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Phase transitions and anisotropic responses of planar triangular nets under large deformation
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Responses of triangular networks in large reversible deformation are studied analytically at zero temperature
and by Monte Carlo simulation at nonzero temperature. Exact expressions for the elastic strain energy at zero
temperature are derived for several models in which the network potential energy depends on either the length
of the network elementi.e., central force interactionsnd/or the area of each network triangle. For nets of
Hookean spring elements having a nonzero force-free length, cubic terms arise in the strain energy through the
sixfold symmetry of the network, and thereby break the symmetric response at small strain. Because of the
symmetry of the two-body potential and the anisotropy of the network, pure compression of the Hookean
spring net leads to a martensiticlike phase transition at all finite temperatures studied. Networks of elemental
tethers or springs that have a zero force-free length balanced against a three-vertex potential energy that rises
with decreasing triangle arg@ emulate volume exclusion in polymer networkio not undergo a phase
transition, although inclusion of a maximum tether lengthmodel the polymer chains’ contour limitseveals
a simple but distinct type of triangular net anisotropy1063-651X97)10104-0

PACS numbsg(s): 03.20:+i, 87.22.Bt, 68.60.Bs, 64.76p

[. INTRODUCTION covalently bonded systems, the networked systems analyzed
here are permanently tethered together, and strictly maintain
A remarkable feature of planar structures with local six-their connectivity and topology, by explicit construction,
fold symmetry is that theganappear mechanically isotropic even at infinite temperatures. Thus all geometric transforma-
regardless of other intrinsic propertiese, for example, Ref. tions of the network occur in the absence of long-range dif-
[1]). Elastic sixfold structures thus can be assembled fronfusion.
identical elements having arbitrary interactions, and yet such Triangulated networks are assembled from linear ele-
structures require just two isotropic material constdatg., ments or bonds joined at sixfold junctiofiBig. 1(a)]. The
shear modulus and compressibilityo describe their re- linear elements are infinitely thin hard rods in the sense that
sponse adequately within at least some small regime ahey are not permitted to overlap except at the sixfold verti-
strain. This fact is especially pertinent to understanding aes[9]. At this microscopic level, energetics could be a func-
range of sixfold structures including ultrasoft cell membranetion of (i) the distance between verticéise., central force
cytoskeletons [2—-4] and certain thin, nanostructured interaction$, (ii) the area of a triangle circumscribed by el-
Cg-symmetric sheet$5]. Such structures raise the natural ements, and/ofiii) the angle between elements such as in a
guestion: under what conditions and in what ways does th&eating potential[10]. In this work we consider only the
mechanical response begin to reflect more of the underlyingimplest, nearest-neighbor examples of the first two types of
sixfold symmetry? interactions, the latter of which has been examined only in
The present work focuses on triangulated network modelsther context$11]. Also, whereas similar networks fluctuat-
under large, elastic deformation. As a partial motivation foring in three dimensions have been studied in efforts at un-
this study, mesoscopic views of real cell membrane cytoderstanding aspects of thermal bending undulations and
skeletons in deformation show them to be capable of sustairplane-projection elasticity{12] in addition to so-called
ing very large strains, including very large compressivestretching ridges arising in bendiig3], only in-plane mo-
straing[3]. In the conventional thinking about elasticity as antions of the network junction points or particles are permitted
energy expansion in a strain measure, large deformation irin the present studies. At least one unusual material feature, a
troduces higher-order terms which are associated with aegative Poisson ratio, is already known to arise when a
range of phenomena. One of the most remarkable and longoderate isotropic tension is applied to such planar triangu-
studied is the martensitic transition which refers to a struclar nets of (i) Hookean springs having nonzero resting
tural, reordering transformation in which no atomic diffusion lengths or(ii) network elements having only a finite maxi-
is thought to occuf6]. Many such transitions, useful for mum length(i.e., square-well potentigl$9].
smart material§6], are held to be strongly first order because Before outlining the format of the present paper, we first
of cubic strain terms in the free enerdy]. However, in  very briefly introduce what may be the most interesting find-
some of the driven martensitic transitions, particularly thoseng in this work. A simple, planar triangular network of
in which moderately large displacemefts10% strainsoc-  springs of fluctuating lengt® is once more considered. The
cur, diffusion may not be completely absé¢@t. Unlike non-  elemental energetics are, in this case, assigned the
innocuous-looking Hookean forrd = %ksp(s— So)?, where
kspis the fixed spring constant aigd is the fixed rest length.
*Present address: University of Pennsylvania, 297 Towne Bldg.Under a compressive network pressuite a discontinuity
Philadelphia, PA 19104-6315. appears in the average network are&) [Fig. 1(b)] over a
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FIG. 2. Sample deformation of a plaquette parallelogram from
the reference configuration where all elemental lengthsSare

(b) L0 context of more general models and mean-field ideas includ-
: ing large deformation elasticity and Landau theory. Particu-
lar attention is given to anisotropic responses which arise
from the sixfold symmetry of various network models in-
cluding one class of Hamiltonians which is introduced as an
0.8 effective representation of a triangular network of self-
) 00 0 avoiding polymer chains.

