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A series of papers has developed a statistical mechanics of neocortical interé&8tib, deriving aggre-
gate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of
synaptic interactions. While not useful to yield insights at the single neuron level, SMNI has demonstrated its
capability in describing large-scale properties of short-term memory and electroencephalogE&gh)isys-
tematics. The necessity of including nonlinear and stochastic structures in this development has been stressed.
Sets of EEG and evoked potential data were fit, collected to investigate genetic predispositions to alcoholism
and to extract brain “signatures” of short-term memory. Adaptive simulated anne@if#), a global
optimization algorithm, was used to perform maximum likelihood fits of Lagrangians defined by path integrals
of multivariate conditional probabilities. Canonical momenta indicat@¥ll) are thereby derived for an
individual’'s EEG data. The CMI give better signal recognition than the raw data, and can be used to advantage
as correlates of behavioral states. These results give strong quantitative support for an accurate intuitive
picture, portraying neocortical interactions as having common algebraic or physics mechanisms that scale
across quite disparate spatial scales and functional or behavioral phenomena, i.e., describing interactions
among neurons, columns of neurons, and regional masses of nel8®063-651X97)12004-9

PACS numbdss): 87.10+€, 05.40+j, 02.50~r, 02.70:—C

I. INTRODUCTION methods of functional stochastic calculus defining nonlinear
Lagrangians, adaptive simulated annealid$A) [23], and
A model of statistical mechanics of neocortical interac-parallel-processing computation, to develop a generic nonlin-
tions (SMNI) has been developdd—20, describing large- €ar stochastic MNN14,19. MNN increases the resolution
scale neocortical activity on scales of mm to cm as measure®f SMNI to minicolumnar interactions within and between
by scalp electroencephalograptyEG), with an audit trail neocortical regions, a scale that overlaps with other studies
back to minicolumnar interactions among neurons. There aréf neural systems, e.g,, artificial neural netwofR&N).
several aspects of this modeling that should be further inves- N order to interface the algebra presented by SMNI with
tigated: to explore the robustness of the model, the range §*Perimental data, several codes have been developed. A key
experimental paradigms to which it is applicable, and furthel©0! iS ASA, a global optimizatio€-language codg23-27.

development that can increase its spatial resolution of EEG(.)\E)er tthe years, this codglhqsllevolvad to a h't%h degree of
The underlying mathematical physics used to develo obustness across many disciplines. However, there are over

SMNI gives rise to a natural coordinate system faithful to 00 options available for.tur.nng' this code; th|§ is as expected
for any single global optimization code applicable to many

nonlinear mulltlvarlate sets of potenyal data, SUCh. as Me&; asses of nonlinear systems, systems which typically are
sured by multielectrode EEG, canonical momenta 'nd'catorﬁontypical

(CMI) [20—23. Recent papers in finan¢21,22 and in EEG gection |1 gives the background used to develop SMNI
systemizq] have demonstrated that CMI give enhanced sig4,q ASA for the present study. The Appendix gives more
nal resolutions over raw data. _ detail on ASA relevant to this paper. Section Il gives the

The basic philosophy of SMNI is that good physical mod- mathematical development required for this study. Section

els of complex systems, often detailed by variables not dijv describes the procedures used. Section V presents conclu-
rectly measurable in many experimental paradigms, shouldions.

offer superior descriptions of empirical data beyond that

available from black-box statistical descriptions of such data.

For example, good nonlinear models often offer sound ap- Il. BACKGROUND

proaches to relatively deeper understandings of these sys-

tems in terms of synergies of subsystems at finer spatial- A. EEG

temporal scales. The SMNI approach develops mesoscopic scales of neu-

In this context, a generic mesoscopic neural networkonal interactions at columnar levels of hundreds of neurons

(MNN) has been developed for diffusion-type systems usingrom the statistical mechanics of relatively microscopic in-

a confluence of techniques drawn from the SMNI, moderrteractions at neuronal and synaptic scales, poised to study
relatively macroscopic dynamics at regional scales, as mea-
sured by scalp electroencephalogragB¥G). Relevant ex-

*Electronic address: ingber@ingber.com, perimental confirmation is discussed in the SMNI papers at
ingber@alumni.caltech.edu the mesoscopic scales, as well as at macroscopic scales of
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scalp EEG. The derived firings of columnar activity, consid-strengths and weaknesses at various spatial-temporal fre-
ered as order parameters of the mesoscopic system, develqpencies.
multiple attractors, which illuminate attractors that may be These source localization methods typically do not in-
present in the macroscopic regional dynamics of the neococclude in their models the synergistic contributions from
tex. SMNI proposes that models to be fitted to the data inshort-ranged columnar firings of mm spatial extent and from
clude models of activity under each electrode, e.g., due ttong-ranged fibers spanning cm spatial extent. The CMI
short-ranged neuronal fibers, as well as models of activityptudy presented here models these synergistic short-ranged
across electrodes, e.g., due to long-ranged fibers. These iand long-ranged interactions. This is elaborated on in the
fluences can be disentangled by SMNI fits. conclusion.

The SMNI approach is complementary to other methods
of studying nonlinear neocortical dynamics at macroscopic B. Short-term memory
scales. For example, EEG and magnetoencephalography

(MEG) data have been expanded in a series of spatial prin- The development of SMNI in the context of .s.hor_t—term
cipal components, a Karhunen-Loeve expansion. The Coe1;fpwemory(STM) tasks leads naturally to the identification of
easured electric scalp potentials as arising from excitatory

cients in such expansions are identified as order paramete'?% SHi =t X )
that characterize phase changes in cognitive stU@@29 and inhibitory ghort-rangeq gnd exmtatqry Iong'—ranged fibers
and epileptic seizurd80,31]. However, the SMNI CMI may @S they contribute to minicolumnar interaction$2,13.

be considered in a similar context, as providing a naturall herefore, the SMNI CMI are most appropriately calculated
coordinate system that can be sensitive to experimental datt the context of STM experimental paradigms. It has been
without assuming averages over stochastic parts of the sygemonstrated that EEG data from such paradigms can be fit

tem that may contain important information. using only physical synaptic and neuronal parameters that lie
Theoretical studies of the neocortical medium have in-within experimentally observed ranggk3,20.
volved local circuits with postsynaptic potential deld@2— The SMNI calculations are of minicolumnar interactions

