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Phase transitions and anisotropic responses of planar triangular nets under large deformation

Dennis E. Discher,* David H. Boal, and S. K. Boey
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 18 September 1996!

Responses of triangular networks in large reversible deformation are studied analytically at zero temperature
and by Monte Carlo simulation at nonzero temperature. Exact expressions for the elastic strain energy at zero
temperature are derived for several models in which the network potential energy depends on either the length
of the network element~i.e., central force interactions! and/or the area of each network triangle. For nets of
Hookean spring elements having a nonzero force-free length, cubic terms arise in the strain energy through the
sixfold symmetry of the network, and thereby break the symmetric response at small strain. Because of the
symmetry of the two-body potential and the anisotropy of the network, pure compression of the Hookean
spring net leads to a martensiticlike phase transition at all finite temperatures studied. Networks of elemental
tethers or springs that have a zero force-free length balanced against a three-vertex potential energy that rises
with decreasing triangle area~to emulate volume exclusion in polymer networks! do not undergo a phase
transition, although inclusion of a maximum tether length~to model the polymer chains’ contour limits! reveals
a simple but distinct type of triangular net anisotropy.@S1063-651X~97!10104-0#

PACS number~s!: 03.20.1i, 87.22.Bt, 68.60.Bs, 64.70.2p
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I. INTRODUCTION

A remarkable feature of planar structures with local s
fold symmetry is that theycanappear mechanically isotropi
regardless of other intrinsic properties~see, for example, Ref
@1#!. Elastic sixfold structures thus can be assembled fr
identical elements having arbitrary interactions, and yet s
structures require just two isotropic material constants~e.g.,
shear modulus and compressibility! to describe their re-
sponse adequately within at least some small regime
strain. This fact is especially pertinent to understandin
range of sixfold structures including ultrasoft cell membra
cytoskeletons @2–4# and certain thin, nanostructure
C6-symmetric sheets@5#. Such structures raise the natur
question: under what conditions and in what ways does
mechanical response begin to reflect more of the underly
sixfold symmetry?

The present work focuses on triangulated network mod
under large, elastic deformation. As a partial motivation
this study, mesoscopic views of real cell membrane cy
skeletons in deformation show them to be capable of sust
ing very large strains, including very large compress
strains@3#. In the conventional thinking about elasticity as
energy expansion in a strain measure, large deformation
troduces higher-order terms which are associated wit
range of phenomena. One of the most remarkable and
studied is the martensitic transition which refers to a str
tural, reordering transformation in which no atomic diffusio
is thought to occur@6#. Many such transitions, useful fo
smart materials@6#, are held to be strongly first order becau
of cubic strain terms in the free energy@7#. However, in
some of the driven martensitic transitions, particularly tho
in which moderately large displacements~;10% strains! oc-
cur, diffusion may not be completely absent@8#. Unlike non-
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covalently bonded systems, the networked systems anal
here are permanently tethered together, and strictly main
their connectivity and topology, by explicit constructio
even at infinite temperatures. Thus all geometric transform
tions of the network occur in the absence of long-range
fusion.

Triangulated networks are assembled from linear e
ments or bonds joined at sixfold junctions@Fig. 1~a!#. The
linear elements are infinitely thin hard rods in the sense
they are not permitted to overlap except at the sixfold ve
ces@9#. At this microscopic level, energetics could be a fun
tion of ~i! the distance between vertices~i.e., central force
interactions!, ~ii ! the area of a triangle circumscribed by e
ements, and/or~iii ! the angle between elements such as i
Keating potential@10#. In this work we consider only the
simplest, nearest-neighbor examples of the first two type
interactions, the latter of which has been examined only
other contexts@11#. Also, whereas similar networks fluctua
ing in three dimensions have been studied in efforts at
derstanding aspects of thermal bending undulations
plane-projection elasticity@12# in addition to so-called
stretching ridges arising in bending@13#, only in-plane mo-
tions of the network junction points or particles are permitt
in the present studies. At least one unusual material featu
negative Poisson ratio, is already known to arise whe
moderate isotropic tension is applied to such planar trian
lar nets of ~i! Hookean springs having nonzero restin
lengths or~ii ! network elements having only a finite max
mum length~i.e., square-well potentials! @9#.

Before outlining the format of the present paper, we fi
very briefly introduce what may be the most interesting fin
ing in this work. A simple, planar triangular network o
springs of fluctuating lengthS is once more considered. Th
elemental energetics are, in this case, assigned
innocuous-looking Hookean formU5 1

2ksp(S2S0)
2, where

ksp is the fixed spring constant andS0 is the fixed rest length.
Under a compressive network pressureP, a discontinuity
appears in the average network area,^A& @Fig. 1~b!# over a
.,
4762 © 1997 The American Physical Society
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55 4763PHASE TRANSITIONS AND ANISOTROPIC RESPONSES . . .
wide range of fixed temperaturesT5kspS0
2/kB ~wherekB is

Boltzmann’s constant!. These results are obtained by Mon
Carlo simulations in which each ofN nodal particles of the
net is moved within the plane according to the usual Bo
mann weighting scheme@9#. The geometry~area and shape!
of the periodic box, as conjugate to a set pressure, is allo
to fluctuate through collective, affine motions of the nod
Detailed features of the noted phase transition, such as
teresis, are elaborated upon in the remainder of this pa
along with an effort to rationalize the phenomena within t

FIG. 1. Finite-temperature simulations of Hookean spring n
works under zero stress or compression.~a! Sample configuration of
an unstressed Hookean spring net~N5122; P50; kBT/kspS0

25
1
12!

in a periodic box~dashed line!. The underlying gray rectangle with
sides (S0 AN) by @()/2)S0AN# defines the zero-temperature ar
AT505N()/2)S0

2. ~b! Low-temperature isotherms on the compre
sion half of the plane. Temperatures given under each set of cu
are in dimensionless units ofkBT/kspS0

