is adaptively changed in accordance with the average
The interpretation of optical spectra is often accomplishedhange in cost function. Therefore, our schedule requires oc-
by fitting the model to experimental data. It is usually hard tocasionally increasing the temperature to melt the system fro-
provide good initial values for adjustable parameters of theen in local minimum. This feature makes acceptance-
model. However, all fitting routines based on classical opti{robability-controlled ~ simulated ~ annealing(APCSA),
mization algorithms, require initial parameter values close tUPerior to classical SA in terms of its ability to escape from
the final values to provide meaningful solution. Practically, it/ocal minima.Secondwe improve the move generation pro-

is necessary to rerun the fitting routine many times, whilecedure. The generator of changes is the important and, prob-
bly, the most problematical element of the SA algorithm

changing the initial model-parameter values, before an ac® 31t read tefi7 12| that i timizati b
ceptable fit is obtained. Even then, there is always a dou . was aready no ef7.12 hat in optimization prob-
ems with a large number of variables, moves which require

whether the obtained solution is really the global minimum. . . : e
In this paper we propose an efficient and fully automaticChangeS in all variables can cause the mstabl!mes in the So-
) ; - . . - “lution. The number of variables to be changed in one move is
alternative to conventional fitting routines, an interesting o efore reduced. and sometimes is chosen randpiiy]
simulated annealing-based technique. Due to the nature f even reduced io only one variable per move, as in, Ref.
this algorithm, initial parameter values are not required. Un115]_ In this paper we propose the adaptive move generation
like its purely numerical counterparts, this seminumericalprocedure, based on the idea that the frequency of making
technique efficiently finds the global minimum and accu-the move along a certain direction should depend on the
rately determines all the adjustable parameters of the modedensitivity of the cost function with respect to that variable.
without any external supervision. In Sec. Ill we describe the employed model of the optical
The simulated annealing algorithfi] (SA), has its ori-  constants of metals. Section Il is devoted to the description
gins in the work of Metropolist al. [2]. It is based on the of the APCSA algorithm with the adaptive move generation
analogy with annealing of solids: the function to be mini- procedure, while Sec. IV describes tests and application of
mized, called the cost function, is analogous to the energythis algorithm.
regardless of its physical nature. Based on this analogy a
control parameter, called temperatdrewith the same units
as the cost function is introduced. Starting from an arbitrary !l MODEL FOR OPTICAL DIELECTRIC FUNCTION

initial state, the algorithm generates a sequence of random It is well known that the optical properties of solids can

changes of model parameters, or “moves” in parameter stalfy yegcribed in terms of complex optical dielectric function
space. Downhill moves are always accepted, while the ac-

ceptance probabilit(AP) of an uphill move is given by (@)= é&nlw) Tier(w). It was shown[16,17) that € (w)
Boltzmann distributions= exp(—AE/T), where AE is the f:ould be expressed in the form which separates explicitly the
change of the cost function ar is th’e temperature. The intraband effectgusually referred to as free electron effgcts

simulated annealing algorithm is actually a reiteration of Me_from interband effectgusually associated with bound elec-

tropolis algorithms, evaluated at decreasing values of thgons). In this paper the following model is used:

control parametefl [3]. The literature to dat¢4—11] de-

scribes several different cooling schedules. e(w)=e(w)+ e (w). )
In the present work we propose two significant modifica-

tions to the SA algorithm for functions of continuous vari- )

ables.First, we use the AP rather than the temperature torhe intraband partsEf)(w) of dielectric function is a well

control the annealing schedJl&2]. That means that the AP known free electron or Drude model
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2 .
define domain of possible solutions;

() -1— p . . .
€ (w)=1 F ) 2 discretize the solution space;
o(w+il) 20 He S0 .
set arbitrary initial configuration, N
determine initial temperature 7™ and average cost function (£;) at 7"