35], global studies in which finite velocity of action potential among hundreds of neurons, within a macrocolumnar extent
and periodic boundary conditions are importg868—-39, and  of hundreds of thousands of neurons. Such interactions take
nonlinear nonequilibrium SMNI. The local and the global place on time scales of severglwherer is on the order of
theories combine naturally to form a single theory in which10 msedof the order of time constants of cortical pyramidal
control parameters effect changes between more local areells). This also is the observed time scale of the dynamics of
more global dynamic behavidB9,40, in a manner some- STM. SMNI hypothesizes that columnar interactions within
what analogous to localized and extended wave-functio@nd/or between regions containing many millions of neurons
states in disordered solids. are responsible for these phenomena at time scales of several
Plausible connections between the multiple-scale statistiseconds. That is, the nonlinear evolution at finer temporal
cal theory and the more phenomenological global theorscales gives a base support for the phenomena observed at
have been proposg¢d?Z]. Experimental studies of neocortical the coarser temporal scales, e.g., by establishing mesoscopic
dynamics with EEG include maps of magnitude distributionattractors at many macrocolumnar spatial locations to pro-
over the scalgd37,41], standard Fourier analyses of EEG cess patterns in larger regions.
time series[37], and estimates of correlation dimension SMNI has presented a model of STM, to the extent that it
[42,43. Other studies have emphasized that many EE®ffers stochastic bounds for this phenomena during focused
states are accurately described by a few coherent spatiaélective attentiofd,6,15,46—48 transpiring on the order of
modes exhibiting complex temporal behaVia8-31,37,3%  tenths of a second to seconds, limited to the retention of
These modes are the order parameters at macroscopic scales?2 items[49]. These constraints exist even for apparently
that underpin the phase changes associated with changese&x{ceptional memory performers who, while they may be ca-
physiological state. pable of more efficient encoding and retrieval of STM, and
For extracranial EEG, it is clear that spatial resolution,while they may be more efficient in “chunking” larger pat-
i.e., the ability to distinguish between two dipole sources agerns of information into single items, nevertheless, are lim-
their distance decreases, is different from dipole localizationited to a STM capacity of Z2 items[50]. Mechanisms for
i.e., the ability to locate a single dipo[@9]. The develop- various STM phenomena have been proposed across many
ment of methods to improve the spatial resolution of EEGspatial scaleg§51]. This “rule” is verified for acoustical
has made it more practical to study spatial structure. FoBTM, as well as for visual or semantic STM, which typically
example, high resolution methods provide apparent spatiakquire longer times for rehearsal in an hypothesized articu-
resolution in the 2—3 cm randd4]. Dipole resolution may latory loop of individual items, with a capacity that appears
be as good as several mm5]. Some algorithms calculate to be limited to 4-2 [52]. SMNI has detailed these con-
the (generally nonunigueinverse problem of determining straints in models of auditory and visual corfe6,15,18.
cortical sources that are weighted or filtered by volume con- Another interesting phenomenon of STM capacity ex-
ductivities of concentric spheres encompassing the brairplained by SMNI is the primacy versus recency effect in
cerebrospinal fluid, skull, and scalp. A straightforward ap-STM serial processin§6], wherein first-learned items are
proach is to calculate the surface Laplacian from spline fits tsecalled most error free, with last-learned items still more
the scalp potential distribution, yielding estimates similar toerror free than those in the midd[B3]. The basic assump-
those obtained using concentric spheres models of the hedidn being made is that a pattern of neuronal firing that per-
[44]. Other measuring techniques, e.g., MEG, can providssists for manyr cycles is a candidate to store the “memory”
complementary information. These methods have theiof activity that gave rise to this pattern. If several firing pat-
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terns can simultaneously exist, then there is the capability oés fit by the ASA code. A robust and accurate histogram-
storing several memories. The short-time probability distri-basednon-Monte Carlp path-integral algorithm to calculate
bution derived for the neocortex is the primary tool to seekthe long-time probability distribution had been developed to
such firing patterns. The deepest minima are more likely achandle nonlinear LagrangiafnS6—58, which was extended
cessed than the others of this probability distribution, ando two-dimensional problemgs9]. PATHINT was developed
these valleys are sharper than the others. That is, they afer use in arbitrary dimensions, with additional code to
more readily accessed and sustain their patterns against flusandle general Neumann and Dirichlet conditions, as well as
tuations more accurately than the others. The more recetie possibility of including time-dependent potentials, drifts,
memories or newer patterns may be presumed to be thosad diffusions. The results of usimgTHINT to determine the
having synaptic parameters more recently tuned and/or momvolution of the attractors of STM give overall results con-
actively rehearsed. sistent with previous calculatiorj45,16].
It has been noted that experimental data on velocities of
propagation of long-ranged fib€l37,39 and derived veloci-
ties of propagation of information across local minicolumnar C. ASA
interactior_15[2] yield comparable times scales of interactions |, order to maintain some audit trail from large-scale re-
across minicolumns of tenths of a second. Therefore, sucliona| activity back to mesoscopic columnar dynamics, de-
phenomena as STM likely are inextricably dependent on ingjraple for both academic interest as well as practical signal
teractions at local and global scales. enhancement, as few approximations as possible are made by
SMNI in developing synaptic interactions up to the level of
1. SMNIand ADP regional activity as measured by scalp EEG. This presents a
A proposal has been advanced that STM is processed Hgrmidable multivariate nonlinear nonequilibrium distribu-
information coded in approximately 40 Happroximately tion as a model of EEG dynamics, a concept considered to be
2.5 foldings of7) bursts per stored memory, permitting up to quite tentative by research panels as late as 1990, until it was
seven such memories to be processed serially within singldemonstrated how fits to EEG data could be implemented
waves of lower frequencies on the order of 5 to 12[B4].  [13].
To account for the observed duration of STM, they propose In order to fit such distributions to real data, ASA has
that observed after-depolarizatigADP) at synaptic sites, been developed, a global optimization technigue, a superior
affected by the action of relatively long-time acting neuro-variant of simulated annealing®4]. This was tested using
modulators, e.g., acetylcholine and serotonin, acts to reglEEG data in 199113], using an early and not as flexible
larly “refresh” the stored memories in subsequent oscilla-version of ASA, very fast reannealiny FSR) [24]. Here,
tory cycles. A recent study of the action of neuromodulatorghis is tested on more refined EEG using more sensitive CMI
in the neocortex supports the premise of their effects oro portray results of the fitg20].
broad spatial and temporal scal&8], but the ADP model is ASA [23] fits short-time probability distributions to ob-
more specific in its proposed spatial and temporal influenceserved data, using a maximum likelihood technique on the
SMNI does not detail any specific synaptic or neuronalLagrangian. This algorithm has been developed to fit ob-
mechanisms that might refresh these most likely states teerved data to a theoretical cost function over a
reinforce multiple short-term memori¢48]. However, the D-dimensional parameter spaf®4], adapting for varying
calculated evolution of states is consistent with the observasensitivities of parameters during the fit. The Appendix con-
tion that an oscillatory subcycle of 40 Hz may be the bareains details of ASA relevant to its use in this paper.
minimal threshold of self-sustaining minicolumnar firings
before they begin to degrad&6]. D. Complementary research
The mechanism of ADP details a specific synaptic mecha-
nism that, when coupled with additional proposals of neu- 1. Chaos
ronal oscillatory cycles of 5-12 Hz and oscillatory subcycles  Given the context of studies in complex nonlinear systems
of 40 Hz, can sustain these memories for longer durations of60], the question can be asked: What if EEG has chaotic
the order of seconds. By itself, ADP does not provide a conmechanisms that overshadow the above stochastic consider-
straint such as the #2 rule. The ADP approach does not ations? The real issue is whether the scatter in data can be
address the observed random access phenomena of thefistinguished between being due to noise or cH#&ds. In
memories, the £ 2 rule, the primacy versus recency rule, or this regard, several studies have been proposed with regard
the influence of STM in observed EEG patterns. to comparing chaos to simple filterécblored noise[60,62.
SMNI and ADP models are complementary to the under-Since the existence of multiplicative noise in neocortical in-
standing of STM. MNN can be used to overlap the spatiakeractions has been derived, then the previous references
scales studied by the SMNI with the finer spatial scales typimust be generalized, and further investigation is required to
cally studied by other relatively more microscopic neuraldecide whether EEG scatter can be distinguished from mul-
networks. At this scale, such models as ADP are candidatafplicative noise.
for providing an extended duration of firing patterns within A recent study with realistic EEG wave equations
the microscopic networks. strongly suggests that if chaos exists in a deterministic limit,
it does not survive in macroscopic stochastic neocd®&k
That is, it is important to include stochastic aspects, as arise
A path-integralC-language codezATHINT, calculates the from the statistics of synaptic and columnar interactions, in
long-time probability distribution from the Lagrangian, e.g., any realistic description of macroscopic neocortex.

