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Theory of cumulative small-angle collisions in plasmas
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A succession of small-angle binary collisions can be grouped into a unique binary collision with a large
scattering angle. The latter is called a cumulative collision. This makes it possible to treat the cumulative
collision like a collision between neutral molecules. A significant feature of the cumulative collision is that the
probability density function for a deflection angle depends on the time spent by a charged particle while
engaged in the cumulative collision. Here a simple analytic expression for the function is proposed which is
easy to use together with the Monte Carlo method. The validity of the present theory is ascertained by
calculating various relaxation phenomena in plasmas. The theory is best suited to particle simulation of
plasmas[S1063-651X97)04004-X]

PACS numbgs): 52.20.Fs, 52.65.Pp, 02.70.Lg, 52.88.

I. INTRODUCTION ity deflection. Which shall we choose when some types of
relaxation occur simultaneously? The second is the require-
A recent trend in plasma-assisted materials processing iment that the time step should be much smaller than the
towards “low gas density and high plasma density” as seenelaxation time. This is necessary because in their method
in inductively coupled, electron cyclotron resonance, andgsmall-angle collisions are calculated one by one. However,
helicon sources. The Coulomb collision between chargedhe use of a small time step is often computationally inten-
particles plays a more important role in such plasmas and thsive. In the binary collision theory presented here, these two
particle or kinetic approach to plasma modeling makes morgroblems are solved; a single collision rate is introduced for
sense than the fluid model approach. Here we propose a difny relaxation phenomenon and a succession of small-angle
ferent theory on Coulomb collision in such plasmas. Thebinary collisions are grouped into a unique binary collision
theory is best suited to the particle simulation of dense plaswith a large scattering angle.
mas. It can be applied to fully ionized plasma as it stands. Much work has been published concerning the effect of
For partially ionized plasma additional collisions should beelectron-electron collision on the energy distribution func-
taken into consideration. For example, argon plasma consistin of the electron, e.g., Rochwo@ti0], Weng and Kushner
of four species such & (ground statg A* (metastablg A*  [11], Hashiguchi[12], and Yousfi, Himoudi, and Gaouar
(ion), ande™ (electron. There are ten types of collisions. We [13]. (See also the references cited[8].) The method to
can treate” —e , A" —A", ande” —A" collisions by the treat the Coulomb collision presented in this paper is quite
present theorye™ —A ande™ —A* collisions by the theory different from these studies.
of Surendra, Graves, and Jellyfd, AT — A andA™ — A* by In Sec. Il the mathematical formulation of the approach is
the theory of Nanbu and Kitataf2], andA—A, A—A*, and  given, a lengthy manipulation being described in the Appen-
A*—A* collisions by the direct simulation Monte Carlo dix. This theory is applied to various standard problems in
method [3,4]. Every collision is governed by short-range plasma physics in Sec. lll. The numerical results show that
force except the Coulomb collision. Note that even if athe theory works well for all the cases examined in this pa-
small-angle collision dominates in some short-range colliper.
sion, the present theory is not applicable to it.
Electrostatic forces between charged particles have a

much longer range than forces between neutral molecules. Il. THEORY
Although “encounter” is a more accurate word than “colli- . .
sion” in such a case, here we use “collision.” In the Cou- A. Cumulative scattering angle

lomb CO||iSi0n, distant collisions with a small Scattering Cou'omb Co”isions in plasma can be treated as Successive
angle are much more dominant than close collisions. Th@jnary collisions[5]. We consider a charged particle which
cumulative deflection angle of a particle is correctly treatechas undergone small-angle collisiohs times in plasma.

by considering successive binary collisions with a small scaty gy large is the cumulative scattering angle? Surprisingly,
tering angle[5,6]. Takizuka and Abe7] first proposed a there has been no theory on this angle. We start from the
binary collision model suited to a Monte Carlo particle simu-simplest case; a test particle is traversing among fixed field
lation of plasma. Their method, which faithfully mimics a particles. Extension to the case of moving field particles is
Fokker-Planck operator, has been used in the particle-in-cefipne later in Sec. 11 D. Lety, be the initial velocity of the
simulation of discharge plasn&] and in the simulation of tggt particle, and);,gs, ... Gx.... gy be its first, second,..Nth

ionospheric plasm49]. There are two points that can be postcollision velocities. The cumulative scattering angle
improved in Takizuka and Ab@method. The firstis that the after N collisions is the angle betweag andgy, i.e.,

collision rate(or frequency depends on the various types of
relaxation such as slowing down, energy transfer, and veloc- COSYN= 0o On /07, (h)
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where g=|go|. Since the kinetic energy of the test particle

does not change in collisions with fixed field particles, all 20'5 F e
gi’s are equal tay. o4l i i
We introduce a Cartesian coordinate systeryy(z) z t

whosez axis is directed alongy. Let (6,,¢,) be the polar & 03 -
and azimuthal angles @ in the systemX,y,z). Clearly the 24, i ]
scattering angley; is equal toéd,. Next we rotate the axis 1 ]
by 6, in the planey= x tang; so that the new axis coincides 0.1 -
with g;. We label the new coordinate system, (y;,2;). oy ]
The z, axis is now in the direction of,. We measure the L S 4 6
direction(6,,¢,) of g, in the system X;,Y4,2;). The cumu- s

lative scattering anglg, is a function ofé,,6,,¢,, and ¢,.