2. Squares indicate simula
tions that were started in the above rectangular state. Triangle
dicate simulations that were started in a state where the long sid
the box was 1.33 (S0AN), and the short side was 0.0
@()/2)S0AN#. The system size for the lowest temperature of1

100

was N542. The system sizes for the temperature of1
18 were N

562 ~crosses! and N582 ~circles!; hysteresis was minimal fo
these two system sizes. The system sizes for the temperature112
wereN582 ~inner loop! andN5162 ~outer loop!. The system size
for the temperature of19 was N5242; a system of sizeN5122

showed undetectable hysteresis. The inset figure gives, as a fun
of temperature, the stress-free area^A&0 scaled byAT50 . Corre-
sponding to ideal gas behavior as described in the text, the slop
the heavy line is23. Lines through the simulation data are drawn
guide the eye.
-

ed
.
s-
er

context of more general models and mean-field ideas inc
ing large deformation elasticity and Landau theory. Parti
lar attention is given to anisotropic responses which a
from the sixfold symmetry of various network models i
cluding one class of Hamiltonians which is introduced as
effective representation of a triangular network of se
avoiding polymer chains.

The format of the paper is as follows: first, formalism
and definitions of large deformation elasticity as applied
triangular networks, including geometric and energetic ide
are enumerated in Sec. II. Then, as the first of three spe
models within a general class of Hamiltonians, the Hooke
spring net is thoroughly studied in Sec. III at selected te
peratures from zero to infinity and, most notably, under co
pression. In Sec. IV, square-well networks which lack
intrinsic energy scale are studied by both simulation a
mean-field methods. Section V introduces and discusse
model closely related to both previous models, but intend
to capture distinguishing features of cell membrane cyto
eletons. Conclusions are summarized in Sec. VI.

II. PRELIMINARIES: ELASTICITY
OF TRIANGULAR NETS

Large deformation elasticity@14–16# subsumes the more
specialized and well-studied theory of infinitesimal deform
tion ~see, for example, Ref.@1#!, and proves useful here
Application, in Sec. II A, of some of large deformation ela
ticity’s simplest tenets to the homogeneous deformation
triangular networks serves to identify key concepts. Af
first introducing expressions pertinent to network geome
general aspects of theC6-network response, including zero
temperature energetics, are elaborated upon in Sec. II B f
particular class of network Hamiltonians. Two calculation
methods are used in our study of networks under large
formation: mean-field approaches are given in Sec. II
while computer simulation techniques for periodica
bounded networks at non-zero temperature and stress
outlined in Sec. II D.

A. Network deformation

A reference configuration for the deformation is taken
be a unit plaquette with linear material elements all of len
ur i j u5Sref ~Fig. 2!. In deformation, the plaquette is mappe
affinely into a new configuration constrained only byz•(r i j
3r ik).0 ~iÞ jÞk; no sum on indices of vectors!, wherez
is the normal to the plane and definitions of the neare

t-

-
es

in-
of

f

ion

of

FIG. 2. Sample deformation of a plaquette parallelogram fr
the reference configuration where all elemental lengths areSref .
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4764 55DENNIS E. DISCHER, DAVID H. BOAL, AND S. K. BOEY
neighbor vectors should be apparent from the figure. T
in-plane deformation mapG takes the formxa5GaBXB
~a,B51,2; sum on repeated indices of tensor compone!
and, by the definition of affineness, the four components
the tensorG are taken to be spatially uniform. The notation
convention employed for deformation and stress variab
@14–16# is that lower-case letters, including indices, refer
the space of deformed configurations, while capital lett
refer to the undeformed or reference configurational spa
as the same set of basis vectors is used throughout this w
this convention here serves primarily to emphasize what c
figurational space, deformed and/or undeformed, a stres
strain quantity belongs to. For simplicity, we designatea
5G11, b5G12, c5G21, and d5G22. The distances
ur i j u5(r i j •r i j )

1/2 ( iÞ j ) between the particles of Fig. 2 be
come

ur01u5
1
2Sref@~2a1b) !21~2c1d) !2#1/2,

ur02u5
1
2Sref@~a1b) !21~c1d) !2#1/2, ~1!

ur03u5Sref@a
21c2#1/2.

Settingc50 merely removes a pure rigid body rotation. T
density of particles relative to the reference configurati
with one particle per plaquette, may be shown to ber̄
51/detG. A stretch tensorL also may be defined throug
L25GTG, so that the roots of the eigenvalues ofL2 gives
surface stretchesl I in principal directions. The conventiona
Lagrangian strain tensorE5 1

2(L
22I ) @1,14#, contains a qua-

dratic term missing in the infinitesimal elasticity theory b
essential to keep in large deformation. Components ofE are
E115

1
2(a

21c221), E225
1
2(b

21d221), and E125E21
5ab1cd. In a biaxial deformation, off-diagonal strain com
ponents vanish, so that selecting thex and y axes as the
principal directions leads tob5c50, l15a, and l25d.
The stretches may then be approximated by the princ
strainsE1 andE2 asl I511EI2

1
2EI

21 1
2EI

31••• .
The reference configuration of Fig. 2 can tile a plane a

thereby giveC6 symmetry. An irreducible representation fo
this symmetry group@17# may then be formed from thre
combinations of the strain components:

h15tr E,

h25
1

&
~E112E22!, ~2!

h35E12.

Eachh i may later be considered a possible order param
in a Landau theory@17#. Altogether, theh i form a basis for
exactly four independent combinations of deformation m
sures invariant to transformation of the planar reference s
@18#,

I 15tr E5h1 ,

I 25detE5 1
4h1

22 1
2 h2

22h3
2, ~3!
e

s
f
l
s

s
e;
rk,
n-
or

,

al

d

er

-
te

I 35E11@~E1113E22!
2212E12

2 #52h1
323h1h2

21&h2
3

26h3
2~h11h2& !,

I 45E12@3~E112E22!
224E12

2 #52h3~3h2
222h3!.

