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Solitary waves in Bragg gratings with a quadratic nonlinearity
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We study the formation of solitary waves in quadratic nonlinear materials where the dispersion is provided
by linear mode coupling mediated by a Bragg grating. We show that solitary wave solutions can be analytically
found provided that the coupling of the second-harmonic waves considerably exceeds that of the fundamental
ones. Furthermore, we numerically determine solitary wave solutions for the general case. These solutions
prove to be close to the analytical ones. A nontrivial property of Bragg grating solitary waves is that they do
not fill the complete parameter space where exponentially decaying functions are allowed to exist. Instead, we
find internal boundaries inside this parameter space where the soliton intensity diverges. Moreover, double-
hump solutions are found where a numerical propagation procedure shows that some of them are fairly robust.
[S1063-651X97)03404-1

PACS numbss): 42.65.Tg, 42.65.Ky

I. INTRODUCTION SW'’s where the fundamental frequen@F) and the second-
harmonic(SH) frequency beams are mutually trapped. There
The study of temporal and spatial solitohsr solitary is a bundle of theoretical papef8—19 where the explicit
waves(SW'’s)] is among the fascinating subjects of nonlinearshape of these types of SW's, their stability and collision
optics. They represent a stable and robust equilibrium stateehavior are studied provided that diffraction or dispersion
in time or space that is due to the balance of linear dispersionan be described in the parabolic approximation. In order to
or diffraction and nonlinear phase modulation. Hence theyenerate temporal SW's a control of both the phase and
nature of solitary waves is determined by the interplay begroup velocities of FF and SH waves has to be achieved
tween the linear and nonlinear properties of the environmensimultaneously. However, in most realistic materials the
As far as the linear properties are concerned the anomaloggoup-velocity mismatch cannot be compensated and a det-
group velocity dispersiofGVD) of optical fibers made from rimental temporal walk-off between the FF and SH wave
fused silic 1] or the diffraction taking place in planar wave- occurs. One opportunity to overcome this problem exists in
guide structure$2] can be exploited. Most recently, it has exploiting the huge dispersion that is due to the mode cou-
been shown that the huge anomalous dispersion required fpting in Bragg gratings. So, there is, on the one hand, a
temporal SW formation in a short channel waveguide can b@ractical need to look for SW solutions in that configuration,
achieved by a proper waveguide tailorifi§]. There is an- but, on the other hand, the search for these solutions is of
other option left to generate a large GVD in configurationsfundamental interest, too.
where material dispersion merely plays a marginal role, viz., In cubic nonlinear materials these SW solutions have been
the linear coupling of two modes with dissimilar group ve- theoretically studied for many yea¢see[20] and the refer-
locities as it occurs in an asymmetric waveguide couplér ences therein[21,22)) and experimentally proven to exist
or in Bragg grating$5]. lately [5]. It is now well understood that these SW’s can be
With regard to the nonlinearity induced phase modulatiorexcited close to the linear photonic band gap. The SW solu-
the traditional approach is based on the instantaneous cubiions exhibit a large chirg22], which guarantees that the
(Kerr) nonlinearity as far as nonresonant nonlinearities ardrequency of the low intensity tails is located within the gap
concerned. If this specific nonlinearity arises in any of thepreventing the coupling to the linear radiation.
dispersive or diffractive configurations various solitons or A first attempt to study Bragg grating SW’s in a quadratic
SW’s have been shown to exist as, e.g., tempfithland  nonlinearity was made ifi23]. However, this paper dealt
spatial Schrdinger solitong?2] or Bragg grating SW'$5]. only with the limit of large phase mismatch where the origi-
During the past several years materials with large instannally quadratic nonlinearity degenerates to a cubic one and
taneous, quadratic nonlinearities have attracted a great deghle familiar SW solution§20—-23 appear. Evidently, in re-
of interest. It has been shown that the phase modulatiorstricting to this particular limit one misses the genuine ef-
which appears simultaneously to the amplitude modulatiorfects evoked by the quadratic nonlinearity that are expected
in the consecutive up and down conversion process, mag show up close to phase matching. But more importantly,
even balance the self-diffraction of a beam in a planar wavethe SW solutions found for that particular limit are not com-
guide[6] or in a bulk materia[ 7] leading to the formation of patible with the original equations that we are going to show
later.
We have yet to mention that switching and bistability in
*Electronic address: pfl@physik.uni-jena.de Bragg gratings with a quadratic nonlinearity were investi-
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X guide in a direction perpendicular to the waveguide surface.
A These losses are important for fairly thin waveguides only.

grating In the following we will neglect both loss mechanisms as
well as absorption and assume that both the FF and the SH

modes are guided.