Rotation of the coordinate system as described above can be FIG. 1. Relaxation ofsir?(yy/2)). Solid line shows Eq(9) and

repeated as many times as required. L&t, ) be the di- dashed line shows the simulation.

rection ofg, measured in the system{_1,Yx_1,2x_1).- We

then have (sirf(xn/2))=1/2. To examine the approach to this limit, and
also to find the probability density function gf, we simu-

N k-1 . K
lated the stochastic process gf, x-,..., by using the proce-

kzz 241 0icos o). (2 dure in the Appendix. The deflection anglefor kth small-
angle collision is given by14]

A full derivation of Eq.(2) can be found in the Appendix. It

is important, however, to mention here that this derivation tanﬂ= |9a] (5)

assumes tha#,,6,,...,0y<<1, which is valid here because of 2 Ameougb’

small-angle scattering.

Clearly, (6;,¢y), (65,¢,),..., are random variables. A sta- whereq, andq are the charges of the test particle and field
tistical nature of successive small-angle collisions requiredarticle, respectivelyg, is the permittivity of free spacgy is
that 6,,6,..., are mutually independent random variablesthe mass of the test particle, abds the impact parameter.
which obey the same probability law. In addition the setAs usual, the maximal value df is set equal to the Debye
{6,.,6,,..} is independent of the s¢p;,¢,,...}. Since the test  length\p [5,6]. A random sample db is given byhp U, U
particle has no preferred azimuthal direction, the angle$eing a random number uniformly distributed between 0 and
©1,@2,..., are uniformly distributed between 0 ang.2Ve 1. Substitution of thi into Eg. (5) yields
then have

N
SR 62+
2 k=1

N| -

6,=2tan !

0min
2Ju )’

. _ where 6,,,(=bg/\p) is the minimal deflection angle af,
where( ) denotes the expectation. The expectation of Bg. and b is |qaqﬁ|/(27760,u92)- The azimuthal angle, is given

1 27 (27
<C05(<Pk_<P|)>:WjO Jo cof ¢x— ¢))dede =0,

becomes by 277U, whereU is another random number. Once (o)
N are given, we can obtaiy,, as in the Appendix. The as-
<sin2 ﬂ> _ E D (62) 3 sumption thaté;,6,,..., are small is not used in the simula-
2 4. & N tion. Note thatf§—m as U—0 but most of the random

samples off, are very small.
If we consider tha(6,,¢y), (6,,¢,),..., are not random vari-  |n this simulation the only free parameterds;,. Usually
ables but their realizations, we have only to intergeg in B,in is Of ordere ™ 1%(=2.6x10"2 deg. However, to speed up
Eq. (3) as an ensemble average, i.e., an average over a cahe relaxation we choose largéy,,. The simulation is per-
lection of many test particles. Sin@g,6,,..., obey the same formed for 6,,,=0.5, 1, and 2 deg. The expectati()@ﬁ) is
probability law, we have(¢3)=(63)=.... Then Eq.(3) re-  given by
duces to

tan !

1 amin 2
<0§>=8f0 27]” 7 d, (6)

1
<sin2 %>=Z<05>N. (4)

However, the applicability of Eq4) is limited; asN—o», the
right-hand side tends to infinity whereas the left-hand sid
should be smaller than unity. We need to add a correction t
Eq. (4), which is described in Sec. Il B.

where the unit o, is radian. It is 3.05X10 > for 6,,=1
&eg. We have found thasir(xy/2)) is a unique function of
8 defined by

s=3(6DN, @
B. Relaxation of (sin"(x\/2)) irrespective off,,,. This is true also for the probability den-

It is expected that as the collision humber becomes sity function mentioned later. Therefore, we hereafter give
very large, the scattering is isotropic, hence the probabilitgthe results only fom,,,=1 deg. Figure 1 show&ir’(x,/2))
density function of x5 is (sinx\)/2. We then have as a function ok. Here the ensemble average has been ob-
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tained by the use of 200 000 test particles. The simulation
data shows that relaxation &ir(y,/2)) can be well repre-
sented by

<sin2 %>=%(1—e‘°5), (8)

wherec is a constant. Let us determine the constatteo-
retically. We can say that E¢4) is valid at least for smak.

The constant is thus determined by expanding the right-
hand side of Eq(8) for smalls and equating the result to Eq.
(4). This leads to one of the most important equations in the
present theory

. 5 XN _1 _s
<sm27>—§(1—e ). 9)

) ) FIG. 2. Probability density of deflection angle. Plots show the
We see from Fig. 1 that Eq9) is a good match. simulation and solid lines show E¢L2).
able that this linearity is kept for ang,;,. The constanB is
given as a function oA by use of the normalizing condition
Eqg. (10). Now we have

C. Probability density function of xy

Let f(xn)dQ be the probability thagy is scattered in the
solid angledQ (=2 sinyydyxy). We then have

7 A
27 fo FOxn)simendxn= 1. (10) FON = 7 sinn a EXAA cosx). (12

Substituti f Eq(12) into Eq. (1) yield
Here 27 f(xyn) Sinyy is the probability density function for ubstitution of Eq/(12) into Eq. (11) yields

xn - For isotropic scatterin§(xy) is 1/4ar. Let us findf (xy). cothA— A l=g s (13
In addition to Eq.(10) it should satisfy Eq(9), i.e.,
Once the numbeN of small-angle collisions is givers is
known. We findA by solving Eq.(13). Thenf(xy), hence
the probability density functiofr (xn)[=27f(xy)Sinyy] Of
XN €an be obtained.

