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Nonlinear reflectivity of an inhomogeneous plasma in the strongly damped regime
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The nonlinear reflectivity of an inhomogeneous plasma slab in the strongly damped regime is investigated,
taking into account the spatial and temporal characteristics of the thermal noise emission of waves. In the linear
approximation, the spectral width corresponding to the frequencies that are effectively amplified is always
found to be less than the spectral width of the unstable frequency domain. By conjecturing that this frequency
filtering process remains valid in the nonlinear regime, the effective noise term appearing in Tang’s formula@J.
Appl. Phys.37, 2945 ~1966!# can be obtained analytically. The validity of this conjecture is numerically
checked for different values of the inhomogeneity parameter. Conditions are given that must be satisfied for the
validity of one-dimensional modeling of three-dimensional scattering.@S1063-651X~97!07504-7#

PACS number~s!: 52.40.Nk, 52.35.Mw, 52.35.Nx
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I. INTRODUCTION

The parametric instabilities induced by laser plasma in
action remain a domain of intense research in the contex
inertial fusion. Parametric instabilities such as stimula
Brillouin scattering~SBS! and stimulated Raman scatterin
~SRS! can induce several effects deleterious for the go
efficiency of the laser-plasma coupling. The linear behav
of these two instabilities is controlled mainly by inhomog
neity effects, namely, the density gradients in the case
SRS and the flow inhomogeneity in the case of SBS, as w
as by multidimensional effects@1#. A good indicator of the
potential importance of these instabilities is the value of th
reflectivity R in the limit where the only saturation mech
nism is the pump depletion~i.e., corresponding to the stan
dard three-wave model!. Since this simple saturation mech
nism yields an upper bound to the actual reflectivity, one
compute reasonable estimates of the maximum energy tr
ferred to the scattered wave and to nonthermal plasma
ticles in the case of a reflectivity very small compared
unity. In the opposite case of a large reflectivity predicted
the three-wave model, one must carefully investigate all
possible nonlinear saturation mechanisms of parame
growth: pump depletion with multidimensional effects@1#,
nonlinearity of one of the daughter waves@2#, coupling of
the daughter waves to other types of waves@3#, wave-particle
interaction, wave breaking and subsequent particle hea
@4#, and interplay between instabilities@5#. It is therefore
crucial to be able to accurately compute the reflectivity of
inhomogeneous plasma in the simple limit of three-wa
coupling.

In the convective regime where the low-frequency dau
ter wave is strongly damped, the value of the reflectivity
determined not only by the incident laser intensity, but a
by the plasma noise level corresponding to the spontane
emission of the waves~bremsstrahlung and Cˇ erenkov emis-
sion!. Subsequently, a proper description of the instability
551063-651X/97/55~4!/4653~12!/$10.00
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this regime requires solving the problem of the parame
growth including stochastic source terms for each wave i
play ~along with consistent fluctuating boundary conditio
for these waves!. Unfortunately, such a solution cannot b
carried out analytically in the nonlinear saturated regime.
overcome this difficulty Tang@6# considered the simplified
problem in which the effect of the noise sources is mode
by a deterministic boundary value. Considering the most
stable wave triplet and restricting himself to the case o
homogeneous plasma, he obtained the relation

R~11B2R!5Bexp@~12R!G#,

which can be solved to give the plasma reflectivityR as a
function of the gain factorG and of afixedboundary value
for the backscattered waveB. This boundary value plays th
role of an effective noise term that is supposed to account
the averaged effects of the actual plasma noise. It is imp
tant to notice that the value ofB cannot be obtained from a
deterministic theory such as that of Tang. Here the quan
B is a freeparameter that must be chosen in such a way
the theoretical results fit the experimental~and/or numerical!
data.

This paper is devoted to the computation of the quan
B in the case of an inhomogeneous plasma, taking into
count the role played by the space and time nature of
thermal noise emission. In Sec. II we introduce our theo
ical model and give the statistical properties of the sou
terms that must be added to the usual coupled-mode e
tions in order to account for the thermal noise emission
waves. In Sec. III we consider the linear stage of the ins
bility. We show that taking into account explicitly the spati
and temporal characteristics of the thermal noise emiss
leads to the result of the spectral width corresponding to
effectively amplified frequencies always being less than
spectral width of the unstable frequency domain. Conjec
ing that this result still holds in the nonlinear regime, w
show in Sec. IV A that the proper value ofB can be obtained
4653 © 1997 The American Physical Society
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as the solution to an implicit equation that linksB to both the
plasma noise parameters and the effectively amplified s
tral width. Reliability of this result is checked numerically
Sec. IV B. An alternative derivation of the nonlinear refle
tivity in the strongly inhomogeneous plasma limit is given
Sec. IV C. In Sec. V the conditions are given that must
satisfied for the validity of a one-dimensional~1D! modeling
of 3D scattering. Numerical applications are made in the c
of SBS and SRS.

II. STANDARD THREE-WAVE COUPLING

A. Equations

In the following we restrict ourselves to parametric ins
bilities in the limit of the envelope approximation. We co
sider a 1D static inhomogeneous plasma slab model in w
x5L and x50 denote the points where the laser ligh
propagating from right to left, enters and exits, respective
Such a model is correct only when the diffraction effects
not modify the value of the gain factor, as compared with
usual 1D prediction. The conditions that must be satisfied
order to be able to neglect the diffraction effects when co
puting the gain coefficients have been derived in@1,7#, and
are recalled in Sec. V. Stochastic functions in space and
are added to the usual coupled-mode equations in orde
account for the thermal noise emission of waves.

In the standard decay regime, the coupled-mode equat
for an inhomogeneous plasma take the form

~] t1V0]x1n0!a01g0a1a2e
2 ik8x2/25S0 , ~1a!

~] t1V1]x1n1!a12g0a0a2* e
ik8x2/25S1 , ~1b!

