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Nonlinear reflectivity of an inhomogeneous plasma in the strongly damped regime
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The nonlinear reflectivity of an inhomogeneous plasma slab in the strongly damped regime is investigated,
taking into account the spatial and temporal characteristics of the thermal noise emission of waves. In the linear
approximation, the spectral width corresponding to the frequencies that are effectively amplified is always
found to be less than the spectral width of the unstable frequency domain. By conjecturing that this frequency
filtering process remains valid in the nonlinear regime, the effective noise term appearing in Tang's fdrmula
Appl. Phys.37, 2945 (1966] can be obtained analytically. The validity of this conjecture is numerically
checked for different values of the inhomogeneity parameter. Conditions are given that must be satisfied for the
validity of one-dimensional modeling of three-dimensional scattefi8§063-651X97)07504-7

PACS numbsg(s): 52.40.Nk, 52.35.Mw, 52.35.Nx

I. INTRODUCTION this regime requires solving the problem of the parametric
growth including stochastic source terms for each wave into
The parametric instabilities induced by laser plasma interplay (along with consistent fluctuating boundary conditions
action remain a domain of intense research in the context dor these waves Unfortunately, such a solution cannot be
inertial fusion. Parametric instabilities such as stimulatedcarried out analytically in the nonlinear saturated regime. To
Brillouin scattering(SBS and stimulated Raman scattering overcome this difficulty Tang6] considered the simplified
(SRS can induce several effects deleterious for the goocproblem in v_vh_lch the effect of the noise sources is modeled
efficiency of the laser-plasma coupling. The linear behavioPY & deterministic boundary value. Considering the most un-
of these two instabilities is controlled mainly by inhomoge- St2ble wave triplet and restricting himself to the case of a
neity effects, namely, the density gradients in the case Otpomogeneous plasma, he obtained the relation
SRS and the_ flow i_nhomogeneity in the cqse_of SBS, as well R(1+B—R)=Bexg(1-R)G],
as by multidimensional effec{d]. A good indicator of the
potential importance of these instabilities is the value of theitwhich can be solved to give the plasma reflectiiRyas a
reflectivity R in the limit where the only saturation mecha- function of the gain facto and of afixedboundary value
nism is the pump depletiofi.e., corresponding to the stan- for the backscattered wa® This boundary value plays the
dard three-wave modgelSince this simple saturation mecha- role of an effective noise term that is supposed to account for
nism yields an upper bound to the actual reflectivity, one caithe averaged effects of the actual plasma noise. It is impor-
compute reasonable estimates of the maximum energy trangnt to notice that the value & cannot be obtained from a
ferred to the scattered wave and to nonthermal plasma pageterministic theory such as that of Tang. Here the quantity
ticles in the case of a reflectivity very small compared toB is afree parameter that must be chosen in such a way that
unity. In the opposite case of a large reflectivity predicted bythe theoretical results fit the experimentahd/or numerical
the three-wave model, one must carefully investigate all thelata.
possible nonlinear saturation mechanisms of parametric This paper is devoted to the computation of the quantity
growth: pump depletion with multidimensional effedts], B in the case of an inhomogeneous plasma, taking into ac-
nonlinearity of one of the daughter wavg®], coupling of  count the role played by the space and time nature of the
the daughter waves to other types of wa\@swave-particle  thermal noise emission. In Sec. Il we introduce our theoret-
interaction, wave breaking and subsequent particle heatinigal model and give the statistical properties of the source
[4], and interplay between instabilitig®]. It is therefore terms that must be added to the usual coupled-mode equa-
crucial to be able to accurately compute the reflectivity of artions in order to account for the thermal noise emission of
inhomogeneous plasma in the simple limit of three-wavewaves. In Sec. Il we consider the linear stage of the insta-
coupling. bility. We show that taking into account explicitly the spatial
In the convective regime where the low-frequency daughand temporal characteristics of the thermal noise emission
ter wave is strongly damped, the value of the reflectivity isleads to the result of the spectral width corresponding to the
determined not only by the incident laser intensity, but alsceffectively amplified frequencies always being less than the
by the plasma noise level corresponding to the spontaneowpectral width of the unstable frequency domain. Conjectur-
emission of the wavetbremsstrahlung andetenkov emis- ing that this result still holds in the nonlinear regime, we
sion). Subsequently, a proper description of the instability inshow in Sec. IV A that the proper value Bfcan be obtained
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as the solution to an implicit equation that linBgo both the  These stochastic processes are taken to be white noises in
plasma noise parameters and the effectively amplified spespace and time with the statistical properties

tral width. Reliability of this result is checked numerically in

Sec. IV B. An alternative derivation of the nonlinear reflec- (Sa(x,1))=0, (2a)

tivity in the strongly inhomogeneous plasma limit is given in . ya 1D

Sec. IV C. In Sec. V the conditions are given that must be  {Sa(X,)S;(X",t"))=(2m) T ;"d(x—x") (t—t"), (2b)
satisfied for the validity of a one-dimensioriaD) modeling

f3D ring. Numerical lications are m in th - .
gfséBgc:rt]tg SSS umerical applications are made in t ecas&vhere() denotes the statistical average. The space-time

variables appearing in Eq&2) are the slow variables corre-
sponding to the envelope approximation. The 1D spectral
Il. STANDARD THREE-WAVE COUPLING density 3 'P is determined from the condition that the equi-
A. Equations librium fluctuations corresponding to Eqggl) in the limit

. . o vo=0 be identical to the thermal equilibrium values. One
In the following we restrict ourselves to parametric insta-p5iains

bilities in the limit of the envelope approximation. We con-

sider a 1D static inhomogeneous plasma slab model in which v, Tef

x=L and x=0 denote the points where the laser light, S=_— % _K2AQ,, 3
. . . . (2’77) waNo

propagating from right to left, enters and exits, respectively.