We soon see that Eq12) works well in various applica-

. 1
2wf f(XN)sinz%sian din=r (1-e7%). (1D
0

In the numerical simulation of Sec. Il B, the distribution of
xn is examined by counting the numbbt; of xy's in the  tions. Some remarks on Egdl2) and (13) are given here.
interval (x;_1,x;), Whereyx,=iAx(i=1,2,...,.36 and Ay=5 We have found from some sample calculations that the value
deg. The mean value d6{ yy) in theith interval is given by ~of A should be accurate, otherwise the development of the
physical system depends on the time step employed. This is
M; explained later. The value & for a givens can be easily
:M_in obtained by use of Newton’s meth¢dl5]. In applications it
is better to prepare a table &{s) in advance and use inter-
whereM (=200 000 is the total number of test particles and Polation to obtain the value & for an arbitrarys. Table I is
Q,[=2m(cosy;_,—cosy;)] is the solid angleset toy,_,=0 @ part of such a table. The interval sfin our full table is
for i=1). The value off; is assigned to the weighted center 0.001. Beyond the tabulated valuesfve setA=1/s for
(xi)¢ of theith interval, i.e.,

fi

TABLE I. Values of A(s).

27 (X
(Xi)czﬁ x Siny dy, s A s A
L Xi—1
0.01 100.5 0.3 3.845
=27(Xi-1C0i -1~ XiCO%X; 0.02 50.50 0.4 2.987
+ siny; — siny; - 1)/Q; . 0.03 33.84 0.5 2.448
0.04 25.50 0.6 2.067
The distribution of Iff (xy) ], thus determined, is plotted in 0.05 20.50 0.7 1.779
Fig. 2 as a function of cogy for N=100 to 3000. Note that 0.06 17.17 0.8 1.551
the abscissa is from 1 te-1. As expectedf(yy) tends to  0.07 14.79 0.9 1.363
1/44 for largeN. Based on the simulation data we introduce 0.08 13.01 1 1.207
the simplest approximation thaff{ )] is a linear function  0.09 11.62 2 0.4105
of cosyy for all N, i.e., f(xn) =B exp (A cosyy), whereA 0.1 10.51 3 0.1496
andB are the constants. Note thatfi(y) | is approximately .2 5516 4 0.054 96

linear for all 6,,,,;'s considered in this paper. It is most prob-
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$<0.01 andA=3e " °for s>3. The error is only 0.5% for the collision velocity of the third partner. Until the end of the
former and 0.15% for the latter. The valueAfs very large  third collision, the relative velocity changes in the order of
for smalls, hence small values ofy make the greatest con- ¢,, 9;, 0, 95, U3, and g;. The changesg;—g, and
tribution to f(yy). Since cogy=1—x2/2, we see that for g,— s are irrelevant to collision. Our concern is in the cu-
small s the functionf(xy) has a Gaussian profile with a mulative deflection angle due to small-angle collisions; we
narrow v_vidth. This is _reasonable_sinC(_e for sn_mllh_e test  disregard the changeg —d,,95— 0s...., in calculating the
particle is hardly deviated from its original direction. For geflection angle. Further repetition of this procedure shows
larges, the value ofA is very small, hencé(xy)=1/4m as  that Eq.(2) also holds in the case of moving field particles.
stated before. Thus we callthe isotropy parameter. However, we should note thaf depends o (=|v,,—Vx)

We have to rewrite Eq(7) for practical applications. If 55 well as the impact parameterSee Eq(5), whereg is to
the maximal impact parameter li..,, which is set equal to  pe replaced by, . (Recall thaté, depends only on the im-
Ap ., the numbeN of small-angle collisions in timét is pact parameter in the case of fixed field partigl&yuation
(3) also holds for moving field particles. Averagimg over

_ 2
N=ngg7bnzAL, (14 b, we have for the same reasoning that led to @§)
whereng is the number density of field particles. The ana- bo |2
lytic approximation of(#2) defined by Eq(6) is [14] <0§>:2<b_J InA. (18
ma:
2 bo ?
(07)=2 InA, (15 )
Brma Here bo=|0.04l/(2meopmap9i) and  ugg=m,mgl/(m,

+mg), m, and m; being the masses of the test and field
where A=A\p/bg. By the use of Eqs(14) and(15), EQ.(7)  particles, respectively. The expectatiof) changes from
takes the form collision to collision, so that Eq(4) needs to be reinter-
_ 2 preted;(6?) in Eq. (4) is actually the averagés?) of (63),
s=Nnzgmbg (INA)AL. (16) (63),...{63%). We approximate this average simply b§5).
Since no restrictive condition is imposed on the magnitude Og'hen E_q.(4? h_oldzs as '2 stands. For a single test part|cle _the
s, the choice ofAt is arbitrary. However, if we want to @Pproximation(6<)=(61) may be poor. However, in practi-
examine a relaxation process of some physical system, cal S|mulat|ons2 we consider an e_znse_mble of test particles.
should be small, otherwise the system reaches the final stafd'e value ok 67 for each test particle is expected to fluctu-

