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Stress distribution in static two-dimensional granular model media in the absence of friction

S. Luding
Institute for Computer Applications 1, Pfaffenwaldring 27, 70569 Stuttgart, Germany
(Received 26 November 1996

We present simulations of static model sandpiles in two dimeng@BDf and focus on the stress distribu-
tion in such arrays made of discrete particles. We use the simplest possible model, i.e., spherical particles with
a linear spring and a linear dashpot active on contact and without any frictional forces. Our model is able to
reproduce several recent theoretical predictions. For different boundary conditions we examine the contact
network and the stresses in the array and at the bottom of the pile. In some cases we observe a dip, i.e., the
relative minimum in pressure, under the center of the pile. We connect the dip to arching, and we relate arching
to the structure of the contact network. Finally, we find that small polydispersity is sufficient to cause a so
called stress network, i.e., strong fluctuations in stress. From these data we determine the probability distribu-
tion for the vertical stress at the bottom, and relate it to theoretical and other numerical work.
[S1063-651%97)03204-4

PACS numbgs): 46.10:+z, 05.40+j, 83.70.Fn, 01.55:b

I. INTRODUCTION In this study we focus on two-dimensionéD) situa-
tions, with particles on an almost regular lattice, which we
In recent years the physics of granular materials has reanalyze using molecular dynami¢sD) simulations. The
ceived growing interegtl]. One of the many interesting fea- aim is to find the dip under conditions as simple as possible,
tures of granulates is the stress distribution in static or quaand to understand the stress networks and arches. We de-
sistatic arrays. In contrast to a liquid, the pressure in a Si|0$Cribe the simulation method used in Sec. I, and discuss the
filled with, e.g., grains, does not increase linearly with depthphysics of particle contacts in Sec. lll. The results are pre-
but saturates at a certain val{@]. This is due to internal sented in Sec. IV, and discussed in Sec. V.
friction and to arching, so that the walls of the silo carry a
part of the materials’ weight. In sandpiles no walls are
present, so that the situation may be different, i.e., the total
weight of the pile has to be carried by the bottom. However, The elementary units of granular materials are solid “me-
the distribution of forces under and also inside the pile is nokoscopic” grains, interacting on contact. The surface is in
yet completely understood. Experiments on rather large pilegeneral rough on a microscopic scale and solid friction is
show that the normal force has a relative minimum under th&isually found. Here we focus on properties of granular sys-
top of the pile, the so-called dif8,4]. On a much smaller tems in the absence of friction. We will examine in how far
scale, the stress chains are observed, i.e., stresses are maipienomena like stress chains and arching depend on friction
transported along selected paths, and the probability distribusy neglecting solid friction. However, we have some kind of
tion of stress spans orders of magnitu8e-7]. ““geometrical friction,” since the particles restrict the motion
One simple model pile is an array of rigid spheres, ar-of their neighbors due to excluded volume effects. Without
ranged on a diamond lattice, i.e., with four nearest neighborfriction, energy may still be dissipated by, e.g., viscous de-
each[8,9]. The force under such a pile is constant in contrasformations, modeled here by a simple viscous dashpot, ac-
to the experimental observations, and periodic vacancies itive during the contact.
such a configuration do not lead to a dip in the pressure at the Since we are interested in static arrangements of particles
bottom[10]. The variation of the size of some of the par- in the gravitational field, we use strong viscous damping, in
ticles or an attractive force between the particles may lead torder to reach the steady state quickly. For the relaxation of
a nonconstant force under the pi[@1]. Continuum ap- the array we use a molecular dynamics procedgg19, in
proached§12—-16 may lead to a dip in the vertical stress if order to allow contacts to break. The MD method is not the
the correct assumptions for the constitutive equations arbest choice for a fast relaxation, but closing and opening of
chosen. EdwardE12] introduced the notion that a pressure contacts is implemented straightforwardly.
minimum can result from compressive stresses aligning in
fixed directions. Wittmer and co-workeld5,16 embel-
lished this idea recently with concrete calculations in agree-
ment with the experimental dafd]. A lattice model based In the simulationsN spherical particles, with diameters
on a random opening of contadts7] also shows the dipin d; (i = 1,...N) are used. If not explicitly mentioned we use
average over many realizations. monodisperse spheres of diametier=dy=1.5 mm. TheN
particles are placed into a container with different boundary
conditions at the bottom and also different system sizes.
*Electronic address: lui@ical.uni-stuttgart.de Starting from a regular close-packed triangular arrangement