Such a model is correct only when the diffraction effects dowhereK

. . ; is the wave vector of wave associated with the
not modify the value of the gain factor, as compared with th

usual three-wave resonance conditions Alfdl, is the solid

der 1o be able t lect the diffracti ttocts wh r}ulngle inK , space characterizing the 3D plasma volume of
order to be able 1o neglect the difiraction etects Wheén Comy, o 1harmal noise effectively amplified in the process being

puting the gain coefficients have been derived1¥], and considered. The expressions &f), are given in Sec. V
are recalled in Sec. V. Stochastic functions in space and timzl—zhe effecti've temperatur aref isagiven for the tra;ns:
are added to the usual coupled-mode equations in order t\(/)erse wave(TW) and the ealectron plasma wav&PW)
account for the thermal noise emission of waves.

eff eff ;
In the standard decay regime, the coupled-mode equatim@’ TTW:TEFé\f’fV: Te and for the ion sount_j wave
for an inhomogeneous plasma take the form (ISW) by Tisw=Te(1+ZQ)/[1+(ZT./T)Q] with Q
=(vihelvwi) X eXd —(ZT+3T)/2T;], where T and
(9 Vody + vg)a0+ yoasase < 2=5,, (18  vums=(Ts/mg)*?denote the temperatufén units of energy
and the thermal velocity of species respectively. In the
case of SBS, the angular frequen®y, is given by w;~ wq
and w,~2wo(cs/c)(1—n/n,)*% where n, n., and cg
=[(ZT.+3T;)/m;]¥? are, respectively, the electron density,
(9y+ Vody+ v5)a,— yoaoaf g =g, (1o the critical density, and the ion sound velocity. In the case of
SRS, w, is given by w1~ wg— wpe and w,~w,e, Where
wherea,, a;, anda, stand for the amplitudes of the incom- @pe iS the local electron plasma frequency. The normalizing
ing laser light and the transverse and the longitudinal decagonstantNo is the density of quanta for the pump wave
waves, respectively. These amplitudes have been normalized 5
in such a way that one simply hag(L)=1 at the incoming O:E MeC (ULSC
point x=L; v, is the linear homogeneous growth rate of 4 wo \ C
the parametric instability. The inhomogeneity is taken into _ ) )
account in the WKB approximation by ' where_vm: quolr_newo is the electron quiver vgloc_n;Eo .
=(d/dX)[Ko(X) = K1(X) —K(X) 1o, WhereK , is the local plenotl_ng the_ amplitude of the pump wave _elec_tnc f|e|o_| at its
wave vector of waver associated with the resonance condi-iNcoming poinx=L. In the case of 1D particle in cell simu-
tion that is assumed to be fulfilled at=0, so that lations, the whole factoﬂ'iﬁKiAQa should be determined
[Ko(X) = K1(X) = Ka(X)]x_0=0. The quantities/,, and v,, S0 as to match the equilibrium characteristics corresponding

denote the group velocity and the linear damping of waved© the numerical scheme properly.

a, respectively. In the following we restrict ourselves to

backscattering instabilities only so that one hég<O, Ill. REFLECTIVITY IN THE LINEAR APPROXIMATION
V>0, andV,<0. The source termS§, on the right-hand . ,
side of Egs.(1) account for the thermal noise emission of In the strongly damped regime, defined by

wave « and are therefore stochastic functions in space angvzaij Zﬂg%:}ﬁ;fheeggz\zggg E;\ﬂgggﬂ{ iitrgr:%f?it
time. The statistical properties of the procesSgsare de- y P 9

S . gibly thin boundary layer at the vicinity ak=L). In this
tailed in the next subsection. limit, the instability quickly reaches a steady state of spatial

amplification. The fluctuatior{|a,|?) does not depend on
B. Statistical properties of the source terms time and one has

(o"t—l—Vlé’X-i- Vl)al_ '}/ana* eiK’XZ/ZZ S]_, (lb)
2

2

The source termS, have to be chosen so as to reproduce i
the equilibrium statistical properties of the fielals properly (|ay|?) = f ny(w,x)do, (4)
within the spectral domain of interest for the instabilig). —



55 NONLINEAR REFLECTIVITY OF AN INHOMOGENEOUS ... 4655

wheren;(w,x) denotes the spectral density of wave 1. In thegain factorG(w,x) is of the same order as its maximum
linear regime where the pump depletion is negligifile., value G, In the large-gain-factor limit the priori esti-
ap=1), the equation fomi(w,x) can readily be derived mate (8) can be obtained easily by substitutidgo,,s; for
from Egs.(1b), (1¢), (28, and (2b). As shown in Appen- Awg,s into Eq. (7) and then multiplying the result by the

dix A, one obtains amplification factor expgby,) corresponding to the maxi-
mum gain factor. The expression dfw, . can be readily

P +£ _— Yo Ny(w.X) obtained from the small-gain-factor limit of E¢8), which
VLT i (etevxixg)?) | R has to reduce in this limit to the expression for Thomson
) 5 scattering reflectivity
_ 4TI Yo 1D
V4 F +v§+(a)+sv2x/xc)2 2| ® S0 sI0,2)
<|a1|2>Thoms: (277)2( — _>_2 (10)
with e =sgn(V,«’) and wherex.= v, /|V,«'| is the inhomo- vi o v2/2Vp

geneous amplification length in the strongly damped limit

[9]. In the following we restrict ourselves to the case whereldentifying Eq. (8), in the limit G,,,x<1, with expression
the inverse bremsstrahlung absorption can be neglected {10), one obtains

the interacting plasmayf=0). In this limit and assuming,

for the sake of simplicity, that the spectral density at the 1 oo
boundary x=0 is given by the equilibrium value Aoys® —=~— G(w,L)dw
N (w,0)=721"V,v,, one finds that the solution to E¢) max,[G(w,L)]J -
reduces tdcf. Appendix A (L/2x,)
7 (3P 31P T T 2an I(Li2xy) (1D
Ni(w,X) =73V v+ | — + — | [expG(w,x) — 1],
Vil V2

2

—1

tan 1

(0] X
L] Xc

G(w,x)= —tan”