2. PATHINT
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2. Other systems This discretization defines a covariant Lagrangian that

Experience using ASA on such multivariate nonlinear sto-20ssesses a variational principle for arbitrary noise, and that
chastic systems has been gained by similar applications &Xplicitly portrays the underlying Riemannian geometry in-
the approach used for SMNI. From 1986-1989, these mettfiuced by the metric tensg', calculated to be the inverse
ods of mathematical physics were utilized by a team of sciof the covariance matriJgGG'. Using the Einstein summa-
entists and officers to develop mathematical comparisons dfon convention,

Janus computer combat simulations with exercise data from

the National Training CentefNTC), developing a testable .
theory of combat successfully baselined to empirical data P:J fEM exp( _520 AtEFS)’
[59,64—68.

This methodology has been applied to financial markets u 0

[21,69-71 developing specific trading rules for Standard DM =gl?(27At) 2] g¥?[] (2mwAt) Y2dME,
and Poor's 500S&P 500 index to demonstrate the robust-  — ’ s=1 TG=1
ness of these mathematical and numerical algorithms. \©

fdMS-»ZlAMg, MG=Mg, Mg =M,

IIl. MATHEMATICAL DEVELOPMENT

Fitting a multivariate nonlinear stochastic model to data is 1 G G G’ G’
a necessary but not sufficient procedure in developing new Ein(dM /dt—h")gge (dM™ /dt—h")
diagnostic software. Even an accurate model fit well to real L1106 I R/6-V
data may not be immediately useful to clinicians and experi- 27 G '
mental researchers. To fill this void, the powerful intuitive

basis of the mathematical physics used to develop SMNI has («) Gza('_'(';),

been utilized to describe the model in terms of rigorous CMI ' M

that provide an immediate intuitive portrait of the EEG data, .
faithfully describing the neocortical system being measured. h®=g®-3g~"4g"?g®° ).G"s
The CMI give an enhanced signal over the raw data, and

given some insights into the underlying columnar interac- Jse =(g%¢) 7L,
tions.

gs[MG(ts)ats]:de(gGG’)Sa gs+:gs[M§+1=t?|v
A. CMI, information, energy R .
G _ G_ 12/ 412G
In the first SMNI papers, it was noted that this approach h=e=hgtlgeh™ =0 "40"") 6.
permitted the calculation of a true nonlinear nonequilibrium F_ LF _F
“information” entity at columnar scales. With reference to a To=g" UK LI=07 (9oL k + kLo~ Do),
steady stat®(M) for a short-time Gaussian-Markovian con- _ Ilp _ AJLaJK
R=g"R;1=9""9" " RrkL,

ditional probability distributionP of variablesm, when it

exists, an analytic definition of the information gaih in ReakL= 2 (9rK oL = 93k FL— OFL 3k T 931 FK)
stateP(M) over the entire neocortical volume is defined by
(72,73 +gun(TEL = TR TS, ()
s I whereR is the Riemannian curvature, and the discretization
Y[P]=f f DM PIn(P/P), is explicitly denoted in the mesh M < by «. If M is a field,
- e.g., also dependent on a spatial variabldiscretized by
u v, then the variable®$ are increased tMS”, e.g., as pre-

DM=(27g2At) 2] ] (2mwg2At)~YdM,, (1)  scribed for the macroscopic neocortex. The téf in L¢
s=1 includes a contribution oR/12 from the WKB approxima-

. _ . . ~ tion to the same order of\t)*? [75].

where a path integral is defined such that all intermediate- A prepoint discretization for the same probability distri-

time values ofM appearing in the folded short-time distri- bution P gives a much simpler algebraic form,

butionsP are integrated over. This is quite general for any

system that can be described as Gaussian-Markdidh M(ts)=M(ty),
even if only in the short-time limit, e.g., the SMNI theory. ) ,
As time evolves, the distribution likely no longer behaves L=3(dM®/dt—g®)gga (dM® /dt—g®) -V, (4

in a Gaussian manner, and the apparent simplicity of the
short-time distribution must be supplanted by numerical calbut the Lagrangiat., so specified, does not satisfy a varia-
culations. The Feynman Lagrangian is written in the mid-tional principle useful for moderate to large noise; its asso-
point discretization, for a specific mesocolumn correspondeiated variational principle only provides information useful
ing to in the weak-noise limif76]. The neocortex presents a sys-
o tem of moderate noise. Still, this prepoint-discretized form
M(tsy)=3[M(tg, 1)+ M(tg)]. (2 has been quite useful in all systems examined thus far, sim-
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ply requiring a somewhat finer numerical mesh. Note thaflTable I, this Lagrangian approach permits a quantitative as-

although integrations are indicated over a huge number afessment of concepts usually only loosely defined.

independent variables, i.e., as denoteoUMSG”, the physi- These physical entities provide another form of intuitive,

cal interpretation afforded by statistical mechanics makesut quantitatively precise, presentation of these analyses

these systems mathematically and physically manageable.[68,77]. In this study, the above canonical momenta are re-
It must be emphasized that the output need not be corferred to as canonical momenta indicato@MI).

fined to Complex algebraic forms or tables of numbers. Be- In a prepoint discretization, where the Riemannian geom-

causeF possesses a variational principle, sets of contougtry is not explicit(but calculated in the first SMNI papérs

graphs, at different long-time epochs of the path integral othe distributions of neuronal activitigs, is developed into

Pi;/:an;e\g/lirsaL;{Zﬁ Oi\r?teurit?\l/talgn\(lja;fcblfastijilcliIs?(t)?\rg]izdtlc’:lt\i;\;cqtizdismbu“ons for activity under an electrode sRen terms of
9 . yir . ; ~a Lagrangiarl and threshold functiong®,
dynamic evolution of the scenario. For example, as given in —