BZ " Tspto The format of the paper is as follows: first, formalisms
and definitions of large deformation elasticity as applied to
021 triangular networks, including geometric and energetic ideas,

are enumerated in Sec. Il. Then, as the first of three specific

LI/IOO 1/18 112 115 models within a general class of Hamiltonians, the Hookean

0 0.25 05 075 10 125 spring net is thoroughly studied in Sec. Ill at selected tem-
P/k, peratures from zero to infinity and, most notably, under com-

P pression. In Sec. IV, square-well networks which lack an

intrinsic energy scale are studied by both simulation and
mean-field methods. Section V introduces and discusses a
model closely related to both previous models, but intended
to capture distinguishing features of cell membrane cytosk-

eletons. Conclusions are summarized in Sec. VI.
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FIG. 1. Finite-temperature simulations of Hookean spring net-
works under zero stress or compressi@n Sample configuration of
an unstressed Hookean spring (et 12%; P=0; kBT/kSpS(ZJ:%Z)
in a periodic box(dashed ling The underlying gray rectangle with
sides &, VN) by [(v3/2)Sy\/N] defines the zero-temperature area
Ar_o=N(v3/2)S5. (b) Low-temperature isotherms on the compres-
sion half of the plane. Temperatures given under each set of curves Il. PRELIMINARIES: ELASTICITY
are in dimensionless units dxfBT/kSpSS. Squares indicate simula- OF TRIANGULAR NETS
tions that were started in the above rectangular state. Triangles in- . -
dicate simulations that were started in a sta?e where the Ionggside of Large deformation ela_SUCltE/-‘A—lq subsumes the more
the box was 1.33 %\N), and the short side was 0.05 s_peC|aI|zed and well-studied theory of infinitesimal deforma-
[(f3/2)80\/ﬁ]. The system size for the lowest temperaturel—&f tion _(se_e, fo_r example, Refl]), and proves usefl_JI here.
was N=42, The system sizes for the temperature sfwere N Appllcatl_on, in Sec. Il A, of some of large deformation (_alas-
=62 (crosses and N=82 (circles; hysteresis was minimal for t|9|ty’s simplest tenets to the hpmogeneous deformation of
these two system sizes. The system sizes for the temperatygse of triangular networks serves to identify key concepts. After
wereN=82 (inner loop andN= 16 (outer loop. The system size first introducing expressions pertinent to network geometry,
for the temperature of was N=24% a system of sizeN=12 general aspects of thég-network response, including zero-
showed undetectable hysteresis. The inset figure gives, as a functiddémperature energetics, are elaborated upon in Sec. Il B for a
of temperature, the stress-free ak@e), scaled byA;_,. Corre-  particular class of network Hamiltonians. Two calculational
sponding to ideal gas behavior as described in the text, the slope ahethods are used in our study of networks under large de-
the heavy line is. Lines through the simulation data are drawn to formation: mean-field approaches are given in Sec. Il C,
guide the eye. while computer simulation techniques for periodically

. . ) . bounded networks at non-zero temperature and stress are
wide range of fixed temperaturds=KkgSo/kg (Wherekg is  gutlined in Sec. Il D.

Boltzmann’s constait These results are obtained by Monte
Carlo simulations in which each & nodal particles of the
net is moved within the plane according to the usual Boltz-
mann weighting schem@]. The geometryarea and shape A reference configuration for the deformation is taken to
of the periodic box, as conjugate to a set pressure, is allowelde a unit plaguette with linear material elements all of length
to fluctuate through collective, affine motions of the nodes|rij| =S (Fig. 2). In deformation, the plaquette is mapped
Detailed features of the noted phase transition, such as hysffinely into a new configuration constrained only by(r;;
teresis, are elaborated upon in the remainder of this papetr;)>0 (i#j+#k; no sum on indices of vectorswherez
along with an effort to rationalize the phenomena within theis the normal to the plane and definitions of the nearest-

A. Network deformation
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neighbor vectors should be apparent from the figure. The |,=g,[(E,;+3E,y)2—12E3,]=27%3— 39,95+ V275
in-plane deformation mad’ takes the formx,=I",gXg

(a,B=1,2; sum on repeated indices of tensor components —675( 1+ 72V2),
and, by the definition of affineness, the four components of
the tensod” are taken to be spatially uniform. The notational
convention employed for deformation and stress variables
[14-14 is that lower-case letters, including indices, refer to
the space of deformed configurations, while capital letterdhe latter two invariants are clearly of ord&r, and are
refer to the undeformed or reference configurational spacdarticular to theCq symmetry. Also, the linear combination
as the same set of basis vectors is used throughout this worl2l; +41,+ 1) is necessarily an invariant simply equal to
this convention here serves primarily to emphasize what conl/p? and may thus be used in place of eittgror I ,.
figurational space, deformed and/or undeformed, a stress or
strain quantity belongs to. For simplicity, we designate
=I'y;, b=Ty,, c=T,, and d=T,,. The distances
|rij] = (ri;-rij)¥? (i#]) between the particles of Fig. 2 be- . _
come Typically, the elastic free energy per reference volume or
area is assumed at the outset to be a Taylor expansion in a
ro1l = 3Sief (—a+bv3)2+ (—c+dv3)2]Y? suitable deformation measure such as the Lagrangian strain
(see, for example, Ref1])

| 4=E1d 3(E11— Ep)? = 4EL,]=273(3 75— 273).

B. Network response: Hamiltonian
and zero-temperature elasticity

IFod = $Sief (a+bV3) 2+ (c+dv3)?] 2 (1) o )
|"03| =S f[a2+ C2]1/2 W=W(T.E)=ChgEas+ 21 CascpEasEcp
e .

Settingc=0 merely removes a pure rigid body rotation. The +t3r CascoerEaBECcDEEFT " - (4)
density of particles relative to the reference configuration, '
with one particle per plaquette, may be shown to hbe ) o ) )
=1/detl’. A stretch tensor\ also may be defined through As in a Landau theory, a reduction in terms is often achieved
A2=TTT, so that the roots of the eigenvalues/®f gives by using symmetries of the undeformed structure to simplify
surface stretches, in principal directions. The conventional the strain energy to a polynomial in invariants, an approach
Lagrangian strain tens@= (A 2—1) [1,14], contains a qua- qwte' general even fo_r large deformatifit8]. An isotropic
dratic term missing in the infinitesimal elasticity theory but €lastic surface is an important example that has an energy
essential to keep in large deformation. Components afe  Written exclusively in terms of, andl,. _
E;=3a2+c?—1), En=2%b?+d?-1), and Ej=E,, For the present analysis, simple interaction potentials ad-
—ab+cd. In a biaxial deformation, off-diagonal strain com- Mit & more microscopic starting point than &d). Networks
ponents vanish, so that selecting theand y axes as the @&'€ assembled from-monic springs(n even,n=2 is har-
principal directions leads th=c=0, \,=a, and \,=d.  Moni0, each having a spring constaqy, (=0) and a resting
The stretches may then be approximated by the principd®ndthSo (=0). Also, each triangle of adjacent springs ef-
strainsE, andE- as\;=1+E,— E2+ 2E34 ... fectively may have a potential energy dependent on the tri-
! SR R fngulated area. Superposition of these two energy storage