after only one time step. ate around(#?), so that replacing 6) by (%) has little
Let us denoteyy by x. In determining postcollision ve- €ffect on the ensemble averaged data.
locity we need a random sample of gpsThis can be easily Let us consideN small-angle collisions ilt. We have
obtained fromF(y), i.e., from Eq. (7)
cos y= 1 In(e”A+2U sinhA) (17 InA [ 9,05 \?
X~ A ’ s=—( - '8) nsg 3At, (19
AT\ €opap

where U is the random number. Since<¢<w, we have
sinX=(1—CO§X)1’2. The value ofA is large for smalls and  \here g=g,. Since InA depends only weakly org, we
an exponential overflow occurs. To avoid thls_ We_replace Eqreplace it, as usual, by W=In(\p/(by)), where
_(17) by_ coy=1+sInU. For s>6 the scattering is almost <b0>:|qaqE|/(27T€(),U«a/3<gz>)- The expectatiolg?) is equal
isotropic, so that we can replace Ed) by cosy=2U—1. 3K T/, if plasma is in equilibrium at temperatufle
Let g be the relative speed ang be the velocity of a test
D. Moving field particles particle at timet. The procedure to determine the velocity at
The speedsly,g;,95...., of the test particle are equal in tTAt is summarized as follows1) Make a random sample
the case of fixed field particles. However, when the fieldof the field particle velocity ; by the use of the field velocity
particles are moving, we have to consider the relative velocdistribution function and calculatg(=v,—Vy), and hences
ity g(=v,—V,), wherev, andv, are the velocities of the test from EQ. (19). (2) DetermineA from Eq. (13) and obtain
particle and its collision partner in the field, respectively.cosx from Eq.(17). (3) The velocityv,, after a cumulative
After the first small-angle collision the initial relative veloc- collision is given by[16]
ity 9;(=Vv,1—Vg) is scattered by, and becomes;(=v,,
—Vp,)- Since we consider the elastic collisiag, is equal to
0. Next let us consider the second small-angle collision of v
the test particle. Since the collision partner is not the same,
the precollision relative velocitg,(=v,,—Vg,) is not equal
to g; wherev,,=Vv,,; andvy, is the velocity of the second m,,
partner. The vectomy, is deflected by#d, and becomes v[’3=v3+ P~ [g(1—cosy)+h siny], (20b
02(=V,o—Vp,) after the collision. As beforgy;=g, but a’ B
0,70, . Similarly, after the third collision(=Vv,g—V;) be-
comesgs(=V,3—Vp3), Wherev,;=Vv,, andvg is the pre-  whereg=v,—Vv; and the Cartesian componentstoére

, Mg

:Vll_
@ m,+mg

[g(1—cosy) +h siny], (208

a
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h,=g, cos, tion in each species. The total number of collisions in plasma
with three species is 8N+ 3X(N/2)=(S/2)XN; where
hy=— (gy0,c0% +gg,sine)/g, , S(=3) is the number of species ardi(=3N) is the total
number of sample particles. The total collision number is in

general given bySNy/2 when N,=Nz=N,=---=N. In
successful particle simulation the total collision number is to
be proportional tdN; . After discovery of a similar collision
algorithm for neutral gases the particle simulation of rarefied
gas flows advanced drasticall3,4]. As for how to make
the change inv,— vy is of orderm,/m;. collision pairs in the case df,#Nz#N,,,..., see Takizuka

Repeating the three stages described above for all & d Abe[7].
particles and advancing time stepwise, we can determine
macroscopic properties of the ensemble at any time.

h,= —(9,9xco% —gg,sine)/g, .

Here g, =(93+92)"? and e=27U, U being a random
number. We added E¢20b) because in some cases the field
particles are the collection of test particles itselfmif>m,,

Ill. APPLICATIONS

In the particle simulation of rarefied gas flows the flow
E. Multicomponent plasma field is divided into small cells and molecular collisions are

The procedure described in the preceding section can b%[eated independently in each cgl,4]. This is reasonable

generalized to the case when plasma consists of ma ecause the (_:eI_I SIze 1S chosen to_be r_1ear|y eq_ual to_the mean
. . ee path. Similarly, in the particle-in-cell simulation of
charged species, 8, 7, ... . It may beenough to consider a . T .
) ; plasma the computational domain is divided into cells to
ternary mixture ofa, B, andy. We have to conside#— g,

B—7, a-y collisions between unlike species in addition to calculate the electric and/or magnetic fig8. Since the cell
a_Z’ ﬁ—yﬁ y—7 collisions between Iiﬁe species. LBt size is of the same order as the Debye length, Coulomb col-

Ng, andN,, be the number of sample particles in a referenceIISIonS can be_ treated mdependently n each_ cell. When
Y . lasma is spatially nonuniform, we have to consider the mo-
cell. (The sample particles are random samples taken out . . o o
lon of particles in addition to collisions. Here we apply the

real particles. For simplicity we seN,=N;=N,(=N) and theory described in the preceding section to spatially uniform

N is assumed even. lasmas. Most of the example problems are taken from Refs
Let {v,i Vgi ,V,i; i=1,... N} be the velocities of sample P i ple p '

. . o ; nd|7].
particles at time t. New velocities {v,; Vg ,V,i; | [6] and[7]
=1,...N} at timet+At can be determined by calculating

a—B, B—vy, a—vy, a—a, B—pB, and y— 1y collisions in turn. A. Thermalization of electron beams in plasma