Whi'le the inter.band part of the dieleCtri_C funCti@H’)(w) is determine initial frequencies of parameter change;
a simple semiquantum model resembling the Lorentz result a=1; J=1;
for insulators do while (solidification criterion not satisfied and M<M,,,,)

do while (equilibrium condition not satisfied and J<Jp,4x)

k f: 2 generate move;
;(b)( w)=— E N b R (3) evaluate cost function £; in new state p;;
' =1 (w?— w]2) +iol; ' evaluate change in cost function AE;; =E-E;;
apply Metropolis algorithm to determine
wherew, is the plasma frequency, is the number of inter- whether to accept IEOVC;
band transitions with frequenay; , oscillator strengtti; and 'fl(l’;(;’;z fozf‘;iﬁt;lg;‘;"; stato, E=E, prpi
lifetime 10}, while Q,= \/f_owp. is the plasma frequency compute D, Enin(M): T
associated with intraband transitiorig,is oscillator strength end if
for electrons contributing to intraband processes, Bpds JEHL
the intraband damping constant. end do
We used the following objective function for the model ~ ****!:
e used the following objective function for the mode compute (Ewe)((AE):

parameter estimation: compute frequencies of change of parameters;

=N 5 decrease step if Av/p(k)<0.005;
update AP, my =7 ™ exp(-M*/26%);
E( p) = 21 update temperature, Tjs = -(|AE|ee) / In(mp);
| =

end do

€2 wj)— 'E?;p(wi)
ffﬁp(wi)

er1( i) — e @;)
ffi(p(wi)

. . . FIG. 1. Pseudocode of the APCSA algorithm.
In common situations, at least some of the frequencies of the

interband transitions are known from the band structure cal;:

culations or can be anticipated from the visible structure op:[aklng the move along a certain coordinate direction propor-

tical constants. Therefore. it is possible to make valid as:[ional to the sensitivity of the cost function with respect to
) ) o p . that variable(the adjustable parameter of the mgddihis
sumptions only for thew; initial values, while for the other

arameters even the order of maanitude is unknown improves the mobility of the system, which now shows a
P 9 ' preference for steeper slopes in either uphill or downhill di-

rections. Therefore, this generator shows a strong bias to-
ward the moves that cause the greatest energy difference.

The APCSA algorithm used here has two nested loops. In The impact of the step size on the quality of the solution
the outer loop the decrease of the AP is performed directij?@S been frequently addressed. Corabal. [15] changed
[12], while the control of the acceptance function is returnedtn® components of the move-step vector adaptively in order
to the temperature in the inner loop. The outer loop termi{0 Maintain an acceptance ratio close to 0.5, at all tempera-
nates if the solidification criterion is satisfi¢ti2,6], or if an ~ tures. Most authors considered it important to decrease the
initially specified maximal number of iterations is reached.MOVe step during the annealing in order to reduce the fluc-
The inner loop terminates when the equilibrium condition istuations in the final stages,10,11,18,19 The initial step
satisfied[8]. The quality of the solution obtained by the SA Sizé has to be comparatively large to provide a sufficient
depends not only on the cooling schedule, and move stegc’b'“ty of the algorithm to cover the entire parameter space.
size, but on the number of parameters to be altered in ong€re we adopted the suggestion of Catthoor, de Man, and
iteration as well. Vandewalle[8], and reduced the step size in a “nearly in-

The domain P containing the parameter vector V€rse guadratic” manner. When the rat\@k)/p(k) is less
p=(p(1),p(2),...,p(N)) is determined by setting the than 0.005., a further reduction of the move step for that
lower and upper boundaries for each paramepg(lk) and ~Parameter is stopped. _

p.(K). The efficiency of the generator of changes in the con- 1€ pseudocode of the APCSA algorithm and the move
figuration depends largely on two elementar number of generatlon procedure are shown in Figs. 1 and 2, respec-
variables to be changed in one move, dbithe move-step {Vely. At each temperature, for each paramepgk), we