The reference configuration of Fig. 2 can tile a plane an des leads t ol f di ; i Hamilt
thereby giveCg symmetry. An irreducible representation for ”?gngs eads 1o a general class of discrete system Hamilto-

this symmetry groug17] may then be formed from three "
combinations of the strain components:

1 net " 1 net
m=tr E, H=%y ; ~ ked (rij i) 5= So]™+ 57 %:4 F(Aret/Aijic)-
€
1
K (B~ Bz, @y this expression, the deformed triangle area is given by the
three-vertex quantity; = %lrij X rik|£nd the reference tri-
73=Ep. angle area A= (f3/4)5r2ef. Thus p=A/Ajjx is a spa-

tially independent constant in a homogeneously deformed
eqetvvork. Figure 3 shows some of the potential forms repre-
sented by Eq(5).

In the zero-temperature limit, the average state and other
roperties are just those, in this case, of perfectly ordered,
omogeneous networks. That is, any given plagquette con-
figuration is assumed to be representative of a homoge-
neously deformed net. Within this limit where ensemble av-
eraging is trivial, and in terms of the elemental lengths and
the relative density, aaxactexpression for the elastic strain
l,=detE=%7%— % 75— 73, (3)  energy per reference area is

Each »; may later be considered a possible order paramet
in a Landau theory17]. Altogether, thez; form a basis for
exactly four independent combinations of deformation mea-
sures invariant to transformation of the planar reference sta
[18],

|1=tl’ E: 1,
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6 the absence of other constraints. It is simply the Legendre
transform of a strain energy density

[\*]

=2 =2
U,,=5+1/5

4 GT=O:W+ P/p_ (7)
3 Ly Note that the last term is just the appropriate pressure-area
18 work [for an analysis of martensitic transitions using Eg),
________ i see Ref[19]]. As a function of the biaxial deformation vari-
0 ] > 0 ablesa andd, Fig. 4a) shows the (14) surface, which, in
S Eq. (7), is just theP-scaled second term addedW

_ _ ) ) ) For temperatures greater than zero, configurational fluc-
FIG. 3. Dimensionless tether potenUaI_s Vs dlmensmnl_ess _bon?uations of the representative plaquetféig. 2 may be
Iength._Leftmost panel: ezxamples afmonic tether potentlgls in avaluated more rigorously via a partition functidm . The
which S=5/S,, (1n)kspSo/kgT=1, and f(Arer/Ajj) =0. Right-  moqe s still a homogeneous net mean-field, model and
most panel: effective tether potential wh&=0, S=S/Ser, N amounts to an integral over the configuration spameat
=2, 3kpSief ke T=1, andf (Ae/Ajji) is taken to be B by assum-  |east the important regionsnapped out by the plaquette’s
ing equilateral triangles. fluctuating sides. In terms of the coordinates of particles 2
and 3:
- 1% S Rl R R
W=HI2Aw=| 5 S| | ksny (Irail =S0)"+ F(p) zp=f x3dx3f dy,d%exi] (— H+Pxsys)/ksT]. (8
(6)
Of note, the expression fat, published previously9] had
The relevant energy scale k§psrzei/kBT! a ratio which goes an incorrect weight fok;. Zp is readily reduced to the one-
to infinity in the T=0 limit. In this limit, specification of the ~dimensional integral for a fluctuating equilateral triangle by
various microscopic parameters kg, etc. allows one to integrating ove functions aty,=(v3/2)x3 andx,= 3x3. In
determine the exact form of the strain energy in terms ofspecial casegsee Sec. IV A the fluctuating equilateral tri-
desired strain variables, notably invariants of E8).. The angle model can be evaluated analytically; numerical inte-
tensions(force per length arising within a network in a gration is otherwise straightforward. The free enef@y
given state of strain are then readily calculated fromgy, —kgT InZp, as well as thermal averages including the aver-
=p [acoW/aT ¢, and a two-dimensional internal pressure age area per plaquettéh) =(xsy,), may readily be deter-
is identified asP=— trT. With A as the area of either a Mined. . _
plaquette or full network, the compression modulus is then Importantly, in the above mean-field models, every

K,=—AdP/dA. Appendix A elaborates some useful simpli- plaguette of a network is forced to be the same, hence all
fic?ations in biaxial deformation interplagquette correlations and stress gradients are explicitly

neglected. This restriction is absent in network simulations.

C. Nonzero pressures and temperatures in mean field D. Nonzero pressures and temperatures

In terms of an applied surface pressérat zero tempera- by Monte Carlo simulation

ture, the Gibb's free energy per reference area, As described briefly in Sec. I, full network simulations
=G(T,P), should generally be minimized at equilibrium, in can be conducted by Monte Carlo methods over a large tem-

\ (@) () ()