~] t1V2]x1n2!a22g0a0a1* e
ik8x2/25S2 , ~1c!

wherea0, a1, anda2 stand for the amplitudes of the incom
ing laser light and the transverse and the longitudinal de
waves, respectively. These amplitudes have been norma
in such a way that one simply hasa0(L)51 at the incoming
point x5L; g0 is the linear homogeneous growth rate
the parametric instability. The inhomogeneity is taken in
account in the WKB approximation by k8
[(d/dx)@K0(x)2K1(x)2K2(x)#x50, whereKa is the local
wave vector of wavea associated with the resonance con
tion that is assumed to be fulfilled atx50, so that
@K0(x)2K1(x)2K2(x)#x5050. The quantitiesVa and na
denote the group velocity and the linear damping of wa
a, respectively. In the following we restrict ourselves
backscattering instabilities only so that one hasV0,0,
V1.0, andV2,0. The source termsSa on the right-hand
side of Eqs.~1! account for the thermal noise emission
wavea and are therefore stochastic functions in space
time. The statistical properties of the processesSa are de-
tailed in the next subsection.

B. Statistical properties of the source terms

The source termsSa have to be chosen so as to reprodu
the equilibrium statistical properties of the fieldsaa properly
within the spectral domain of interest for the instability@8#.
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These stochastic processes are taken to be white nois
space and time with the statistical properties

^Sa~x,t !&50, ~2a!

^Sa~x,t !Sa* ~x8,t8!&5~2p!2Sa
1Dd~x2x8!d~ t2t8!, ~2b!

where ^ & denotes the statistical average. The space-t
variables appearing in Eqs.~2! are the slow variables corre
sponding to the envelope approximation. The 1D spec
densitySa

1D is determined from the condition that the equ
librium fluctuations corresponding to Eqs.~1! in the limit
g050 be identical to the thermal equilibrium values. O
obtains

Sa
1D5

naTa
eff

~2p!4vaN0
Ka
2DVa , ~3!

whereKa is the wave vector of wavea associated with the
usual three-wave resonance conditions andDVa is the solid
angle inKa space characterizing the 3D plasma volume
the thermal noise effectively amplified in the process be
considered. The expressions ofDVa are given in Sec. V.
The effective temperatureTa

eff is given for the trans-
verse wave~TW! and the electron plasma wave~EPW!
by TTW

eff 5TEPW
eff 5Te and for the ion sound wave

~ISW! by TISW
eff 5Te(11ZQ)/@11(ZTe /Ti)Q# with Q

5(v the /v thi)3exp@2(ZTe13Ti)/2Ti #, where Ts and
v ths5(Ts /ms)

1/2 denote the temperature~in units of energy!
and the thermal velocity of speciess, respectively. In the
case of SBS, the angular frequencyva is given byv1'v0
and v2'2v0(cS /c)(12n/nc)

1/2, where n, nc , and cS
5@(ZTe13Ti)/mi #

1/2 are, respectively, the electron densit
the critical density, and the ion sound velocity. In the case
SRS,va is given byv1'v02vpe and v2'vpe , where
vpe is the local electron plasma frequency. The normaliz
constantN0 is the density of quanta for the pump wave

N05
nc
4

mec
2

v0
S voscc D 2,

wherevosc5qeE0 /mev0 is the electron quiver velocity,E0
denoting the amplitude of the pump wave electric field at
incoming pointx5L. In the case of 1D particle in cell simu
lations, the whole factorTa

effKa
2DVa should be determined

so as to match the equilibrium characteristics correspond
to the numerical scheme properly.

III. REFLECTIVITY IN THE LINEAR APPROXIMATION

In the strongly damped regime, defined b
n2@2g0uV2 /V1u1/2, the dampingn2 is sufficiently strong for
wave 2 to be locally enslaved to wave 1~except in a negli-
gibly thin boundary layer at the vicinity ofx5L). In this
limit, the instability quickly reaches a steady state of spa
amplification. The fluctuation̂ ua1u2& does not depend on
time and one has

^ua1u2&5E
2`

1`

n1~v,x!dv, ~4!
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wheren1(v,x) denotes the spectral density of wave 1. In t
linear regime where the pump depletion is negligible~i.e.,
a0[1), the equation forn1(v,x) can readily be derived
from Eqs. ~1b!, ~1c!, ~2a!, and ~2b!. As shown in Appen-
dix A, one obtains

F ]x1
2

V1
S n12

g0
2n2

n2
21~v1«n2x/xc!

2D Gn1~v,x!

5
2p

V1
2 FS1

1D1
g0
2

n2
21~v1«n2x/xc!

2S2
1DG , ~5!

with «5sgn(V2k8) and wherexc5n2 /uV2k8u is the inhomo-
geneous amplification length in the strongly damped lim
@9#. In the following we restrict ourselves to the case whe
the inverse bremsstrahlung absorption can be neglecte
the interacting plasma (n150). In this limit and assuming
for the sake of simplicity, that the spectral density at t
boundary x50 is given by the equilibrium value
n1(v,0)5pS1

1D/V1n1, one finds that the solution to Eq.~5!
reduces to~cf. Appendix A!

n1~v,x!5pS1
1D/V1n11

p

V1
S S1

1D

n1
1

S2
1D

n2
D @expG~v,x!21#,

~6!

where the gain factorG(v,x) is given by

G~v,x!5
2g0

2

V1V2k8 F tan21S v

n2
1«

x

xc
D2tan21S v

n2
D G .

It is worth mentioning that in the limit of a strongly inhomo
geneous plasma defined byxc!x, our results reduce to thos
of Bergeret al. @10#, as they should.

Before proceeding further into the calculations, it is inte
esting toa priori estimate the order of magnitude of th
contribution of each term on the right-hand side of Eq.~6!
when substituted into expression~4! for the fluctuation
^ua1u2&. The order of magnitude of the first term, denoted
what follows aŝ ua1u2& th , is given by

^ua1u2& th'
p

V1

S1
1D

n1
Dvobs, ~7!

whereDvobs is the total spectral width corresponding to t
domain of observation for wave 1. Regarding now the f
lowing terms, denoted as^ua1u2&coupl, one expects their orde
of magnitude to be given by

^ua1u2&coupl'
p

V1
S S1

1D

n1
1

S2
1D

n2
DDvunst@exp~Gmax!21#,

~8!

where the maximum gain factorGmax[maxv@G(v,x)# is
given by

Gmax5~2/p!GRostan
21~x/2xc!, ~9!