The latter two invariants are clearly of orderE3, and are
particular to theC6 symmetry. Also, the linear combinatio
(2I 114I 211) is necessarily an invariant simply equal
1/r̄2 and may thus be used in place of eitherI 1 or I 2 .

B. Network response: Hamiltonian
and zero-temperature elasticity

Typically, the elastic free energy per reference volume
area is assumed at the outset to be a Taylor expansion
suitable deformation measure such as the Lagrangian s
~see, for example, Ref.@1#!

W̃5W̃~T,E!5CABEAB1
1

2!
CABCDEABECD

1
1

3!
CABCDEFEABECDEEF1••• . ~4!

As in a Landau theory, a reduction in terms is often achiev
by using symmetries of the undeformed structure to simp
the strain energy to a polynomial in invariants, an approa
quite general even for large deformation@18#. An isotropic
elastic surface is an important example that has an en
written exclusively in terms ofI 1 and I 2 .

For the present analysis, simple interaction potentials
mit a more microscopic starting point than Eq.~4!. Networks
are assembled fromn-monic springs~n even,n52 is har-
monic!, each having a spring constantksp (>0) and a resting
lengthS0 (>0). Also, each triangle of adjacent springs e
fectively may have a potential energy dependent on the
angulated area. Superposition of these two energy sto
modes leads to a general class of discrete system Ham
nians

H5
1

2! (i j
net

1

n
ksp@~r i j •r i j !

1/22S0#
n1

1

3! (i jk
net

f ~Aref /Ai jk !.

~5!

In this expression, the deformed triangle area is given by
three-vertex quantityAi jk5 1

2ur i j3r iku, and the reference tri-
angle area isAref5()/4)Sref

2 . Thus r̄5Aref /Ai jk is a spa-
tially independent constant in a homogeneously deform
network. Figure 3 shows some of the potential forms rep
sented by Eq.~5!.

In the zero-temperature limit, the average state and o
properties are just those, in this case, of perfectly orde
homogeneous networks. That is, any given plaquette c
figuration is assumed to be representative of a homo
neously deformed net. Within this limit where ensemble a
eraging is trivial, and in terms of the elemental lengths a
the relative density, anexactexpression for the elastic strai
energy per reference area is
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W̃5H/2Aref5S)2 Sref
2 D 21H 1n ksp(

i51

3

~ ur0i u2S0!
n1 f ~ r̄ !J .

~6!

The relevant energy scale iskspSref
2 /kBT, a ratio which goes

to infinity in theT50 limit. In this limit, specification of the
various microscopic parametersn, ksp, etc. allows one to
determine the exact form of the strain energy in terms
desired strain variables, notably invariants of Eq.~3!. The
tensions~force per length! arising within a network in a
given state of strain are then readily calculated fromTab
5 r̄ GaC]W̃/]GbC , and a two-dimensional internal pressu
is identified asP52 1

2trT. With Ã as the area of either
plaquette or full network, the compression modulus is th
Ka52ÃdP/dÃ. Appendix A elaborates some useful simp
fications in biaxial deformation.

C. Nonzero pressures and temperatures in mean field

In terms of an applied surface pressureP at zero tempera-
ture, the Gibb’s free energy per reference area,G̃
5G̃(T,P), should generally be minimized at equilibrium,

FIG. 3. Dimensionless tether potentials vs dimensionless b
length. Leftmost panel: examples ofn-monic tether potentials in
which S̄5S/S0 , (1/n)kspS0

2/kBT51, and f (Aref /Ai jk)50. Right-
most panel: effective tether potential whenS050, S̄5S/Sref , n
52, 12kspSref

2 /kBT51, andf (Aref /Ai jk) is taken to be 1/S̄
2 by assum-

ing equilateral triangles.
f

n

the absence of other constraints. It is simply the Legen
transform of a strain energy density

G̃T505W̃1P/ r̄. ~7!

Note that the last term is just the appropriate pressure-
work @for an analysis of martensitic transitions using Eq.~7!,
see Ref.@19##. As a function of the biaxial deformation vari
ablesa andd, Fig. 4~a! shows the (1/r̄) surface, which, in
Eq. ~7!, is just theP-scaled second term added toW̃.

For temperatures greater than zero, configurational fl
tuations of the representative plaquette~Fig. 2! may be
evaluated more rigorously via a partition functionZP . The
model is still a homogeneous net mean-field, model a
amounts to an integral over the configuration space~or at
least the important regions! mapped out by the plaquette’
fluctuating sides. In terms of the coordinates of particle
and 3:

ZP5E x3dx3E dy2dx2exp@~2H1Px3y2!/kBT#. ~8!

Of note, the expression forZP published previously@9# had
an incorrect weight forx3 . ZP is readily reduced to the one
dimensional integral for a fluctuating equilateral triangle
integrating overd functions aty25()/2)x3 andx25

1
2x3 . In

special cases~see Sec. IV A!, the fluctuating equilateral tri-
angle model can be evaluated analytically; numerical in
gration is otherwise straightforward. The free energyG̃5
2kBT lnZP , as well as thermal averages including the av
age area per plaquette,^A&5^x3y2&, may readily be deter-
mined.

Importantly, in the above mean-field models, eve
plaquette of a network is forced to be the same, hence
interplaquette correlations and stress gradients are expli
neglected. This restriction is absent in network simulation

D. Nonzero pressures and temperatures
by Monte Carlo simulation

As described briefly in Sec. I, full network simulation
can be conducted by Monte Carlo methods over a large t

d

midway
FIG. 4. Strain energy contours at zero temperature as a function of the biaxial deformation variablesa and d. The energy scale is
arbitrary.~a! Pressure times area.~b! Hookean spring model.~c! Polymer net model. The dashed curve in~b! approximates the transition
trajectory to thea-axis boundary when compression is applied to the Hookean spring model; a saddle-point barrier energy lies
between the two endpoints.
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perature rangeT.0. Nets are placed in a periodic box o
reference dimensionsLY3LX : an M3M array ofN5M2

vertices has a rectangular reference sizeLY5M ()/2)Sref
3LX5MSref . In biaxial deformation,a5Lx /LX and d
5Ly /LY . Both the positions of the vertices themselves,
well as the box shape and dimension, change during
Monte Carlo simulation. Each attempt to move a particle t
different position, or change the value ofLx or Ly , or the
angle between the sides, is accepted or rejected accordi
the usual stress ensemble Boltzmann weight. The same b
procedure has been used previously to determine ave
properties, e.g., ^A&, and fluctuation properties, e.g
Ka /kBT5^A&/(^A2&2^A&2), of networks under isotropic
tension@9#. Further details on algorithms and methodolo
can be found in Appendix B of this paper and the append
of Ref. @9#.