—
n

FIG. 4. Strain energy contours at zero temperature as a function of the biaxial deformation vaiainldsl. The energy scale is
arbitrary. (a) Pressure times areéh) Hookean spring modelc) Polymer net model. The dashed curve(lm approximates the transition
trajectory to thea-axis boundary when compression is applied to the Hookean spring model; a saddle-point barrier energy lies midway
between the two endpoints.
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perature rangd >0. Nets are placed in a periodic box of the sixfold symmetry of the network breaks the symmetric
reference dimensionsyXLy: an MXM array of N=M?  response at this order, and is directly responsible for the
vertices has a rectangular reference dize=M(v3/2)S,s  presence of the terniyg. Of importance to analyses in Sec.
XLx=MS,. In biaxial deformation,a=L,/Ly and d IV and in contrast to developments above, the irreducible
=L,/Ly. Both the positions of the vertices themselves, agjuadratic form of the strain energy for a planar structure of
well as the box shape and dimension, change during th€, symmetry generally has four rather than just two distinct
Monte Carlo simulation. Each attempt to move a particle to aoefficients in

different position, or change the value bf or L, or the

angle between the sides, is accepted or rejected according to ~

thegusual stress ensemble BoItan)ann Weig]ht. The same bgsic W= 21 C1111E§1+ 21 C222£§2+ CrizE11Es

procedure has been used previously to determine average

properties, e.g.,(A), and fluctuation properties, e.g., +2C 1 Ef,+ O(E). (1)
KalkgT=(A)((A%)—(A)?), of networks under isotropic

tension[9]. Further details on algorithms and methodology B. Phase transition in compression

can be found in Appendix B of this paper and the appendices )
of Ref.[9]. It has been showi9] that, at low temperature, a spring

network under tension is well described by a mean-field
model in which all springs have the same len§@#|r|
=|roJ]=|rod, i.e., equilateral triangles. The zero-

In this section we focus on Hamiltonians of Ef), where  temperature surface bulk and shear moduli in this mean-field
So>0 andf(p)=0. We report results for several values of model are given fully as a function of pressure by
the power-law exponenh, but give most attention to A
Hookean spring networks which are defined oy 2 (see oy, _'°
Fig. 3. It is further assumed for now th&;= S. Kalksp= 2 {1+PIV3keg, (129

IIl. HOOKEAN SPRING NETWORKS

A. T=0 deformation energy . /'LO/ksp:E {1_‘/§P/ksp}1 (12
For this Hookean spring network, tfie=0 strain energy 4
surface(with b=c=0) is shown in Fig. 4b): note the dis-
tinctive asymmetry about the lire=d. In biaxial deforma-
tion, the implicit square root in thexactstrain energy of Eq.
(6) is expanded29] about the reference state chA=£\;)
=(d=\5)=1 to yield

while the zero-temperature area per triangle is
(A= (V314)S5I{1+ PIV3kes>. (120

From Eg. (1239, Kg vanishes at the isotropic tension

\7V/(ksp\/§) = 1(3E2,+ 2E E»p+ 3E2) — & (11E3,+ 9E3, —ks¥3, and the network area expands without bound
asymptotic to this tension.
+3E%,E p+ 9E5,E1.) + O(EY). 9 Keeping in mind the key assumption that E¢k2) apply

to homogeneous networks efjuilateraltriangles, the infini-
Anisotropy is evident at third ordefe.g., unequal coeffi- tesimal shear modulus® is seen to vanish under compres-
cients forE3, andE3,). It follows that there must be a cubic sjon atP=kg,/v3 and S=3S,. However, if one now con-
term in 7,. Indeed, in terms of then's [Eq. (2)] or  siders microstates other than equilateral triangles, then, at a
Ce-invariants[Eq. (3)] and for acompletely arbitrarydefor-  much smaller compression 8 = (v3/8)k, the free energy

mation will be minimized with a network area of zero, such that the
~ 02 1 0m 2 o 1 3 5 value of the pressure-area contribution vanishEsch
W=3Kami+zu (2n5+4n3) = 5(Ksp/3)[ 4791 +2V27; plaquette becomes a lindust belowP*, the ground-state

plaquette is an equilateral triangle of si@8,; just above

2 2_ 2 4
1201775+ 247, 73= 1202z 5]+ O(E) P*, this changes to a “crushed” isosceles triangle with two

= 1KOIZ+ L 012~ 41,) — L(kepV3) sides of lengthgSy and one side of lengthS,, as shown in
Fig. 5a). In the combined free-energy surfaces of Figs) 4
X[914(1 §—4I 5)+213]+O(E%), (10 and 4b), which together represent E(), the ground state is

shifted from the symmetric configuratiam=d=1 at small
In Eq. (10), the surface bulk and shear moduli are identifiedp to the global energy minimum at=0, a=3 when the
at P=0 (superscripts denoteT=0) as K3=3(Cii;;  pressure exceed®* . Importantly, at the transition and when
+C112) =3[ (N°+2u®) +7\0]=3ksw3, and u°=3(Ci111 b=0, (i) »3 does not changeii) 7, is a2 in the equilateral
—Cy109) = k3. These giveK)/u®=2, a well-known re- state andia? in the crushed state, ar@i) 7, is 0 in the
sult for two-dimensional2D) triangular nets of harmonic equilateral state and/g/4)a? in the crushed state. Thus,
springs. Hence the symmetry at the order of the quadratics the candidate order parameter most appropriate to this
strain in Eq.(9) is captured in Eq(10) with an isotropic transition. Note that the crushed state is a “boundary state”
surface response; i.e., the quadratic terms are accounted faith nonzero gradients in strain energy.
with 1; and |, [30]. Third-order terms in strain arise from  The T=0 energy surfaces defined by the progressive ex-
I, as well adl,, but these contributions are always symmet-pansion in Eq.(10) show that the quadratic terms in the
ric (i.e., permutable iik, ;); the invariant 5, characteristic of strain, i.e., the isotropic terms, make the crushed state a glo-
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(a) 8 8 —— Simulations
o S -~ =~ Mean Field
9 9 & g | & T=0
— 3 o 3 34 !
8 4 ez
9 3
27 -
1.0
(b) stable equilateral : «5‘
- - - metastable equilateral J ~ I
stable crushed S A
N o exact :
= o quadratic approx. . 14 L
_&% 0.5 1 > cubic approx.
) arti . .’ q
N % quartic approx B - C,
© . QF Z
E — 0 : : : ,
0.01 transition 0 01 0.2 03
’ kpT/k_ S2
B sp-o
1.5 1 0.5 0