GRos being the so-called Rosenbluth gain fact
GRos[2pg0

2/uV1V2k8u. The quantityDvunst @the expression
of which is given in Eq.~11!# denotes the characteristic spe
tral width of the unstable frequency domain for which t
t
e
in

e

-

-

gain factorG(v,x) is of the same order as its maximu
valueGmax. In the large-gain-factor limit thea priori esti-
mate ~8! can be obtained easily by substitutingDvunst for
Dvobs into Eq. ~7! and then multiplying the result by th
amplification factor exp(Gmax) corresponding to the maxi
mum gain factor. The expression ofDvunst can be readily
obtained from the small-gain-factor limit of Eq.~8!, which
has to reduce in this limit to the expression for Thoms
scattering reflectivity

^ua1u2&Thoms5~2p!2S S1
1D

n1
1

S2
1D

n2
Dg0

2L

2V1
2 . ~10!

Identifying Eq. ~8!, in the limit Gmax!1, with expression
~10!, one obtains

Dvunst[
1

maxv@G~v,L !#
E

2`

1`

G~v,L !dv

5pn2
~L/2xc!

tan21~L/2xc!
. ~11!

The remainder of this section is devoted to checking
validity of the estimate~8! with Dvunst given by Eq.~11!.
Namely, we will show that the estimate~8! is correct to
within a nontrivial numerical factor only, which leads to re
place the spectral widthDvunstby an effective spectral width
Dveff . As this effective width will be found to satisfy the
inequality Dveff<Dvunst, this replacement can be inte
preted as corresponding to filtering in the domain of effe
tively amplified frequencies.

In order to establish this result one has to evaluate
right-hand side of Eq.~4! more carefully. Considering firs
the large-gain-factor limitGmax@1, the leading term of the
asymptotic expansion of the integral~4! is found to be given
by

^ua1u2&coupl~x!;
p

V1
S S1

1D

n1
1

S2
1D

n2
D Iexp~Gmax!,

where I is written in terms of the error function
erf(z)[2/Ap*0

zexp(2u2)du as

I5Dvunst

erf@Ap3/4~n2 /Dvunst! f ~x/2xc!Gmax#

Ap2~n2 /Dvunst! f ~x/2xc!Gmax

,

where the functionf (x) is defined by

f ~x![@x/~A11x2tan21x!#4.

@It can be useful to have in mind the behavior off (x) in the
limits of small and large values of its argument. One h
f (x)'1 for x!1 and f (x)'(2/p)4 for x@1.# Substituting
for the error function the simple algebraic fi
erf(Ax);(4x/p)1/2(114x/p)21/2, one obtains for
Gmax@1
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^ua1u2&coupl~x!;
p

V1
S S1

1D

n1
1

S2
1D

n2
D

3
Dvunstexp~Gmax!

A11p2~n2 /Dvunst! f ~x/2xc!Gmax

.

~12!

In the opposite limit of small gain factor, the integral o
the right-hand side of Eq.~4! can be carried out perturba
tively and written as a power series ofGmax. At the lowest
order, one obtains forGmax!1

^ua1u2&coupl~x!5
p

V1
S S1

1D

n1
1

S2
1D

n2
DDvunstGmax, ~13!

which is simply the Thomson scattering reflectivity~10!, as
it should be.

It is now possible to recast the two equations~12!
and ~13! into a single uniform expression, i.e., an express
that is correct for both small and large values of the g
factor. This expression reads

^ua1u2&coupl~x!5
p

V1
S S1

1D

n1
1

S2
1D

n2
DDveff~Gmax!@e

Gmax21#,

~14!

where Dveff(Gmax) denotes the spectral width associat
with the effectively amplified frequencies, namely,

Dveff~Gmax!5
Dvunst

A11p2~n2 /Dvunst! f ~x/2xc!Gmax

.

~15!

Equation ~14! can be quite simply obtained from the simp
estimate~8! by substitutingDveff(Gmax) for Dvunst into the
latter equation. As said before, this substitution represen
reduction in the frequency domain of the Fourier comp
nents that are effectively amplified, as compared to
simple estimate~11!, because one hasDveff<Dvunst. As
one haspn2 /Dvunst<1 and f (x/2xc)<1, Dveff can be sig-
nificantly smaller thanDvunst in the regime of large gain
factor only, which corresponds to the well-known effect
frequency filtering induced by gain narrowing. More pr
cisely, comparing the exact result~14! with the estimate~8!
in the regime of large-gain-factor limit, one may quanti
this gain narrowing effect as follows:~i! in the limit corre-
sponding to a quasihomogeneous plasma, namely,
x/xc,1,Gmax, the simple expression~8! overestimates the
correct result by the factor (pGmax)

1/2.1 with
Gmax'2g0

2x/V1n2; ~ii ! in the limit of moderately inhomoge
neous plasmas defined by the inequality 1,x/xc,Gmax, one
hasGmax'GRos and Eq.~8! overestimates the correct resu
by the factor (4/p)(xcGRos/x)

1/2.1; ~iii ! it is only in the
strongly inhomogeneous limit 1,Gmax,x/xc that one has
Dveff(Gmax)5Dvunst and the simple estimate~8! gives the
correct result~14!.

The final expression~14! can also be written in the con
venient form
n
n

a
-
e

f

or

^ua1u2&coupl5^ua1u2&Thoms
@exp~Gmax!21#

Gmax

Dveff

Dvunst
, ~16!

which can be regarded as a mere generalization of
Thomson scattering expression consisting, on the one h
in the replacement of the gain factorGmax by the quantity
@exp(Gmax)21# and, on the other hand, in taking into a
count the gain narrowing by the ratioDveff /Dvunst.

Figure 1 shows the ratioDveff /Dvunst as a function of
Gmax for different values ofx/2xc . It can be seen that the
frequency filtering that amounts to replaceDvunst by Dveff
strongly modifies the reflectivity in the homogeneous lim
x/xc!1. In this limit and for a gain factor as small as 10, o
hasDveff /Dvunst'0.17, which corresponds to a reduction
almost one order of magnitude between the correct
sult ~14! and the estimate~8!. In the opposite limit of an
inhomogeneous plasmax/xc5100 and for a gain factor a
large as 100, one obtainsDveff /Dvunst'0.61, which means
that the simple estimate~8! gives the correct order of mag
nitude for the reflectivity.