III. HOOKEAN SPRING NETWORKS

In this section we focus on Hamiltonians of Eq.~5!, where
S0.0 and f ( r̄)50. We report results for several values
the power-law exponentn, but give most attention to
Hookean spring networks which are defined byn52 ~see
Fig. 3!. It is further assumed for now thatS05Sref .

A. T50 deformation energy

For this Hookean spring network, theT50 strain energy
surface~with b5c50! is shown in Fig. 4~b!: note the dis-
tinctive asymmetry about the linea5d. In biaxial deforma-
tion, the implicit square root in theexactstrain energy of Eq.
~6! is expanded@29# about the reference state of (a5l1)
5(d5l2)51 to yield

W̃/~ksp) !5 1
8 ~3E11

2 12E11E2213E22
2 !2 1

32 ~11E11
3 19E22

3

13E11
2 E2219E22

2 E11!1O~E4!. ~9!

Anisotropy is evident at third order~e.g., unequal coeffi-
cients forE11

3 andE22
3 !. It follows that there must be a cubi

term in h2 . Indeed, in terms of theh’s @Eq. ~2!# or
C6-invariants@Eq. ~3!# and for acompletely arbitrarydefor-
mation

W̃5 1
2Ka

0h1
21 1

2m0~2h2
214h3

2!2 1
8 ~ksp) !@4h1

312&h2
3

112h1h2
2124h1h3

2212&h2h3
2#1O~E4!

5 1
2Ka

0I 1
21 1

2m0~ I 1
224I 2!2 1

8 ~ksp) !

3@9I 1~ I 1
224I 2!12I 3#1O~E4!, ~10!

In Eq. ~10!, the surface bulk and shear moduli are identifi
at P50 ~superscripts denoteT50! as Ka

05 1
2(C1111

1C1122)5
1
2@(l

012m0)1l0#5 1
2ksp), and m05 1

2(C1111

2C1122)5
1
4ksp). These giveKa

0/m052, a well-known re-
sult for two-dimensional~2D! triangular nets of harmonic
springs. Hence the symmetry at the order of the quadr
strain in Eq.~9! is captured in Eq.~10! with an isotropic
surface response; i.e., the quadratic terms are accounte
with I 1 and I 2 @30#. Third-order terms in strain arise from
I 1 as well asI 2 , but these contributions are always symm
ric ~i.e., permutable inEIJ!; the invariantI 3 , characteristic of
s
e
a

to
sic
ge

s

ic

for

-

the sixfold symmetry of the network breaks the symmet
response at this order, and is directly responsible for
presence of the termh2

3. Of importance to analyses in Se
IV and in contrast to developments above, the irreduci
quadratic form of the strain energy for a planar structure
C2 symmetry generally has four rather than just two distin
coefficients in

W̃5
1

2!
C1111E11

2 1
1

2!
C2222E22

2 1C1122E11E22

12C1212E12
2 1O~E3!. ~11!

B. Phase transition in compression

It has been shown@9# that, at low temperature, a sprin
network under tension is well described by a mean-fi
model in which all springs have the same lengthS5ur01u
5ur02u5ur03u, i.e., equilateral triangles. The zero-
temperature surface bulk and shear moduli in this mean-fi
model are given fully as a function of pressure by

Ka
0/ksp5

)

2
$11P/)ksp%, ~12a!

m0/ksp5
)

4
$12)P/ksp%, ~12b!

while the zero-temperature area per triangle is

^A&05~)/4!S0
2/$11P/)ksp%

2. ~12c!

From Eq. ~12a!, Ka
0 vanishes at the isotropic tensio

2ksp), and the network area expands without bou
asymptotic to this tension.

Keeping in mind the key assumption that Eqs.~12! apply
to homogeneous networks ofequilateraltriangles, the infini-
tesimal shear modulusm0 is seen to vanish under compre
sion atP5ksp/) andS5 3

4S0 . However, if one now con-
siders microstates other than equilateral triangles, then,
much smaller compression ofP*5()/8)ksp the free energy
will be minimized with a network area of zero, such that t
value of the pressure-area contribution vanishes.Each
plaquette becomes a line. Just belowP* , the ground-state
plaquette is an equilateral triangle of side89S0 ; just above
P* , this changes to a ‘‘crushed’’ isosceles triangle with tw
sides of length23S0 and one side of length43S0 , as shown in
Fig. 5~a!. In the combined free-energy surfaces of Figs. 4~a!
and 4~b!, which together represent Eq.~7!, the ground state is
shifted from the symmetric configurationa5d51 at small
P to the global energy minimum atd50, a5 4

3 when the
pressure exceedsP* . Importantly, at the transition and whe
b50, ~i! h3 does not change,~ii ! h1 is a

2 in the equilateral
state and12a

2 in the crushed state, and~iii ! h2 is 0 in the
equilateral state and (&/4)a2 in the crushed state. Thush2
is the candidate order parameter most appropriate to
transition. Note that the crushed state is a ‘‘boundary sta
with nonzero gradients in strain energy.