FIG. 6. Phase boundary in the pressure-temperature plane for
(4 Hookean spring networks under compression. The arrow points to-
- . ward a data point akgT/ks,S5=1. The dashed line refers to the
FIG. 5. C¢—C, transition of Hookean spring model at zero tem- T=0 model, where an ideal gas entropy has been added. The solid
perature.(a) The ground-state plaquette is an equilateral trianglejines through the simulation data are drawn to guide the eye. The
aboveP* and a “crushed” isosceles triangle beld . Numbers o inset sample configurations of a large Hookean spring net at a
refer to the length of the indicated side scaled &y (b) Free moderately high temperatudl= 48 kBT/kspSCZ):%) are shown at
energies of the plaquette under compression. pressures just below and just above the transititfiks,= 1.8 and 2,

o ] ) ] respectively; the periodic box is hidden from view.
bal minimum[see Fig. %)] under suitable compression. The

crushed state is threefold degenerdt@,b,d): (3,0,0),
[4,0,+ (2//3)]}, rather than sixfold, as determined through

the asymmetry of th&Cg invariant|;. Furthermore, given A . S
y y N 3 g Zp reduced from Eq(8). Motivation for this approximation

the 7;3 term in the energy that results frorg, this : : ;
symmetry-breaking crushing transition must be a first-ordef> provided in part by the apparent randomness in the sample

transition in the context of a Landau thed7]. This may chf|gurat|ons of the network near the transition as shown in
b : F|rg. 6.
e expected to hold true regardless of temperature since, nea

the transition, the most importamt, contributions to the free Although_ the mean-field expression .for. equilateral tri-
energy sum to angles provides a reasonably good description of the network

area under moderate tension for low temperatures, network
AP, T) 72+ B(P,T) 73+ C(P, T)ni+--- | 13 compression is more dlffICL_I|F to pred|_ct quantitatively even
(P T)mo+B(P.Tmz+ C(P. T, (I3 Lith the more general partition function of E(B). As an

and sinceA(P,T) but not BP,T) will vanish at the transi- €xample of the difficulty, the inset to Fig(ld for (A)o vs
tion. In the P,T) plane, the phase boundary should thustémperature demonstrates a feature atypical of solids: the
appear like the liquid-solid or isotropic-nematic lines in lack- Stress-free area decreases as thg temperature is initially in-
ing a critical point at any f|n|teR,T) creased from zero. Ned(BT/kSpSO%OZ, a minimum IS

In many martensitic transitions, density changes occuféached, and, above this temperature, network area grows
without driving the transition, but they nonetheless clearlyaSymptotic to the linear scaling expected of ideal gas behav-
signal the transitiorf19]. For the current Hookean spring 10f. Such a negative coefficient of thermal expansion at small
model, area versus pressure isotherms crossing a coexisteriégperatures is well known for pure ice near zerd 23],
region were described at the outset with Figh)1 At low  and is also expected of a 1D polymer under a near-zero
temperature, the transition pressure for the discontinuoufrce [24]. The single-plaguette, mean-field integral of Eq.
martensitic-like transformation is modeled wéfig. 6) sim-  (8) shows the same qualitative behavior. The initial down-
ply by destabilizing the “crushed” phase with the free- Ward trend in area seems due to the very “open” low-
energy(entropy change for an ideal gas of network nodes.témperature structure, I|I_<e the H-_bonded networks in ice,
Thus, in much the same way as was done in early models arhich allow for a predominance of internal thermal motions.
polymer networkg20,21], the vertices are considered a gas Entropic filling of interstitial voids reverses the trend in these

A/A

tropy change term, it may be remarked, also can be derived
as theO(T) term[22] in the equilateral triangle version of

of fluctuating nodes, so that spring networks, and gives way eventually to an ideal gas of
network nodes in the high temperature limit.
6T>o”6T=o+PokBT Inp. (14) Networks at infinite temperatur&g,;=0) can be investi-

gated only forP>0. Simulated networks in this limit show
The quantitypy is the number of nodes per area at zerothat P(AY/N=kgT[1+O(1/N)], K,=P, and the Young's
pressure and temperature, i.8/Ar_,. This ideal gas en- moduli vanish(N=82%, 122, 207, 24°, or 3(%). This implies
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vanish(in the thermodynamic limjtwhen the phase bound-

02
N (©) , ary’s slopedP*/dT is finite, as seen in Fig. 6. Indeed, the
T K, ' transition is better identified by a deviation from zero of the
~ . Moy Bain-type order parameter -1(a)/(d) [Fig. 7(b)] [6,7],
é I . 30 which is related toz,. Furthermore, while the transition
v (d) from Cg is always marked by the vanishing @f® as the
1 120 quadratic coefficient(P,T) for 77%, the symmetry breaking
0.1 T Yorin to C, is also characterized by divergences in the inverse
N ' (b) o Young's moduli, C 1= Cjz, coincident with a growing
< 0.8 Y nonzero difference in their valu¢Big. 7(d)]. This is consis-
A ?/“/'} tent with the disparity in the quadratic order terms ofa
§ | 5 6 o 9 energy[Eq. (11)]. _ _
A 04 P/k We conclude this section by returning to the general form
v P of H in Eq. (5) which admitsn-monic springs(Fig. 3. It is
:- 0.0 found atT=0 that the crushing transition described above
14 1.8 22 for Hookean springsn=2) also occurs for larger, up to at
P/ksp leastn=40. The smallest, stable equilateral triangle has an