II. SIMULATION ASPECTS

A. Initial and boundary conditions
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() slope 30°__slope 60° slope 30°___ slope 60° 1?Ejii)ss: M (Jij ' r-{ij )ﬁij ) (2)
gl M=3
L Mj accounting for the inelasticity_ of th_e contacts. In Ez;) the
x M0 gonstﬁantu» is a phenomenological dissipation coefficient, and
smooth, flat bottom bumpy bottom vij=v;—v; is the relative velocity of the particlésandj. As

mentioned above, we neglect tangential forces. The contact
(b) of a particle with a wall or an immobile particle is mimicked
by setting the mass of the immobile contact partner to infin-
ity. Finally, the influence of gravitg is readily included into
triangular lattice the equations of motion.

tilted diamond lattice

Ill. CONTACTS
Now we are interested in the static limit, where particles
diamond lattice ideally have zero relative velocities, and are either in contact
or separated by a gap and in the latter case do not interact.

However, in this section, we will discuss the dynamics of

FIG. 1. (&) Schematic drawing of a pile in a box with smooth, ,niacts in order to estimate the typical scales of the system.

flat bottom(left), and on a bumpy bottortright), with Lo=7. The
solid bar at the right indicates that the particles in rbl+=0 are
fixed, so that the first relevant row with mobile particlesMs=1, A. Two particle contacts
with L;=5. (b) Schematic drawing of the typical contact network

, S Since we use no tangential forces, we will discuss the
configurations in a regular arrangement.

normal direction of a contact only. Considering the collision
of two particles, the situation is modeled by a spring and a

with L particles in the lowermost layévl =0 at the bottom, dashpotsee Eqs(1) and(2)], so that the relative accelera-

we model heaps of slope 60° or 30° by adding=L—M or

R . iev” — (42 2\ — () () )
Ly=L—3M particles for layeM, respectively. The number tpn du(f;n_g (gontﬁft oy’ (At =y U
of ariclos < thus N(GO):H(GO)(L+1)/2 or with fV=f/+fy ... Due to force balance we set

(= _¢0) i i i i

(30)— 14(30)(| _ 2 (1q(30)_ ; f¥=—f%, which leads to a differential equation for nega-
N(Go)_H L (3(?)(_H. 1)/2) with the number of _Iayers tive penetration depth=r;; —(1/2)(d;+d;):
H®=L or H*Y=int[(L—1)/3]+ 1. The largest pile we ! )
simulate had =100, and thuN®*9=1717. _ y'+2yy" + wly=0. &)

The initial velocities and overlaps of the particles are set
to zero if not explicitly given, gravity is slowly tuned from o
zero to the selected magnitude and the system is simulatdl E_q.(3), wo=Vk/my;, %'_ M/|(2m,-),fand thefreduied_ mass
until the kinetic energy is several orders of magnutide™i=mim;/(mi+m;). The solution of Eq(3) for y<0 is
smaller than the potential energy, and the stresses no longer _
vary. The particles at the bottom layr=0 are either fixed, y(t)=(vo/w)exp — yt)sin(wt), (4)
or may slide horizontally and penetrate the bottom vertically.
In the sliding case, only the outermost particles are fixed irwith the corresponding velocity
horizontal direction by the sidewalls. For a schematic draw-
ing of the four possible situations, see Figa)l The possible y' (1)=(volw)exp(— yt)[ — ysin(wt) + wcog wt)]. (5)
configurations of a regular contact network are schematically

drawn in Fig. 1b). In Egs.(4) and(5), vo=Yy’'(0) is the relative velocity before

collision andw= \/woz— y? the damped frequency. As long

_ ) _ ) as y’<w}, the typical duration of the contact of two par-
For the integration of the equations of motion we use &jcles is

fifth order predictor-corrector MD scheme, see REIS,19.
Since we are interested in a static situation in 2D, with al-

