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Dynamic fragmentation of a two-dimensional brittle material with quenched disorder
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Fragmentation of a two-dimensional brittle material caused by a rapid impact has been analyzed. Computer
simulations together with simple arguments are used to obtain a qualitative understanding of crack formation,
which is then used to derive an exponential fragment size distribution valid in the large fragment size limit. In
the limit of small fragments this distribution is solved numerically, and it is found to obey a scaling law with
the exponent-1.5. These results suggest that two different mechanisms are operative in the fragmentation
process: branching of propagating cracks determines the small fragment size limit, and merging of the nucle-
ated cracks determines the large size limit. The point of crossover between these two regimes is also found to
obey a scaling lam.S1063-651X97)08204-4

PACS numbg(s): 46.10+z, 46.30.Nz, 05.96:m, 91.30-—f

During the last decade much effort has been devoted tthe small size limit we find, as in almost all studies done on
obtaining a better understanding of the effect of disorder offragmentation, that the fragment size distribution follows a
the fracture of materialgl]. In most cases the model consid- scaling law. The scaling exponent, however, is different from
ered has been a lattice network that includes some sort ¢he one given by the Gilvarry model. We argue that the frag-
stochastic disorder. Fracture formation has usually beefent size distribution is governed in the small size limit by
simulated in these models by repeatedly finding the elastighe dynamics ofsingle cracks[11-16, while in the large
equilibrium of a strained network, and removing at each stei§ize limit it is governed by thenergingof cracks.
the most strained lattice bofsl (a “quasistatic fracture. The model network we have chosen to analyze is that of a
In many natural phenomena and techno|ogica| processe§guare lattice in which the lattice bonds have the elastic
however, strain is applied so fast that the material will neveiProperties of beams with a square cross sectiénlength
reach equilibrium. This is true in particular for all types of |, and Young's modulu€. Massesm are placed on each
explosions and rapid impacts. In such cases, elastic or shodgttice site and the bonds are assumed to be magdlgss.
waves appear, and damage is caused by material and timéhe equations of motion can be writt¢t7] in the form
dependent strain@ ‘“‘dynamic fracture”). In the quasistatic MU=—KU, whereM is a diagonal matrix containing the
case a single crack dominates the fracture pro@sand the massesK is the stiffness matrix, and is a vector contain-
sample is usually cleaved. In the dynamic case, howeveing the displacements of the nodes. This equation is solved
several cracks propagate simultaneously and a fragment sizeimerically by discretization and iteration of time steps. To
distribution with some rather remarkable features appeaavoid nonlinear equations of motion all displacements are
[3-9]. assumed to be small in comparison with the length of the

The fragment size distribution resulting from a rapid im- bonds. A bond will break when its axial strain exceeds a
pact has been observg8-7] to follow a scaling law in the predefined limit. An elastic wave is applied at the left bound-
small size limit. The measured scaling exponents range frorary of the network in such a way that the lattice sites at this
1 to 1.7, depending on the shape of the fragmented objedtoundary are forced to move in th& direction as
[3], and it has been suggested by Oddersheds. [3] that ~ Agsir’(et) when time t evolves from 0 tom/w. For
the scaling law is a sign of self-organized criticality. Gilvarry t> 7/ w these sites are constrained to remain at their original
[4], and Klimpel and Austi10] investigated a model based positions. At the right boundary the sites can move without
on the idea of randomly located preexisting defects that aatonstraints. Periodic boundary conditions are imposed in the
as nucleation centers for cracks. This model reproduces the direction.
power law form in the small fragment limit, and it also pro-  Disorder is introduced in the network by slightly moving
vides good fits to some experimental data in the large fragall the lattice sites in a random fashion, and adjusting the
ment limit. A recent model by Marsili and Zhang also repro-lengths of the bonds so that no stress appears. Since no site is
duces the power law under some rather general conditionsioved by more than a half of the length of the lattice bond in
[5]. Similar power laws were found by Hernandez and Her-any direction, the induced disorder is weak in the sense of
rmann[6] and by Kun and Herrmanf®] using more or less Hansenet al.[2]. In order to avoid the artifacts caused by a
realistic numerical models. A decrease faster than that of thparticular direction of wave propagation, two different direc-
scaling law was observed by Oddershedal. [3] and by tions were used in the simulations: parallel to the horizontal
Kun and Herrmann9] in the large fragment limit. The na- bonds(direction ), and diagonally to the bondglirection
ture of the distribution in this limit, and the crossover be-Il). In contrast with the case of quasistatic load, dynamic
tween the two regimes has, however, remained unclarified.fracture is a local phenomenon in the sense that the fracture