N
5(2 oj—M'(r;t+7) H Po,

P=1;[ PEIME(r;t+ 7)MC(1";0)]= 3, 8| 2 o~ ME(r;t+7) |
gj J J

JE

w];[ (2mrg®®)~Y2exp —N7LE) = (277) Y2g¥%exp — N7L),

L=T-V, T=(2N) % M®-g®ges(M® —g®), g°=—7r1(MC+NCtantF®),

G G|+|G
ve—,Srls

9%% = (gge) 1= 68 7 INCsecRFC, g=de(gss), F®= ,
ee e ee (7l (vg) 2+ ()21 T2

|G| _ ,IGInG’ 4 1 alGInaG 4 AtIGINTG 4 2 ATIGInN 411G | AFIGINEG | 1 A $IGlpp1G’
To' =ag/N® +3A5'M® +a5 'N'™ +3A5°'M™ +a5” 'N*™ +3A5 M*™,

alS=1ASHBIS, AZ=AI=Al=BY=B{"=B'=0, af=iA{IBY, ®

where no sum is taken over repeat@, Ag, and Bg, are  can be used to further investigate the existence of other non-
macrocolumnar-averaged interneuronal synaptic efficaciednear phenomena, e.g., bifurcations or chaotic behavior, in
vg, and ¢, are averaged means and variances of contribyPrain states. , , .

tions to neuronal electric polarization® are the numbers , Fre€vious SMNI studies have detailed that maximal num-

of excitatory and inhibitory neurons per minicolumn, and thebe(gS of a_ttractors_ lie W'th.'n the physical firing space of
variables associated witli . M¢. andM*C relate to mul- M , consistent with experimentally obsgrved capac[tles.of
tiple scales of activities from minicolumns, between minicol- auditory and visual STM, when a “centering® mechanism is

umns within regions, and across regions, respectively. Th%?;?;%et% nby sg:t'.n?egfcktghrzungrﬁggfaﬁtgg'ee? Zz'jr):nal?]ttljcer
nearest-neighbor interactions can be modeled in greater ! lons, SIS with exper servations U

detail by a stochastic mesascopic neural netwde. The conditions of selective attentidd,6,15,16,78 This leads to
y . copic n S : an effect of having all attractors of the short-time distribution
SMNI papers give more detail on this derivation.

. . . . G . - .
In terms of the above variables, an energy or Hamiltoniar%Ie along a diagonal line iM™ space, effectively defining a

densityH can be defined, TABLE I. Descriptive concepts and their mathematical equiva-
lents in a Lagrangian representation.

H=T+V, (6)

- = = Concept Lagrangian equivalent
in terms of theM © andII® variables, and the path integral is Momentum ILg
now defined over all thd®M® as well as over theII® HG:MM—E/(%)
variables. - o Mass ILe

9o = L aMCIat)a(aMC 1a1)
B. Nonlinear string model Force dLeg
A mechanical-analog model, the string model, is derived

explicitly for neocortical interactions using SMNL2]. In F=ma SLe=0= e 9 Lr

addition to providing overlap with current EEG paradigms, ~aMC at a(aMC/at)

this defines a probability distribution of firing activity, which
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narrow parabolic trough containing these most likely firing This permits a complete transformation frav® variables
states. This essentially collapses the two-dimensidn&l to ® variables.
space down to a one-dimensional space of most importance. Similarly, as appearing in the modified threshold factor

Thus, the predominant physics of short-term memory andr®, each regional influence from electrode siteacting at
of (short-fiber contribution foEEG phenomena takes place electrode sitev, given by afferent firingsvi *E, is taken as
in a narrow “parabolic trough” inM € space, roughly along
a diagonal line[4]. Here, G representE or |, MF repre- MIE ,=dME(t=T, ), (13
sents contributions to columnar firing from excitatory neu-
rons, andM' represents contributions to columnar firing whered, are constants to be fitted at each electrode site, and
from inhibitory neurons. The object of interest within a shortT,,_,, are the delay times estimated above for interelectrode
refractory time,r, approximately 5 to 10 msec, is the La- signal propagation, based on anatomical knowledge of the
grangianL for a mesocolumn, detailed above. can vary neocortex and of velocities of propagation of action poten-
by as much as a factor of 16rom the highest peak to the tials of long-ranged fibers, typically on the order of one to
lowest valley inM® space. Therefore, it is reasonable toSeveral multiples of=5 msec. Some terms in whiahdi-
assume that a single independent firing variable might offer aectly affects the shifts of synaptic parametag, when
crude description of this physics. Furthermore, the scalp poealculating the centering mechanism also contain long-
tential ® can be considered to be a function of this flrlng ranged efficacieginverse conductivities BE[E Therefore,
variable.(Here, “potential” refers to the electric potential, the |atter were kept fixed with the other electrical-chemical
not the potential term in the Lagrangian above.an abbre-  sypaptic parameters during these fits. Future fits will experi-
viated notation subscripting the time dependence, ment taking theT’s as parameters.

_ E pl This defines the conditional probability distribution for
= (@) =D(M . My) the measured scalp potentigl, ,

~a(M{=((M5))+b(M;=((M'))), (D

1
wherea andb are constants, and®)) and((M®)) repre- PP, (t+AD|D,(1)]= (27702At)172eXp(_LVAt)'
sent typical minima in the trough. In the context of fitting
data to the dynamic variables, there are three effective con- 1
stants;{a,b, ¢}, Lﬁr'z(cby—m)z. (14

.~ p=aM;+bM;. ®) o _
The probability distribution for all electrodes is taken to be
The mesoscopic probability distributionB, are scaled and the product of all these distributions
aggregated over this columnar firing space to obtain the mac-
roscopic probability distribution over the scalp-potential P=H P, L=2 L.

space (15

P‘I’[q)]:f dMEdM'P[ME,M']6(@—d'(ME,M")). (99  Note th.at the belief in the dipole or nonlin.ear-string model is
being invoked. The model SMNI, derived foP[MS(t

In the prepoint discretization, the postpoM(t+At) mo-  TADIME(1)], is for a macrocolumnar-averaged minicol-

ments are given by umn; hence, it is expected to be a reasonable approximation
to represent a macrocolumn, scaled to its contribution to
m=(®,— p)=a(ME)+b(M'Y=agF+bgd', ®,. Hence L is used to represent this macroscopic regional
Lagrangian, scaled from its mesoscopic mesocolumnar coun-
a?={((®,— $)>)—(®,— ¢)*>=a’gFE+b%g", (10) terpartL. However, the above expression fBr, uses the

dipole assumption to also use this expression to represent

where theM® space driftsg®, and diﬁusionngG', are  several to many macrocolumns present in a region under an
given above. Note that the macroscopic drifts and diffusionglectrode: A macrocolumn has a spatial extent of about a
of the ®’s are simply linearly related to the mesoscopic mm. It is often argued that typically several macrocolumns
drifts and diffusions of theM®’s. For the prepointvi ©(t) firing coherently account for the electric potentials measured
firings, the same linear relationship in terms{@f,a,b} is by one scalp electrodg9]. Then, this model is being tested
assumed. to see if the potential will scale to a representative macrocol-

For the prepointM&(t) firings, advantage is taken of the umn. The results presented here seem to confirm that this
parabolic trough derived for the STM Lagrangian, and approximation is in fact quite reasonable.