TheT50 energy surfaces defined by the progressive
pansion in Eq.~10! show that the quadratic terms in th
strain, i.e., the isotropic terms, make the crushed state a
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bal minimum@see Fig. 5~b!# under suitable compression. Th
crushed state is threefold degenerate$(a,b,d): ( 43,0,0),
@ 2
3,0,6(2/))] %, rather than sixfold, as determined throu
the asymmetry of theC6 invariant I 3 . Furthermore, given
the h2

3 term in the energy that results fromI 3 , this
symmetry-breaking crushing transition must be a first-or
transition in the context of a Landau theory@17#. This may
be expected to hold true regardless of temperature since,
the transition, the most importanth2 contributions to the free
energy sum to

A~P,T!h2
21B~P,T!h2

31C~P,T!h2
41••• , ~13!

and sinceA(P,T) but not B(P,T) will vanish at the transi-
tion. In the (P,T) plane, the phase boundary should th
appear like the liquid-solid or isotropic-nematic lines in lac
ing a critical point at any finite (P,T).

In many martensitic transitions, density changes oc
without driving the transition, but they nonetheless clea
signal the transition@19#. For the current Hookean sprin
model, area versus pressure isotherms crossing a coexis
region were described at the outset with Fig. 1~b!. At low
temperature, the transition pressure for the discontinu
martensitic-like transformation is modeled well~Fig. 6! sim-
ply by destabilizing the ‘‘crushed’’ phase with the fre
energy~entropy! change for an ideal gas of network node
Thus, in much the same way as was done in early mode
polymer networks@20,21#, the vertices are considered a g
of fluctuating nodes, so that

G̃T.0'G̃T501r0kBT lnr̄. ~14!

The quantityr0 is the number of nodes per area at ze
pressure and temperature, i.e.,N/AT50 . This ideal gas en-

FIG. 5. C6–C2 transition of Hookean spring model at zero tem
perature.~a! The ground-state plaquette is an equilateral trian
aboveP* and a ‘‘crushed’’ isosceles triangle belowP* . Numbers
refer to the length of the indicated side scaled byS0 . ~b! Free
energies of the plaquette under compression.
r

ear

s

r
y

nce

us

.
of

tropy change term, it may be remarked, also can be der
as theO(T) term @22# in the equilateral triangle version o
ZP reduced from Eq.~8!. Motivation for this approximation
is provided in part by the apparent randomness in the sam
configurations of the network near the transition as shown
Fig. 6.

Although the mean-field expression for equilateral t
angles provides a reasonably good description of the netw
area under moderate tension for low temperatures, netw
compression is more difficult to predict quantitatively ev
with the more general partition function of Eq.~8!. As an
example of the difficulty, the inset to Fig. 1~b! for ^A&0 vs
temperature demonstrates a feature atypical of solids:
stress-free area decreases as the temperature is initiall
creased from zero. NearkBT/kspS0

2'0.2, a minimum is
reached, and, above this temperature, network area gr
asymptotic to the linear scaling expected of ideal gas beh
ior. Such a negative coefficient of thermal expansion at sm
temperatures is well known for pure ice near zero K@23#,
and is also expected of a 1D polymer under a near-z
force @24#. The single-plaquette, mean-field integral of E
~8! shows the same qualitative behavior. The initial dow
ward trend in area seems due to the very ‘‘open’’ lo
temperature structure, like the H-bonded networks in i
which allow for a predominance of internal thermal motion
Entropic filling of interstitial voids reverses the trend in the
spring networks, and gives way eventually to an ideal gas
network nodes in the high temperature limit.

Networks at infinite temperature (ksp50) can be investi-
gated only forP.0. Simulated networks in this limit show
that P^A&/N5kBT@11O(1/N)#, Ka5P, and the Young’s
moduli vanish~N582, 122, 202, 242, or 302!. This implies

e

FIG. 6. Phase boundary in the pressure-temperature plane
Hookean spring networks under compression. The arrow points
ward a data point atkBT/kspS0

251. The dashed line refers to th
T50 model, where an ideal gas entropy has been added. The
lines through the simulation data are drawn to guide the eye.
two inset sample configurations of a large Hookean spring net
moderately high temperature~N5482; kBT/kspS0

25
1
5! are shown at

pressures just below and just above the transition~P/ksp51.8 and 2,
respectively!; the periodic box is hidden from view.
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that the three-particle constraintz•(r i j3r ik).0 does not
contribute to the average internal virial; ideal behavior
expected here because there is no excluded volume~nor at-
traction! with this signed-area steric interaction between
finitely thin tethers. In spite of the ideal gas behavior at h
temperature, the constraint on the signed area is crucia
stability against network collapses atP50: a ‘‘phantom’’
network ~lacking the signed area constraint! collapses at the
remarkably low temperature ofkBT/kspS0

2;1/20 @25#.
We have shown above that the phase transition to

crushed state is present atT50, but is absent at infinite tem
perature. At intermediate temperatures, between zero
kBT/kspS0

2'0.1, distinct hysteresis loops in the network ar
define a coexistence region@Fig. 1~b!#, and the hysteresis
increases with system size, consistent with the first-order
ture of the phase change. For fixedT, the transitions, even
from metastable states, also sharpen with increased net
size. Away from the transition region, finite-size effects a
negligible. All of these effects can be seen in Fig. 1~b!. Par-
enthetically, if one calculates a Hookean spring const
from the in-plane ‘‘shear modulus’’ often attributed to th
red cell cytoskeleton@4#, ignoring all questions of appropri
ateness, the relevant isotherms are among those bet
kBT/kspS0

25 1
18 and

1
100 @26#. Phase transitions, hysteresis, a

all the associated difficulties are quite prominent in this te
perature range. At still higher finite temperatures, the cha
in network area across the transition is found to be a v
small fraction of the unstressed area and is difficult to de
even for large systems@Figs. 7~a! and 7~c!#; however, ac-
cording to the Clausius-Clapeyron equation, bothDA and the
entropy change across the transition can be small but ca

FIG. 7. Hookean spring networks under compression at h
temperatures.~a! and ~b! area and Bain-type order parameter, r
spectively, atkBT/kspS0

255 for N5482 ~squares! or 82 ~triangles!.
~c! and ~d! Elastic moduli as a function of pressure atkBT/kspS0