0
V1V2K,

(6)  The remainder of this section is devoted to checking the
validity of the estimatg8) with A w s given by Eq.(11).
where the gain factoG(w,X) is given by Namely, we will show that the estimat@) is correct to
within a nontrivial numerical factor only, which leads to re-
w ) place the spectral width w,,,5;by an effective spectral width
vy | Awei. As this effective width will be found to satisfy the
] o . o ] inequality Awg<Aw, this replacement can be inter-
It is worth mentioning that in the limit of a strongly inhomo- reted as corresponding to filtering in the domain of effec-
geneous plasma defined ky<Xx, our results reduce to those tively amplified frequencies.
of Bergeret al.[10], as they should. In order to establish this result one has to evaluate the
Before proceeding further into the calculations, it is i”ter'right-hand side of Eq(4) more carefully. Considering first
esting to_a priori estimate the ord_er of magr_litude of the the large-gain-factor limiG,,,>1, the leading term of the
contribution of each term on the right-hand side of E8).  asymptotic expansion of the integréd) is found to be given
when substituted into expressigd) for the fluctuation
{|a;]?). The order of magnitude of the first term, denoted in
what follows as(|a;|?)y,, is given by

- ElD ElD
( ! Jexp(Gmay s

2 ~— | — -2
) - E%D <|al| >coup(x) ARR vy
(l2al%e~= G 5 A @ons ™

. . i where J is written in terms of the error function
whereA wgps IS the total spectral width corresponding to the erf(z)=2/\m[2exp(1d)du as

domain of observation for wave 1. Regarding now the fol-
lowing terms, denoted d$ay|*)coupi, ONE EXPECtS their order .
of magnitude to be given by erfl V¥4 vy /A wyne) f(X/2X) Gmaxl

J=Aw
- EiD E%D unst \/772( Vo I A wyngd F(X/2Xc) G max
<|a1|2>couplw V_ ( V_ + V_) Awynst €XA(Gmax) — 11,
1A 2 (8  Where the functiorf(x) is defined by
W_here the maximum gain factoG,=max,[G(w,X)] is f(x)=[x/(1+x2tan x)]*.
given by
Gnax= (2/7) Grodan 1(x/2X), (99  [ltcan be useful to have in mind the behaviorf¢xk) in the

limits of small and large values of its argument. One has
Gres being the so-called Rosenbluth gain factor f(x)~1 for x<1 andf(x)~(2/m)* for x>1.] Substituting
Gro=2773/|V1V,k'|. The quantityA w . [the expression for the error function the simple algebraic fit
of which is given in Eq(11)] denotes the characteristic spec- erf(yX) ~ (4x/w)Y3(1+4x/7)"¥2,  one obtains for
tral width of the unstable frequency domain for which the G, &1
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1D 1D
2 o 21 22 1 T T T T
~— _+_
<|all >coup(x) Vl v, vy
0.8
% A 0 ynsEXP G max)
I+ 72121 A @) F(XI2X0) Gy Awyrp OO
(19~ Beunst o,
In the opposite limit of small gain factor, the integral on 0.2
the right-hand side of Eq4) can be carried out perturba-
tively and written as a power series Gf,,.. At the lowest 0 20 10 60 8'0 100
order, one obtains foB <1 G
malx
m (30 33 FIG. 1. RatioAwg;/A function ofG,, for different
2 . 1. RaticAw ) as a function o or airreren
a =—| —4+—|A , 13 eff unst max
{121 coupf X) Vl( vy vz) OunsCrmas (19 values ofL/2x.: (a) L/2x,=0, (b) L/2x,=2.5, (c) L/2x,=5, and
(d) L/2x,=50.
which is simply the Thomson scattering reflectivit0), as
it should be.
. . . eXp(Gnay — 1] Aw
It is now possible to recast the two equatiofik2) <|a1|2>coup|:<|a1|2>ThomS[ p(Gma") ]A T (e
and (13) into a single uniform expression, i.e., an expression max @unst

that is correct for both small and large values of the gain

factor. This expression reads which can be regarded as a mere generalization of the

Thomson scattering expression consisting, on the one hand,

1D 1D . K .
2 _Tms1 A2 o in the replacement of the gain fact@,,,, by the quantity
(lal >°°”p(x)_vl< vy * vy Awer(Gmadl e 1], [expGma) — 1] and, on the other hand, in taking into ac-

(14 count the gain narrowing by the ratdwes/ A w nst-

Figure 1 shows the ratid wei/Aw g @S a function of
where Awe(Ga) denotes the spectral width associatedG,,, for different values ofx/2x.. It can be seen that the
with the effectively amplified frequencies, namely, frequency filtering that amounts to replade s by A g
strongly modifies the reflectivity in the homogeneous limit
x/x.<1. In this limit and for a gain factor as small as 10, one
5 ) hasA wei/ A w s~ 0.17, which corresponds to a reduction of
V1475 (va/ Awynsd f(X/2Xc) Grax almost one order of magnitude between the correct re-

(15 sult (14) and the estimaté8). In the opposite limit of an
) o . ) inhomogeneous plasmax,=100 and for a gain factor as
Equation (14) can be quite simply obtained from the simple large as 100, one obtaimswq/A w s~ 0.61, which means
estimate(8) by substitutingA wei(Gmay) for Awyngtinto the that the simple estimatés) gives the correct order of mag-
latter equation. As said before, this substitution represents gityde for the reflectivity.
reduction in the frequency domain of the Fourier compo- |l the results obtained in this section assume that the
nents that_ are effectively amplified, as compared to th%pectra| density;(w,0) at the boundaryx=0 is nearly con-
simple estimate(11), because one haSwer<Awunst- AS  stant over a frequency range of widMwg(Gng,) around
one hasmvy/Awns=1 andf(x/2x;) <1, Awe Can be sig-  the most unstable frequenayya= — & vox/2X. . If this is not
nificantly smaller thamA w s in the regime of large gain the case, e.g., due to departure from thermal equilibrium, a
factor only, which corresponds to the well-known effect of similar treatment can be carried out, which leads either to the
frequency filtering induced by gain narrowing. More pre- mogification of Aweg [in the case of a smooth, nonthermal
cisely, comparing the exact res(ft4) with the estimate(8)  fynction n,(w,0)] or the modification of bothA we; and
in the regime of large-gain-factor limit, one may quantify Gumax [in the case of a peaked function(w,0) correspond-

this gain narrowing effect as followsi) in the limit corre-  hq “for instance, to the existence of particle bekms
sponding to a quasihomogeneous plasma, namely, for