adjustment. determine the average of the absolute change in cost function

As was mentioned above, in optimization problems with a{|AElk) by making many random moves for parameter
large number of variables, moves which require the changB(K), keeping other parameters fixed. Then, for ech
in all variables(here, parameters of the mopl@an cause K=1,... N we compute the frequency of chanffk) [cor-
instabilities in the solution. The number of variables to befésponding to the parametp(k)] using
changed in one move is often reduced, and sometimes is
chosen randomlfj7,14,13, or even reduced to only one vari- (JAE[,)
able per move, as in Reff15]. However, the random state- f(k)=0. (| AE[) max
generation procedure is far from optimal. We demonstrate
here that convergence of the algorithm is accelerated by tak-
ing into account the sensitivity of the cost function with re- where(|AE|,) max=max((|AE|), k=1,... N). If the fre-
spect to the variables. Our algorithm shows the probability ofjuencyf (k) for changing the parametex(k) is greater than

Ill. DESCRIPTION OF THE ALGORITHM

(5



FIG. 2. Pseudocode of the adaptive move generation procedure.

MODELING THE OPTICAL CONSTANTS OF SOLIB . ..

do k=1, Ny,
N=1;
do while (N<N,0)

generate change of p(k);

evaluate cost function E; in new state p;;
evaluate change in cost function AE;=E;-E;;
update cost function E=E;;

update state pi=p;;

end if

N=N+1;

end do

compute {|AE|);
end do
compute {|AEDk max
do k=1, Ny,

compute f{k);
end do

randomly generated numbeg,e[0,1], parametemp;(k) is
altered top;(k),

p;(K):=pi(k)+rA(k), (6)

wherer is an integer chosen randomly in the setl,1), and
A(k) is the step size for parametpr(k). If state p;(k) is
outside the specified boundaripgk) and p,(k), p;(k) is
assigned the value of the nearest boundary.

In each outer loop, the acceptance probability is lowered
according to the cooling schedufd2]. Acceptance prob-

abilities depending on the outer loop countérare given by
the normal distribution

mw=m"exp — M?/202). (7)
The temperaturd,, is then determined as
AE
(1Bl ®
In(ry)

where
(|AE|,0 is the average of the absolute change in the cost
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enables occasional rises of the temperature, where the mo-
notonously decreasing functiot— 1/In(m,)] provides the
needed average reduction of the temperature.

IV. TESTS AND RESULTS
A. Test functions

In Sec. lll we described our APCSA algorithm with the
adaptive move generation procedure. As we have already
stated, there are two independent features of this algorithm
that make it superior to other SA algorithms in terms of
convergence rate and robustness: first, the replacement of the
temperature control of the cooling schedule with direct con-
trol of the acceptance probability; and, second, the introduc-
tion of an efficient move generation mechanism. To investi-

is the desired acceptance probability ang9ate independently the effect of these two elements, we

ompared the performance of four algorithms: the APCSA

function at the preceding temperature. This cooling schedul@d0rithm with the adaptive move generation procedure
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(APCSAY); the APCSA algorithm which uses the random

move generation procedure, proposed by Hsu, Chang, andp

Chan [7](APCSA2; corresponding temperature-controlled
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lion function evaluations to reach the minimum. Our
CSAL1 algorithm required less than one-third of this num-
ber to achieve a cost function value of approximately 4,0

SA algorithms with an adaptive move-generation procedurgeing actually limited by the final value of the move step

(CSAD); and a random move-generation proced{€SA2).

vector. Obviously, this solution is equally good. All the co-

Algorithms have been tested on a set of seven multiminimardinates of the minimum are correct to the fourth significant
test functions. The first five functions have been taken fromdigit, and from this point finding the minimum with an arbi-

the literature, while the last two functions are new.

trary precision is a trivial task for any gradient method. Fur-

The first two tests were made on the Rosenbrock functiother, we compared the APCSA1l, APCSA2, CSAl, and

in four and 20 dimensionsR4 andR20), given by

r(x>=21 100(x; 1~ X2 %+ (1—x;)2. (9)