——— " Ff The complete optical field is given as a superposition of
= waveguide forward and backward propagating fields at both frequencies
- o as
e
substrate E(Y,Z,T)=[ET(Z,T)el/2KeZ~1(Qe+ V)T

r4
_ o _ . +EFE(Z,T)e (12KeZ-1(Qs+OTIF_(y)
FIG. 1. Schematic of a double periodic grating that mediates the . )
coupling of forward and backward propagating modes at the FF and +[ESH(Z,T)eKe2 210+ T
the SH frequencyArg: grating period. L.
+EN(Z,T)e ez 2t O (V) +c.c.,
gated numerically24]. There the emphasis was not paid to (1)
SW solutions because the grating-induced dispersion for the

SH wave was neglected. . . v .
The objective of the present work is a systematic analysi¥vhereT is the time andr denotes the transverse coordinates.

of SW solutions in quadratic nonlinear materials where thet is convenient to separate fastly oscillating terms, Wh.iCh are
dispersion is generated by a Bragg grating mediated couplinr 'Iated to th_e gratingBragg vector Kp .Of the FF grating,
of forward and backward propagating modes. The paper i 'th. the periodAg: and to_the respective Bragg frequency
structured as follows. In Sec. Il we derive the basic set of 8 " the center of the linear band gafty serves as a
equations describing the dynamics of the field envelopes iﬁeferer)ce _frequency whereas the "?‘Ct“a' frequer)cy of the so-
the configuration under investigation. Then we discuss thJeUt.Ion IS given bYQB+Q' The grating vectoKg is deter-
requirements and constraints for bright SW solutions to exis ined by tQ.G. perf|od r?f the FF grgtm‘g:F and Sh"’;";b?{:the d
In Sec. Il we develop an approximate model that repre—Kr%gg COE |t||30n orft € propagﬁtlon constﬁnt of the mode
sents the natural “cubic” limit and allows for analytical so- (1) at the Bragg frequency. Hence we have
lutions. It is based on the assumption that the linear coupling
between both SH waves considerably exceeds that between KB=—7T and  K(Qg)=Kg
the FF waves.
Eventually we use numerical means to solve the basic
system of equations. We compare the domains where SWloreover, we have introduced the slowly varying envelopes

solutions may exist with that found in the approximateEilj_/Ssz,T) and the vectorial mode pfOf"eE‘FF/SH- In the

model. Furthermore, we study in detail a few of the SWfamework of the coupled-mode approach these profiles are

numerically. direction profile and do not change upon propagation. The
nonlinearly induced polarization shall not be influenced by

Il. THE BASIC EQUATIONS the grating and is determined by the field profilﬁ-&,SH
) ) _only. The additional polarization induced by the grating re-
We consider forward and backward propagating modes igy|ts in a coupling between forward and backward propagat-
a Wavegwde at both the FF and the SH. These modes Sh%l-lg waves. Typ|ca||y the Waveguides are On|y a few centi-
be coupled by a Bragg grating that is etched into the claddingheters long and the pulses are in the picosecond regime.
layer of an approximately phase-matched waveguii®e Hence we can assume the group velocitgs and Vs, of
Fig. 1). This corresponds, likewise, to an effective indexthe fundamental and second-harmonic waves to be constant
grating. The fundamental grating periodAge. The respec- in the frequency domain under consideration. Consequently,
tive grating vector is given bKg=27/Ar. The grating is  higher-order dispersion is neglected.
designed such that forward and backward propagating FF The resulting equations of motion for the slowly varying
waves are just coupled by this vector. Obviously, the S"bnvelopes of the optical field& S read now agfor a
waves are then coupled by the second Fourier component @fiore detailed derivation see, e.g1] Chap. 10.6.3., pp.