XIX.<1<Gpay, the simple expressiof8) overestimates the
correct result by the factor ®Gna)Y?>>1 with IV. NONLINEAR REFLECTIVITY
Gmax=2v2XIV1v5; (ii) in the limit of moderately inhomoge-
neous plasmas defined by the inequality /X< G,2x, ONE
hasG .~ Gros and Eq.(8) overestimates the correct result  The validity of the linear approximation is strongly con-
by the factor (4#)(x.Gros/X)Y2>1; (iii) it is only in the  strained by the inequality|a;|?)<1, which is practically
strongly inhomogeneous limit4G,,,,<x/x. that one has never fulfilled in the very-large-gain-factor limit. A proper
A wei(Gmay = A wynst @and the simple estimatéB) gives the  description of the nonlinear saturation of the quantity
correct resul{(14). {|a;]?) would require the solution of the whole syste();
The final expression{14) can also be written in the con- unfortunately, it is not possible to carry out such a solution
venient form analytically. To overcome this difficulty one has to seek a

Awynst

Awei( Gma) =

A. Analytical results
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more simple system of equations that could easily be solvedhere the quantitA we is given by Eq.(15).This equation
analytically and give a good description of the nonlinearcan also be written under the convenient form
saturation of the reflectivity.

As one expects the behavior gfay|?)coup(X=L) not to B=(|ay[?
be very different from that of the most unstable component =(lay >Th°m56m‘,jlx A wynst
|a(@haL)|? With op,=—ev,LI2x., we will consider (20)
the coupled equations f¢a,|? and|a;(w},,,)|?. These equa-
tions can be readily derived from the systdf) written in
the strongly damped t>27y,|V,/V4|Y?) deterministic
(S,=0) Ilimits and for the most unstable triplet
2o(t,X) =ap(X), a1(t,X) =as(WhaX)XP(-iwh,t), and
a,(t,X) =a,(— wh 4. X) exploh,t). One obtains

2y5|ag|?as(wpa |2

1 Awed Min[Gpax IN(1/B) ]}

Expressiong19) and (20) show that the proper value &
depends not only on the expected plasma noise parameters,
but also, through the effectively amplified spectral width
Awgs, On more unexpected quantities such as the plasma
length L, the inhomogeneous amplification length, and

the gain factorG,,(L). In particular, it is interesting to
notice that in the Ilimit of inhomogeneous plasmas

dy|agl?+ =0, (179  (L/xc>1) one has) e~ A wypse VoL /X, SO thatB is pro-
O Vo[ 1+ (x—L12)%XE] portional to the interaction length (besides some logarith-
mic corrections The expression foB as given by Eq(19)
27(2)|a0|2|a1(wh1ax)|2 or (20) is the main result of our paper; the numerical appli-

dylar(®ma) |~ =0. (17b  cations to SBS and SRS are given in Sec. V.

Vivo[ 1+ (x—L/2)%x2]
B. Numerical results

The solution of this system for the boundary condition

|a;(wh,,,,0)|>=B yields the inhomogeneous plasma version We have checked the validity of EGL9) by numerically
of the Tang formula, namely integrating the set of equatiorfd). In our simulations, the

stochastic source tern$,(x,t) are computed such as to re-

Vv, Vv, pro_duce the c_haracteristics of a colored noise, with the sta-
Rl 1+ W(B—R) :Bexp“l— mR)emax , (18) tistical properties
(Sa(x,1))=0, (219
where R and G,,,x denote, respectively, the quantity y 1D
|ay(whaL)|? and the maximum inhomogeneous gain fac- (S,06H)SE (X' t,)>:77 @ oI e lt—t' i
tor (9) at the incoming poink=L. Note that Eq(18) can be T Tad lo7c '
rewritten into the usual form of the Tang formula (21b

R,(1+B,—R,)=B,exd(1—R,)Gmnax, where B,
=V,;B/|Vy| andR,=V;R/|V,| denote, respectively, the in- ' .
coming and outgoing intensity, |2 in vacuum. In this clas- 0N time 7. tend to zero, these source terms reduce to a
sical approach of the nonlinear calculation of the reflectivity, Vhite noise that satisfies the statistical properti2s To

it is the fixed boundary conditiotal(w;aWO)F: B that is  denerate the quantiti€}, we have used two coupled Lange-

supposed to account for the averaged effects of the stochasi{i" €quations

In the limit where the correlation length and the correla-

functionsS, . The problem is now to determine the effective -1 _

a IF1+1; " Fi=Fq, 22
value of B so that the reflectivityR as given by Eq(18) iile 11RO (229
reproduces the correct reflectivitfas|) coup(X=L) prop- 0,5+ 7 1S=F, (22b)
erly. ¢ '

In the linear regime, corresponding to the limit where the stochastic functioR, is a white noise in space
B<R<1, Eq.(18) is found to reduce tR=BexpGma).  and time. In the discretized equations this means that, at each
which coincides with the large-gain-factor limit of EQ4)  time step, the functiorF, takes random values uniformly
provided B is taken to be equal to (gjstributed between two bounds determined such as to repro-