All the results obtained in this section assume that
spectral densityn1(v,0) at the boundaryx50 is nearly con-
stant over a frequency range of widthDveff(Gmax) around
the most unstable frequencyvmax52«n2x/2xc . If this is not
the case, e.g., due to departure from thermal equilibrium
similar treatment can be carried out, which leads either to
modification ofDveff @in the case of a smooth, nontherm
function n1(v,0)# or the modification of bothDveff and
Gmax @in the case of a peaked functionn1(v,0) correspond-
ing, for instance, to the existence of particle beams#.

IV. NONLINEAR REFLECTIVITY

A. Analytical results

The validity of the linear approximation is strongly con
strained by the inequalitŷua1u2&!1, which is practically
never fulfilled in the very-large-gain-factor limit. A prope
description of the nonlinear saturation of the quant
^ua1u2& would require the solution of the whole system~1!;
unfortunately, it is not possible to carry out such a soluti
analytically. To overcome this difficulty one has to seek

FIG. 1. RatioDveff /Dvunst as a function ofGmax for different
values ofL/2xc : (a) L/2xc50, (b) L/2xc52.5, (c) L/2xc55, and
(d) L/2xc550.
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more simple system of equations that could easily be so
analytically and give a good description of the nonline
saturation of the reflectivity.

As one expects the behavior of^ua1u2&coupl(x5L) not to
be very different from that of the most unstable compon
ua1(vmax

L ,L)u2, with vmax
L 52«n2L/2xc , we will consider

the coupled equations forua0u2 andua1(vmax
L )u2. These equa-

tions can be readily derived from the system~1! written in
the strongly damped (n2@2g0uV2 /V1u1/2) deterministic
(Sa50) limits and for the most unstable triple
a0(t,x)5a0(x), a1(t,x)5a1(vmax

L ,x)exp(2ivmax
L t), and

a2(t,x)5a2(2vmax
L ,x)exp(ivmax

L t). One obtains

]xua0u21
2g0

2ua0u2ua1~vmax
L !u2

V0n2@11~x2L/2!2/xc
2#

50, ~17a!

]xua1~vmax
L !u22

2g0
2ua0u2ua1~vmax

L !u2

V1n2@11~x2L/2!2/xc
2#

50. ~17b!

The solution of this system for the boundary conditi
ua1(vmax

L ,0)u25B yields the inhomogeneous plasma versi
of the Tang formula, namely

RF11
V1

uV0u
~B2R!G5BexpF S 12

V1

uV0u
RDGmaxG , ~18!

where R and Gmax denote, respectively, the quanti
ua1(vmax

L ,L)u2 and the maximum inhomogeneous gain fa
tor ~9! at the incoming pointx5L. Note that Eq.~18! can be
rewritten into the usual form of the Tang formu
Rv(11Bv2Rv)5Bvexp@(12Rv)Gmax#, where Bv
[V1B/uV0u andRv[V1R/uV0u denote, respectively, the in
coming and outgoing intensityua1u2 in vacuum. In this clas-
sical approach of the nonlinear calculation of the reflectiv
it is the fixed boundary conditionua1(vmax

L ,0)u25B that is
supposed to account for the averaged effects of the stoch
functionsSa . The problem is now to determine the effectiv
value of B so that the reflectivityR as given by Eq.~18!
reproduces the correct reflectivitŷua1u2&coupl(x5L) prop-
erly.

In the linear regime, corresponding to the lim
B!R!1, Eq. ~18! is found to reduce toR5Bexp(Gmax),
which coincides with the large-gain-factor limit of Eq.~14!
provided B is taken to be equal to
(p/V1)(S1

1D/n11S2
1D/n2)Dveff(Gmax).

In the nonlinear regime, one expects the nonlinear sat
tion of the reflectivity to limit the decreasing ofDveff with
increasingGmax. The conditionR,1 and the linear expres
sion R5Bexp(Gmax) yield the inequalityGmax, ln(1/B),
which gives a lowest-order estimate of the maximum va
of Gmax to be taken as an argument ofDveff in the nonlinear
regime.

One is thus led to conjecture that the generalized T
formula ~18! reproduces the actual reflectivity properly
B is given by the implicit equation

B5
p

V1
S S1

1D

n1
1

S2
1D

n2
DDveff$min@Gmax,ln~1/B!#%, ~19!
d
r

t

-

,

tic

a-

e

g

where the quantityDveff is given by Eq.~15!.This equation
can also be written under the convenient form

B5^ua1u2&Thoms
1

Gmax

Dveff$min@Gmax,ln~1/B!#%

Dvunst
.

~20!

Expressions~19! and ~20! show that the proper value ofB
depends not only on the expected plasma noise parame
but also, through the effectively amplified spectral wid
Dveff , on more unexpected quantities such as the plas
length L, the inhomogeneous amplification lengthxc , and
the gain factorGmax(L). In particular, it is interesting to
notice that in the limit of inhomogeneous plasm
(L/xc@1) one hasDveff'Dvunst'n2L/xc , so thatB is pro-
portional to the interaction lengthL ~besides some logarith
mic corrections!. The expression forB as given by Eq.~19!
or ~20! is the main result of our paper; the numerical app
cations to SBS and SRS are given in Sec. V.

B. Numerical results

We have checked the validity of Eq.~19! by numerically
integrating the set of equations~1!. In our simulations, the
stochastic source termsSa(x,t) are computed such as to re
produce the characteristics of a colored noise, with the
tistical properties

^Sa~x,t !&50, ~21a!

^Sa~x,t !Sa* ~x8,t8!&5
p2Sa

1D

l ctc
e2ux2x8u/ l ce2ut2t8u/tc.

~21b!

In the limit where the correlation lengthl c and the correla-
tion time tc tend to zero, these source terms reduce t
white noise that satisfies the statistical properties~2!. To
generate the quantitiesSa we have used two coupled Lange
vin equations

]xF11 l c
21F15F0 , ~22a!

] tS1tc
21S5F1 , ~22b!

where the stochastic functionF0 is a white noise in space
and time. In the discretized equations this means that, at e
time step, the functionF0 takes random values uniforml
distributed between two bounds determined such as to re
duce the statistical properties~21!. The space and time step
are chosen so as to fulfill the conditions

Dx! l c!Lmin , ~23a!

Dt!tc!tmin , ~23b!

where the quantitiesLmin andtmin denote the smallest char
acteristic scales for the evolution of the waves into play
should be noted that these conditions can be very constr
ing for large inhomogeneous plasmas~see Appendix B!.