B. Molecular dynamics method

most monodisperse particles, no particle has more than six te=mlo, ©)
nearest neighbors. For the simulation we keep the neighbors ) ] o
in memory in order to reduce the computational effort. because the interaction ends wheft)>0. The coefficient
There are two forces acting on particlevhen it overlaps of restitutione is defined as the ratio of velocities after and
with  particle j, i.e., when the distance before contact=—y’(tc)/y’'(0), sothat Egs.(5) and (6)
rij =|Fj—Fi|s(di+dj)/2. We use an elastic force lead to
fol =k(ry— 3 (di+d)ny, (1) e=exp—mylw). ™

with the .f,prinq copstank, acting on particlei in normal  From Egs.(4) and (5) the maximal penetration depi
directionnj;=(rj—r;)/rj;. The second force in normal di- follows the  condition y'(tn,0=0, so  that
rection is dissipative, wlnae arctanf/y)=arcsing/wg) and
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Ymax= (V0! @)X — Ytima) SIN 0t may) C. Stress tensor and scaling

An important quantity that allows insight into the state of
the system is the stress tensof25,26], which we identify
in the static case with

=(vol/wg)exd (— y/w)arcsifw/ wg)]. (8)

The maximum penetration depif(vo) is, in the case of, g%:(l/v(i))gqafﬁ' (9
say, steel particles, much smaller than the particle diameter.
Thus we check in our simulations thgt,,, is always orders
of magnitude smaller thad,. where the indicesr and B indicate the coordinates, i.ex,

The elasticityk in Eq. (1) is, e.g., a function of the Young andzin 2D, see Fig. 1. This stress tensor is an average over
modulus and the Poisson ratio, which are material dependeadl contacts of the particles within volumé®, with q de-
and thus fixt, for a given material in our simplified model. noting the distance between the center of the particle and the
Using the theory of Hertz, a more complicated dependenceontact point, and denoting the force acting at the contact
of k on the impact velocity, the elasticity, and the penetratiorP0int. Throughout this study we average over the contacts of
depth is found, e.gk=y*2. In Ref.[20], the contact time of ©ON€ particle () Fo obta_ln the_ stresses for one realization.
two steel spheres with diametée=1.5 mm and with an im- From a static configuration of “soft” particles we may
pact velocity ofv =1 m/s was evaluated ta~4.6x 10~° s. now calculate the components _ of +the stress tensor
We checked for some situations that the more realistic Hertdxx»@zz:0xz: and oy, and also definer™ = (ot 07,)/2,

— _ * H -
model does not change the resUlg], and thus used the Uen;ia?;‘(ércgé»{ﬁt’e ar;drt?clestgrzé t?)lrn(t:Jee ﬁiengﬂlo??:/eedotsgerve
simpler linear model. For a detailed discussion of different ! P d

MD models and force laws, see Rg22]. 822’ ;}/ mr:reet ntcr:]usstress t(?rforf ;I'eh—zzxi)af'( T*h)e e;%%n\t/s(le—
For weak dissipatiof, is proportional tk %2, so that an 7 Tmaxmin T = VAT g

increase ok by a factor of 100 decreas¢gby a factor of meajor eigenvalue s tilted by an angle
10. Now taking physical values fog leads to extremely long

MD computing times for a given simulation time. One has to Oma— Oxx| 7 1 20y,
ensure that the time scales of the system, fi,g.and of the $=arctan ——— ) =5 tarctan )
algorithm, i.e., the integration time stegy, are well sepa- Xz oo T (10)

rated. Ideally one should haigp<<t.. The MD simula-

tions reported here were done witfp<<t./40. Using con-

tact times in the range 16 s<t.<10 ° s, by choosingk  from the horizontal in counterclockwise direction.

according to Eq(6), we have simulation time steps in the In order to find the correct scaling for the stress as a

range 2.5 1073 s <t\yp<2.5x 107’ s. simplification example we assume, like Liffman, Chan, and
In our simulations we have as a typical set of parameter§lughes8,11], a rigid triangle with density, width I, height

do=1.5 mm,k/m;;=6.67x10f s 2, y=1.67x10°s "¢, and h, and massn=phl/2. Since the material is rigid, we find a

typ=10"5 s. Thgse parameters, with the above equationsconSta”t force at the supporting surface, so that the pressure

lead tot,=0.97x10 3 s ande=0.2, i.e., rather strong dis- 'S also constanp=mg/l=pgh/2. Thus we will scale the
sipationc B stress by the pressupeand further on use the dimensionless

stress

B. Multiparticle contacts 20 ol o2a

In Refs.[20,23,24 the above defined interaction law has S= ’E: m_g: hmg’ (11)
been tested in the case of many particles in contact at the
same time. For the viscous interaction law, i.e., the linear
spring-dashpot model, energy dissipation is very inefficientwith the volumea=hl/2 of the triangular pile. The vertical
i.e., the so-called “detachment effect” occurs. The time acomponent will be abbreviated witti=S,,, the horizontal
wave needs to propagate through a system of ksized, = component with H=S,,, and the shear component
was found to be comparable td.. Thus we will measure Q=S,,. In addition to the components &, we will also
time in units ofLt., and velocities in units ofiy/t., i.e., the  plot the stress tensor in its principal axis representation, i.e.,
particle size divided by the contact time, rather correspondfor each particle we plot the scaled major principal axis
ing to the speed of sound inside the elastic material. Thus walong ¢ and the minor axis in the perpendicular direction.
have the length as the product of typical time and typical

velocity.