The parabolic trough described above justifies a form
M'(t)=cME(t), (11)

At
where the slope& is set to the close approximate value de- Pq,=(2wo-2At)‘1’2ex;< - FJ dx Lg
termined by a detailed calculation of the centering mecha- o
nism[15],

@ B 4
AEME—AEM'~0. (12) Lo=5[0®Iot]+ S[o®/ox|?+ 7| @[>+ F(®), (16)



4584 LESTER INGBER 55

where F(®) contains nonlinearities away from the trough,  TABLE II. Circuitry of long-ranged fibers across most relevant
o2 is on the order ofN given the derivation of. above, and electrode sites and their assumed time delays in units of 3.906
the integral ovex is taken over the spatial region of interest, MS€C-

In general, there also will be terms linear &d/dt and in
d®/dx. (This corrects a typographical error that appears i
several papergl2,13,17,19 incorrectly giving the order of g3

o? as 1N. The ordem was first derived13] from o being g4

expressed as a sum over tBeand| diffusion given above. 17 F3

nSite Contributions from Time delay8.906 mse

Previous calculations of EEG phenomed, show that - T8 i
the short-fiber contribution to the frequency and the move- +g Fa 1
ment of attention across the visual field are consistent with-g T7 1
the assumption that the EEG physics is derived from an av; T7 1
erage over the fluctuations of the system, e.g., represented P8 1
o in the above equation. That is, this is described by th F3 5
Euler-Lagrange equations derived from the variational prin—P8 T8 1
ciple possessed blyg (essentially the counterpart to force
equals mass times accelerajiormore properly by the P8 EZ ;

“midpoint-discretized” FeynmarlLy , with its Reimannian
terms[2,3,11].

IV. SMNI APPLICATIONS TO INDIVIDUAL EEG

C. CMI sensitivity A Dat
. Data

In the SMNI approach, “information” is a concept well
defined in terms of the probability eigenfunctions of EEG Spontaneous and evoked potentf) data from a

electrical-chemical activity of this Lagrangian. The path_multielectrode array unde_r a variety of conditions was col-
integral formulation presents an accurate intuitive picture ofécted at several centers in the United States, sponsored by
an initial probability distribution of patterns of firings being the National Institute on Alcohol Abuse and Alcoholism
filtered by the(exponential of theLagrangian, resulting in a (NIAAA) project. The earlier 1991 study used only averaged
final probability distribution of patterns of firing. EP datd84]. These experiments, performed on carefully se-

The utility of a measure of information has been noted bylected sets of subjects, suggest a genetic predisposition to
other investigators. For example, there have been attempts &dcoholism that is strongly correlated to EEG AEP responses
use information as an index of EEG activii§0,81. These to patterned targets.
attempts have focused on the concept of “mutual informa- It is clear that the author is not an expert in the clinical
tion” to find correlations of EEG activity under different aspects of these alcoholism studies. It suffices for this study
electrodes. Other investigators have looked at simulatiothat the data used is clean raw EEG data, and that these
models of neurons to extract information as a measure 0BMNI, CMI, and ASA techniques can and should be used
complexity of information processinB2]. Some other in- and tested on other sources of EEG data as well.
vestigators have examined the utility of the energy density as Each set of results is presented with six figures, labeled as
a viable measure of information processing STM paradigmétalcoholidcontrol, {stimulus ImatchHnomatch, subject,
[83]. {potentialmoment], abbreviated to{ac}_{1|m|n}_sub-

The SMNI approach at the outset recognizes that, fofect{po§mont} where match or no match was performed for
most brain states of late latency, at least a subset of regior@imulus 2 after 3.2 sec of a presentation of stimul§84].
being measured by several electrodes is indeed to be consi@ata includes ten trials of 69 epochs each between 150 and
ered as one system, and their interactions are to be explicatd@0 msec after presentation. For each subject run, after fit-
by mathematical or physical modeling of the underlying neuding 28 parameters with ASA, epoch by epoch averages are
ronal processes. Then, it is not relevant to compare joindeveloped of the raw data and of the multivariate SMNI
distributions over a set of electrodes with marginal distribu-CMI. It was noted that much poorer fits were achieved when
tions over individual electrodes. the “centering” mechanisnp4,6], driving multiple attractors

In the context of the present SMNI study, the CMI trans-into the physical firing regions bounded BF<MC<NC,
form covariantly under Riemannian transformations, but arevas turned off and the denominatorsAff were set to con-
more sensitive measures of neocortical activity than othestants, confirming the importance of using the full SMNI
invariants, such as the energy density, effectively the squaraodel. All stimuli were presented for 300 msec. For ex-
of the CMI, or the information which also effectively is in ample, c m_co02c0000337.pot is a figure.
terms of the square of the CMEssentially path integrals Note that the subject number also includes the
over quantities proportional to the energy times a factor of afalcoholidcontrol tag, but this tag was added just to aid
exponential including the energy as an argumeNeither  sorting of files(as there are contribution from co2 and co3
the energy or the information give details of the componentsubject$. Each figure contains graphs superimposed for six
as do the CMI. EEG is measuring a quite oscillatory systenelectrode sitegout of 64 in the datawhich have been mod-
and the relative signs of such activity are quite importanteled by SMNI using a circuitry given in Table Il of frontal
The information and energy densities are calculated andites(F3 and F4 feeding temporafsides of head T7 and J8
printed out after ASA fits along with the CMI. and parietal(top of head P7 and P8sites, where odd-
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TABLE 1ll. ASA option changes from their defaults used in TABLE IV. ASA option changes from their use in stage-one for

stage-one optimization. stage-two optimization.

Options Default Stage 1 use  Options Stage 2 changes

Limit _Acceptances 10000 25000 Limit _Acceptances 5000
Limit_Generated 99999 50000 Limit_Generated 10000

Cost Precision 1.6-18 1.E-9 User_Initial _Parameters True

Number Cost. Samples 5 3 User_Quench Param Scale[.] 30
Cost_ParameterScale Ratio 1.0 0.2

AcceptanceFrequencyModulus 100 25

GeneratedFrequencyModulus 10000 10 one or two significant figures of the effective Lagrangian
Reanneal Cost 1 4 (including the prefactor This estimate was based on final
ReannealParameters 1 0 fits achieved with hundreds of thousands of generated states.
SMALL FLOAT 1.0E-18 1.(E-30 Runs were permitted to continue for 50 000 generated states.

This very rapid convergence in these 30-dimensional spaces

ASA_LIB False True 4 h . .
QUENCH_COST False True was partially due to the invocation of the centering mecha-
nism.