In this paper we show that a model based on ideas similaof a bond will only depend on the stress in the immediate
to those of Gilvarry{4] explains well the fragment size dis- neighborhood of the bond. Consequently, finite size effects
tribution of the fractured network in thiarge size limit. In should not be as prominent as in the case of static load, and
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FIG. 2. Y as a function o for the two propagation directions
when only one crack was created. The amplitudes were (@iféc-
tion 1) and 0.18(direction Il) in lattice units. The fitted lines are

FIG. 1. Fracture paths in a disordered network of siz&40. ~ 9given by Eq.(1) with {=1.03 and 1.06, respectively. The and
The impulse has propagated in direction Il. Thick lines indicateY @xis are in lattice units.
broken bonds.
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cracks begin to propagate and will soon begin to merge. It is
results obtained for a large lattice should hold well in thealso evident from Fig. 3 that merging of cracks causes the

thermodynamic limit. The absence of large finite size effectdieight Y of a crack to grow very fast while the widtK
was also confirmed by simulations. remains practically unaltered. We thus model the individual

In the present model fracture is instantaneous and mesracks as similar cracks initiated at random locations. These
chanical contact between fragments is neglected. This measacks are assumed to grow independently of each other such
that the amplitude of the elastic signal will decrease drastithat for each single crack=aX. When two cracks merge
cally when a crack is formed. Consequently, fracture will betheir heights add ufresulting in exponential growth: growth
located close to the edge of the lattice netw(flg. 1). This  rate is proportional to heightwhile the total width of the
type of fracture is called abrasidii] and in experiments it new compound crack is more or less that of its constituents.
appears when the energy input is not too far above the limiThe growth rate of the height of a crack with this kind of
at which fracture first appears. In order to obtain a qualitative
understanding of this type of fracture, we first have to study
the dynamics of a single propagating crack. As already men-
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with {~3/2 anda a positive constant. We have simulated the
evolution of single cracks with the dynamic model described
above, and the results of these simulations are shown in Fig.%
2. The best fits to the data by E(. give {~1.06 and 1.03 !
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for direction | and direction II, respectively, as defined Ry G

above. In other words, the simulations support our assump-

tion thatX is proportional toY. FIG. 3. Snapshot of a fracture process af@®r1200, (b) 1600,
_As illustrated by Fig. 3, a simulated fracture process be{c) 2000, andd) 2400 time steps. Notice periodic boundary condi-

gins with cracks being nucleated at independently locategons in the vertical direction. No segments were broken after 2400

sites close to the left edge of the network. From these siteime steps.
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merging included is therefore influenced by two factors: the
growth rate of the height of a single crack, and the height of
the growing crack multiplied by the density of cracks. It can
thus be expressed in the form

ﬁza(l-f—bY), (2

whereb describes the density of initiated cracks. The solu-
tion to Eq.(2) is given by

1
b’ ©)

Y= eab(x_l)_

L,
bC

wherec is the value ofY at X=1.