elemental lengtls/S, of § (n=2) which decreases quickly

FIG. 7. Hookean spring networks under compression at highand levels off at~3 (n=40). Further investigations of the
temperatures(a) and (b) area and Bain-type order parameter, re- properties ofn-monic springs at nonzero temperatures will
spectively, akgT/ks;S5="5 for N=48" (squaresor 8 (triangles.  not be reported here.
(c) and (d) Elastic moduli as a function of pressure lq;T/kspSS
=1 for N=64%. The configuration space is threefold degenerate,
and the simulation time needed to move among the degenerate re-
gions is large. Hence our ensemble is constructed from post- In the limit of the exponenh approaching infinity, the
relaxation steady states which fluctuate about one of the three der-monic Hamiltonian[with S,>0 andf(p)=0 in Egs.(5)
generate regionsY . and Y, in (d) are essentiallyyy and Yy and (6)] looks like a square wel(S,,,=2S as n—x),
except for the last data point, which is reversed. The solid linesyherein the stretching energy of a spring rises rapidly from
through the simulation data are drawn to guide the eye. zero as the spring length exceeds some consagt [9].

With the pure square-well model, there is no intrinsic energy
that the three-particle constraimt (rj;xr;)>0 does not scale, and the properties of the network depend on the ap-
contribute to the average internal virial; ideal behavior isplied pressure and the presenc¢er absence of self-
expected here because there is no excluded volinmeat-  avoidance. The limits to thZ, integrations of Eq(8) are
traction with this signed-area steric interaction between in-precisely defined for square-well potentials, and the proper-
finitely thin tethers. In spite of the ideal gas behavior at highties of the single plaquette can be determined exactlp at
temperature, the constraint on the signed area is crucial te Q:
stability against network collapses Bt=0: a “phantom”
network (lacking the signed area constraiobllapses at the Zp=35(127—9V3) (153
remarkably low temperature &izT/ kSpS§~ 1/20[25].

IV. SQUARE-WELL NETWORKS

. 7 16 9v3

We have s_hown above that the phase tra_mglt]on to the <S>O/Smax:2(_+__ _) / Zp=0.609..,
crushed state is present®t 0, but is absent at infinite tem- 18 45 40
perature. At intermediate temperatures, between zero and (15b
kBT/kSpS§~O.1, distinct hysteresis loops in the network area s _
define a coexistence regidifrig. 1(b)], and the hysteresis (Ado/Amax= 258/ Zp=0.261.., (159
increases with system size, consistent with the first-order na- 93
ture of the phase change. For fixéd the transitions, even Ka oSzmaJkBT:ﬁ( T _> / Zp=7.589... .
from metastable states, also sharpen with increased network ’ 8
size. Away from the transition region, finite-size effects are (15d

negligible. All of these effects can be seen in Figh)1Par-
enthetically, if one calculates a Hookean spring constan

from the in-plane ‘“shear modulus” often attributed to the (S)o/ Sma=0.604, (A)o/Ana=0.247, andK ,o=8.5-0.5.

red cell cytoskelet0|ﬁ4],_|gnor|ng all questions of appropri- Furthermore, the probability distributions for either the sides
ateness, the relevant isotherms are among those between

2 1 ks - : rareas of triangles in a network are found to be very similar
KgT/KspSp= 18 and 100 [_26]._Phase transitions, hystgres[s, andin shape to those of a single plaquette. These results suggest
all the associated difficulties are quite prominent in this tem

S g that neighboring triangles in a square-well net, after an en-
perature range. At still higher finite temperatures, the changgemble average, are nearly invisible to each other

in network area across the transition is found to be a very
small fraction of the unstressed area and is difficult to detect
even for large systemd=igs. 1a) and 7c)]; however, ac-
cording to the Clausius-Clapeyron equation, bvth and the Square-well nets share some, but certainly not all, features
entropy change across the transition can be small but cannof harmonic net§9]. A harmonic spring network with the

hese average and fluctuation quantities are in remarkable
greement with simulations of the full network which yield

A. Compression
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1.0T7 o Network Simulations e
—— single plaquette I <Ly>/<Ly>o
. . | |
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FIG. 8. Area as a function of pressure for square-well network ) ) ) o L
and single plaquette mean-field models. The inset compares results F/C: 9. Strétch in thé or X direction, when uniaxial tension is
for compression to ideal gas behavior whexg) = NksT. Several applied to square-well networks in either one of these directions.
network sizes, fronN=122 to 64, were used over the entire range 1€ SIOPe near zero uniaxial tension gives a single Young's modu-
of compression, and indicated no particular size dependence.  US: in close accord with that determined by fluctuation®&t0.

The solid lines through the simulation data are drawn to guide the

sameK, o and(S)o/Spax @s Egs.(15b) and(15d) would be eve.
expected to have a temperature in the rakgB/ks;S5~2 0 that in the direction simply by the ratioy3/2). This an-

4. Such a spring network would show a transition atisotropy is a very simple but general consequence of tether
PSzma)JkBT of order 20. However, simulations of square-well imits in the triangular geometry.

networks under an applied pressure exhibit no transition for
compressions up to at leasPS;,/ksT=80, where v THREE-BODY ENERGETICS: “FLORY NETWORKS"
(A)/{A)o~0.060(Fig. 8. For comparison of these numbers _ _ _ .
to a Hookean spring model, ti@;—C, transition at the high Sections Il and IV dealt with networks having strictly
temperature okBT/kSpSSZl occurred atA)/(A)y=~0.11. two-body interactions constrained only by the requirement
Of greater importance, square-well networks under sigihat the three-body signed area of each plaquette not change.
nificant pressuresRSﬁ]a/kBTEZO) exhibit ideal gas behav- We now generalize this to include a less trivial form for the
ior: P(AY~NkgT (Fig. 8, inset andK,~P. At these pres- three-body interaction term in the Hamiltonian of E&).
sures, the probability of a tether being within 10%Saf,, is Such an interaction may help provide a very elementary rep-
exceédingly small. Thus, as with the,=0 Hookean s?)Xring resentation of quasi-two-dimensional, cytoskeletonlike trian-
net, the only intrinsic Ieﬁgth scale ir’; the M&,,, hers is gular nets assembled from linear polymers rather than simple

unimportant under high compression. Indeed, for a Sim"alsprings[%]. With the assignmert, =0 andn=2, the initial

reason, the one-dimensional form of the mean f&Eq. term of the Hamilto_ni_arﬁEq. (5)]_ becomes Gaussian, and, in
8)], i.e., considering only equilateral triangles, also yieldsneglectlng the explicit summation over the network vertices,

ideal gas behavior in the high compression limit: therefore polymer-lik¢12,21,27. The effective spring con-
stantkg, would be dependent on monomer number, tempera-