UENCH_PARAMETERS False True . . .
SOST FILE True False Some tests with SMNI parameters off the diagonal in
NO P,_ARAM TEMP_TEST False True M space, as established by the centering mechanism, con-
N07COST TIEMP T]EST Fal - firmed that ASA converged back to this diagonal, but requir-
TIMiE CAI:C - False True ing many more generated states. Of course, an examination
ASA PRINT. MORE False _I_r“e of the Lagrangian shows this trivially, as noted in previous

_ _ alse rue

paperd 3,4], wherein the Lagrangian values were on the or-
der of 1871, compared to 10°-10 37! along the diag-
onal established by the centering mechanism.

numbered (even-numbered sites refer to the left(right)
brain. 2. Second-stage optimization

] The second-stage optimization was invoked to minimize
B. ASA tuning the number of generated states that would have been required
A three-stage optimization was performed for each of 60f only the first-stage optimization were performed. Table IV
data sets ifa_n,a. m,a n,c_ 1, c. m,c_n} of ten sub- gives the changes made in the options from stage one for
jects. As described previously, each of these data sets ha&dage two.
five parameters for each SMNI electrode-site model in The final stage-one parameters were used as the initial
{F3, F4,T7,T8, P7, P8 i.e., 30 parameters for each of the starting parameters for stage twEAt high annealing or
optimization runs, to be fit to over 400 pieces of potentialquenching temperatures at the start of an SA run, it typically
data. is not important as to what the initial values of the param-
For each stage generated in the fit, prior to calculating th&ters are, provided of course that they satisfy all constraints,
Lagrangian, tests were performed to ensure that all shorgtc) The second-stage minimum of each parameter was cho-
ranged and long-ranged firings lay in their physical bound-sen to be the maximum lower bound of the first-stage mini-
aries. When this test failed, the generated state was simpjpum and a 20% increase of that minimum. The second-stage
excluded from the parameter space for further consideratiormaximum of each parameter was chosen to be the minimum
This is a standard simulated-annealing technique to handlepper bound of the first-stage maximum and a 20% decrease

complex constraints. of that maximum. Extreme quenching was turned on for the
parametergnot for the cost temperatureat values of the
1. First-stage optimization parameter dimension of 30, increased fronifdr rigorous

annealing. This worked very well, typically achieving the
lobal minimum with 1000 generated states. Runs were per-
é'nitted to continue for 10 000 generated states.

The first-stage optimization used ASA, version 13.1,
tuned to give reasonable performance by examining interm
diate results of several sample runs in detail. Table Il give
those options changed from their defau{&ee the Appendix
for a discussion of ASA options.

The ranges of the parameters were decided as follows. The third-stage optimization used a quasilocal code, the
The ranges of the strength of the long-range connectivitieBroyden-Fletcher-Goldfarb-Shan8FGS algorithm [85],

d, were from 0 to 1. The ranges of tHe,b,c} parameters to gain an extra two or three figures of precision in the global
were decided by using minimum and maximum values ofminimum. This typically took several hundred states, and
M€ andM*© firings to keep the potential variable within the runs were permitted to continue for 500 generated states.
minimum and maximum values of the experimentally mea-Constraints were enforced by the method of penalties added
sured potential at each electrode site. to the cost function outside the constraints.

Using the above ASA options and ranges of parameters, it The BFGS code typically got stuck in a local minimum
was found that typically within several thousand generatedjuite early if invoked just after the first-stage optimization.
states, the global minimum was approached within at leadfThere never was a reasonable chance of getting close to the

3. Third-stage optimization
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global minimum using the BFGS code as a first-stage opti- 0.30
mizer) These fits were much more efficient than those in a
previous 1991 study13], where VFSR, the precursor code 0.5 -
to ASA, was used for a long stage-one optimization which
was then turned over to BFGS. 0.20 |
C. Results
0.15

Figures 1-3 compares the CMI to raw data for an alco-
holic subject for the al, a.m, and an paradigms. Figures 5 0.10 }
4—6 gives similar comparisons for a control subject for the T
c_1, c.m, and cn paradigms. The SMNI CMI give better g 0.05 ¢
signal-to-noise resolution than the raw data, especially com- “E’
paring the significant matching tasks between the control and 8 0.00

the alcoholic groups, e.g., them and am paradigms. The
CMI can be processed further as is the raw data, and also ~ “0-05 |
used to calculate “energy” and “information-entropy” den-
sities. Similar results are seen for other subj¢8ts.

-0.10 +

-0.15
V. CONCLUSIONS

. -0.20 \ ) . . L \ .
A. CMI and linear models 0.10 0.15 020 025 0.30 0.35 0.40 0.45 0.50

It is clear that the CMI follow the measured potential time (sec)
variables closely. In large part, this is due to the prominent
attractors near the firing stat&® being close to their ori-
gins, resulting in moderate threshold functid®$ in these 10.0
regions. This keeps the term in the drifts proportional to

tantF© near its lowest values, yielding values of the drifts on 8o

the order of the time derivatives of the potentials. The diffu- 60 )
sions, proportional to se&t¥, also do not fluctuate to very 40 | N 4
large values. ool i 1

However, when the feedback among potentials under

electrode sites are strong, leading to enhangemhlineaj - 00| ]
changes in the drifts and diffusions, then these do cause rela-3 2.0 |

fuvely largest S|gnals in the CMI relative to those appearing 7_,,’ 40 |

in the raw potentials. Thus, these effects are strongest in the@

c_m sets of data, where the contiglorma) subjects dem- S 6.0 ¢

onstrate more intense circuitry interactions among electrode‘g -8.0 |

sites during the matching paradigm. 100
These results also support independent studies of prima-

rily long-ranged EEG activity, that have concluded that EEG

many times appears to demonstrate quasilinear interactions  -14.0

[39,86. However, it must be noted that this is only true 16.0 -

within the confines of an attractor of highly nonlinear short-

ranged columnar interactions. It requires some effort, e.g.,

global optimization qf a rc.)bu'st mqltlvarlate stochastlc'non— -20.%.1 0 015 020 055 0.80 035 0';10 045 050

linear system to achieve finding this attractor. Theoretically, time (sec)

using the SMNI model, this is performed using the ASA

code. Presumably, the neocortical system utilizes neuro-

modular controls to achieve this attractor st{§&,78, as FIG. 1. For the initial stimulus_1 paradigm for alcoholic sub-

suggested in early SMNI studi¢s,4]. ject c02a0000364, plots are given of activities under six electrodes

of the CMI in the upper figure, and of the electric potential in the
B. CMI features lower figure.

Essential features of the SMNI CMI approach &ag a
realistic SMNI model, clearly capable of modeling EEG phe-averaged potential data, af¢) a novel and sensitive mea-
nomena, is used, including both long-ranged columnar intersure CMI, is used, which has been shown to be successful in
actions across electrode sites and short-ranged columnar ienhancing resolution of signals in another stochastic multi-
teractions under each electrode sit®, the data is used raw variate time series system, financial mark&,22. As was
for the nonlinear model, and only after the fits are momentperformed in those studies, future SMNI projects can simi-
(averages and variangetaken of the derived CMI indica- larly use recursive ASA optimization, with an inner-shell
tors; this is unlike other studies that most often start withfitting CMI of subjects’ EEG, embedded in an outer shell of

-12.0 -

-18.0 +
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0.10 0.15 020 0.25 0.30 0.35 0.40 0.45 0.50 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
time (sec) time (sec)
FIG. 2. For the match second stimulasm paradigm for alco- FIG. 3. For the no-match second stimulasn paradigm for

holic subject co2a0000364, plots are given of activities under sixlcoholic subject co2a0000364, plots are given of activities under
electrodes of the CMI in the upper figure, and of the electric potenSix electrodes of the CMI in the upper figure, and of the electric
tial in the lower figure. potential in the lower figure.

parametrized customized clinicianssl-type rules acting on
the CMI, to create supplemental decision aids.