Evolution of multiple cracks was also simulated in the
network model of elastic beams described above, and the
results of these simulations together with the corresponding
fits by Eq.(3) are shown in Fig. 4. Notice that the same data,
for A=0.15 (direction ) and A=0.18 (direction Il), appear
in Fig. 2 in a log-log scale, while a semilogarithmic scale is
used in Fig. 4. In the fitea varied from 1.2 to 1.45 for
direction 1l, and from 0.8 to 1.0 for direction I. This means
that the width and height of a single crack grow with ap-
proximately the same velocity. As expectdy, which de-
scribes the density of initiated cracks was found to increase
with the amplitude of the impach=0.06,0.29,0.42,0.56 for
the amplitudes 0.15,0.18,0.24,0.30, respectively, when>
waves propagated in direction |, abe-0.07,0.15,0.31,0.36
for A=0.18,0.21,0.24,0.27, respectively, when waves propa-
gated in direction Il. Notice thab vanishes at a nonzero
amplitude: for small amplitudes only elastic waves appear
and no cracks are created. To check if the fitted values of the
parameterb really correspond to the amount of initiated
cracks, we calculated the number of cracks directly from the
simulation results. It is, however, difficult to estimate the
exact number of nucleated cracks as propagating cracks
sometimes make small jumps and thereby, for a moment, FG. 4.y as a function o for (A) direction I, and(B) direc-
create a new crack at the crack fgee, e.g., Fig.@), where  ton 11, The amplitudes of the impulses were(A)
the upper crack has just made a small jympo count the  0.15,0.18,0.21,0.24,0.27, af@) 0.15,0.18,0.24,0.30. The lines are
number of nucleated cracks, we therefore estimate the maest fits by Eq(3). The X andY axis are in lattice units.
ment in time when almost all cracks are initiated, but crack
merging has not yet become dominant. At this moment we
then simply count the number of existing cracks. This : .
method will slightly underestimate the number of initiated predicts the time dependence of
cracks as the merging of cracks and the creation of new The results report_ed so far prove that the fracture process
cracks to some extent overlap in time. This effect is strong{ra” be understood in rather simple terms. Cracks originate
for high amplitudes when the cracks are nucleated clos§om randomly located “weak™ bonds. They propagate in-
to each other, which causes cracks to merge quickly. Fofependently of each other with, on the average, a constant
direction Il and networks of size 4040 we obtained an Velocity in thex andy directions until they encounter an-
average of 1.7,5.58.9,9.4 cracks for the amplitude®ther crack.

A=0.18,0.21,0.24,0.27, respectively. This should be com- This simple picture can now be used to calculate the ex-
pared with 2.8,6.0,12.4,14.4 cracks obtained from the fittegperimentally accessible distribution of fragment sizes
b values for the same amplitudes. [3-10Q. It is evident from Fig. 3 that large fragments are

Since, for any individual crackX is proportional toY, we  essentially created between the points where cracks are ini-
would expect that for a single propagating crack both oftiated. Small fragments are created by branching of cracks.
these quantities are linear functions of timeXk ct+d, Eq.  To calculate the distribution of the large fragment sizes we
(3) can be used to obtain thé of merging cracks as a non- again set td the fraction of lattice bonds on which cracks
linear function of time. In Fig. 5 we show linear fits to simu- are simultaneously created. If we further assume that the
lated X(t) and the resulting fits to th&(t) as calculated length of the fragments is proportional to their width, the
from Eq.(3) with the fittedX(t). It is evident from this figure densityn(r) of fragments of linear size is given by

hat X grows linearly with time, and that E@3) excellently
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FIG. 7. Log-log plot ofN(s)/s for amplitudes 0.17, 0.21, 0.25,
and 0.28. The straight line is the functidi(s)/sxs~ 5. The data
points deviate later from the line with increasing amplitude.

FIG. 5. X andY as functions of time. Straight lines are fits to
simulatedX. The other full lines[for Y(t)] are given by Eq(3)
with the fitted X(t). Results are shown for amplitudes 0.21 and

0.27.
simulated distributions were found to excellently follow that

of Eq. (5), except for small and the very largest fragments.