Dividing Eq. (1) by kI, we find that the dimensionless IV. RESULTS
deformationx/Il in a static situation, i.ey’=0, is propor-
tional to the dimensionless elastic fordg/(kl). In the A. Piles with bumpy bottom

gravitational field the elastic forck, scales withmg, where
m is the mass of the pile, so thatgxkl. We tested for
several situations that our results do depend rather on the The first situation we address is a homogeneous pile, as
ratio g/k, than on the specific values chosen ¢por k. assumed in Ref$9,11]. Here we usé. ;= 20 particles in row

1. Comparison of piles with different slope
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2. Variation of system width for bumpy bottom

V L=20 —— . . , . .
s @ H L=28 e ] In this subsection we will examine the difference between

Q L=20 e the theoretical predictions for the stresses and the numerical
1 s J simulations, both in Ref.11] for the 30° pile. The theory is
based on the assumption that the contact network is a dia-
05 1%« | mond lattice. Thus we perform different simulations with a
B . 30° pile with L;=19, and change the contact network by
L increasing or decreasing the separation of the fixed particles
0r e . in row M=0. The centers of the particles in the lowermost
. row are separated by a distarag{1+c), with thec values
05 L c=4%, 0, — 75, and — 1. In Figs. 3a) and 3c) we plot the

0 1 vertical and horizontal components of the stress tensor, and
X in Figs. 3b) and 3d) we plot the contact network and the

T principal axis of the stress tensor, respectively.
15+®  rwwa, Vo L=20 = ] The interesting result is that the vertical stress in Fig) 3
A i H L=20 ¢« has a dip for negative-values, the depth of which increases
1 Ia A L=97 ------ with increasing magnitude af[11]. The horizontal stress in

/ ; Fig. 3(c) is much larger for negative than for positivec.

S(b)

From Fig. 3b) we observe that the assumption of a per-
0.5 5 LETTEREDy b T fect diamond lattice for the contacts is true only for .
;{Efgg);coun “«a@}h The vertical stres¥(1) has a zigzag structure that we relate
» - - to the steps at the surface of a 30° pile. For the naively used
®aas00o? c¢=0 and also for small negative= — -+; we have a contact
network with regions of coordination number 4 and 6, cor-
0 1 responding to the triangular or the diamond contact network.
X For squeezed bottom particles, ies — 1z, the contact net-
work is again a diamond lattice, but the orientation is tilted
FIG. 2. Components of the dimensionless stress teB§by at  outwards from the center. From Fig(d3 we obtain arching
row M =1 vs dimensionless horizontal coordinatex/I, forapile  for negativec and no arching for positive. Seemingly, a
with immobile particles at the bottonM =0. The slope of the pile tilted diamond lattice is neccessary for an arch to form in this
is 60° with L;=20 in (a), and 30° withL;=20 or 97 in(b). We  sjtuation.
indicate the vertical stress Wlt‘ﬁ= SZZ! the horizontal stress with In Flg 4(a), for the S|mu|at|0ns from F|g 3 we present the
H=S,x, and the shear stress wi@=S,,. angle ¢(1) [see Eqg.(10)], about which the major principal
axis is rotated from the horizontal in the counterclockwise
M=1, and create a 60° pile. THe,=21 particles in the direction. Forc<0 we observe a constant angle in the outer

lowermost rowM =0 are fixed with separatiod,. The par- part[consistent with the fixed principal axi§PA) theory in
ticles have no horizontal contacts, so that the contact nefRef.[16]], and a transition region in the center. We observe
work is a diamond structure. As predicted in Rg511], the  the FPA only for negative, when we also find arching.
normal force at the bottom is a constant, independent of the !N contrast, foc=0 we observe a slow continuous varia-

horizontal coordinate. In Fig.(8 we plot the components of ton of ¢(1) over the vyho_le pile. In Fig. @) we plot the
the dimensionless stress tensfil) versusX=x/| for the ratio of the principal axis=Syy/Smax, and observe an al-

lowermost row of mobile particles = 1. The vertical com- most constant value in the outer region of the pile, whereas

ponent is constant, and, due to the scaling uséd1. We in th_e inner part the ratio is strongly dependent. From a
. . o o detailed comparison of the contact network and the stress
compare this result with two 30° piles with eithley=20 or