Canonical momenta offer an intuitive yet detailed coordi-
nate system of some complex systems amenable to modeling
by methods of nonlinear nonequilibrium multivariate statis-
tical mechanics. These can be used as reasonable indicatorsGlobal ASA optimization, fitting the nonlinearities inher-
of new and/or strong trends of behavior, upon which reasonent in the synergistic contributions from short-ranged colum-
able decisions and actions can be based, and therefore cantt firings and from long-ranged fibers, makes it possible to

considered as important supplemental aids to other clinical
indicators.

C. CMI and source localization
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time (sec) time (sec)
FIG. 4. For the initial stimulus _1 paradigm for control subject FIG. 5. For the match second stimulasm paradigm for con-

€02c0000337, plots are given of activities under six electrodes ofrol subject co2c0000337, plots are given of activities under six
the CMI in the upper figure, and of the electric potential in the electrodes of the CMI in the upper figure, and of the electric poten-
lower figure. tial in the lower figure.

disentangle their contributions to some specific electrode cirmore electrodes can be added to such studies with the goal
cuitries among columnar firings under regions separated bleing to have ASA fits determine the optimal circuitry.

cm, at least to the degree that the CMI clearly offer superior It is clear that future SMNI projects should integrate cur-
signal to noise than the raw data. Thus this paper at leasent modeling technologies together with the CMI. For ex-
establishes the utility of the CMI for EEG analyses, whichample, one approach for adding CMI to this set of tools
can be used to complement other EEG modeling techniquegould be to use source-localization techniques to generate
In this paper, a plausible circuitry was first hypothesigleyl ~ simulated macrocolumnar cortical potentigiffectively a

a group of experds and it remains to be seen just how many best fit of source-generated potentials to raw scalp)data
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0.30 . . . : : , , derived CMI add much additional information to these local-
ization analyses.
0.25 | .
D. SMNI features
020 1 Sets of EEG data taken during selective attention tasks
015 | il have been fit using parameters either set to experimentally
. observed values, or have been fit within experimentally ob-
3 010 L ] served values. The ranges of columnar firings are consistent
= with a centering mechanism derived for STM in earlier pa-
£ o005t 1 pers.
& These results, in addition to their importance in reason-
g 0.00 | 1 ably modeling EEG with SMNI, also have a deeper theoret-
€ ical importance with respect to the scaling of neocortical
-0.05 1 mechanisms of interaction across disparate spatial scales and
behavioral phenomena: As has been pointed out previously,
-0.10 ¢ 7 SMNI has given experimental support to the derivation of
the mesoscopic probability distribution, illustrating common
-0.15 ¢ ] forms of interactions between their entities, i.e., neurons and
columns of neurons, respectively. The nonlinear threshold
020 515 020 025 030 035 0.40 045 050 factors are defined in terms of electrical-chemical synaptic
time (sec) and neuronal parameters all lying within their experimentally
observed ranges. It also was noted that the most likely tra-
jectories of the mesoscopic probability distribution, repre-
senting averages over columnar domains, give a description
50 ' ' ' ' ' ' of the systematics of macroscopic EEG in accordance with
experimental observations. It has been demonstrated that the
8ot macroscopic regional probability distribution can be derived
10l to have the same functional form as the mesoscopic distribu-
) tion, where the macroscopic drifts and diffusions of the po-
a0l tentials described by thé's are simply linearly related to
’ the (nonlineaj mesoscopic drifts and diffusions of the co-

lumnar firing states given by th&1®’s. Then, this macro-
scopic probability distribution gives a reasonable description
of experimentally observed EEG.

The theoretical and experimental importance of specific
scaling of interactions in the neocortex has been quantita-
tively demonstrated on individual brains. The explicit alge-
braic form of the probability distribution for mesoscopic co-
lumnar interactions is driven by a nonlinear threshold factor
of the same form taken to describe microscopic neuronal
interactions, in terms of electrical-chemical synaptic and
130 | | neuronal parameters all lying within their experimentally ob-
served ranges; these threshold factors largely determine the
15.0 . . . . . . . nature of the drifts and diffusions of the system. This meso-

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 scopic probability distribution has successfully described
time (sec) STM phenomena and, when used as a basis to derive the
most likely trajectories using the Euler-Lagrange variational

FIG. 6. For the no-match second stimulasn paradigm for — equations, it also has described the systematics of EEG phe-
control subject co2c0000337, plots are given of activities under sibnomena. In this paper, the mesoscopic form of the full prob-
electrodes of the CMI in the upper figure, and of the electric potenability distribution has been taken more seriously for macro-
tial in the lower figure. scopic interactions, deriving macroscopic drifts and

diffusions linearly related to sums of theimonlineaj meso-

scopic counterparts, scaling its variables to describe interac-
determine the CMI. The CMI then can provide further dis-tions among regional interactions correlated with observed
entanglement of short-ranged and long-ranged interactions &ectrical activities measured by electrode recordings of
determine most likely circuit dynamics. Since source local-scalp EEG, with apparent success. These results give strong
ization often is a nonunique process, this may provide amuantitative support for an accurate intuitive picture, portray-
iterative approach to aid finer source localization. That isjng neocortical interactions as having common algebraic or
SMNI is a nonlinear stochastic model based on realistic neuphysics mechanisms that scale across quite disparate spatial
ronal interactions, and it is reasonable to assume that th&cales and functional or behavioral phenomena, i.e., describ-

potentials (uV)
o
o

-11.0
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ing interactions among neurons, columns of neurons, andut of it. All the generating and acceptance distributions de-

regional masses of neurons. pend on temperatures.
In 1984[89], it was established that SA possessed a proof
E. Summary that, by carefully controlling the rates of cooling of tempera-

tures, it could statistically find the best minimum, e.g., the
- e . . “lowest valley of our example above. This was good news for
Sal out Olf the_ br;msethm iEG dat?' in t?rms_ of phyS|ca_I eople trying to solve hard problems which could not be
ynamical vanables, than by merely periorming regressiory . q y by other algorithms. The bad news was that the guar-

stsnsttlcalmarl]a)l(ysest onq cci)::a;[/?tralljlva}nﬁbi?sﬁ -Ircr)n I%arln mor%ntee was only good if they were willing to run SA forever.
about complex Systems, Inevitably functional moaels must,, 1987, a method of fast annealin§A) was developed

be formed to represent huge sets of data. Indeed, modeli 0], which permitted lowering the temperature exponen-

phe_nom”ene:_ls asfmuch a clo(;ne;;s;one of 20th century scien Slly faster, thereby statistically guaranteeing that the mini-
as is collection of empirical da{7], mum could be found in some finite time. However, that time
&iill could be quite long. Shortly thereafter, very fast simu-

sirability of developing Gaussian-Markovian statistics at theIated reannealing was developE24], now called adaptive

mesoscopic colu_mngr_ scale_ from microscopic neuronal INterSimulated annealing, which is exponentially faster than FA.
actions, and maintaining this type of system up to the mac

roscopic regional scale. That is, this permits maximal pro _ASA has been applied to many problems by many people
cessing of informatiof73]. There is much work to be done, In many discipline$26,27,91. The feedback of many users

o . regularly scrutinizing the source code ensures its soundness
but modern methods of statistical mechanics have helped tgsgit beZomes moregflexible and powerfas]
point the way to promising approaches. '