the grating that is twice the grating vector. Usually the cor-451-459]20] Chap. 3.3, pp. 212-21[25,26))
responding coupling efficiency is less than that for the FF

waves. If required, it can be enhanced by introducing a sub- 1 9 9
Isét_ruc{ure, e.g., another groove, into each unit cell as shown iD= [i Ve 5T s+ Ver EFF+ ke + xer( EFD*ESH,
ig. 1.
Evidently, the FF Bragg grating may cause radiation (2a
losses for the SH. These losses can be suppressed by an 5 5

appropriate design of the grating shape. Another loss mechag_|, = 7 . % | *% |cFF, o« cFF FFy* £ SH
nism for the FF wave can be attributed to the so-called Cher~" | ' Ve 0T ' 9z Ver BT KB+ xen(ED)"E2,
enkov SH generation where the SH wave leaves the wave- (2b)
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o—_ ! ‘9+' ‘9+K 205)—K +ZQ_ESH+ gSH

“Vayat 1 az (2Qp) —Kg Vg £ 1 HesHES
+xe(ETD?, (20
[P 9 J 201

_ _ “"|ESH, % =SH

0 Vo 7T | == +K(20p) KB+VSH_E_+KSHE+
+Xeff(EE'327 (Zd)

where x.¢ is the effective nonlinear coefficient of the wave-
guide. The coupling coefficientsr and kg are proportional

to the first and second Fourier components of the grating. In
general they are complex valued. One phase can be removed
by a simple phase transformation but the radig/ kg is left
complex. This phase may lead to qualitative changes of the
respective SW solutions. But the phase vanishes for gratings
with mirror-symmetric unit cells. For the sake of clarity and £ 2. Maximum range in the velocity-frequency plane where
simplicity we restrict ourselves to that case and assume thigight solitary waves may exigshadowed aréa

ratio to be positive.

Then we may further reduce the number of free paramtinearized version of Eq<3) can be used to get the respec-

eters of the solution by a proper normalization as tive domains in the velocity-frequency plane as
z=kpeZ, t=Vgpkeel, w?+v2<1 for the FF (4a)
d
Xeff _FF Xeff _sH an
Uu,_=—E,_, V. ,_=—E7_,
e e T e 1 ) 5 )
—|q+— w) +|—| <1 for the SH. (4b)
K(2Qg) =Kz KsH Q Vsh “ vo vo
q:—! K:_! w= il UO:_J . . . . . .
KEF KEFF KeeVER Vee These conditions define a circular and an elliptic domain

where their centers are separated with respect tattieec-
where « is the scaled coupling constant. The scaled wavetjon if the wave-vector mismatch is nonzero(see Fig. 2
vector mismatch and the ratio of the group velocities at therhe width of the gap for the SH is proportional to the ratio of
Bragg frequency are denoted byandv,, respectively. The the coupling constantg. Evidently, bright solitary waves
normalized equations of motion for the amplitudes at the Fimay exist in the overlap region onlghadowed area in Fig.

(U.) and the SHV..) read now as 2). The wave-vector mismatch, the ratio of the coupling con-
5 5 stants and that of the group velocities of the unperturbed
0=|i 2 4+i —4w|lU,+U_+U*V, 3 waveguu:_ie modes determine the size of this region. Because
ot gz P U (33 the solutions are expected to be chirped, the averaged fre-

quency of the SW can deviate from the SW frequencies
(2w) and need not be situated inside the stop band.