(V1) (217 1+ 357 v5) A Grmay) - duce the statistical properti¢81). The space and time steps
In the nonlinear regime, one expects the nonlinear saturagre chosen so as to fulfill the conditions

tion of the reflectivity to limit the decreasing df w; with

increasingG,ax- The conditionR<1 and the linear expres- AX<l <L in, (239
sion R=BexpGna) Yield the inequality G,,,<In(1/B),

which gives a lowest-order estimate of the maximum value At<7.<Tpin, (23b)
of G, t0 be taken as an argumentdtv; in the nonlinear »

regime. where the quantitiek ;;, and r,,;, denote the smallest char-

One is thus led to conjecture that the generalized Tan&cteristic scales for the evolution of the waves into play. It
formula (18) reproduces the actual reflectivity properly if should be noted that these conditions can be very constrain-
B is given by the implicit equation ing for large mhomoge_neous plasn.(ame Appendix B

The reflectivity obtained by solving Eqél) numerically
is a stochastic function of time. Before it can be compared

1D 1D
B= 1(2_1 + 2_2) A et MIN[ Gpra IN(L/B) T}, (19) with the analytical results given by Eq4.8) and(19) it must
Vilvy  » © mee ' be smoothed out by averaging it over a sufficiently long time
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FIG. 2. Reflectivity of a quasihomogeneous plasma FIG. 4. Reflectivity of a strongly inhomogeneous plasma
(L/2x,=0.01) as a function oB . for different values of the noise  (L/2x.=5) as a function oG, for different values of the noise
parameterb: b=10"° (=), b=10"° (+), b=10"* (O), and  parameterb: b=10"° (=), b=10"° (+), b=10"* (O), and
b=10"3 (x). The solid lines correspond to the analytical resultsb=10"3 (). The solid lines correspond to the analytical results
(18) and (19). (18) and (19).

respectively. It can be seen that the analytical and numerical

(after the initial transient stage has disappeared results are in excellent agreement.

Figures 2—4 show the reflectivity as a function of the maxi-
mum gain factorG,,, for different values of the noise pa-

. C. An alternative derivation of the nonlinear reflectivity
rameterb, with

in the strongly inhomogeneous plasma limit

sumed that the pump depletion could be described as being
due to the amplification of only one unstable component
a1(whayol), with wh,=—sv,L/2x;, the influence of all

Three different cases have been considered: quasihomog&e other unstable components on the pump depletion being
neous plasma L(/2x,=0.01), moderately inhomogeneous accounted for by the quantityw in the expression(19) of
plasma (/2x,=1), and strongly inhomogeneous plasmathe effective noise. Thus, according to this description, in the
(L/2x,=5), corresponding to Figs. 2, 3, and 4, respectively strongly inhomogeneous plasma limit, all the reflectivity and
The solid line curves correspond to the analytical re-all the pump depletion are modeled as if they were coming

sults (18) and (19). The points correspond to the smoothedfrom the narrow resonance region of the most unstable com-
numerical reflectivity forb=10"3, 107, 107, and 10°¢, ponent, the latter being assumed to be growing from this

strongly enhanced effective noise. As seen in Sec. IV B, this
description yields very good results as far as one is con-
R cerned with the expression of the plasma reflectiit:
10° L — Fig. 4). For the sake of completeness, we present in the re-
mainder of this section an alternative derivation of the non-
linear reflectivity in the case of a strongly inhomogeneous
plasma. This alternative description is found, on the one
hand, to give an expression for the plasma reflectivity that is
in good agreement with the generalized Tang form8)
and therefore with the numerical results displayed before; on
the other hand, it provides a better description of the spatial
profile of the pump intensity within the plasma.
In the limit of a large gain factor and a strongly inhomo-
geneous plasma, E) can be rewritten as

w2v2<E%D+ 32P

To obtain the generalized Tang formu(&8) we have as-
Sl

L4 L]

1071

nl(w,X)~ e

1 1 1 1 1 lD lD
0 5 10 15 20 25 30 35 77(21 22> ( 8wxc)
G \1

Vq Vo Vy
FIG. 3. Reflectivity of a moderately inhomogeneous plasma o EWX¢

(L/2x,=1) as a function ofG,, for different values of the noise x exyl Grod ol vy, || (24)

parameterb: b=10"% (=), b=10"5 (+), b=10"* (O), and

b=10"2 (X). The solid lines correspond to the analytical resultswhereH(x) is the Heaviside step function ai@k, denotes

(18) and (19. the Rosenbluth gain factevithoutpump depletiorii.e., with
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|ap|?=1). Inserting this expression into the flux conserva- 1
tion equation, one obtains the equation for the pump inten-
sity [11,7]

0.1
dlagl®(x) d [+
T—d—XJ‘_w N (w,X)dw R
0.01
_ vom DR o G 5
AR A Rod@o|“(X)],

25 .
(25 0.001 0 5 10 15 20 25

where we have takefVy|=V; for simplicity. Integrating ¢
this equation betweer=0 andx=L, one obtains FIG. 5. Reflectivity as a function of the gain factor in the same
case as in Fig. 4. The solid lines correspond to Tang’s fori2ia
(i.e., same curves as in Fig) d4nd the dashed lines correspond to
1-exp—GgroRR) 2b

= L exd Grod 1-R)], (26) the strongly inhomogeneous plasma limit form(2s).
GROS a 2X

whereR=1—ay|?(0) is the reflectivity and is the noise V. VALIDITY CONDITIONS FOR 1D MODELING
parameter defined at the end of Sec. IV B. This expression is AND NUMERICAL APPLICATIONS TO SBS AND SRS
an alternative expression for the plasma reflectivity, which
has to be compared with the generalized Tang formaR),
which takes the form