. . -~ __ tensor, we may correlate several facts: First, the ratio of the
97 and plot agair5(1) vs X for both system sizes in Fig. y

b h ° vile the di | el o principal axiss seems to determine whether the contact net-
2(b). For the 60° pile t e diagonal elements $fare con- - \yoric js 4 triangular or a diamond structure, the latter with
stant, whereas for the 30° piles we observe a plateau in thg,q open contact. Far=0 and —-%; we observe the trian-

center with decreasing stresses toward the left and right e”(ﬂﬁjlar contact network it is large. Second, the direction of

of the pile. Our simulation results are in agreement withye giamonds is correlated #, i.e., we observe the tilted
analogous simulations in RéfL1], i.e., we observe no sharp iz mond Jattice(for negativec) if the major axis is tilted far
edges in the stresses, where the slopes change, as predic ugh from the horizontal

by the theory in Ref[11].

From Fig. 2 we conclude that our soft particle model is
able to reproduce the known analytical results of Refs.
[9,11. V=1 corresponds to the constant normal stress Now we use the pile from Fig. (8), i.e., 60° with
o,~mgd/l, and thus to the normal fordg exerted on each L;=20, and examine the influence of one removed particle
particle in rowM = 1. Heref ,=dyo,,=mg/L, with the mass on the stress distribution. Here we remove the third, fifth,
of the pile m=L(L+1)my/2, and the mass of one particle and seventh particles denoted By= 3, 5, and 7, respec-
mg. Our resultf,=(L+1)myg/2 coincides with Ref[11] tively, from the right in ro/M =7. We relax the pile and
[see Eq.(42) therein. plot the vertical normalized stress in roWw=1, i.e., at the

S

3. Removing particles from the pile
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FIG. 3. (a8 Vertical stressV(1), in rowM=1, vs X for a 30° pile with a bumpy bottom, arld; =19. The immobile particles in row
M =0 are separated by a distartg1+c), i.e., are squeezed together for negativer separated for positive. (b) The contact networks
for the corresponding systemg) Horizontal stres$i(1) vs X. (d) The principal axis of the stress tensor for the corresponding systems.

bottom, in Fig. %a). Evidently, the formerly constant stress
of the complete pilésolid line) is disturbed. We observe that

the vacancy. Note that following the slopes means here: fol-
lowing a line in the diamond contact network. The lines of

the stress decreases in the region below the missing partictmntact are here tilted by 60° from the horizontal and thus

atX = 0.55, 0.65, and 0.75 fdR = 7, 5, and 3, respectively.

Interestingly, the stress is minimal when following lines par-

allel to the slopes of the pile, toward raw=1, starting from

o(1)

1 F by o=1/150 ——
c=-1/750 o

FIG. 4. (a) The angle of the major principal axis of the stress,

#(1), in rowM=1 vs X, from the simulations in Fig. 3b) The
ratio S= Syin/ Smax Of minor to major principal axes vX from the
simulations in(a).

are parallel to the slopes. Going from the minimum value
outward we observe a sudden jump to the maximum value of
V(1). When a particle close to the center of the pile is re-
moved, i.e.R = 7, for L,=14, the stress pattern is almost
symmetric to the centef=0.5, whereas the pattern becomes
more and more asymmetric with decreasig

When a particle is removed, this particle can no longer
transfer the stresses to its lower neighbors. Therefore the
minimum stress is found when following the slopes starting
from the missing particle. The stress which has not been
carried by the missing particle has thus to be transferred
along its right and left neighbors, what leads to the maximum
stresses just outwards from the minimum stresses. In order to
clarify this result we plot the vertical stress¥sinside the
pile at different height = 1, 4, 7, 10, and 13 in Fig.(b).
With increasingM, i.e., increasing height in the pil&, de-
creases, since the weight of the part of the pile abblve
decreases. Inside the pile, the stress is minimal when follow-
ing the slopes downward, starting from the missing particle.
Interestingly, we observe an asymmetric stress also for
M>7. In Fig. 5c) we plot the contact network for the case
where particleR=7 is removed from ronM =7. We ob-
serve an increase of the number of contacts only for the
neighbors of the vacancy. From the principal axis of stress,
in Fig. 5(d) we observe an archlike structure, i.e., the stress
below the vacancy is comparatively small. Furthermore, the
direction of the major principal axis is almost vertical below
the vacancy, and tilted outwards for the particles which carry
larger stresses.