The order (_)f cpllisions is arbitrary. Let us replagen Eq. Suppose that an electron beam with spegglis directed
(19) by g(ai,Bj)[=|v,i—Vgl|l ands by s,;. The procedure in the z direction at timet=0. Here we consider only the
is as follows. collisions of beam electrons with field particles. We begin

(i) Make N pairs (v, ,vg): Pick up randomly a vectarg;  with the case of fixed field particles, i.enz=c andv;=0.
one by one from all/4’s without replacement and set them The expectationfor ensemble average&,) and(s 2) in the
in array. Then the first, second,..., are the partners of early stage ar5]

Vo, - Obtaing(«ai,Bj) and, hences,, for each pair. De-

termineA from Eq.(13) and obtain cog from Eq.(17). The (v)=1-t, (219
postcollision velocities\(;,; ,vg;) are given by Eq(20). .

(i) Make N pairs (vg ,v,;) and determine postcollision (0?)=2t. (21b
velocities as in stagé). Note that precollision velocitieg,,
in this stage are postcollision velocities of stdge Here the symbols with a caret are nondimensional. They are

(i) Make N pairs (v, ,v,;) and determine postcollision obtained by dividing velocity by ., and time byr,, where
velocities. In this stage, precollision velocitigg; and v,

are postcollision velocities in stagp and stagdii), respec- 2.2

i > i 1 NgdgdglinA
tively. Hereafter, precollision velocities should be always —=
postcollision velocities of previous stages. To  8mvV2e5M, L0

(iv) Make N/2 pairs(v,;, V,;): Set allv,;’s randomly in R
array, as in the array ofg;'s in stage(i). Then pick up two &, beingm,v 2J2. We haves= At from Eq.(16). Figure 3
by two to makeN/2 pairs. Obtairg(«i,«j) and, hences,,, srlows(ﬁz> and (02). The simulation data are obtained for
A, and cosy for each pair. The postcollision velocities are At=0.05 andN_,=10°. They agree well with Eq§218 and

given by Eq.(20), where we sep=q. (21D at smallt. Since the Maxwellian distribution holds for
(v) Make N/2 pairs(vg; ,vg;) and obtain postcollision ve- v, ast—x, we have(p 2)—2/3 ast—. This is satisfied by

locities as in stagéiv). the simulation data. We have ascertained that the numerical
(vi) Obtain postcollision velocities dfi/2 pairs(v.; ,v.;) solution does not depend axt; the solutions forAt=0.01,

as in stagev). 0.1, and 1 were indistinguishable from that fot=0.05.
We see that every particle collides three timesAt The next example is the thermalization of a beam in an

twice with unlike particles and once with like particles, e.g.,electron gas. Let the energy of the electron beggphbe 100

it is a—B, a—1v, and a—a collisions for particlea. The eV, with the field electrons always in equilibrium at a con-
unlike collisions result in momentum and energy exchangestant temperatur&T,=2 eV, k being the Boltzmann con-
between two species and like collisions promote equilibrastant. The solutions for smallare[6]
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FIG. 3. Relaxation ofV,) and(U%) in fixed field particles. Solid FIG. 5. Relaxation ofv,) and(V?) in argon plasma. Solid lines
lines show the simulation and dashed lines show (Ed). show the simulation and dashed lines show &8).
(0)=1-2t, (229 B. Relaxation of the velocity distribution function
. We consider the relaxation of an electron gas due-t@
~2N\ -1 b .. . .. . .
(vD)=(2- %ﬁ)t: (22b) collisions. There is no need to distinguish the test and field

o particles. The velocity distribution is assumed to be initially
where  7,5=,0/kTp=50. In  equilibrium we have ap ellipsoidal one with temperatur@s#T,=T,. The over-
(v1)=17,5=0.02. This shows thdv ;) should be maximal at  a|| electron temperaturg,(= iT, + £T,) is constant since the
somet. The isotropy parametes becomess=43 °At,  kinetic energy is conserved for the system. The reference
whereg=|v,—V|. The time stept can be estimated by the time 7, is defined by
use of meamy in equilibrium. Our choice iat=0.01. Figure
4 shows the numerical results fo¥,) and(v2). Agreement 1 nee’inA 0
with Egs. (229 and (22b) is good at smalk. In addition, —= ,

(02)—0.02 for larget, which is the equilibrium value. 7o 8mV2egme(kTe)¥
The third example is the beam thermalization in eqUiIib'Wheree is the electronic charge. The analytic solution for
rium argon plasma. Now there are two kinds of field par-AT(:T ST is[6.7] ge. y
ticles, field electrongg) and ions(B8’). We set the field tem- x 0y '
perature akT,=2 eV andkTz=0.02 eV. The small-time

X 8
solutions arg 6] — %
) AT (AT)Oexp( 5V2n t) ,
(0,y=1-3t, (233

where (AT), is AT at t=0 andt=t/7,. The solution is
(03)=(4=npt, (23p  obtained based on the assumptiphT|<T,. We choose
T,=1.3T, att=0 so that the assumption may be satisfied
where 7,,=50 as before and t for «—p anda—pg’ colli- approximately. The analytic solutions fdi/T, and T,/T,
sions are assumed equal. The numerical solutions foare shown by the dashed lines in Fig. 6. The simulation