Before our results can be applied to practical computation
of SBS or SRS reflectivity, it is necessary to determine the
plasma parameters appearing in the expressions of the gain
factor (9) and the noise tern{19). These plasma parameters
2b/ L are to be obtained either from experimental resiiémpera-
R(1-R)= ?(5) exXd Gro{ 1—R)] (27)  ture diagnostics, etcor from numerical simulations of the
¢ hydrodynamical evolution of the irradiated plastoaing hy-
drodynamic codes such asssNex [12], FiLm [13], and
in the strongly inhomogeneous plasma limit considered hertULT! [14]). It is only after these data are known that one
(Aweg=Awyns= voLIX,). It can be seen from Edq25) that ~ can then compute the interaction parametgesn factor and
each unstable component contributes to the pump depletiorpise termthat appear in the generalized Tang form{da).
by an infinitesimal amount, and the overall pump depletionlt follows in particular that, due to the intensity dependence
as given by Eq(26) is caused by the superposition of all of the plasma parameters, the actual dependence of the inter-
these infinitesimal contributions. In the strongly inhomoge-action parameters on the laser intensity is not the simple
neous regime considered in this subsection, the derivatiofXplicit dependence. It is also worth noting that, since the
underlying (26) is therefore better than the generalized Tangcharacteristic time scale for the hydrodynamical evolution of
description[in which one unstable component gives thethe plasma is much longer than the characteristic saturation
whole (macroscopik contribution to the pump depletign  time of the instability(typically the light transit time across
whenever one is concerned with the spatial profile of th¢he resonant region the generalized Tang formuld8)
waveswithin the interaction region. As said before, concern-gives the instantaneous reflectivitgn the hydrodynamical
ing the plasma reflectivity itself, the numerical results dis-time scalg, the time dependence of which is given by the
played in Sec. IV B show that the generalized Tang exprestime dependence of the plasma parameters.
sion gives a very good estimate of the plasma reflectivity. In this section we first give the validity conditions for the
In order to compare the results of E4&6) and (27) we 1D modeling developed in this article. We consider a Gauss-
have plotted in Fig. 5 the reflectivity as a function of theian laser beam, characterized by a focal plane waist
Rosenbluth gain factor in the same case as in Fig. €o=f\o and a length along the direction of propagation
(L/2x.=5). The solid lines correspond to the generalized r=27f?\o, wheref=F/D is the ratio of the focal length
Tang formula(27) (these are the same curves as in FD 4 F of the focusmg lens over the laser beam diam&em
and the dashed lines correspond to the strongly inhomogeacuum. The size of the plasma along the direction of laser
neous plasma limit formuld26). It can be seen that the dis- propagation will be denoted ds, and L will represent, as
crepancy is always much less than one order of magnitudéefore, the length of the 1D plasma slab modeling the 3D
(In this particular case, the largest relative deviation isreal plasma. The expression determinlngs a function of
AR/R=23% with R~0.23, which corresponds to=10° the physical parametets, andl is given further on in Eq.
and Gr.¢~13) This result confirms that, in the strongly in- (33). We restrict ourselves to the interesting regime of gain
homogeneous plasma limit, Eq48) and(19) give a reliable  factorsG,, greater than unity; we will then give the expres-
estimate of the reflectivity even though they correspond to &ions of the quantitie§ ., and (ElD/V]_'FE%D/ v,) in prac-
rough description of the pump depletion within the interac-tical units for SBS and SRS in an underdense plasma.
tion region. The validity conditions for a 1D model can be obtained
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from 3D calculations of SBS in a laser hot sp&t7]. It is  dinatex can easily be taken into account as follows. It can be
found that the diffraction does not modify the value of theseen in Eq(25) that, in the strongly inhomogeneous plasma
gain factorG,,, as compared with its 1D expression when-limit, the effect of the spatial variation of the laser intensity

ever the following inequality is satisfied: amounts to simply repladi|?(x) by |ag|?(x)/(1+x?/13).
Expanding Grod@o|2(X)/ (14 x3/13) = Grodag|2(x)
12> (Gmad2) amps (28)  —Ggrox?/I%, valid for |[1—|ag|?(x)|<1, i.e., for not too

large reflectivity R<30%), one sees that the spatial depen-

wherel  denotes the effective length for spatial amplifica- dence of the_ laser intensity results in replazcing the coor_dinate

tion. The latter is defined through the relation X by Xy defined bydxey=dxexp—Ggoe*/IR; therefore, in

Gmax:(27(2)/V1V2)|amp|, so that one has the inhomogeneous plasma limit, the 1D plasma slab length
L must be defined as

LE|R\/’]T/GROSerf(Lp\/GROJ2| R)zmin(Lp,lR\/’ﬂ/GRos).
Whenever the inequality28) is fulfilled, the diffraction ef-

fects are negligible for what concerns the valué&gf,,. The  In the opposite limit of homogeneous plasma one has simply
quantity 1% v,+33%v,) can then be expressed throughL=L,, ~ which can also be written as
Eg. (3) as a function of the physical parameters and of the-=min(L,,lgV7/Gpa) since Egs(28), (29), and the con-
solid anglesAQ; and AQ,; the latter can be determined dition G,>1 yield Ly<lgy7/ G,y It follows therefore
precisely from the 3D calculation and are found to be giverthat whatever the inhomogeneity of the plasma, the 1D
in terms of a solid angle, denoted A$) .., Characterizing plasma slab length must be defined by

the plasma volume of the thermal noise effectively amplified

in_the process considezre(SBS or2 SR§ Name!y, one op- LE'Rmﬁff(meﬂ'R)zmin(LpJR\/TF/TmJ-

tains, fora=1 and 2,K{AQ ,=K7AQgse and in the limit (33
where the inequality(28) is satisfied,A{)ise IS related to

the 3D characteristics of the backscattered light by the ex- \yo
pression

| amp=2Xctan™ 1(L o/2xc) =min(L,, 7X;). (29

now give the expressions ofG,, and
(21571, +32P/v,) in practical units for SBS and SRS in an
underdense plasma. In the case of SBS, the gain factor
Gpayx IS given by

I eff 2
AQnoiseE 2_a0 AQscatv (30)