The reflectivity obtained by solving Eqs.~1! numerically
is a stochastic function of time. Before it can be compa
with the analytical results given by Eqs.~18! and~19! it must
be smoothed out by averaging it over a sufficiently long tim
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~after the initial transient stage has disappeare!.
Figures 2–4 show the reflectivity as a function of the ma
mum gain factorGmax for different values of the noise pa
rameterb, with

b[
p2n2
V1

S S1
1D

n1
1

S2
1D

n2
D .

Three different cases have been considered: quasihom
neous plasma (L/2xc50.01), moderately inhomogeneou
plasma (L/2xc51), and strongly inhomogeneous plasm
(L/2xc55), corresponding to Figs. 2, 3, and 4, respective
The solid line curves correspond to the analytical
sults ~18! and ~19!. The points correspond to the smooth
numerical reflectivity forb51023, 1024, 1025, and 1026,

FIG. 3. Reflectivity of a moderately inhomogeneous plas
(L/2xc51) as a function ofGmax for different values of the noise
parameterb: b51026 (5), b51025 (1), b51024 (s), and
b51023 (3). The solid lines correspond to the analytical resu
~18! and ~19!.

FIG. 2. Reflectivity of a quasihomogeneous plasm
(L/2xc50.01) as a function ofGmax for different values of the noise
parameterb: b51026 (5), b51025 (1), b51024 (s), and
b51023 (3). The solid lines correspond to the analytical resu
~18! and ~19!.
-

ge-

.
-

respectively. It can be seen that the analytical and numer
results are in excellent agreement.

C. An alternative derivation of the nonlinear reflectivity
in the strongly inhomogeneous plasma limit

To obtain the generalized Tang formula~18! we have as-
sumed that the pump depletion could be described as b
due to the amplification of only one unstable compon
a1(vmax

L ,L), with vmax
L 52«n2L/2xc , the influence of all

the other unstable components on the pump depletion b
accounted for by the quantityDveff in the expression~19! of
the effective noise. Thus, according to this description, in
strongly inhomogeneous plasma limit, all the reflectivity a
all the pump depletion are modeled as if they were com
from the narrow resonance region of the most unstable c
ponent, the latter being assumed to be growing from t
strongly enhanced effective noise. As seen in Sec. IV B,
description yields very good results as far as one is c
cerned with the expression of the plasma reflectivity~cf.
Fig. 4!. For the sake of completeness, we present in the
mainder of this section an alternative derivation of the no
linear reflectivity in the case of a strongly inhomogeneo
plasma. This alternative description is found, on the o
hand, to give an expression for the plasma reflectivity tha
in good agreement with the generalized Tang formula~18!
and therefore with the numerical results displayed before
the other hand, it provides a better description of the spa
profile of the pump intensity within the plasma.

In the limit of a large gain factor and a strongly inhom
geneous plasma, Eq.~6! can be rewritten as

n1~v,x!'
p

V1
S S1

1D

n1
1

S2
1D

n2
DHS x2

«vxc
n2

D
3expFGRosua0u2S «vxc

n2
D G , ~24!

whereH(x) is the Heaviside step function andGRos denotes
the Rosenbluth gain factorwithoutpump depletion~i.e., with

a

FIG. 4. Reflectivity of a strongly inhomogeneous plasm
(L/2xc55) as a function ofGmax for different values of the noise
parameterb: b51026 (5), b51025 (1), b51024 (s), and
b51023 (3). The solid lines correspond to the analytical resu
~18! and ~19!.
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ua0u251). Inserting this expression into the flux conserv
tion equation, one obtains the equation for the pump int
sity @11,7#

dua0u2~x!

dx
5

d

dxE2`

1`

n1~v,x!dv

5
n2p

V1xc
S S1

1D

n1
1

S2
1D

n2
Dexp@GRosua0u2~x!#,

~25!

where we have takenuV0u5V1 for simplicity. Integrating
this equation betweenx50 andx5L, one obtains

12exp~2GRosR!

GRos
5
2b

p S L

2xc
Dexp@GRos~12R!#, ~26!

whereR512ua0u2(0) is the reflectivity andb is the noise
parameter defined at the end of Sec. IV B. This expressio
an alternative expression for the plasma reflectivity, wh
has to be compared with the generalized Tang formula~18!,
which takes the form

R~12R!5
2b

p S L

2xc
Dexp@GRos~12R!# ~27!

in the strongly inhomogeneous plasma limit considered h
(Dveff5Dvunst5n2L/xc). It can be seen from Eq.~25! that
each unstable component contributes to the pump deple
by an infinitesimal amount, and the overall pump deplet
as given by Eq.~26! is caused by the superposition of a
these infinitesimal contributions. In the strongly inhomog
neous regime considered in this subsection, the deriva
underlying ~26! is therefore better than the generalized Ta
description @in which one unstable component gives t
whole ~macroscopic! contribution to the pump depletion#,
whenever one is concerned with the spatial profile of
waveswithin the interaction region. As said before, conce
ing the plasma reflectivity itself, the numerical results d
played in Sec. IV B show that the generalized Tang expr
sion gives a very good estimate of the plasma reflectivity

In order to compare the results of Eqs.~26! and ~27! we
have plotted in Fig. 5 the reflectivity as a function of th
Rosenbluth gain factor in the same case as in Fig
(L/2xc55). The solid lines correspond to the generaliz
Tang formula ~27! ~these are the same curves as in Fig.!
and the dashed lines correspond to the strongly inhomo
neous plasma limit formula~26!. It can be seen that the dis
crepancy is always much less than one order of magnitu
~In this particular case, the largest relative deviation
DR/R523% withR'0.23, which corresponds tob51026

andGRos'13.! This result confirms that, in the strongly in
homogeneous plasma limit, Eqs.~18! and~19! give a reliable
estimate of the reflectivity even though they correspond t
rough description of the pump depletion within the intera
tion region.
-
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V. VALIDITY CONDITIONS FOR 1D MODELING
AND NUMERICAL APPLICATIONS TO SBS AND SRS

Before our results can be applied to practical computat
of SBS or SRS reflectivity, it is necessary to determine
plasma parameters appearing in the expressions of the
factor ~9! and the noise term~19!. These plasma paramete
are to be obtained either from experimental results~tempera-
ture diagnostics, etc.! or from numerical simulations of the
hydrodynamical evolution of the irradiated plasma~using hy-
drodynamic codes such asLASNEX @12#, FILM @13#, and
MULTI @14#!. It is only after these data are known that o
can then compute the interaction parameters~gain factor and
noise term! that appear in the generalized Tang formula~18!.
It follows in particular that, due to the intensity dependen
of the plasma parameters, the actual dependence of the i
action parameters on the laser intensity is not the sim
explicit dependence. It is also worth noting that, since
characteristic time scale for the hydrodynamical evolution
the plasma is much longer than the characteristic satura
time of the instability~typically the light transit time across
the resonant region!, the generalized Tang formula~18!
gives the instantaneous reflectivity~on the hydrodynamica
time scale!, the time dependence of which is given by th
time dependence of the plasma parameters.