At=0.01 are in Fig. 5. They agree well with Eq83a and  solutions are_obtained by using ®16ample electrons. The
(23b). time step isAt=0.02. The initial velocities of electrons are

sampled from the ellipsoidal distribution. A set of these ve-
locities is slightly corrected so that there may be no flow and

! NT LT N T T oo the temperatured,, T,, T, determined from 10samples
1 i may coincide with the initial temperatures. The solid lines in
“~ 0.8 1 ! I {1 = Fig. 6 show the simulation solutions. They agree fairly well
= . BHAY (1) ] = with the analytic solutions.
0.6 !\
L 4 \ T
04 ] \\ —0.1 C. Relaxation of electron flow in field ions
L R ‘\ . At t=0 the velocity distribution function of electrof, is
0.2 {92) \\ i assumed to be the Maxwellian distribution with a flow in the
N x direction.
0 . 1 " I " 1 1 0 ~ 2
0 02 04 06 08 1 (v—iV)
R = =3l -
; f(V)=(27R.Te) ZeXp[ PR, | (25)

where R,.=k/m,, T, is the electron temperaturg, is the

FIG. 4. Relaxation ofV,) and(v?) in electron gas. Solid lines
velocity, V is the flow velocity, and is the unit vector in the

show the simulation and dashed lines show €4).
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FIG. 6. Relaxation of temperature components. Solid lines show
the simulation and dashed lines show the solution of the relaxation

equation. FIG. 7. Relaxation of flow velocity. Solid line shows the simu-

lation and dashed line shows the solution of Exf).

x direction. We sef =T, andV=V, att=0. The relaxation ] o o )
equation forV is obtained for smalt [7]. We extend the This equation is used to eliminalg in Eq. (26). The dashed
equation to the case of arbitratylt is line in Fig. 7 is the solution of Eq.26) obtained by the use

of the Runge-Kutta-Gill method. Note that the second part of

3 condition (d) is well satisfied fore,=(&,).
d_V: — ﬂ u £t v (26) Initial velocities of electrons are sampled from Eg5)
dt Py kTe) for T,=T, andV=V,. The ion velocities are also sampled

from the Maxwellian distribution foil;=T,. Let N, andN;
wheres=m.\V2/2, =t/ 7o, and u(x?) is defined by be the number_s; of samplg _electrons and ion{s. Our choice is
N.=N;=10. SinceN, is finite, the flow velocity and tem-
perature determined from the set of sample velocities show a
2y _ _ i %2 slight deviation from the given values. The sample velocities
m(x2)=-erfx xe *. o L
\/; are corrected so as to make the deviation null. A similar
correction is also done for the ion velocities. As for ions, the
initial set of velocities are used at any time. The isotropy

Here i in Eq. (24) for T.=T,, n, being replaced b
700 IS 70 1N EQ. (24) e~ o, MNe DEING T€P Y parametess of Eq. (16) takes the form

ion densityn; .
We compare the simulation solution with the solution of
Eq. (26). Before starting the simulation all conditions on
which Eq. (26) is based should be clarified. These are as
follows: (a) The velocity distribution of electron is subject to
Eqg. (25 at any time.(b) The velocity distribution of ion is
independent of time and is given by the Maxwellian distri-
bution with no flow.(c) Only e—i collisions are taken into
consideration, e—e collisions being disregarded.(d)
mo/m;<<1 and (n;/m,)(e/kT;)>1, wherem; is the mass of
ion, T; is the temperature of ion, ang is the kinetic energy
of electron. The particle simulation should be performed in
such a way that all these conditions are satisfied. Note th
even if f(v) is initially Maxwellian, it is not so during relax-

where w,; is the reduced mass arglis the relative speed
between an electron and ion pair, made dimensionless by
dividing by (2kTo/mg)¥2 The time stepAt is 0.04. The
collision pair is determined by the method described in Sec.
I E. The velocity distribution of electrons at the end of time
stept=At does not have the form of E@25). To satisfy
c[ondition(g) we first determine/ and T, from a set of ve-
éfocities att=At and then replace the set by a new set of

: velocities sampled from E¢25). A slight correction is done
ation. ; T

Let the previously arbitrary ions be protons for the new set in the same way as was done for the mmgl
(m = 1836m,) and setT, =T, and & o(= M.V 2/2)=kT,/2. set. These p(ocgdures are repeated at the_ end of each time

! e 0 10 e 9 0 step. The solid line in Fig. 7 show&'V, obtained from the

Since the energy relaxation time fer-i collision is much §,imulation. Agreement with the solution of E@6) is good.

larger than the momentum relaxation time, the mean energ
(g¢) Is almost constant during the relaxation of the flow ve-
locity V, i.e., D. Equilibration of electron and ion temperatures

. . e L ) Let T, and T; be the electron temperature and ion tem-
(ee)=2KTet 3MeVo=5kTo+ 2mcV5. perature, respectively. Suppose tfat- T; at t=0. Equili-
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» Ti/Tw

To/T.

FIG. 8. Equilibration of electron and ion temperatures. Solid

wellian distributions withT, and T, and are corrected as
before. The solid lines in Fig. 8 indicate the simulation so-
lution. It shows a fairly good agreement with the solution of
the relaxation equation. The dashed-dotted lines are the re-
sults obtained by assuming Maxwellian distributions only
t=0. We see that in fact the velocity distributions are not
Maxwellian during the relaxation process.