,ZLU (n/nc)|14)\2 + —1 L
wherer o is the radius of 'Fhe active papkscgttering region Gmax=5.9X10 7\_0 T(1+3T,/ZT,) tan 2,
and AQg.,; denotes the solid angle within which the back- (34)
scattered light is scattered in the far-field domain. The quan-

tities re and Al scyeare found to be given by7] wheren, n., and T denote the plasma density, the critical

density, and the temperatutim keV) of speciess, respec-

I eff= 280/ Gmax (31 tively. The subscript O refers to the laser in vaculigjs the
laser intensity in units of I W/cm?, and \ is the laser
127\ ag |2 wavelength inum. In Eq.(34) we have introduced the char-
AQ e (G_,) T (32)  acteristic length., defined as.,=K,cs/|V,«'|, wherecg is
max/ \ fampl the ion sound velocity. This length reduces to
The quantityB as given by the expressiofi9) involves N |1
the quantity &31%v,+33%v,), the expression of which is L,=cqg —2P
given further on for SBS and SRS, aldv.;. The expres- 24

sion for Aweg follows from (15), in which the lengthL of

the 1D plasma slab modeling the real plasma of lerigth in the case where the dominant term in the expression of
enters. In order to properly determiheas a function of the ' is the contribution due to the expansion velocity inhomo-
physical parameters, we will restrict ourselves to the casegeneity. The quantity, denotes the dimensionless damping
where either the plasma lendth is larger than the Rayleigh coefficient of the acoustic wavés=r,/K,cg, which can
lengthl or, in the opposite case, the center of the plasma i®e easily obtained from convenient empirical expressions
located in the focal plane. In these two realistic limits thesuch as those of Ref15]. The expression for the quantity
dependence of the laser intensity upon the longitudinal coort2 1% v, + 3 3% v,) reads

Te(1 ) 484JAIZ(1+ZQ)

D D B —n/n; 1
(217w 43257 vy) =272 1L\ 2 Alses I T T3, 12T (A= ning P41+ (ZT.1T) 0] NA’

(39
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where Q=42.85/AT/T,exd —(ZT,+3T;)/2T;], A denoting Rexp=amin(B, R, (40)
the ion mass number. In E35), n, must be expressed in

wm=2and E1%v,+33%v,) is in um; AQgggdenotes the  with
solid angleAQ e in the case of SBS. In practical units,

AQgps, as given by Eqs(30) and (31), reads a=1,
Te(1+3Ti/ZTe) v, |? >
AQ g 2.8% 16 el / .I )\;)VZ . L( vZLU)tanl(;) AQeyp ,
(n/ne)l 14 Y37 o 22l ) VA Q ops
2y 4
— Mo — . (36) in the case of SBS, whera(l,, is the solid angle corre-
[v,L, tan }(L/Zv,L,)]* sponding to the collecting optics, and with

In the case of SRS, the gain factBk,, is given by 1—2(n/ng)*2] 22

s 1-n/n,

L
Ga=1.15x 1074
Ao

1 (?an> _1( L )AQeXp

= — ta —_— s
(L= /ng) 2 (1 2\/ng) V22,0 P~ o 2oL VAo
(1_2Vn/nc)l/2 . .
in the case of SRS. In these expressions, the parameter
L represents the ratiow(;V;)/(wo|Vy|). The parametepg is
Xtan 2, (37 simply the quantityd Q ¢,/ A Q gear, in Which AQc,as given

by Eq. (32) has been reexpressed in terms/Af) sg5 and
Here the characteristic lengthL, is defined as AQggrsfor the reader’s convenience.
Ln=wpe/|Vok'[, wherew, is the local electron plasma fre-

quency, which reduces to VI. CONCLUSION
1onl|? In this paper we have investigated the reflectivity of an
T4 ax inhomogeneous plasma in the strongly damped convective

regime. We have taken into account the stochastic character-

in the case where the dominant term in the expression dftics (in space and timeof the thermal noise emission of
«' is the contribution due to the density inhomogeneity. TheVaves. In the linear regime, we have found that the spectral

quantity7, denotes the dimensionless damping coefficient of¥idth corresponding to the frequencies that are effectively
the plasma waves,=v,/w,,. The expression for the quan- amplified is always less than the spectral width of the un-

; 1D 1D stable frequency domain. This spectral narrowing appears as
tity (217v1 2271, reads a frequency filtering in the expression for the reflectivity. In
T (1_2m) the nonlinear regime, we first generalized the Tang formula
(P +330vy)=2.7 ° — SRS to the case of an inhomogeneous plasma. Then, conjecturing
l1aM that the linear frequency filtering process remains valid in the
1 N 1 nonlinear regime, we obtained the effective noise term of the
% (— + \/;) —. Tang formula analytically as the solution to a simple implicit
1-+n/n. N /Nch equation. Checking the validity of this result numerically, we

found excellent agreement between the analytical and nu-
(38 . ; - "

merical results. Finally, we gave the validity conditions for
3 and 1D modeling of 3D scattering in the case of an incident

Here, as in Eq{(35), n, must be expressed ipm~ )
Gaussian laser beam.

(23071, +33P1v,) is in wm; AQgrsdenotes the solid angle
AQ ise IN the case of SRS. In practical unitd)ggs, as

given by Eqgs.(30) and(31), reads ACKNOWLEDGMENTS
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f2\g
X — — = 7 (39 APPENDIX A: DERIVATION AND SOLUTION OF THE
[volntan *(L/2v,L )] EQUATION FOR nj(w,x) IN THE LINEAR

. . . APPROXIMATION
Finally, the relation between the experimentally measured

reflectivity Re,, and the theoretical 1D reflectivitiR ob- Settinga,=a,exp(«’'x%2) anda,=1 (linear approxima-
tained from Eqs(18) and (19) is given by tion), Egs.(1b) and (1c) can be written as
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(9i+ V19t v)a,— yoas =S, (Ala)  where the kerneK (x,x") is defined by

(0+ Voo +iVok' X+ v5)a— yoai =S,,  (Alb) 1
K (x,x")=exp— A
with S,=S,exp(—ix’'x%/2). In the strongly damped case de- !
fined by v,>21v0|V,/V,|*? one can neglect the operator x
V,dy in Eq. (Alb): the dampingy, is sufficiently strong for XJ

wave 2 to be locally enslaved to wave 1, except in a negli-

gibly thin boundary layer of widthV,|/v, at the vicinity of

x=L (with v,L/|V,|>1). In this limit, the equation for
a,(w,x) in the space domain<Ox<L reads