In this section we first give the validity conditions for th
1D modeling developed in this article. We consider a Gau
ian laser beam, characterized by a focal plane w
a05 fl0 and a length along the direction of propagati
l R52p f 2l0, where f5F/D is the ratio of the focal length
F of the focusing lens over the laser beam diameterD in
vacuum. The size of the plasma along the direction of la
propagation will be denoted asLp andL will represent, as
before, the length of the 1D plasma slab modeling the
real plasma. The expression determiningL as a function of
the physical parametersLp and l R is given further on in Eq.
~33!. We restrict ourselves to the interesting regime of g
factorsGmax greater than unity; we will then give the expre
sions of the quantitiesGmax and (S1

1D/n11S2
1D/n2) in prac-

tical units for SBS and SRS in an underdense plasma.
The validity conditions for a 1D model can be obtain

FIG. 5. Reflectivity as a function of the gain factor in the sam
case as in Fig. 4. The solid lines correspond to Tang’s formula~27!
~i.e., same curves as in Fig. 4! and the dashed lines correspond
the strongly inhomogeneous plasma limit formula~26!.
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from 3D calculations of SBS in a laser hot spot@1,7#. It is
found that the diffraction does not modify the value of t
gain factorGmax as compared with its 1D expression whe
ever the following inequality is satisfied:

l R@~Gmax/2!l ampl, ~28!

wherel ampl denotes the effective length for spatial amplific
tion. The latter is defined through the relatio
Gmax5(2g0

2/V1n2) l ampl, so that one has

l ampl[2xctan
21~Lp/2xc!.min~Lp ,pxc!. ~29!

Whenever the inequality~28! is fulfilled, the diffraction ef-
fects are negligible for what concerns the value ofGmax. The
quantity (S1

1D/n11S2
1D/n2) can then be expressed throug

Eq. ~3! as a function of the physical parameters and of
solid anglesDV1 and DV2; the latter can be determine
precisely from the 3D calculation and are found to be giv
in terms of a solid angle, denoted asDVnoise, characterizing
the plasma volume of the thermal noise effectively amplifi
in the process considered~SBS or SRS!. Namely, one ob-
tains, fora51 and 2,Ka

2DVa5K1
2DVnoise and in the limit

where the inequality~28! is satisfied,DVnoise is related to
the 3D characteristics of the backscattered light by the
pression

DVnoise[S r eff2a0
D 2DVscat, ~30!

where r eff is the radius of the active backscattering regi
andDVscat denotes the solid angle within which the bac
scattered light is scattered in the far-field domain. The qu
tities r eff andDVscat are found to be given by@7#

r eff52a0 /AGmax, ~31!

DVscat5S 12pGmax
D S a0
l ampl

D 2. ~32!

The quantityB as given by the expression~19! involves
the quantity (S1

1D/n11S2
1D/n2), the expression of which is

given further on for SBS and SRS, andDveff . The expres-
sion for Dveff follows from ~15!, in which the lengthL of
the 1D plasma slab modeling the real plasma of lengthLp
enters. In order to properly determineL as a function of the
physical parameters, we will restrict ourselves to the ca
where either the plasma lengthLp is larger than the Rayleigh
length l R or, in the opposite case, the center of the plasm
located in the focal plane. In these two realistic limits t
dependence of the laser intensity upon the longitudinal co
e

n

d

x-

n-

es

is

r-

dinatex can easily be taken into account as follows. It can
seen in Eq.~25! that, in the strongly inhomogeneous plasm
limit, the effect of the spatial variation of the laser intens
amounts to simply replaceua0u2(x) by ua0u2(x)/(11x2/ l R

2).
Expanding GRosua0u2(x)/(11x2/ l R

2).GRosua0u2(x)
2GRosx

2/ l R
2 , valid for u12ua0u2(x)u!1, i.e., for not too

large reflectivity (R<30%), one sees that the spatial depe
dence of the laser intensity results in replacing the coordin
x by xeff defined bydxeff[dxexp2GRosx

2/ l R
2 ; therefore, in

the inhomogeneous plasma limit, the 1D plasma slab len
L must be defined as

L[ l RAp/GRoserf~LpAGRos/2l R!.min~Lp ,l RAp/GRos!.

In the opposite limit of homogeneous plasma one has sim
L5Lp , which can also be written a
L5min(Lp ,lRAp/Gmax) since Eqs.~28!, ~29!, and the con-
dition Gmax@1 yield Lp! l RAp/Gmax. It follows therefore
that whatever the inhomogeneity of the plasma, the
plasma slab lengthL must be defined by

L[ l RAp/Gmaxerf~LpAGmax/2l R!.min~Lp ,l RAp/Gmax!.
~33!

We now give the expressions ofGmax and
(S1

1D/n11S2
1D/n2) in practical units for SBS and SRS in a

underdense plasma. In the case of SBS, the gain fa
Gmax is given by

Gmax55.931022
Lv
l0

~n/nc!I 14l
2

Te~113Ti /ZTe!
tan21S L

2ñ2Lv
D ,
~34!

wheren, nc , andTs denote the plasma density, the critic
density, and the temperature~in keV! of speciess, respec-
tively. The subscript 0 refers to the laser in vacuum,I 14 is the
laser intensity in units of 1014 W/cm2, and l is the laser
wavelength inmm. In Eq.~34! we have introduced the char
acteristic lengthLv defined asLv[K2cS /uV2k8u, wherecS is
the ion sound velocity. This length reduces to

Lv5cSU ]Vexp

]x U21

in the case where the dominant term in the expression
k8 is the contribution due to the expansion velocity inhom
geneity. The quantityñ2 denotes the dimensionless dampi
coefficient of the acoustic wavesñ2[n2 /K2cS , which can
be easily obtained from convenient empirical expressi
such as those of Ref.@15#. The expression for the quantit
(S1

1D/n11S2
1D/n2) reads
~S1
1D/n11S2

1D/n2!52.72
Te~12n/nc!