For the largest fragments the deviation is obviously due to

This means that the distributior(s) of fragment areas for ~finite size effects. It has been obsenj@-10 in the small -

large fragments is given by size limit in particular that fragment size distributions uni-

versally follow a scaling law. In this limit, Eq(5) gives
n(s)cexp In(1—b)(\/s/p—1)]/1/s, (5)  n(s)xs” 95 By plotting the data of Fig. 6 on a log-log scale

in Fig. 7 it becomes evident that

wherep is the proportionality factor between the widths and

the lengths of the created fragments. From Fig 8an be n(s)«s 15 (6)

roughly estimated to bp~0.3. The distribution of fragment

sizes was simulated by the randomized network of elasti¢, he small size limit, which is clearly different from Eq.

n(rycb(1—b) 2. (4)

beams, and the resulting cumulative distribution (5). This discrepancy means that the mechanism behind the
" distribution Eq.(5), which seems to excellently explain the

N(g):f n(s)dsxexdIn(1—b)(ys/p—1)] simulated distribution of large size fragments, does not

s dominate the production of small size fragments. So there

is sh in Fig. 6 f diff litudes. The fitted must be some other mechanism that governs the formation of
Is shown In Fig. 6 for two difterent amplitudes. The fitted 5o gmall fragments. An obvious mechanism for this task is

lines correspond to fractiorts=0.39 andb=0.31 of_ broken the branching of propagating craoksnts of this can be seen
bonds for the amplitude&=0.28 and 0.25, respectively. The j, Fig. 3. It is also interesting to notice that 1.5 is the
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FIG. 6. Semilogarithmic plot oN(s) for amplitudes 0.2%upper
data points and 0.28(lower data points The straight lines are FIG. 8. Log-log plot of C(A) for the data of Fig. 7 compared
given by Eq.(5) with b=0.31 and 0.39, respectively. with b~2(A). The straight line i<C(A)oxA~>%
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exponent found by Hernandez and Herrmdéh in their  while Eqg. (5) should be valid for fragments larger tharb1/
“model B” with the “relaxed stopping” criterion. The fragment area at the point of crossopMefA) | between
Furthermore, it is also evident from Fig. 7 that there mustthe two regimes obtained from simulations is compared with
be two different mechanisms that are operative in the smatl/b?(A) in Fig. 8. The data presented in this figure clearly
size and in the large size limit, respectively,rfs). In the  support the above explanation. It is also interesting to notice
first limit n(s) is independent of the amplitude of the im- that theC(A) of Fig. 8, which gives the scaling range, also
pulse while it is amplitude dependent in the second limit.satisfies a power lanC(A)=A">%
(Notice that we have not normalized the distributions in Fig. In summary, we have demonstrated that the basic fea-
7. They show the actual number of fragments created in theures, apart from branching, of the dynamic crack formation
simulations) A reasonable explanation for the two different can be understood within a simple model. The growth of
mechanisms is, as already pointed out, that fragments createdacks is in the direction of propagation dominated by merg-
by merging of cracks dominate the large size limitngg), ing of cracks, and this causes the length of a crack to grow
while those created by branching of cracks dominate thexponentially with time. The growth of the width of the
small size limit. In this case the size and abundance of theracks is linear with time. The fragment size distribution
large fragments would strongly depend on the amplituddollows a scaling law in the small size limit, and there is a
through the parametds in Egs. (5) and (3), while small  crossover to an exponential behavior in the large size limit.
fragments would not depend on the amplitude as thé&he explanation for this behavior seems to be that large frag-
branches are created only after the main impulse has passetents are created through merging of initially nucleated
by. As a consequence, the power-law distribution &g.is  cracks, while small fragments are created through branching
expected to be valid for fragments with linear size smallerprocesses. The size of the scaling regime is given by a power
than the average distance between nucleated crack3, (1/ law in the amplitude of the impact.
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