The system of Eqs3) can only be solved numerically.
But in Sec. lll we are going to show that a considerable
simplification can be achieved and that analytical solutions
V,+kV_+U2, (30 can be derived, provided that certain constraints concerning

the linear coupling are introduced. Moreover, it will turn out
that, at least qualitatively, most of the pertinent features of
V_+xV,+U2.  (3d) Il?nrsgg grating SW’s can be derived from this analytical

0 _&.&4—
—Iﬁl—w

*
S tw|U_+U UV, (3b)

o|id 2
=|——+i —+q+—
Uo(yt I(?Z q Uow

i 9 9 2
—— i —=+qt—o

O:
Uo ot 0z Uo

Before we proceed with the solution of Eq8), we iden-
tify domains where bright solitary waves that moving with a
velocity v (scaled withVgg) may exist. A suitable criterion The so-called “Schrdinger limit” for SW’s in uncorru-
consists in requiring that the tails of these localized objectsgated quadratic nonlinear medtenceforth termed as “con-
where the nonlinearity is negligible, have to decay exponenventional SW’s”) [11-14 is based on the assumption that
tially for both frequencies. Because we expect that the SWor large phase mismatch the derivatives in the equation of
solutions exhibit a chirp we introduce the frequency of themotion for the SH wave can be omitted. Thus propagation
linear tails as the frequency (2w) of the FF(SH) SW's.  effects with respect to the SH component can be neglected
Now, the existence criterion may be formulated more pre-and the SH wave sticks rigidly at the FF wave. Hence both
cisely. Both frequencie® and 2v have to be situated within the FF and the SH wave merely experience a phase modula-
the stop bands of the respective Bragg gratings. Now thé&on similar to that in cubic nonlinearities. Unfortunately, the

Ill. A SIMPLIFIED ANALYTICAL MODEL
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straightforward extension of this approach to Bragg gratinggexchange that is due to cross coupling. With respect to the
fails. A large increase of the mismatch evokes a separation aformalized FF amplitude&), this contribution to the non-

the domains of existence of SWsee Egs(4) and Fig. 4  linear response is independent from the size of the wave
and prevents them from overlapping. This fact has beewector mismatch, but the mismatch still enters via the nor-
overlooked in[23]. malization. Self-phase modulation is only of minor impor-

However, in inspecting Eq$3) we find another option, to tance because df\|<1. Like in the Schrdinger limit for
neglect propagation effects for the SH wave in Bragg gratconventional SW’s, self-phase modulation appears only if
ings, viz, to increase the ratio of the coupling coefficients the effective wave-vector mismatch is nonzero. Here, its
This limit requires the coupling between the SH modes to bestrength varies with the SW frequency. Cross-phase modula-
considerably larger than that between the FF modes. Thigson does not appear at all whereas in Kerr media it is twice
condition can be easily met by a proper grating design. Thas strong as the self-phase modulation. The simplified system
modulus of the wave-vector mismatalp must only be of Egs.(7) exhibits three integrals of motion that represent
smaller than the ratio of the coupling coefficients, but needhe pulse energ¥, the HamiltonianH, and the pulse mo-
not be small in general. In using the simplified system ofmentumP, respectively,
equations, one has to keep in mind that the domains of ex-

istence of SW's are defined by Eqd), i.e., optional solu- *
tions outside the overlap region are meaningless. In particu- E= f_w[|a+|2+ la|"]dz (%8
lar, this concerns the SW velocity, which must not exceed
the ratio of the group velocities, [see Egs(4)]. We note 1 [« oa., Ja.
that the limit of largex reduces also the scattering losses of H= 3 f Hai*F — —a* Y +o(las|?+]a_|?)
the SH evoked by the grating for the FF. Now we neglect the -
derivatives in the SH part of our basic systéhand get for A
the SH, fields +2a,a* —a’a*?+ > (lai|*+|a_|* |dz+c.c.,
v Ui rAus, - (9b)
+/-— K(l—Az) !
i (=], oda. , da_
where we have introduced the effective wave vector mis- P=3 f_w ay o, tat —-jdz+cec. (90
matchA as a function of the SW frequenay,
1 5 We look for stationary solitary waves moving with the
A== q+—a)>. (6)  Velocityv:
K Ug
a,,_(zt)=a,,_(x) with x=z—uvt. (10