E. Drift velocity of electrons in an oscillating electric field

In the previous examples there are no external forces.
Here we consider the case when plasma is in an oscillating
electric field. Time is advanced step by step as before. We
have to consider both acceleration and collision of particles
in each time step. This is treated separately; first acceleration
is calculated and then collision is taken into account. We
consider the plasma in a typical fusion condition. It consists
of electrons and deuterons. The number densities and tem-
peratures ar@,=n;=10"/m* and kT,=kT;=1 keV. Ini-
tially the plasma is in equilibrium. The Debye length for

lines show the simulation, dashed lines show the solution of theelectron is 7.4 10 % m. The impact parametéb,) for e—e

relaxation equation, and dashed-dotted lines show simulation i
which the condition of temporal Maxwellian distribution is not
used.

and e—i collisions is the same and is given by
e’/(6megkT,), hence INA=15.9. The isotropy parameter

for e—e ande—i collisions can be obtained from E({L9).

lons are insensitive to the electric field. We suppose that the

bration of temperatures is described by the relaxation equapns always have a Maxwellian velocity distribution with the

tion for AT(=T.—T,) [5,6]. In the case oh,=n; energy
conservation requires

Te+T|:Te0+ T|O:2Toc ,

whereT., andT;, are the initial temperatures afd, is the

initial temperature; thus acceleration of ions andi colli-
sions are disregarded. An oscillating electric fi@ldtoswt
in the x direction is switched on at=0. If there is no colli-
sion, the drift velocity(v) of electrons in the direction is

. A ; . . eE .
final equilibrium temperature. The relaxation equation is (v)=(vy)— — sinwt,
based on the assumption that the electrons and the ions al- Mew

ways have Maxwellian distributions with different tempera-
turesT, andT;. This should be incorporated in the particle

simulation. To increase the relaxation rate we consider a

ion with imaginary mass such as,=4m,. The initial con-
dition is T,o=2T;o. The dashed lines in Fig. 8 shoW/T,,
andT;/T,, obtained from the relaxation equation. Tae i

collisions are simulated by the present method. The isotrop

parametess is
s=0 3At,
Whereg=g/v ef, vrer=(KT.o o) Y2 At=At/7¢, and

1 neetinA

Tret  AmeaplAkT..) ¥

whereu is the initial velocity of electron an¢y;)=0. Since
the time average ofv) over a period is almost zero, we
consider the time average 6§)?, i.e.,

(0)2=(vo)?+ 1V2=3V? 27)

Wherev = eE/m.w. Here we examine the effect ef-e and
e—i collisions on{v)?. We fix V atV= 8k T./7m, for any
E and w.

The time step is determined as follows. For e colli-
sions Eq. (19 gives s~2x1PAt, where we used
g 3~(g® =(Jm/32(mJkT)¥%  Our choice is
At=2.5x10"" s, for whichs~0.5. The simulation is per-
formed for 0<t<50t,, wheret,(=f'=2n/w) is the pe-
riod. The frequencyf is varied from 1 kHz to 1 MHz. A

In this problem the energies of both electrons and ions shoWeriod is divided intoJ time steps, e.g.J=400 for f=10

relaxation owing te—i collisions. Equatior{19) shows that
s is symmetrical with respect to exchangewfind 8. This
symmetry should be kept when we nondimensionatiznd
At in s. We see thab . and 7 satisfy this condition. The
simulation is performed foAt=0.25 andN,=N;=10. Ini-

kHz. The time point t; in the nth cycle is
ti=(n—L)t,+(j—1)At (j=1,2,...,3). Let (v;); be the ve-
locity of ith electron at time; . This is changed by the elec-
tric field to

tial velocities of electrons and ions are sampled from Max- vi(t) = (v));— V(sinwt—sinwt;),

wellian distributions with temperaturek,, and T;,. These

velocities are slightly corrected so that there may exist Navheret;<t<t;,,. The ensemble average is

flow and sample averages may yield the givieg and Tjq
exactly. The temperaturék, and T; att=At are obtained

(v(t))=(v);— V(sinot—sinwt;).

from the velocities of electrons and ions. By use of these

temperatures new velocitiestat At are sampled from Max-

Next we obtain
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1 MHz
100 kHz|
10 kHz A
5 kHz 1
2 kHz |

0

16 20 30 40

cycle FIG. 10. Coordinate system rotation.
FIG. 9. Relaxation of square of electron drift velocity in an

(iii ) The probabilityf (x)dQ that the postcollision relative
oscillating electric field.

velocity is scattered in solid angti) (=27 sinydy) is given
by

f(x)dQ= eh cosxdQ),

41 sinbA
(2) We have applied this theory to various situations occur-
ring in plasmas. In particular:

(i) Thermalization of electron beams in fields consisting
of fixed field particles, an electron gas, and a nonequilibrium
argon plasma.

(i) Relaxation of electron gas due ¢éo- e collisions.

(iif) Relaxation of electron flow in field ions.

(iv) Equilibration of electron and ion temperatures.