(AY=(kgT/P)[1+ x/(1—€X)]—kgT/P as P—+o ture, etc. Furthermore, monomers of the polymer chains fluc-
(169 tuate locally, it is envisioned, to fill the interstitia;, of the
net. As in the typical Flory argume27], correlations are

Ka=PH{1-[x/(1—e")][1—eX+ xeX]/[1-eX+eX]} neglected in assuming that such filling is spatially uniform
within each triangle. This assumption leads to a nonzero
three-body terni(p) # 0 and the name “Flory-polymer net”
or simply “Flory net.”

In choosingS,=0, n=2, andf(p)+0, the exact strain
nergy of Eq.(6) appears expressible strictly in terms of
isotropic surface quantities &2 andp,

—P as P—+oo, (16b

In these equationg =P Ay./KsT, whereA .= (xf3/2)SﬁW
Graphical comparisons of simulated nets and the singleg
plaguette models are made in Fig. 8.

B. Anisotropy W= (ksg/3) 3trA%+1(p). (17)
Despite the evident lack of symmetry breaking or collapse

under compression, the square-well network, like theDerivatives of the first term yielsz,uozksp\/Z. It proves
n-monic nets, still exhibits anisotropies. Under uniaxial ten-convenient now to define the invariants, J,, andJ; for-
sion in theX or Y directions stretch as a function of uniaxial mally by simply replacinge with A? in Egs. (3), e.g.,J;
tension for square-well nets displays distinct asymptotes=trA?=(a2+ c?+b?+d?). Each invariant of the sek van-
(Fig. 9). The ratios of the maximum to initial lengths in the  ishes when the deformation map is the null tensor rather than
andY directions areS,.,/S, and 5,,,,/\/3Sy, respectively; the identity so that, in the case of no applied strpss] and
hence the maximum strain in tbédirection is smaller than J;=2. Figure 4c) shows the strain energy surface for this
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model in biaxial deformation with a particular choice for 6 :
f(p) elaborated below. The symmetry abautd is a ge- - 3
neric feature of Eq.(17). For comparison to Hookean 54 Ka\' 40 4§
springs, Fig. irigh_t-hand sidgmaps the_ same sum of ener- o u 20 g
gies into an effective elemental potential. A 4 ' 2
Toward assignind(p), we assume that the osmotic pres- <\C/ ] 0 ‘3
surell in the polymer net depends on local monomer density ~ ~ 31 40 040 s©
asIT=II(p), and that the constraints of network connectiv- é
ity condense the network sufficiently into the nondilute poly- vV 27
mer melt regime to give e
f(p)=B.p+B,p 2+ const. (18 0 . ; ] .
100 50 0 -50 -100
If the dominant osmotic term in this is tH&, term, then a 2
balance of chain elasticity against excluded volutaela PSref/kBT

Flory polymer chainsallows one to determinBlzngpSfef
and Kg=2ksp\f3 at P(p_= 1)=Po,=0. Hencng/,uOZZ so FIG. 10. Flory nets under isotropic pressure at finite tempera-

that, at this order, the network looks very much like a net_ture:kBT/kspS?eF % Inset and open circles show simulation results

work of Hookean springs. However, this Flory net is rigor- O an anharmonic model which approximates more microscopic
ously isotropic in its mechanical responses. These features ogkeleton S|mula.t|0r[§6]. The solid line through the simulation
appear consistent with simulations of cytoskeletal polymer ata is drawn to guide the eye.
nets tacked to a bilayer wall7] within the approximate
range 0.5<p=2.5, in spite of the very gross simplifications
of our Flory net calculation. Additionally, recent experiments H= 27 > (3KeSaad[(ij i) /Shad + da(Tij i) /Shad?
which reveal red cell cytoskeletal network deformati¢p8k -

have been shown to be fit reasonably well, at least by axi- + da(rij Ty /S%ax)u...]

symmetric continuum analyses, with an isotropic strain en-
ergy expression which can be built in part from Eds) and
(18). In [3], the strain energy is denoted B, instead of +t3r |§1:' > kspsfef{g Nbn( Shed Snad" | (Arer/ Aijic)-
W, and a functiorg(p) ~ 1/p? is included: ]