From Egs.(4) it immediately follows thatA?<1 has to

hold and consequently from E¢b) that the nonlinear cross The resulting ordinary differential equations read as
coupling is the dominant effect. This means that a FF wave

in forward direction preferably generates a SH wave, which ) J ~ o~ m =2 ~
moves backward and vice versa. Now we substitute(&X. 0=|i(1-v) —+wa,+a —ajaZ+Ala|a.,
into the first two equations of Eq&3) and obtain the simpli- (119
fied system describing the evolution of the FF waves as
. J
.9 .9 =|-i(l+v) —+el@a +a,—a*A1+A[A |7 .
0=|i =+i —+wla,+a_—a*a’+Ala,|%a, , 0 [ I(1+o) otwla-+a,—azal Afa-l7a
(73
P P | They exhibit two integrals of motion for the amplitudes
O:{i E_i ﬁ_+w a_+a+_a’iai+A|a_|2a_, A, —(x)=[a(x)| and phases,,_(x) =arg@(x)):
z
(7h) E=(1-v)A% —(1+0v)A? (12)
where we have used the normalization and
A, = ® H=w(A2+A2)+2A, A cod ) — A2 A%cog2¢)
k(1—A%)

A
= al 4
The system(7) describes the evolution of the FF fields + 2 (A TAZ), (13

coupled by a Bragg grating and is subject to an effective

third-order nonlinearity. But unlike in the “Schdinger which are related to the conserved quantitiesand H of
limit” (large mismatchfor conventional SW'§11-14, the  system(7), respectively. Here we have introduced the phase
evolution equations differ considerably from their “cubic” differencey(x)=¢  (X) —¢_(X). _

counterpar{Bragg SW's in Kerr medi§20-22). The main Using the integrals of motio&k andH we solve the sys-
difference consists in the dominant role of nonlinear energyem (11) by a procedure similar to that outlined [ia2]. Our
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approach differs in that we focus on the phase evolution first

F. LEDERER, AND B. A. MALOMED

. L . (a) 1 q=-3, k=10
and then use the conservation laws to get explicit expressions e

for the intensity.

For bright SW’s being of concern here both conserved
guantities equate to zero for arbitratyBecause oE=0 we

may introduce an effective intensity as

I=(1-v)A%2=(1+0v)A%, (14)

Moreover,ﬁzo can be used to express the intensity in

terms of the phase differencgx),

o+cogy)
=21 15" a9

where we have introduced

-

double hump

N\ N

\\\\ .
N

/

:

/

J 1
. // |

N
X

//

' /,/
S

“ // in-phas

%/@WW

5]
Vi s

-1 0.5 0 0.5 1
v
o=wlJ1—v? (16 (LN R : ?=+3"K\=?9\
and ~
anti-phase Nt
05/ N
5=A(1+v?)/(1—-v?). (17
// ¢d %:“‘\
Obviously the constrain®) imposed on the FF wave implies
—1<¢<1 whereas the modulus of the detuning paraméter ® 0}
may exceed unity althougl|<1 holds. v
We have to determine the phase differenge). By in- i
serting Eqs(10), (14), and(15) into the evolution equations o051\ double hump
(7), we end up with the differential equation .
dy = + 18 1
ix =~ Lot eosnl (18) 1l

Depending on the initial conditions[,(0)=0 or
(0)=m] we get the respective solutions

1+ o 1/2 1_0_2 1/2
P (X)=—2 arctar{ s tan}‘{x 1_02) H
(193
1-0o 1/2 1— 0_2 1/2
Po(X)=m+2 arctar{ 7o tan}{x 12
(19b

For obvious reasons we terghy and ¢, in-phase or an-

tiphase solutions, respectively. As expected, the asymptoti
behavior of the phase differenf#(*«)=Farcco$—o)] en-

FIG. 3. Domain of existence of SW's derived from the analyti-
cal model(vy=1), (8) negative mismatch(b) positive mismatch
(thick solid line, singularity characterized By<1; thick dashed
line, singularity characterized bly>1; thin solid line within the
shadowed area, separates single from double-hump solutions;

crosses, the locations of the solitary waves shown in the next fig-
ure).