(v) The drift velocity of electrons in an oscillating electric

|j=f:”l<u(t)>2dt.

i

After this we calculate ale—e collisions and subsequently
all e—i collisions. Similarly,l;, , is obtained by the use of
the postcollision velocity«;);,,. The time average for the
nth cycle is given by

W:(|1+|2++IJ)/tp

Figure 9 showgv)*/V? as a function of cycler. The num-  fig|d.

bers of samples ag.=N;=10". At f =1 MHz the Coulomb The theory developed in this paper enabled us to repro-

co_IIisiqns have no effect on th_e drift velocity Whereas_theduce analytical results fdi) to (iv) previously obtained by
drift disappears af=1 kHz owing to the Coulomb colli- ,iher authors with a high degree of accuracy.

sions. We can see relaxation in the casd ©fl00 kHz, 10
kHz, 5 kHz, and 2 kHz. The steady state valueg©f for

(3) Clearly, development of a theory of cumulative colli-
sion has the potential for application in many fields involving

f=10 kHz, 5 kHz, and 2 kHz appear to be smaller than thaplasma physics and plasma processing. By its very nature it

of Eq. (27).

enables the results of many small-angle collisions to be cal-

culated extremely efficiently reducing computational costs.

IV. CONCLUSION
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(i) First the isotropys is calculated at the beginning of
time step:

APPENDIX: CUMULATIVE SCATTERING ANGLE

We consider the rotation of the Cartesian coordinate sys-
tem. See Fig. 10. When tleaxis is turned by, in thezOX
plane, the new set of fundamental vectors in the Cartesian
system is

s=nggmbj(InA)At,

wherebo[ = 0,0,/ (2meoum597)] is the impact parameter.
(ii) For a givens we determine the constaAt from the

1 1) 0
. é X—Ah)q %
equaﬂon

(A1)
where we used the repeated-subscript notation for summa-

cothA—A~1l=ge"S, tion. The matrixA{{" is an abbreviation of
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CO,CoS @, +SiPp;  (cos;—1)sinp,cosp; —Sind,CoSp,
A(6;,¢1)=| (COH—1)sinp;,c0Sp;  COHSiMp+CoSpy  —sind;sing;
sinf,cosp, sind4sing, o,

Equation(Al) can be obtained as follows. First the system q.(=g./q)=¢el

: . . On(=0n/g)=e5",

Oxyzis rotated byg; around thez axis. The resulting sys-

temOx'y’z’ is rotated by#, around they' axis to yield the (M) A (M) i . .

systemOX"y"z". Thez” axis is in the direction o&{". When Gi'=Asi’ = (Sind,CcOSpy ,SING,SINgy, , COHy).

the systenOx"y"z" is rotated by— ¢, around thez” axis, we ) )

have the system whose fundamental vectors are given by Eghe extension of EqgA2) and (A3) is

(Al). If we regarde® asgy/g andey’ asg,/g, thenb,(=yx,)

is the scattering angle. Similarly we turet” and make dV=A"g" Y, (n=12,..). (A7)
e(32)(=gzl ) whose polar and azimuthal angles measured in

theeVel’el’ system areg, and,. The fundamental vectors We have from this equation

are now
(2)_ A2 (D) G=ciam Y,
SUTATET (A2) =G{"[AMDAN=2 AL el0) (A8)
where the matrixA® denotesA(6,,¢,). Substitution of Eq. _ , o
(A1) into Eq. (A2) yields The cumulative scattering angjg, is given by
—e0.9
¢?=B{2d”, (A3) COXn=€3"-On
=G{V[AMVAM=2  ADT (A9)

whereB@=A@AMD  Once el,goj( and 0§,<p2 are given, the
: 2) ; 2 2 2 . . . .
matrix B® is known. CIearIy,Bé}), BY,, andBS; are the 0O(63) and higher orders are disregarded in the expression

components oe’ in the ef’e5’el’ system. The polar angle of AM[=A(6, ,,)], we have
x» and azimuthal angles, of €2 can be obtained from

AM=|+9,CcM-36D™, (A10)
siny,cosf,=B% (Ada)
wherel is the unit matrix and
siny,sing,=B%), A4b
X 2SN, =By, (Adb) 0 0 -—g
cW=| 0 0 ~ n
— R )
cosy,=B33 . (Adc) & 7 O
If we usey, and i, we can rewrite Eq(A3) as 2
&n §n727n 0
DW=\ & 7 O,
62 =[Alx2.¥2) 1€ (A5) o o 1

The angley, is the cumulative scattering angle due to two
collisions. The angley; after the third collision can be ob-
tained as follows. Let; and ¢, be the polar and azimuthal

with &,=cosp, and 7,=sing,. From Eq.(A10) we obtain

angles ofef)(=g4/g) in the e?e?e® system, i.e o 1%
3150 1e2°Es 18 ATIATD AV=1+ 3 9C-5 3 DY
d¥=APeg?=B{Vg”, (AB) h-1 k-1
+> > geckch. (A1)
whereB®=A®A(y,,4,), and Eq.(A5) is used. Now we k=2 =1

can obtain the polar anglg; and azimuthal angles of 5
from Eq. (A4) wherey,, ¢, andB® are to be replaced by On the other hand, for sma#, we have
X3, ¥, andB®. Repetition of this procedure givas, xs.... -

This procedure is used in Sec. Il B in calculating cumulative G§">:(gn§n,9nnn,1_%gﬁ)_ (A12)
scattering angley -
An analytic expression ofy can be derived if9;,6,,...,  Substitution of Eqs(A11) and(A12) into Eq.(A9) and some

are small. Our concern b;f,,”), so that we introduce the sim- manipulation yields Eq(2) in the text. Note that the first
pler notations as order terms disappear.
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