2

51 for N5642. The configuration space is threefold degenera
and the simulation time needed to move among the degenerat
gions is large. Hence our ensemble is constructed from p
relaxation steady states which fluctuate about one of the three
generate regions.Ymax andYmin in ~d! are essentiallyYY andYX

except for the last data point, which is reversed. The solid li
through the simulation data are drawn to guide the eye.
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vanish~in the thermodynamic limit! when the phase bound
ary’s slopedP* /dT is finite, as seen in Fig. 6. Indeed, th
transition is better identified by a deviation from zero of t
Bain-type order parameter 12^a&/^d& @Fig. 7~b!# @6,7#,
which is related toh2 . Furthermore, while the transition
from C6 is always marked by the vanishing ofm0 as the
quadratic coefficientA(P,T) for h2

2, the symmetry breaking
to C2 is also characterized by divergences in the inve
Young’s moduli,C1111

21 5C2222
21 , coincident with a growing

nonzero difference in their values@Fig. 7~d!#. This is consis-
tent with the disparity in the quadratic order terms of aC2
energy@Eq. ~11!#.

We conclude this section by returning to the general fo
of H in Eq. ~5! which admitsn-monic springs~Fig. 3!. It is
found atT50 that the crushing transition described abo
for Hookean springs (n52) also occurs for largern, up to at
leastn540. The smallest, stable equilateral triangle has
elemental lengthS/S0 of

8
9 (n52) which decreases quickly

and levels off at; 3
4 (n540). Further investigations of the

properties ofn-monic springs at nonzero temperatures w
not be reported here.

IV. SQUARE-WELL NETWORKS

In the limit of the exponentn approaching infinity, the
n-monic Hamiltonian@with S0.0 and f ( r̄)50 in Eqs.~5!
and ~6!# looks like a square well~Smax52S0 as n→`!,
wherein the stretching energy of a spring rises rapidly fr
zero as the spring length exceeds some constantSmax @9#.
With the pure square-well model, there is no intrinsic ene
scale, and the properties of the network depend on the
plied pressure and the presence~or absence! of self-
avoidance. The limits to theZP integrations of Eq.~8! are
precisely defined for square-well potentials, and the prop
ties of the single plaquette can be determined exactly aP
50:

ZP5 1
48 ~12p29) ! ~15a!

^S&0 /Smax52S p

18
1
16

45
2
9)

40 D Y ZP50.609...,

~15b!

^A&0 /Amax5
15
288/ZP50.261..., ~15c!

Ka,0Smax
2 /kBT5 1

128S p2
9)

8 D Y ZP57.589... .

~15d!

These average and fluctuation quantities are in remark
agreement with simulations of the full network which yie
^S&0 /Smax50.604, ^A&0 /Amax50.247, andKa,058.560.5.
Furthermore, the probability distributions for either the sid
or areas of triangles in a network are found to be very sim
in shape to those of a single plaquette. These results sug
that neighboring triangles in a square-well net, after an
semble average, are nearly invisible to each other.

A. Compression

Square-well nets share some, but certainly not all, featu
of harmonic nets@9#. A harmonic spring network with the

h

,
re-
t-
e-
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sameKa,0 and ^S&0 /Smax as Eqs.~15b! and ~15d! would be
expected to have a temperature in the rangekBT/kspS0

2'2 to
4. Such a spring network would show a transition
PSmax

2 /kBT of order 20. However, simulations of square-w
networks under an applied pressure exhibit no transition
compressions up to at leastPSmax

2 /kBT580, where
^A&/^A&0;0.060~Fig. 8!. For comparison of these numbe
to a Hookean spring model, theC6–C2 transition at the high
temperature ofkBT/kspS0

251 occurred at̂A&/^A&0'0.11.
Of greater importance, square-well networks under s

nificant pressures (PSmax
2 /kBT*20) exhibit ideal gas behav

ior: P^A&'NkBT ~Fig. 8, inset! andKa'P. At these pres-
sures, the probability of a tether being within 10% ofSmax is
exceedingly small. Thus, as with theksp50 Hookean spring
net, the only intrinsic length scale in the net~Smax here! is
unimportant under high compression. Indeed, for a sim
reason, the one-dimensional form of the mean fieldZP @Eq.
~8!#, i.e., considering only equilateral triangles, also yie
ideal gas behavior in the high compression limit:

^A&5~kBT/P!@11x/~12ex!#→kBT/P as P→1`
~16a!

Ka5P/$12@x/~12ex!#@12ex1xex#/@12ex1ex#%

→P as P→1`. ~16b!

In these equationsx5PAmax/kBT, whereAmax5()/2)Smax
2 .

Graphical comparisons of simulated nets and the sin
plaquette models are made in Fig. 8.

B. Anisotropy

Despite the evident lack of symmetry breaking or collap
under compression, the square-well network, like
n-monic nets, still exhibits anisotropies. Under uniaxial te
sion in theX or Y directions stretch as a function of uniaxi
tension for square-well nets displays distinct asympto
~Fig. 9!. The ratios of the maximum to initial lengths in theX
andY directions areSmax/S0, and 2Smax/A3S0 , respectively;
hence the maximum strain in theX direction is smaller than

FIG. 8. Area as a function of pressure for square-well netw
and single plaquette mean-field models. The inset compares re
for compression to ideal gas behavior whereP^A&5NkBT. Several
network sizes, fromN5122 to 642, were used over the entire rang
of compression, and indicated no particular size dependence.
t
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e
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that in theY direction simply by the ratio ()/2). This an-
isotropy is a very simple but general consequence of te
limits in the triangular geometry.