Eventually, the phases are determined from the phase dif-
ference by an additional integration and we get

P(x) L2

= + —_—
(pi('x) ) 1_02 X

C

1+6

tails vanishing intensities fax==+« because of E¢(15). 26v afc‘anh( N tan(‘ﬂ(")))
It is worth mentioning that Eq(18) likewise holds for a -

genuine Kerr nonlinearity and any ratio between self- and (1-v})J1- &
cross-phase modulation, i.e., the phase difference between for |d<1
forward and backward propagating waves in various Bragg ( 1+6 ) (20)
systems does not depend on the specific type of the cubic 2 v arctan tan(y(x))
nonlinearity. On the contrary, the relation between the phase Vo —1
difference and the intensity is critically affected by the form (1_v2)\/ﬁ
of the cubic nonlinearity. In particular, in the Kerr case, Eq.
(15), reads ad ~[o+coq)].

for |8>1.
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intensity  g=-3, v=0, @=-0.7, k=10 phase intensity  g=-3, v=0.8, »=0.2, k=10  phase
@ | | © — )
404 b lay [ — 14
o 3
lo2 1047 ¢+ 12
P
gl 1
0 0
6t
-0.2 4
2 r .
-0.4 ,° FIG. 4. Shapes of different
0 0 . types of SW’'s derived from the
-10 -5 0 5 10 -3 -2 -1 analytical model(vy=1); (@) in-
X phase single hump(b) in-phase
intensity q=-3, v=0, 0=-0.5437, k=10  phase intensity g=+3, v=0.75, ®=0.2, k=10  phase double-hump near a boundary

with |8/<1, (c) in-phase double-
hump near a boundary witla>1,
and(d) antiphase.

b d
0.9 7( ) »( )
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0.7
0.6
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02!
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0
-10

Now, in the framework of the approximation used herecos(¢)>_a is required, which implies ain-phase solution

the solitary wave solutions are completely determined by L .
Egs. (15), (19), and(20) keeping in mind the normalization %é;écfgosgizll) Two cases have to be distinguished with

(8) and the relation between the FF and SH waves(gxq It . . .
is evident that the SW solutions exhibit a chirp familiar from _ (& é<—1. Here, there are no singularities and bright
the Bragg grating SW’s in cubic materidla2]. SW’s may exist for all frequencies and velocities situated in

A necessary condition for bright SW's to exist is given by the domain defined by Eq#4) provided thaté<—1 holds.
Eqg. (4), which was derived from linear arguments. Now the (b) —1<6<1. In this case singularities may occur and
question arises if this condition is sufficient or if there areto have solutions exist requires< —+/(1+ 6)/2<0.
additional constraints in the velocity-frequency plane im-
posed by the particular form of the nonlinearity. To find this
out we primarily make use of Eqél5) and(19). The inten-
sity distribution is completely determined by the cosine of For theantiphase solution/,(x), Eq. (19b), the denomi-
the phase differences. From E@9) we get that any SW nator in Eq.(15) is always negative and consequently there
solution covers the entire range of the respective phase difare no singularities.
ference given by The domains corresponding to both cases are uniquely

defined(see Fig. 3. In particular, regions in the frequency-
—o<cogy(x)<1, (213 velocity plane applying to in-phase or antiphase solutions do
— 1=coihy(X))< — 0. (21p  hot overlap. Foilé|>1, self-phase modulation can compare
to the energy exchandgeee Eqs(173 and(7)]. Because the

Obviously w(x) corresponds only to a permitted solution sign of self-phase modulation depends on the sign of the
if the intensity (15) is positive and does not exhibit singu- detuning paramete$, one may expect self-focusing for1
larities. We have to distinguish between the two ca8e¢&  and self-defocusing fo6<—1. As a matter of fact, the an-
or 5>1 that will lead to in-phase or antiphase solutions, re-tiphase solutions emerging fat>1 resemble conventional
spectively. Bragg grating SW'’s known from self-focusing Kerr nonlin-

) . earities[20—22. However, significant differences from the
1. 8<1 (in-phase solutions) Kerr case can be identified for the in-phase solutions

The denominator in Eq(15) is always positive at the (6<—1). We will come back to this issue below. Note that

boundaries cog=*1 [see condition (21)]. Hence the detuning parametéf can only become large if the soli-

2. 6>1 (antiphase solutions)
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and

5=1, (229

respectively.