I 14l
2 DVSBSH 11

484AA/Z~11ZQ!

@Te~113Ti /ZTe!~12n/nc!#
1/2@11~ZTe /Ti !Q# J 1

ncl0
2 , ~35!
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whereQ542.85AATe /Tiexp@2(ZTe13Ti)/2Ti #, A denoting
the ion mass number. In Eq.~35!, nc must be expressed i
mm23 and (S1

1D/n11S2
1D/n2) is in mm; DVSBS denotes the

solid angleDVnoise in the case of SBS. In practical unit
DVSBS, as given by Eqs.~30! and ~31!, reads

DVSBS52.83103FTe~113Ti /ZTe!ñ2

~n/nc!I 14l
2 G2

3
f 2l0

4

@ ñ2Lvtan
21~L/2ñ2Lv!#

4
. ~36!

In the case of SRS, the gain factorGmax is given by

Gmax51.1531024
Ln
l0

3
@~12n/nc!

1/21~122An/nc!1/2#2I 14l2

~122An/nc!1/2

3tan21S L

2ñ2Ln
D . ~37!

Here the characteristic lengthLn is defined as
Ln[vpe /uV2k8u, wherevpe is the local electron plasma fre
quency, which reduces to

Ln52U 1n ]n

]x U
21

in the case where the dominant term in the expression
k8 is the contribution due to the density inhomogeneity. T
quantityñ2 denotes the dimensionless damping coefficien
the plasma wavesñ2[n2 /vpe . The expression for the quan
tity (S1

1D/n11S2
1D/n2) reads

~S1
1D/n11S2

1D/n2!52.72
Te~122An/nc!

I 14l
2 DVSRS

3S 1

12An/nc
1Anc

n D 1

ncl0
2 .

~38!

Here, as in Eq.~35!, nc must be expressed inmm23 and
(S1

1D/n11S2
1D/n2) is in mm; DVSRSdenotes the solid angl

DVnoise in the case of SRS. In practical units,DVSRS, as
given by Eqs.~30! and ~31!, reads

DVSRS57.123108

3H ~122An/nc!1/2ñ2

@~12n/nc!
1/21~122An/nc!1/2#2I 14l2 J 2

3
f 2l0

4

@ ñ2Lntan
21~L/2ñ2Ln!#

4
. ~39!

Finally, the relation between the experimentally measu
reflectivity Rexp and the theoretical 1D reflectivityR ob-
tained from Eqs.~18! and ~19! is given by
of
e
f

d

Rexp5amin~b,1!R, ~40!

with

a51,

b5
1

A3p
S ñ2Lv
fl0

D tan21S L

2ñ2Lv
D DVexp

ADVSBS

,

in the case of SBS, whereDVexp is the solid angle corre-
sponding to the collecting optics, and with

a5F122~n/nc!
1/2

12n/nc
G1/2,

b5
1

A3p
S ñ2Ln
fl0

D tan21S L

2ñ2Ln
D DVexp

ADVSRS

,

in the case of SRS. In these expressions, the parameta
represents the ratio (v1V1)/(v0uV0u). The parameterb is
simply the quantityDVexp/DVscat, in whichDVscatas given
by Eq. ~32! has been reexpressed in terms ofDVSBS and
DVSRS for the reader’s convenience.

VI. CONCLUSION

In this paper we have investigated the reflectivity of
inhomogeneous plasma in the strongly damped convec
regime. We have taken into account the stochastic chara
istics ~in space and time! of the thermal noise emission o
waves. In the linear regime, we have found that the spec
width corresponding to the frequencies that are effectiv
amplified is always less than the spectral width of the u
stable frequency domain. This spectral narrowing appear
a frequency filtering in the expression for the reflectivity.
the nonlinear regime, we first generalized the Tang form
to the case of an inhomogeneous plasma. Then, conjectu
that the linear frequency filtering process remains valid in
nonlinear regime, we obtained the effective noise term of
Tang formula analytically as the solution to a simple impli
equation. Checking the validity of this result numerically, w
found excellent agreement between the analytical and
merical results. Finally, we gave the validity conditions f
1D modeling of 3D scattering in the case of an incide
Gaussian laser beam.
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APPENDIX A: DERIVATION AND SOLUTION OF THE
EQUATION FOR n1„v,x… IN THE LINEAR

APPROXIMATION

Settinga25ã2exp(ik8x2/2) anda0[1 ~linear approxima-
tion!, Eqs.~1b! and ~1c! can be written as
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~] t1V1]x1n1!a12g0ã2*5S1 , ~A1a!

~] t1V2]x1 iV2k8x1n2!ã22g0a1*5S̃2 , ~A1b!

with S̃25S2exp(2ik8x2/2). In the strongly damped case d
fined by n2@2g0uV2 /V1u1/2, one can neglect the operato
V2]x in Eq. ~A1b!: the dampingn2 is sufficiently strong for
wave 2 to be locally enslaved to wave 1, except in a ne
gibly thin boundary layer of widthuV2u/n2 at the vicinity of
x5L ~with n2L/uV2u@1). In this limit, the equation for
a1(v,x) in the space domain 0,x,L reads

F ]x1
1

V1
S n12 iv2

g0
2

n22 i ~v1«n2x/xc!
D Ga1~v,x!

5
1

V1
FS1~v,x!1

g0~S̃2* !~v,x!

n22 i ~v1«n2x/xc!
G , ~A2!

which gives

a1~v,x!5Kv
1~x,0!a1~v,0!1

1

V1
E
0

x

Kv
1~x,x8!

3FS1~v,x8!1
g0~S̃2* !~v,x8!

n22 i ~v1«n2x8/xc!
Gdx8,

~A3!
i-

where the kernelKv
1(x,x8) is defined by

Kv
1~x,x8![exp2

1

V1

3E
x8

x S n12 iv2
g0
2

n22 i ~v1«n2u/xc!
Ddu.