net

net

(20)
Ene= 3 (N f+)3) +B1p+9(p). (19
The first term is just the 2D forr#] of the classic 3D rubber For.f_reelly jointed po'y”?er Cha?”s in three dime_nsions, the
. . : . . familiar inverse Langevin function approa¢h6] yields ¢,
elasticity strain energy, which merely mclud)e%m the sum 3 a3 . X . . >
: = 15, P3= 175, etc. To third order in the invariants of<, the
over squared stretches, as established by Flory and Otheé?rain energy is
(for example[16,20,21). The shear modulug in these lat-
ter microscopic theories is given by the productkgf and
the number of chains per ar€2D) or volume(3D); in such Y _1 1 2 a2 (312
a case, the spring constant appropriate for the mesoscale tri\-/\//(kS V3)= 2311 2 ol Sref Smad (391F 32)
angular Flory nets i&s,= u/v3. + A ha(S2f S2r) A(933— 543,05+ 205) + - -+
Importantly, becaus&,=0 in the Flory net elements,
there is no symmetry in the elemental energetics, and there-
fore no discontinuous “crushing” transition in these types of
nets(Fig. 10. Any decrease in network area is continuously
opposed by a soft-core repulsion reflecting the fluctuating
monomer interactions. However, in positive tensiéh<{(0) The anharmonic terms im;-r;; stabilize a network under
the area of this harmonic Flory net along with the length ofpositive tension(e.g., Fig. 10. The ¢3 term is the first to
each linear element increases without bound asymptotic to imtroduce the third-order invariani;, so that, like the
finite tension PT:O=kSp\/§(FZ— 1)— —kg3, just as with  square-well networks in uniaxial tension, these anharmonic
nets of Hookean spring®] [note that Eq(12¢) is equivalent  Flory nets are anisotropic at and above this order. The virial
to PT=0=ksp\/§(EI’2— 1)] and harmonic potential 2D ring coefficient of the density function may now also depend on
polymers[28]. Considering, then, that basic linear elementsthe higher-order terms and, though this dependence falls off
of physical networks like the cytoskeleton are often poly-quickly with large Sa/Sef, iSSues of convergence need be
mers which have a maximum leng8y,., there should be a considered. In the end, the anisotropy introduced by
limit to the stretching of nets, similar to our square-well net-“polymer-length” limits and the absence of g(p)~ 1/p?
works. This effect is certainly observable in a recent cyto-term in Eq.(21) distinguish it from the simpler, isotropic
skeleton computer simulatiorj®6]. We therefore assume expressiofEg. (19)] already used to fit the red cell experi-
here that the free energy stored in the length of each “polyments[3]. This anisotropy, it should be emphasized, makes it
merlike” element can be approximated by an expansion beimpossible to rigorously apply the aforementioned axisym-
yond the Gaussian term to give the effective Hamiltonian metric analyses to nonhomogeneous cell deformation.

+| X Nn(Sad Soad" 2 [p- (21)
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VI. CONCLUSIONS -
W=

2
— Kep/V3 [{2[ 3(N24+30\3) Y2~ (S/Sien]"
The large deformation, in-plane responses of several per- n P }{ (2O 302) 7 (So/Srer)]

fect triangular network models have been determined. For N —

nets assembled simply from central force springs +[N 1 (So/Sie) 1"} + F(p)(Shap/312). (A1)
(force-free lengtkr0), a discontinuous transition under

compression is demonstrated, in which g symmetry of

the network is reduced t6,. No transition under compres- Tensions in the network may then be calculated frém
sion is observed, however, when this force-free length scales (1/\,) IW/9N, and T,=(1/A;)dW/IN,. As an aside,
which sets a symmetry in the interaction potential, is elimi-simple shearing in a continuum sense may appear removed
nated and when one of the following applyx T— +; (i)  upon settingb=0; however, material shearing still can be
the continuous potential is replaced with a square-well; angsolated in a state whete=\;=1/\,, a state referred to as
(iii) the elemental elasticity is balanced against local, meanpure shear. For this state, a shear strain may be identified,
field sterics, to mimic a polymerlike net. For conditiois  though not uniquely, aB.=(A\2—1/\2) [4]. By calculating

and (i), the limiting behavior in compression is that of an 4 shearing tensiofig=|T,—T,|, a shear modulus in large
ideal gas which can reflect only th_e sign(_ad area constrainyeformation elasticity can be obtained asT/E,. With

For the models 0('")’ the compression limit leads to a non- this choice ofEg, the proper infinitesimal identification of
ideal gas determined by the assumed form of supplementfﬂl]e shear modulus generally can be regained in the small

sterics. In spite of such rotationally invariant limit states, .~ .~ : . o

' X -~’strain limit. For the strict Hookean spring network, it is ap-
nonsymmetric responses of triangular nets are more typlcafjarent thatv. and - do not permute in the strain ener
and the phase transition is but one manifestation of this" 1 2 permute | : 9y

Uniaxial tension of triangular nets with any sort of maximum expression Eq(22); such a network is therefore anisotropic.
tether length also clearly leads to an anisotropic response

with the associated odd-order elastic constants. To uncover

these effects experimentally, the phase transitions and APPENDIX B

anisotropies in some of the sixfold structures listed at the Ay ensemble of configurations is generated by the Monte
outset of this paper comprise the qu|cal next step. Carlo procedure for each chosen combination of parameters
.Note Addec_j Alter supmlttlng this manuscript, we re- g, aN, kgp, andP. Typically, the ensemble represents at
ceived a preprint from Wlntz.,_Eve.raers, a’?d Seifert, who alscfeast 2< 10° moves per particle after the system is allowed to
observed a c_oIIapse transition in 2D trla_ngular hetworksrelax from its initial configuration. Of course, successive
They used af|>_<ed area e_nsemble, and their equation of Sta{:‘i‘)m‘igurations in the ensemble are correlated, and so the
agrees approxmately with ours aver the range of networlﬁumber of statistically independent configurations is consid-
areas reported in their pap&el/ Ar—o>0.5, whereAne is erably less than two million, depending on system param-

the net_work area. The pha_se transitions seen In Our OWers The ensemble is used to calculate averages such as the
simulations of Hookean spring nets in a fixed pressure en;

bl tend below thi h : 1 area(A) directly, and to calculate the elastic moduli indi-
semble extend below this range, as shown in our Fig). rectly through lowest-order fluctuations. The moduli also

were obtained from full strain-strain correlations as a check
ACKNOWLEDGMENTS on the accuracy of the technique. With Hookean spring net-
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parallel faces of the periodic box and collective moves made
accordingly. We estimate that the uncertainties in ensemble
averages such g#\) are less than 1%, and that the uncer-
Considering a biaxial deformation, the exact strain energyainties in the moduli are less than 5%. Further details on
density of the large class of nets represented by(Bqre-  algorithms and methodology can be found in the appendices
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