Another internal boundary arises from the fact that the
intensity as a function of the phase differerit6) may attain
a maximum atcog)|<1 for certain sets of parameters. This
leads to the generation of a double-hump SW for in-phase
solutions[Figs. 4b) and 4c)] provided that

3+6
o> (23

inphase 7 holds.
f If the SW parametergv and w) approach the internal

boundaries the intensit{l5) at a certainx tends to diverge
and the shape of SW’s changes dramatically. The nature of
these changes depends on the type of the internal boundary
and on the poinx where the intensity touches the diver-
gence. Two different scenarios can be distinguisiseg Fig.
3).

(1) If |8<1 holds[case 1b(22b)] we have a double-
hump in-phase solutiofsee Eq.(23)] in the vicinity of the
internal boundary. The denominator of E45) reaches its
minimum at the boundaries af [see Eqg.(21)] or in the
wings of the SW ak=*o. Consequently the intensity in the
tails increases as the pulse width does likewise. The shape in
the pulse center resembles a gray soliteee Fig. 4b)].

(2) In contrast, for|8>1 the singularity appears for fi-
nite x. Hence the peak intensity increases to infinity and
correspondingly the width decreases if the SW parameters
approach an internal boundary. Again in-phase solutions ex-
hibit a double-hump shape. Very close to the boundary the
distance between the humps remains constant while the
peaks shrink and the SW practically splits into two péste
Fig. 4(c)]. Obviously, in cases where the width of the SW

FIG. 5. Numerically determined domain where bright SW solu-Shrinks considerably the basic assumption of our analytical
tions of the complete system can exi&l) negative mismatch and model that the nonlinearity acts locally becomes invalid.
(b) positive mismatch, same parameters as in Fige=310, vy=1. Hence near the internal boundaries the solutions of the ana-

lytical model have to be double-checked by the numerical
ton velocity is not too smallsee Eq.(173] becausgA|<1  solution of the basic systeiid).
has to hold.

Domains where SW’'s can exist are displayed for both IV. SOLITARY WAVES—THE GENERAL CASE
negative[Fig. 3@)] and positive wave-vector mismatap
[Fig. 3b)]. As already mentioned, we can distinguish be- In Sec. Il analytical solutions of the simplified system
tween |n_phasd:F|g 4(a)] and antiphase so'utionB:ig_ (7), which holds for a Strong Coupling of the SH waves or
4(d)]. In contrast to conventional Bragg grating SW20—  correspondingly a quasilocal nonlinear response, were stud-
22] the domain where SW’s may exist does not fill the wholeied in detail. Now we are going to numerically solve the
area defined by the Over|ap of the FF and the SH [w Complete set of basic equatlo@. The aim is tWOfOld, VIZ.,
Egs.(4)]. Here internal boundaries emerge where the intenf0 check the reliability of the analytical solutions and to
sity diverges. A physical reason for these singularities mayearch for new SW's if we lift the requirement of strong
be derived from the fact that at these points the differenfoupling and local response. To this end we used a Newton
nonlinear contributions to the Hamiltonian cancel each otheiteration scheme where the analytical solutions served as ini-
exactly. This decrease of the effective nonlinearity requiredial conditions.
higher intensities for the SW's to survive leading eventually ~For strong coupling of the SH wavés=10) a reasonable
to the singularities. By using Eq17a the internal bound- ~agreement with the previous results could be established

aries can be determined and are given by (compare Figs. 3 and)5Both in-phas¢see Fig. 6a)] and
antiphase solutiongsee Fig. @)] could be identified even

6=—1 with «>0 for the case la, (228 for large velocities where the analytical approach is not
strictly valid. Although the allowed parameter ranges are
o=—+(1+6)/2 for the case 1b (22  larger than predicted by our model they do not fill the gap
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completely. The existence of internal boundaries within theNo decay could be found for negative SW frequencies, even
gap where the solutions diverge could be confirmed. Doubleif we used an approximate analytical solution as initial dis-
hump solutions were found in the parameter ranges predictetibution. In that case long-lived internal oscillations
by the analytical mode(see Fig. 6. The physical picture emerged around the exact stationary solution. Two different
provided by the analytical model seems to be even morescillating modes could be identified. The antisymmetric
general than expected. Even for large velocities or weak counode can be related to an exchange between the peak inten-
pling of the SH wavegk=1) the essential behavior of the sities whereas the breathing of the field shape can be attrib-
solutions described above remains unchan@es Fig. 7.