SMNI is a reasonable approach to extracting more *“sig

2. Mathematical outlin
ACKNOWLEDGMENTS athematicat outine

, ) ) ASA considers a parametc‘zajk in dimensioni generated
Data was collected by Henri Begleiter and associates af; annealing timé with the range

the Neurodynamics Laboratory at the State University of

New York Health Center at Brooklyn, and prepared by a’LE[Ai,Bi]’ (A1)
David Chorlian. Calculations were performed on a Sun

SPARC 20 at the University of Oregon, Eugene, courtesy otalculated with the random variabyé,

the Department of Psychology, consuming about 200 CPU

hours. 1= Ty (Bi—A),
APPENDIX: ADAPTIVE SIMULATED ANNEALING  (ASA) y'e[-11]. (A2)
1. General description The generating functiog+(y) is defined,
Simulated annealingSA) was developed in 1983 to deal D

i . . 1 6
with highly nonlinear problem$88], as an extension of a = = i(yi
Monte Carlo importance-sampling technique developed in grly) |H1 2(]y'[+T)In(1+1/T;) i[[l oY), (A3)
1953 for chemical physics problems. It helps to visualize the

prob]ems presented by such Comp|ex Systems as a gewere the SUbSCI’irjtonTi SpeCifieS the parameterindex, and
graphical terrain. For example, consider a mountain rangdhe k dependence iff;(k) for the annealing schedule has
with two “parameters"’ e.g., a|ong the North-South and l:.)eer? dropped for breVity. Its cumulative probablllty distribu-
East-West directions, with the goal to find the lowest valleytion IS

in this terrain. SA approaches this problem similar to using a
bouncing ball that can bounce over mountains from valley to

1 D o )
GT(y)=fy fy dy't---dy'Pgr(y") =11 Gy,
— -1 =1

valley. Start at a high “temperature,” where the temperature 1

is an SA parameter that mimics the effect of a fast moving

particle in a hot object like a hot molten metal, thereby per- S 1 sgr(y) In(1+]y'|/T)

mitting the ball to make very high bounces and being able to Gy = > + 5 n(1+1T) (A4)
|

bounce over any mountain to access any valley, given
enough bounces. As the temperature is made relativelyi

is generated from &' from the uniform distribution
colder, the ball cannot bounce so high, and it also can settle g

to become trapped in relatively smaller ranges of valleys. u'e U[0,1],
Imagine that a mountain range is aptly described by a
cost function.” Define probability distributions of the two yi=sgr{ul— %)Ti[(l_’_ln—i)\Zu'fl\_l]_ (A5)

directional parameters, called generating distributions since

they generate possible valleys or states to explore. Defing s straightforward to calculate that for an annealing sched-
another distribution, called the acceptance distributionye for T,

which depends on the difference of cost functions of the

present generated valley to be explored and the last saved Ti(k)=Toexp —ck'P), (AB)
lowest valley. The acceptance distribution decides probabi-

listically whether to stay in a new lower valley or to bounce a global minima statistically can be obtained. That is,
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> > [ D This simple calculation shows how the “curse of dimension-
1 |1 : ; ; : - .

> g~ H W K=o (A7)  ality” arises, and also gives a possible way of living with
ko ko [i=1 <IY'ICi this disease. In ASA, the influence of large dimensions be-

Control can be taken over, such that comes clearly focused on the exponential of the powsk of
being 1D, as the annealing required to properly sample the
space becomes prohibitively slow. So, if resources cannot be
Tsi=Toexp(—m;)  when ki=expn;), committed to properly sample the space, then for some sys-
tems perhaps the next best procedure may be to turn on

ci=miexp(—n;/D), (A8)  quenching, whereb®; can become on the order of the size

of number of dimensions.

The scale of the power of D/ temperature schedule used
for the acceptance function can be altered in a similar fash-
ion. However, this does not affect the annealing proof of

ASA, and so this may be used without damaging the sam-
ASA has over 100 options available for tuning. A few are pling property.
most relevant to this project.

wherem; and n; can be considered “free” parameters to
help tune ASA for specific problems.

3. ASA options

a. Reannealing c. Self-optimization

Whenever doing a multidimensional search in the course !f not much information is known about a particular sys-
of a complex nonlinear physical problem, inevitably oneteém, if the ASA defaults do not seem to work very well, and
must deal with different changing sensitivities of th&in if after a bit of experimentation it still is not clear how to
the search. At any given annealing time, the range oveselect values for some of the ASA options, then the
which the relatively insensitive parameters are beingSELF_OPTIMIZE options can be very useful. This sets up a
searched can be “stretched out” relative to the ranges of théop level search on the ASA options themselves, using crite-
more sensitive parameters. This can be accomplished by pda of the system as its own cost function, e.g., the best at-
riodically rescaling the annealing time essentially rean- tained optimal value of the system’s cost functigine cost
nealing, every hundred or so acceptance evémts@t some  function for the actual problem to be solyedr each given
user-defined modulus of the number of accepted or generategt of top level options, or the number of generated states
states, in terms of the sensitivities; calculated at the most required to reach a given value of the system’s cost function,
current minimum value of the cost functio@, etc. Since this can consume a lot of CPU resources, it is
recommended that only a few ASA options and a scaled
down system cost function or system data be selected for this

s,=dCloa'. (A9) \

options.

In terms of the largess;=Spay. a default rescaling is per-  Even if good results are being attained by ASA,

formed for each(i of each parameter dimension, Whereby aSELF_OPT”V“ZE can be used to find a more efficient set of

new indexk! is calculated from eack; ASA options. Self-optimization of such parameters can be
very useful for production runs of complex systems.

Ki—k{,  Tio=Ti(Smax!Si), d. Parallel code
k' =[In(T,o/Tic)/c;]° (A10) It is quite difficult to directly parallelize an SA algorithm
: .

[26], e.g., without incurring very restrictive constraints on
T,o is set to unity to begin the search, which is ample to spariemperature schedul¢82], or violating an associated sam-

each parameter dimension. pling proof[93]. However, the fat tail of ASA permits par-
allelization of developing generated states prior to subjecting
b. Quenching them to the acceptance t¢4#l]. The ASA_PARALLEL op-

Another adaptive feature of ASA is its ability to perform tIOI’!S proy|de parame‘gers to easily para”e"z‘? the code, using
various implementations, e.g., parallel virtual machine,

guenching in a methodical fashion. This is applied by noting

. shared memory, etc.
that the temperature schedule above can be redefined as The scale of parallelization afforded by ASA. without

Ti(ki)=T0ieXp(—CikiQ' D), violating its sampling proof, is given by a typical ratio of the _
number of generated to accepted states. Several experts in
¢, =mexp(—n;Q, /D), (A1) parallelization suggest that massive parallelization, e.g., on

the order of the human brain, may take place quite far into
in terms of the “quenching factorQ; . The sampling proof the f.uture, that this might be somewhat less useful for many
fails if Q;>1 as applications than previously thought, and that most useful
scales of parallelization might be on scales of order 10 to
D 1000. Depending on the specific problem, such scales are
2 H 1/kQi /D = 2 1KQi< o (A12) common in ASA optimization, and the ASA code can imple-
K K ment such parallelization.
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