This function was investigated by Pronzabal. [20] for
two, and by Coranat al.[15] for two and four variables. We
defined the admissible domain of the functi®® as x;
€[—200,20Q, i=1 and 4, and for R20 as x;

e[—20,20, i=1 and 20. It was interesting to compare our

results forR4 with the results of Coranat al. Their SA

locates the global minimum for all the starting points tried,
achieving the final cost function value of approximately

10 7 in all cases. However, their algorithm required 1.3 mil-

120
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60

Test function value

201+

0
X

FIG. 7. Section
b=0.1, andc=2.

of functionf(x) along one axis foma=0.2,

CSA2 on the Rosenbrock function in 20 dimensioR20).
Results obtained fdrR20 are presented in Fig. 3. This shows
the cost function vs normalized number of iterations, i.e., the
number of iterations divided by the number of variaklest-
tom axi9 and the number of iteratior(op axi9 for investi-
gated algorithms. Obviously, with the increased number of
variables, the advantages of our adaptive move-generation
procedure and direct control of the acceptance probability
became more pronounced.

A further three tests were performed on the test function
of Alufi-Pentini, Parisi, and Zirilli[21], later used by Dek-
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FIG. 10. Cost function vs number of iterations for APCSA al-  FIG. 11. Platinum: comparison of the tabulated dielectric func-
gorithm with adaptive move generation proced(selid line) and  tion (from Ref.[23] — open circley and model dielectric function

APCSA algorithm with procedure of Hsu, Chang, and Chan. calculated in this studysolid ling).
kers and Aart$22] (their test problenP8), It can be concluded that the APCSA algorithm with the
n—1 adaptive move generation procedure in all cases achieves the
T o L2 : . lowest cost function value. Furthermore, an adaptive move
9(x) n kysirPmys + .21 (i~ ko) (1 kasiP Y g) generation procedure not only improves the performance of

the APCSA algorithm, but also significantly ameliorates the
CSA algorithm, so that the APCSA algorithm with the ran-
dom move generation procedure and the CSA algorithm with
the adaptive move generation procedure perform similarly,
where y;=1+0.25(;+1), k;=10, k,=1, and x; but the results for both algorithms depend on the initial val-
e[—10,10, i=1 andn. This function has roughly Glocal ~ ues. In some cases the CSA algorithm with our move gen-
minima. In the cited references, it was tested for three vari€ration procedure can obtain the same order of magnitude of
ables. No test of the global optimizing algorithm is completethe cost function as the APCSA algorithm, or even a slightly
unless it includes problems with a very large number of varilower value, as shown in Fig. 5. The CSA algorithm of Hsu,
ables. The case of 50 and 100 dimensions, which is mucfhang, and Chafi7], with a random move generation pro-
more than reported in the literature so far, should be regardegedure, is in all cases inferior, i.e., it fails to locate global
as such. Therefore, we tested our algorithm on prodkgn  minimum, and achieves the highest cost function value, far
in 20, 50, and 100 dimensions. The obtained results are prétcom the near-optimal one.

sented in Figs. 4, 5, and 6, respectively. Finally, we designed

+(yn—ko)?|, (10)

the test function, given by B. Synthetic data
n The impact of the state generation procedure on the con-
f(x)zz aXi2+ bxizsincxi i (11)  vergence and quality of the solution is also investigated on
i=1

functions describing the model for the optical constants of
, , metals. Two sets of synthetic data were generated. The first
Section of f(x) along one axis for values 08=0.2,

b=0.1, andc=2 is shown in Fig. 7. This function resembles of thege is a set o;ffym(‘") values generated from the model
in certain features the parabolaid(x) of Coranaet al.[15], ?escrlbed by Eqs(2’) and (3). Model parar;neter:{called
but actually is a more severe test for SA algorithms. It hastarget parameters)' are chosen to produce () values
wider minima thang,(x), and has no vertical edges. Small resembling the experimental data for a metal; the second set
width of the rectangular holes in Corare al. is g,(x)  is obtained by corrupting the first set ef"{w) data with
(width equals 0.1 for variables in intervdl—10000, additive Monte Carlo-generated Gaussian noise with fre-
10 00Q) prevents such local minima from trapping the algo-quency dependent variance as describgd #). Fitting both
rithm in the early phase of the annealing when move-stepets of synthetic datéwith and without noisgto the model