V. THREE-BODY ENERGETICS: ‘‘FLORY NETWORKS’’

Sections III and IV dealt with networks having strictl
two-body interactions constrained only by the requirem
that the three-body signed area of each plaquette not cha
We now generalize this to include a less trivial form for t
three-body interaction term in the Hamiltonian of Eq.~5!.
Such an interaction may help provide a very elementary r
resentation of quasi-two-dimensional, cytoskeletonlike tria
gular nets assembled from linear polymers rather than sim
springs@26#. With the assignmentS050 andn52, the initial
term of the Hamiltonian@Eq. ~5!# becomes Gaussian, and,
neglecting the explicit summation over the network vertic
therefore polymer-like@12,21,27#. The effective spring con-
stantksp would be dependent on monomer number, tempe
ture, etc. Furthermore, monomers of the polymer chains fl
tuate locally, it is envisioned, to fill the interstitialAi jk of the
net. As in the typical Flory argument@27#, correlations are
neglected in assuming that such filling is spatially unifo
within each triangle. This assumption leads to a nonz
three-body termf ( r̄)Þ0 and the name ‘‘Flory-polymer net’
or simply ‘‘Flory net.’’

In choosingS050, n52, and f ( r̄)Þ0, the exact strain
energy of Eq.~6! appears expressible strictly in terms
isotropic surface quantities trL2 and r̄,

W̃5~ksp) ! 12 trL
21 f ~ r̄ !. ~17!

Derivatives of the first term yieldm5m05ksp). It proves
convenient now to define the invariantsJ1 , J2 , andJ3 for-
mally by simply replacingE with L2 in Eqs. ~3!, e.g.,J1
5trL25(a21c21b21d2). Each invariant of the setJi van-
ishes when the deformation map is the null tensor rather t
the identity so that, in the case of no applied stress,r̄51 and
J152. Figure 4~c! shows the strain energy surface for th

k
lts FIG. 9. Stretch in theY or X direction, when uniaxial tension is
applied to square-well networks in either one of these directio
The slope near zero uniaxial tension gives a single Young’s mo
lus, in close accord with that determined by fluctuations atP50.
The solid lines through the simulation data are drawn to guide
eye.



or

n
r-

s-
sit
iv
ly

et
r-
ur
e

s
ts

ax
en

r

th

e

,
er
o
ly
in

o
to

nt
ly

et
to
e
ly
be

he

r

nic
rial
on
off
e
by

i-
s it
m-

ra-
lts
pic

4770 55DENNIS E. DISCHER, DAVID H. BOAL, AND S. K. BOEY
model in biaxial deformation with a particular choice f
f ( r̄) elaborated below. The symmetry abouta5d is a ge-
neric feature of Eq.~17!. For comparison to Hookea
springs, Fig. 3~right-hand side! maps the same sum of ene
gies into an effective elemental potential.

Toward assigningf ( r̄), we assume that the osmotic pre
sureP in the polymer net depends on local monomer den
asP5P( r̄), and that the constraints of network connect
ity condense the network sufficiently into the nondilute po
mer melt regime to give

f ~ r̄ !5B1r̄1B2r̄
21const. ~18!

If the dominant osmotic term in this is theB1 term, then a
balance of chain elasticity against excluded volume~à la
Flory polymer chains! allows one to determineB15

3
2kspSref

2

andKa
052ksp) at P( r̄51)5Pext50. HenceKa

0/m052 so
that, at this order, the network looks very much like a n
work of Hookean springs. However, this Flory net is rigo
ously isotropic in its mechanical responses. These feat
appear consistent with simulations of cytoskeletal polym
nets tacked to a bilayer wall@27# within the approximate
range 0.5<r̄<2.5, in spite of the very gross simplification
of our Flory net calculation. Additionally, recent experimen
which reveal red cell cytoskeletal network deformations@3#
have been shown to be fit reasonably well, at least by
symmetric continuum analyses, with an isotropic strain
ergy expression which can be built in part from Eqs.~17! and
~18!. In @3#, the strain energy is denoted asEnet instead of
W̃, and a functiong( r̄);1/r̄2 is included:

Enet5
1
2m~l1

21l2
2!1B1r̄1g~ r̄ !. ~19!

The first term is just the 2D form@4# of the classic 3D rubbe
elasticity strain energy, which merely includesl3

2 in the sum
over squared stretches, as established by Flory and o
~for example,@16,20,21#!. The shear modulusm in these lat-
ter microscopic theories is given by the product ofkBT and
the number of chains per area~2D! or volume~3D!; in such
a case, the spring constant appropriate for the mesoscal
angular Flory nets isksp5m/).

Importantly, becauseS050 in the Flory net elements
there is no symmetry in the elemental energetics, and th
fore no discontinuous ‘‘crushing’’ transition in these types
nets~Fig. 10!. Any decrease in network area is continuous
opposed by a soft-core repulsion reflecting the fluctuat
monomer interactions. However, in positive tension (P,0)
the area of this harmonic Flory net along with the length
each linear element increases without bound asymptotic
finite tensionPT505ksp)( r̄221)→2ksp), just as with
nets of Hookean springs@9# @note that Eq.~12c! is equivalent
to PT505ksp)( r̄1/221)] and harmonic potential 2D ring
polymers@28#. Considering, then, that basic linear eleme
of physical networks like the cytoskeleton are often po
mers which have a maximum lengthSmax, there should be a
limit to the stretching of nets, similar to our square-well n
works. This effect is certainly observable in a recent cy
skeleton computer simulations@26#. We therefore assum
here that the free energy stored in the length of each ‘‘po
merlike’’ element can be approximated by an expansion
yond the Gaussian term to give the effective Hamiltonian
y
-
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-

es
r

i-
-

ers

tri-

e-
f

g

f
a

s
-

-
-

-
-

H5
1

2! (i j
net

~ 1
2kspSmax

2 !@~r i j •r i j /Smax
2 !1f2~r i j •r i j /Smax

2 !2

1f3~r i j •r i j /Smax
2 !31•••#

1
1

3! (i jk
net

3

2
kspSref

2 F(
n

nfn~Sref
2 /Smax

2 !nG~Aref /Ai jk !.

~20!