55 STRESS DISTRIBUTION IN STATIC TWO. .. 4725

1.5 r completé pile @7
| e take M=7, R=7 |
L4 T o take M=7.R=5 N
1.3 b ~a- take M=7, R=3 A_
= S
> 4
0 .
0 0.5 1
X
©) L @
‘ /////(0.|\\\\\\
" //////l{i‘ﬁ‘\\\\\\\
““VAVAV //////;,*f;***\\\\\\\\\
“ 55 “AVA‘.‘AVA‘ LN

’ /7 VAN
\VAV/ VV“’ A2V AN AE AN 2 B T U U NV
DAL TN
(RN NN
oot o /A ANNRNNNANN
(KGRI /7t NN

FIG. 5. (a) Vertical stress/(1) in rowM=1 vsX for a 60° pile with a bumpy bottom arld; =20 (solid line). V(1) is given for piles
where particleR = 7, 5, or 3, is removed from row 7; heRecounts from the right(tb) The vertical stres¥(M) is plotted for different rows
M =1, 4, 7, 10, and 13 for the pile where particle 3 is removed from row 7. Note the missing symbdI=far (circles. (c) Contact
network for the situation where particiR=7 is removed from rowM =7. (d) Principal axis of stress for the situation where particle
R=7 is removed from roM =7.

We learn by removing one particle from the pile, thattally by the corresponding wall. In Fig.(& we show the

stress decreases below the vacancy; however, the minimurgsults for two 60° piles with.o=20 and 40.
of stress is observed when following the internal structure of The vertical componeny of the stress is not constant and
the pile downwards, i.e., lines tilted by 60° from the horizon-the horizontal componerit is getting very large close to the
tal. Much larger stresses are observed outwards from thgalls, since vertical stresses are transferred into the horizon-
minima in stress, i.e., an archlike structure is already foundg| girection and propagate directly outward in riv=0. In
for one missing particle. , o the case olL,=40 we observe a relative minimum of the

. Note_ that this S'T““'a“‘?” IS not In contradlct|on to the vertical stress in the centeX,=0.5. In Fig. Gb) we compare
discussion, concerning point source terms, in IREA]. WItt- he result of Fig. B, i.e.,L,;=97, to situations on smooth
¥ind flat bottom withLy=22 and 100. We observe fluctua-

small mass element has on the stress distribution and COons at the shoulders of the pile and again a dip in the center

clude that the(smal) weight is propagated along "rays” of the pile,X=0.5. In order to find an explanation for this

mainly into the direction of gravity. In our case the mass . S
removed is quite large and thus the contact network is gePehavior we plot the contact networks in Figéc)éand &d)

: . for the large 30° piles with bumpy, ;=97 [Fig. 6c)], and
formed what leads to the different effects described above'smooth, flat bottomlo=100 [Fig. 6d)]. The dashed lines

give the vertical stress for the corresponding pile. In Fig) 6
we observe a contact network similar to the result in Fig.
) ] . 3(b) for c=0. The center triangle is arranged on a diamond

In contrast to the piles with bumpy bottom, correspondingjattice and the shoulders are arranged on a dense triangular
to the limit of very large friction, we model now a pile on a |atice, i.e., the horizontal contacts are closed. Only close to
smooth and flat bottom, i.e., the limit of no friction. Note that t1e surface we have a few particles on a tilted diamond lat-
this situation is stable only if the outermost particles arejce. |n Fig. Gd) the situation is more complicated. We ob-
fixed. serve three regions with different structures: first, a diamond
lattice in the center; second, a dense triangular lattice in out-
ward direction; and third, the diamond lattice tilted outwards

The next situation we describe is a pile on a flat, smoothat the ends of the pile. In summary, we correlate the varia-
bottom, i.e., the particles in roM =0 are allowed to move. tions of normal stres¥ to the change of structure in the
Only the leftmost and rightmost particles are fixed horizon-contact network.