% i
vy—i(w+evyulXe) ’

Vl_i(x)_

From Egs. (A2) and (A3) and their counterparts for
(a7)(w,x)=[a;(— »*,x)]*, one can easily derive the equa-
tion for the correlation function C(w,0',X)

. 2 =(a;(w,x)(a7)(w’,x)). One obtains
: 0
aX+V_1 Vl_lw_vz—i(w-l-svlexc)) 81(@,%)
- 7o(S5)(0,%) 1 _
Vv Sl(w’x)+vz—i(w+sV2X/Xc) ’ (A2) 0X+V_1 2r-iotol)
which gives _ Yol2v,—i(0+w')]
[vo—i(w+evXIX)[[vo—i(w' —evyX/Xe)]
1 X ! 1 ’ !
a;(w,x)=K (x,0)a,(»,0)+ V—f KF(x,x") XC(w,» ,X):W[Vﬂ‘l(w,w X))+ (w,0',X)
1Jo 1
= w.X' +IM3(w,0',X)], (A4)
X|Sy(w,x")+ Y.O(SZ)( ,) dx’,
vo—i(w+evyX'IX;)

(A3)  where the quantitief ,(w,w’,x) are given by

K-, (x,00((a}) (o' ,0)(S5)(w,X))

vo—i(w+evyX/Xe)

Fl(w,w',x)= K;,(x,O)((a’{)(a)',O)Sl(a),X)>+ KZ(X,O)(Eil(w,O)(S’l‘)(w’,X)>+

K (x,0(a1(0,0 Sy’ X))
+ .
vo—i(w' —evyXIXe)

FZ(w!wllX): f:[K;,(X,X')<Sl(a),x)(5’1‘)(w',X’)>+ KZ(X,X/)<S:|_((,0,XI)(SE’L€)(w,,X)>]dX, + 7(2)

fx Ko, (%) {Sy(w’ X' )(S5)(@,X))

’ 2
o Tva—i(0 — o X Ix) L va—i(@+ o rpxixg] O T 70

fx K (X)(Sy(0" X)(S5)(w,x)) ,

o[Va—1(@ — v XIX) [ va—1(@+evx Ixg)] X"

and

(Sy(@’ X)Sy(,%)) +<<S*{><w',x'><'§;><w,x>>

vo—i(w —ewvyox'IXc) vo— 1 (w+evyX/Xe)

(Sy(w' X)Sy(w,x")) (S (@' X)(Sh)(w,x))

vo—i(w' —evoX/Xe) vo—i(w+evyX'IXc)

!

X
F3(0),(,0’,X): ’)’of K;/(anl)
0

!

X
+ yofo K (x,x")
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Writing Eqg. (2b) as
(Sy(@,X)(SE) (' X)) =272 Ps(x—x") S(w+ ")

and using the relations (S;S,)=(S;S5)=0 and
(a1(0)(S7)(x>0))=(a;(0)S,(x>0))=0, one finds that
these intricate expressions fbr, reduce to

IN(w,w x)=T's(w,0’,x)=0, (A5a)
2
Fo(0,0'x)=2m EiD—f_E%DV%+ (a)+y;)1/2X/XC)2
XS(w+w'), (A5Db)

where we have used the prescriptipté(x—x')dx’ =1/2
[note that this prescription is in agreement with E2{Lb) in
the limitI.—0]. Inserting Eqs(A5) into Eq.(A4), using the
stationarity conditionC(w,»’,X)=nq(w,X)8(w+w"), and

integrating ovew’, one obtains the equation for the spectral

densityn;(w,x) as

Oyt 2 yévz Ny (w,Xx)
| vi— w,
X Vl ! V§+(w+8V2X/XC)2 !
2 ’yé
=z |21+ 3 A6
VI 7Y v+ (ot evpxixg)? 2 (A8)

The solution of Eq(A6) is straightforward and leads to

w
nl(w,O) -

1D
nl(w,X)=n1na(w,X)+ 21

Vivg
2
X[R,(x,0)—e 2]+ &7 v

1
ElD ElD
><<—1+—2)

V1

JX R,(x,x")
0 v%-ﬁ- (w+evyX'IXe)

dx’,
Vo 2

(A7)

where the kerneR ,(x,x’) is given by

21/1
Rw(x,x’)zex;{Gw(x,x’)— V—(x—x’)
1

2
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and where the quantity;,,( w,X) corresponds to the natural
plasma emissivityi.e., the solution to Eq(A6) in the limit
vo=0], namely,

1D
T
nlna(wyx) = nl(w,O)efz"lX/Vl—i— —(l— e*2lelvl)_
Virg

In the case where the inverse bremsstrahlung absorption can
be neglected ¥, =0), it is possible to carry out the integral

on the right-hand side of E§A7) so that the expression for
n;(w,x) finally reduces to

_ _T oS
Ny(@,X)=n;(w,0)+| ny(w,0)+ 35
Vv,

X[ lim R,(x,0)—1].

v1—0

(A8)

APPENDIX B: NUMERICAL CONSTRAINTS
ON THE SPACE STEP Ax

In a large inhomogeneous plasma the smallest scale
length is the phase-mismatch scale length given by

Lo el (B1)
min |K_/|L V2L C
For typical  parameters |{;|~c~300um ps I,
Yo~1pst, L=10um, and|V,/V,|**~1072?), the strong
damping conditiorv,>2y,|V, /V,|? yields
Vo [Va] | Vo|*?
—< - ~107%
V2L 2’)’0'. Vl 10 (82)

Thus, from Eqs(B1) and (B2) one finds that, in the case of
a strongly inhomogeneous plasmg (L=<0.1), one has the
ordering
Lin/L<<1072. (B3)
Writing then the conditiong23g as Ax~10 1,
~10 2L, one finds from Eq(B3) that the order of mag-
nitude of Ax/L is given by
Ax/IL<104. (B4)
Such a small space step leads to very-time-consuming simu-
lations in the strongly inhomogeneous plasma limit.
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