For freely jointed polymer chains in three dimensions, t
familiar inverse Langevin function approach@16# yieldsf2
5 3

10, f35
33
175, etc. To third order in the invariants ofL2, the

strain energy is

W̃/~ksp) !5 1
2J11

1
2f2~Sref

2 /Smax
2 !~ 3

4J1
21J2!

1 1
32f3~Sref

2 /Smax
2 !2~9J1

3254J1J212J3!1•••

1F(
n

nfn~Sref
2 /Smax

2 !n21G r̄. ~21!

The anharmonic terms inr i j –r i j stabilize a network unde
positive tension~e.g., Fig. 10!. The f3 term is the first to
introduce the third-order invariantJ3 , so that, like the
square-well networks in uniaxial tension, these anharmo
Flory nets are anisotropic at and above this order. The vi
coefficient of the density function may now also depend
the higher-order terms and, though this dependence falls
quickly with largeSmax/Sref , issues of convergence need b
considered. In the end, the anisotropy introduced
‘‘polymer-length’’ limits and the absence of ag( r̄);1/r̄2

term in Eq. ~21! distinguish it from the simpler, isotropic
expression@Eq. ~19!# already used to fit the red cell exper
ments@3#. This anisotropy, it should be emphasized, make
impossible to rigorously apply the aforementioned axisy
metric analyses to nonhomogeneous cell deformation.

FIG. 10. Flory nets under isotropic pressure at finite tempe
ture:kBT/kspSref

2 5
1
8. Inset and open circles show simulation resu

for an anharmonic model which approximates more microsco
cytoskeleton simulations@26#. The solid line through the simulation
data is drawn to guide the eye.



pe
F
g
r

-
a
i

an
a

n
in
-
n
s
ic
hi
m
n
ov
an
th

-
ls
ks
st
or

ow
e

ce
th
m

rg

ved
e
s
fied,

f
mall
p-
y
c.

nte
ters
at
to
ve
the
id-
m-
s the
i-
so
ck
et-
r no

wo
de
ble
r-
on
ices

55 4771PHASE TRANSITIONS AND ANISOTROPIC RESPONSES . . .
VI. CONCLUSIONS

The large deformation, in-plane responses of several
fect triangular network models have been determined.
nets assembled simply from central force sprin
(force-free length.0), a discontinuous transition unde
compression is demonstrated, in which theC6 symmetry of
the network is reduced toC2 . No transition under compres
sion is observed, however, when this force-free length sc
which sets a symmetry in the interaction potential, is elim
nated and when one of the following apply:~i! T→1`; ~ii !
the continuous potential is replaced with a square-well;
~iii ! the elemental elasticity is balanced against local, me
field sterics, to mimic a polymerlike net. For conditions~i!
and ~ii !, the limiting behavior in compression is that of a
ideal gas which can reflect only the signed area constra
For the models of~iii !, the compression limit leads to a non
ideal gas determined by the assumed form of suppleme
sterics. In spite of such rotationally invariant limit state
nonsymmetric responses of triangular nets are more typ
and the phase transition is but one manifestation of t
Uniaxial tension of triangular nets with any sort of maximu
tether length also clearly leads to an anisotropic respo
with the associated odd-order elastic constants. To unc
these effects experimentally, the phase transitions
anisotropies in some of the sixfold structures listed at
outset of this paper comprise the logical next step.

Note Added. After submitting this manuscript, we re
ceived a preprint from Wintz, Everaers, and Seifert, who a
observed a collapse transition in 2D triangular networ
They used a fixed area ensemble, and their equation of
agrees approximately with ours over the range of netw
areas reported in their paper:Anet/AT50.0.5, whereAnet is
the network area. The phase transitions seen in our
simulations of Hookean spring nets in a fixed pressure
semble extend below this range, as shown in our Fig. 1~b!.
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APPENDIX A

Considering a biaxial deformation, the exact strain ene
density of the large class of nets represented by Eq.~6! re-
duces to
he
we

s
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W̃5F2n ksp/) G$2@ 1
2 ~l1

213l2
2!1/22~S0 /Sref!#

n

1@l12~S0 /Sref!#
n%1 f ~ r̄ !/~Sref

2 A3/2!. ~A1!

Tensions in the network may then be calculated fromT1
5(1/l2)]W̃/]l1 and T25(1/l1)]W̃/]l2 . As an aside,
simple shearing in a continuum sense may appear remo
upon settingb50; however, material shearing still can b
isolated in a state wherel[l151/l2 , a state referred to a
pure shear. For this state, a shear strain may be identi
though not uniquely, asEs[

1
2(l

221/l2) @4#. By calculating
a shearing tensionTs[

1
2uT12T2u, a shear modulus in large

deformation elasticity can be obtained asm[Ts /Es . With
this choice ofEs , the proper infinitesimal identification o
the shear modulus generally can be regained in the s
strain limit. For the strict Hookean spring network, it is a
parent thatl1 and l2 do not permute in the strain energ
expression Eq.~22!; such a network is therefore anisotropi

APPENDIX B

An ensemble of configurations is generated by the Mo
Carlo procedure for each chosen combination of parame
such asN, ksp, andP. Typically, the ensemble represents
least 23106 moves per particle after the system is allowed
relax from its initial configuration. Of course, successi
configurations in the ensemble are correlated, and so
number of statistically independent configurations is cons
erably less than two million, depending on system para
eters. The ensemble is used to calculate averages such a
area^A& directly, and to calculate the elastic moduli ind
rectly through lowest-order fluctuations. The moduli al
were obtained from full strain-strain correlations as a che
on the accuracy of the technique. With Hookean spring n
works, the average energy per nodal particle in nets unde
stress was essentially two times12kBT and, by calculating the
in-plane virial stresses, we observed thatText2^Tint&'0. For
simulations of uniaxial tension, stress was applied to just t
parallel faces of the periodic box and collective moves ma
accordingly. We estimate that the uncertainties in ensem
averages such aŝA& are less than 1%, and that the unce
tainties in the moduli are less than 5%. Further details
algorithms and methodology can be found in the append
of Ref. @9#.
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