B. Pile with smooth and flat bottom

1. Comparison of piles with different slopes
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FIG. 6. Components of the dimensionless stress teBdy vs dimensionless horizontal coordinate x/| at rowM =0, for a pile with
mobile particles at the smooth and flat bottom. We indicate the vertical stres¥ wif)),, the horizontal stress witH=S,,, and the shear
stress withQ=S,,. (a) The slope of the pile is 60°, and,=20 or L,=40. (b) The results for 30° antl ;=100 (solid line) or Ly=22
(symbols are compared to the result foy =97 from Fig. Zb). (c) Contact network for the left half of a 30° pile withy =97 and a bumpy
bottom.(d) Contact network for the right half of a 30° pile withy= 100 and a smooth, flat bottom. The dashed linéjrand(d) gives the

vertical stress/ for the corresponding piles.

2. Variation of system width for smooth, flat bottom

Now we vary the width of the system with a flat, smooth
bottom. Here we do not vary the box width, we just increase
(or decreasethe diametersd;=d, =(1+c)d, of the left-
most and rightmost particles in roM=0. All other par-
ticles have a fixed diametek,, so that we change the effec-
tive width of the system. In Fig. 7 we plot the vertical
stressesV/(0),V(2), andV(4) for 30° piles withL,=22.

We find that the dip already vanishes for slightly increasing
¢, and relate the existence of the dip to the presence of open
horizontal bonds in the center of the pile %t=0.5. For
decreasing we still observe a dip structure in the pile, but,
whenc becomes too small, the stress in the array of particles
may become asymmetric, since the pefect triangular arange-
ment is disturbedseec= — &).

C. Polydisperse particles

Starting from a monodisperse 30° pile with bumpy bottom
andL,; = 97 [see Fig. 2b)], we change the particle size of
each particle slowly to the diametet=dy(1+r;), where

V(4), V(2), V()

V(4), V(2), V(0)

OB c=1/750 o

c:IO —_—

c=1/1250 -—-o---- 7

ri is a random number homogeneously distributed in the in- £ 7. vertical stresseg(0), V(2), V(4), inrowsM=0, 2,
terval[ —r/2,r/2]. Wezpresgnt the verztical stress in Fig. 81 for and 4, respectivelyfrom top to bottom vs X for a 30° pile with a
simulations withr = 355, [Fig. 8@)], 35 [Fig. 8b)], andz5  smooth, flat bottom and.=22. The two outermost particles are
[Fig. 8(c)]. We plot the result of one rufsolid line) and  fixed by vertical walls and have diamet= (1+c)d,. The insets
compare it with the monodisperse cddashed lingand the  give the relative change. (a) Large boundary particles>1. (b)

average over 40 rung=ig. 8@)] or 100 rung[Fig. 8b) and  Small boundary particles<1.
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work [Fig. 9b)] with the stressefFig. 9(c)], one may again
relate the structure of the contcat network to the arigbnd
T the ratio of the principal axis, as discussed above in Sec.
IVA2.

Finally, we calculate the probability distributioR for
q vertical stresse¥. We average only over the lowermost row
M=1, and also neglect the outermost particles of this row.
In detail we average all particles £0=<87 (counting from
the lower left end to the righbver 100 runs. Since the stress
in row M=1 is a function ofX in the case of =0, we scale
the stresses far>0 by the stresses found for=0, i.e. we
. use the scaled stress

V(1)

| T=VI=0vr=0_minT], (12

V(1)

with the minimum of allT, obtained from particles which are
shielded and thus feel only their own weight; see Fig. 9. Note
1 that this occurs frequently, even inside the pile. We checked
that the probability distribution of does not depend on the
0 1 specific choice of the interval, i.e., we also averaged over a
X smaller interval 3%i<67, or over particles in rowM =2
with 130<i=<164, and we found no difference besides fluc-
() (1) oo ) tuations. We plot the distribution functio®(T) in Fig. 10.
L gg - The dashed line in Fig. 18 shows a power law for small
stressed’, while the dotted line in Fig. 1®) shows an ex-
ponential decay for large.
L ] Thus our results are in agreement with the theoretical pre-
P dictions of Ref[5], and the numerical findings of R¢B], at
1 r ] least for largeT; see Fig. 1(b). Note that the probabilty to
0 find largeT is greater fomr = 35 than forr = 55, correspond-
0 1 ing to stronger fluctuations. For smdllwe find a power law
X with exponent— 3 for both values of ; see Fig. 1(a).