But, on the other hand, it is not surprising that the diversity q=0, k=1
of the SW solutions of the complete system is richer than ‘ e T
predicted by the analytical model. The parameter range
where antiphase solutions with nonvanishing velocities occur
considerably exceeds the analytically predicted one. Even for
a mismatch where antiphase solutions must not exist in the
analytical model they were found numericallgompare
Figs. 3a) and Ha)]. As far as double-hump SW's are con-
cerned antiphase solutions could be additionally identified
[see Figs. &) and 7. Moreover, it turned out that SW'’s with
multiple humps may appear and that the SH field is no longer
proportional to the FF field if both coupling constants com-
pare(see Fig. 8.

The strict separation between in-phase and antiphase so-
lutions could be essentially confirmed by the numerical stud-
ies without regard to a small overlap regifsee Fig. o)].
Within this region both in-phase and antiphase solutions ex-
ist simultaneously and give rise to bistabilltyee Figs. &) v
and &d)].

To check the robustness of the unconventional double- FIG. 7. Numerically determined domain for SW solutions if the
hump solutions some of them were propagated numericallycoupling strength of FF and SH waves are equat 1, vo=1).
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FIG. 8. Numerically determined multiple-hump solutions for equal coupling of FF an@ $Hl), (a) antiphase solution an) in-phase
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FIG. 9. Propagation of double-hump SW(s) stable propagation, an approximate analytical solution was taken as the initia[ shape
parameters as Fig(H)], and(b) decay of an unstable solutigqg=10,q=-3,v=-0.7, »=0.2).
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uted to the symmetric-modsee Fig. @a)]. SW’s in a cubic nonlinearity, we found internal boundaries
The situation changes dramatically if positive SW fre- within the domain where SW's are expected to exist. These

guencies are concerned. We observed a rapid decay of tlmternal boundaries separate regions where SW’s may or

double-hump solutions where this decay might be due to thenust not exist. Moreover, additional boundaries mark the

growth of the antisymmetric modeee Fig. %)]. transition from single- to double-hump solutions where some
of them are stable. Far from the exponential tails all solutions
V. CONCLUSIONS exhibit a chirp. With regard to the phase difference between

_ o forward and backward propagating FF waves in the center of

We have shown that solitary waves consisting of mutuallythe SW's, both in-phase and antiphase solutions occur. They
locked FF and SH components can exist in waveguides mad&rrespond to SW in cubic materials with defocusing or a
from quadratic nonlinear materials. The dispersion requireqlocusing cubic nonlinearity, respectively. These two differ-
f0r theil’ eXiStence can be m|m|Cked by |ineal’ Coupling in aent types may even Share parts Of the parameter Space thus
Bragg grating. It turned out that an analytical solution can begiving rise to bistability.
found provided that the coupling constant for the SH waves Eyentually, we mention that the model derived here as
considerably exceeds that for the FF waves. In this case thge|| as the basic equations and results likewise hold for a
SH waves are slaved by the FF ones corresponding to gsnfiguration where the dispersion is provided by the cou-

quasilocal nonlinearity. The resullting equations resembl%“ng of copropagating modes with different group velocities

lation and energy exchange exceeding the self-phase modu-
lation. This simplified model yields a good qualitative de-
scription of the behavior of SW’s in a quadratic nonlinear
environment. The major results of this model could be con- We acknowledge a grant from the Deutsche Forschungs-
firmed by direct numerical integration of the complete sys-gemeinschaft in the framework of the Sonderforschungs-
tem of equations. In contrast to conventional Bragg gratingereich 196.
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