From Eqs. ~A2! and ~A3! and their counterparts fo
(a1* )(v,x)[@a1(2v* ,x)#* , one can easily derive the equa
tion for the correlation function C(v,v8,x)
[^a1(v,x)(a1* )(v8,x)&. One obtains

F]x1
1

V1
S 2n12 i ~v1v8!

2
g0
2@2n22 i ~v1v8!#

@n22 i ~v1«n2x/xc!#@n22 i ~v82«n2x/xc!#
D G

3C~v,v8,x!5
1

V1
2 @V1G1~v,v8,x!1G2~v,v8,x!

1G3~v,v8,x!#, ~A4!

where the quantitiesGa(v,v8,x) are given by
G1~v,v8,x!5Kv8
2

~x,0!^~a1* !~v8,0!S1~v,x!&1Kv
1~x,0!^a1~v,0!~S1* !~v8,x!&1

Kv8
2

~x,0!^~a1* !~v8,0!~S̃2* !~v,x!&

n22 i ~v1«n2x/xc!

1
Kv

1~x,0!^a1~v,0!S̃2~v8,x!&
n22 i ~v82«n2x/xc!

,

G2~v,v8,x!5E
0

x

@Kv8
2

~x,x8!^S1~v,x!~S1* !~v8,x8!&1Kv
1~x,x8!^S1~v,x8!~S1* !~v8,x!&#dx81g0

2

3E
0

x Kv8
2

~x,x8!^S̃2~v8,x8!~S̃2* !~v,x!&

@n22 i ~v82«n2x8/xc!#@n22 i ~v1«n2x/xc!#
dx81g0

2

3E
0

x Kv
1~x,x8!^S̃2~v8,x!~S̃2* !~v,x8!&

@n22 i ~v82«n2x/xc!#@n22 i ~v1«n2x8/xc!#
dx8,

and

G3~v,v8,x!5g0E
0

x

Kv8
2

~x,x8!F ^S̃2~v8,x8!S1~v,x!&
n22 i ~v82«n2x8/xc!

1
^~S1* !~v8,x8!~S̃2* !~v,x!&

n22 i ~v1«n2x/xc!
Gdx8

1g0E
0

x

Kv
1~x,x8!F ^S̃2~v8,x!S1~v,x8!&

n22 i ~v82«n2x/xc!
1

^~S1* !~v8,x!~S̃2* !~v,x8!&
n22 i ~v1«n2x8/xc!

Gdx8.



ra

l

can
l
r

cale

f

imu-

55 4663NONLINEAR REFLECTIVITY OF AN INHOMOGENEOUS . . .
Writing Eq. ~2b! as

^Sa~v,x!~Sa* !~v8,x8!&52pSa
1Dd~x2x8!d~v1v8!

and using the relations ^S1S2&5^S1S2* &50 and
^a1(0)(S1* )(x.0)&5^a1(0)S2(x.0)&50, one finds that
these intricate expressions forGa reduce to

G1~v,v8,x!5G3~v,v8,x!50, ~A5a!

G2~v,v8,x!52pFS1
1D1S2

1D
g0
2

n2
21~v1«n2x/xc!

2G
3d~v1v8!, ~A5b!

where we have used the prescription*xd(x2x8)dx851/2
@note that this prescription is in agreement with Eq.~21b! in
the limit l c→0#. Inserting Eqs.~A5! into Eq.~A4!, using the
stationarity conditionC(v,v8,x)5n1(v,x)d(v1v8), and
integrating overv8, one obtains the equation for the spect
densityn1(v,x) as

F ]x1
2

V1
S n12

g0
2n2

n2
21~v1«n2x/xc!

2D Gn1~v,x!

5
2p

V1
2 FS1

1D1
g0
2

n2
21~v1«n2x/xc!

2S2
1DG . ~A6!

The solution of Eq.~A6! is straightforward and leads to

n1~v,x!5n1nat~v,x!1Fn1~v,0!2
p

V1n1
S1
1DG

3@Rv~x,0!2e22n1x/V1#1
2p

V1
2 g0

2n2

3S S1
1D

n1
1

S2
1D

n2
D E

0

x Rv~x,x8!

n2
21~v1«n2x8/xc!

2dx8,

~A7!

where the kernelRv(x,x8) is given by

Rv~x,x8!5expFGv~x,x8!2
2n1
V1

~x2x8!G ,
with

Gv~x,x8!5
2g0

2

V1V2k8 F tan21S v

n2
1«

x

xc
D2tan21S v

n2
1«

x8

xc
D G ,
p-

,

l

and where the quantityn1nat(v,x) corresponds to the natura
plasma emissivity@i.e., the solution to Eq.~A6! in the limit
g050#, namely,

n1nat~v,x!5n1~v,0!e22n1x/V11
pS1

1D

V1n1
~12e22n1x/V1!.

In the case where the inverse bremsstrahlung absorption
be neglected (n150), it is possible to carry out the integra
on the right-hand side of Eq.~A7! so that the expression fo
n1(v,x) finally reduces to

n1~v,x!5n1~v,0!1Fn1~v,0!1
p

V1n2
S2
1DG

3@ lim
n1→0

Rv~x,0!21#. ~A8!

APPENDIX B: NUMERICAL CONSTRAINTS
ON THE SPACE STEP Dx

In a large inhomogeneous plasma the smallest s
length is the phase-mismatch scale length given by

Lmin;
1

uk8uL
5

uV2u
n2L

xc . ~B1!

For typical parameters (uV1u'c'300mm ps21,
g0;1 ps21, L>10mm, and uV2 /V1u1/2;1022), the strong
damping conditionn2@2g0uV2 /V1u1/2 yields

uV2u
n2L

!
uV1u
2g0L

U V2

V1
U1/2;1021. ~B2!

Thus, from Eqs.~B1! and ~B2! one finds that, in the case o
a strongly inhomogeneous plasma (xc /L<0.1), one has the
ordering

Lmin /L!1022. ~B3!

Writing then the conditions~23a! as Dx;1021l c
;1022Lmin , one finds from Eq.~B3! that the order of mag-
nitude ofDx/L is given by

Dx/L!1024. ~B4!

Such a small space step leads to very-time-consuming s
lations in the strongly inhomogeneous plasma limit.
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