V(1)

FIG. 8. Vertical stres¥(1), inrowM=1, vsX for a 30° pile

with a bumpy bottom, antl;=97. The particle diameter is homo- V. DISCUSSION AND CONCLUSION
geneously distributed in the interviady(1—r/2),dg(1+r/2)]. The ] ) ) ]
values ofr arer=2/3000(a), r=2/300 (b), andr=1/30 (c). The We present simulations of static 2D piles made of almost

dashed line gives the result of Figb2 with r=0 andL,=97. The =~ monodisperse spheres. With this simplified model we repro-
solid line gives the result of one run, and the symbols correspond téluce different former theoretical predictions which were
an average over 40 runs fee) or 100 runs and three particles for based on the assumption of a homogeneous contact network
(b) and(c). in the whole pile and perfectly rigid particles.
One fact is that arching and the so called dip in the ver-

8(c)] (symbolg. The fluctuations in stress increase with in- tical stress at the bottom are not neccessarily due to solid
creasingr. In fact we observe fluctuations much larger thanfriction [11,14. If the contact network varies as a function of
the total stress for the monodisperse pile. With increasing the position in the pile, we observe stresses different from
the shape of the averaged vertical stress changes in the centbe theoretical predictions based on a regular network. If we
from a hump[seer = 52;], to a dip[seer = %]. The averaged observe arching, the orientation of the stress tensor is fixed,
stress in Fig. &) is similar to the stress obtainédfter many at least in the outer part, and the contact network is symmet-
averages from a cellular automaton model for the stressric to the center but not translation invariant. The orientation
propagation in the presence of randomly opened contacisf the major principal axis and the ratio of the two eigenval-
[17]. ues of the stress tensor are correlated with the structure of the

In Fig. 9a) we give the contact network of one run as contact network. We observe diamond lattices, either vertical
presented in Fig. @). The line thickness indicates the mag- or tilted by 60° outward from the center, if the major prin-
nitude of forces active at a contact. In Fighpwe present a cipal stress is almost vertical or tilted outwards, respectively.
part of this contact network, and in Fig(c® we plot the  But, if the major and minor principal axes are comparable in
principal axis of the stress tensor for the same part. In Figanagnitude, we observe a triangular lattice, i.e., all possible
9(a) and 9b) each line represents the normal direction of onecontacts closed, rather than a diamond lattice. Together with
contact and each particle center is thus situated at the medhe tilted contact network, i.e., a strongly tilted principal
ing point of several lines. Note that some particlesaxis, we show in some cases arching and a small vertical
inside the pile have no contacts to their above neighbors, i.estress under the center of the pile. If the contact network is
they are situated below an arch. Comparing the contact netilted outwards, stresses are preferentially propagated out-
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FIG. 9. (a) Contact network of one pile from Fig(&. The line thickness indicates the magnitude of the contact fébgePart of the
contact network fron{a). (c) Principal axis of stress from the same simulation agjn

wards, which may be regarded as a reason for arching artitles are still positioned on a triangular lattice even when the
for the dip. contacts are randomly open. In the case of a random network

Varying the size of the particles randomly, we find thatwe also find the so called stress chains, i.e., selected paths of
already tiny polydispersities destroy the regular contact netlarge stresses, and the stress fluctuations are larger or of the
work. Due to small fluctuations in the particle size, the par-order of the mean stress. The stress chains — or, better, the

stress network — is also disordered. When averaging over

many realizations of the stress network we obtain a dip in the

100 R ' ' ' vertical stress at the bottom if the size fluctuations are large

@ enough. Thus we observe a stress distribution at the bottom

3 similar to that obtained by a cellular automaton model based
on a random opening of contdct7].

Since we are already able to find most of the phenomenol-
ogy expected in a sandpile in an oversimplified regular
model system, without friction, we conclude that the role of
the contact networkor the fabrig is eminent. Thus, we sug-
0.0001 0.001 0.01 0.1 1 gest to work out a formalism that accounts for the fabric

T within the simple framework, before including the more
. subtle phenomena into the theory. However, friction and
(b) small polydispersity may play a different role in more gen-
eral situations with physical sandpiles.
. As an extension of our model, we started more realistic
simulations with a nonlinear Hertz contact |&#21], and also
with solid friction and nonspherical particlgg7]. The effect
=130 of those more realistic interaction laws has to be elaborated,
exp(-T) o 1 and three-dimensional examinations should also be per-
0001 ° : formed.

10
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