size is still large. Figures 8 and 9 show the obtained resultwas performed starting from several points in parameter

for n=20 and 50. space, far from the target position. These experiments con-
TABLE |I. Parameter values for platinum. TABLE Il. Parameter values for aluminum.

j 0 1 2 3 4 5 6 ] 0 1 2 3 4

f; 1.10 1.44 3.99 0.17 3.14 4.89 12.8 f; 0.498 0.248 0.045 0.196 0.010

T 0.08 0.79 4.17 1.26 5.66 14.3 12.0 T; 0.044 0.304 0.288 1.502 2.794

o] 0 0.85 2.39 6.21 9.60 12.6 19.3 w;j 0 0.133 1.546 1.802 5.707
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stants of Pt given if23] based on the study of Weavie4].
Weaver used reflectanf@5-27 and transmittancg28] data

% e from a number of sources to obtainandk by the Kramers-
100 | R Kronig technique. Interband transitions for platinum are ex-
pected, according t29], at about 6.3, 7.8, 9.3, and 10.8 eV.
Structure in optical constan{®4] is evident at about 7.4,
9.8, and 19.9 eV. Like the other transition metals, platinum

1000 p

o “En N possesses a characteristic minimunejg (in the case of Pt
<1 L located near 13 eMwith an additional structure at higher
LD model % energy. We used six oscillators to model the optical spec-
01L © tabulated data ’ trum of Pt in the region between 0.2 and 20 eV.

, The obtained parameters are presented in Table I. The
o - ” oscillator strength values correspond to the plasma frequency
: Photon energy (eV) hw, =5.14 eV[30]. Figure 11 shows,;(w) and €r2(w) for
platinum. Tabulated data are shown for comparison.
FIG. 12. Aluminum: comparison of the tabulated dielectric Both the Drude model31,37 and the semiquantum

function (from Ref.[33] —open circley and model dielectric func- model [33_'34] were often emplo_yed for thg parametrization
tion calculated in this studgsolid line). of the optical constants of aluminum. For fitting we used the

tabulated intrinsic optical constants of aluminum from the
recent study of Rakif33]. Interband transitions are expected
firmed that the initial value of the parameter vector has naat about 0.4, 1.5, 2.1, and 4.5 eV. Final parameter values are
impact on the final solution. Figure 10 shows the cost funcpresented in Table Il. The values of the oscillator strengths
tion vs the number of iterations for both algorithms. Al- correspond to the plasma frequentw, =14.98 eV[33].
though both APCSA algorithms finally converge toward theFigure 12 shows excellent agreement between tabulated
same cost function value, the algorithm with the adaptivelopen circley and model(solid line) dielectric functions of
move-generation procedure described here shows signifaluminum.
cantly faster convergence. Keeping in mind the future appli-
cations of this algorithm in real time parametrization prob- V. CONCLUSION
lems, the importance of the convergence acceleration is
obvious.

Our principal aim was to improve the APCSA algorithm
for the purpose of modeling the optical constants of solids.
The algorithm with the adaptive move generation procedure
showed faster convergence compared to the procedure with

To illustrate the fitting algorithm described above, werandomly reduced number of parameters to be changed in
used the data for two metals having qualitatively differentone iteration. This algorithm was employed for fitting the
optical spectra: platinum as a representative of the transitiomodel dielectric function to the data for platinum and alumi-
metals, and aluminum as a metal exhibiting nearly freenum. We obtained good agreement between the model and
electron behavior. We used the tabulation of the optical conthe experimental results.

C. Application to platinum and aluminum
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