
PHYSICAL REVIEW E APRIL 1997VOLUME 55, NUMBER 4
Statics, metastable states, and barriers in protein folding: A replica variational approach

Shoji Takada and Peter G. Wolynes
School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801
~Received 26 February 1996; revised manuscript received 15 August 1996!

Protein folding is analyzed using a replica variational formalism to investigate some free energy landscape
characteristics relevant for dynamics. A random contact interaction model that satisfies the minimum frustra-
tion principle is used to describe the coil-globule transition~characterized byTCG), glass transitions~by TA and
TK), and folding transition~by TF). Trapping on the free energy landscape is characterized by two character-
istic temperatures, one dynamic (TA) and the other static@TK (TA.TK)#, which are similar to those found in
mean field theories of the Potts glass.~i! AboveTA , the free energy landscape is monotonous and the polymer
is melted both dynamically and statically.~ii ! BetweenTA andTK , the melted phase is still dominant ther-
modynamically, but frozen metastable states, exponentially large in number, appear.~iii ! A few lowest minima
become thermodynamically dominant belowTK , where the polymer is totally frozen. In the temperature range
betweenTA and TK , barriers between metastable states are shown to grow with decreasing temperature,
suggesting super-Arrhenius behavior in a sufficiently large system. Due to evolutionary constraints on fast
folding, the folding temperatureTF is expected to be higher thanTK , but may or may not be higher than
TA . Diverse scenarios of the folding kinetics are discussed based on phase diagrams that take into account the
dynamical transition, as well as the static ones.@S1063-651X~97!11304-6#

PACS number~s!: 87.15.2v, 61.41.1e, 64.70.Pf
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I. INTRODUCTION

In recent years the problem of protein folding, name
how a biological molecule spontaneously organizes itself
der appropriate thermodynamic conditions, has becom
fertile field of investigation for statistical physics@1–4#. The
conceptual difficulty of finding the global free energy min
mum, or native structure, reliably in a short amount of tim
the so-calledLevinthal’s paradox@5#, has come to be under
stood as being related to the problem of broken ergodicit
glassy systems@6#. In the modern version of the parado
however, it is not the size of the configurational search al
that is relevant but rather the topography of the free ene
landscape. The size of the free energy barriers between
metastable states of a finite size heteropolymer determ
the local rate of exploration of the free energy landscape
addition, the global topography, in particular, whether th
is an energetic bias funneling@7# the molecule toward a na
tive structure, is also important to understand the fold
rate.

The earliest analytical approach to the problem captu
these two aspects of the problem—the multiple mini
problem and the guiding forces with the simplest descript
of the free energy landscape@8,9#. The ruggedness of the fre
energy surface was modeled by the random energy m
~REM! @10#. The REM is the simplest model of a syste
that, like a spin glass, is frustrated through the conflict
many competing randomly chosen interactions. A su
ciently large system with this free energy landscape w
shown to possess a Levinthal paradox in its folding. Mo
precisely, at a characteristic glass transition tempera
TK , while the system may thermodynamically prefer to be
a unique configuration, the time to search for it would sc
exponentially in the system size.~‘‘ K ’’ of TK denotes Kauz-
mann, who attracted notice to the entropy crisis as the or
of the glass transition@11#. See below for more details.! Pro-
teins are finite, however, so it is a quantitative issue whe
551063-651X/97/55~4!/4562~16!/$10.00
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such a system can fold on relevant biological time sca
Buttressed by this asymptotic argument, but also call
upon observed regularities in protein structure, Bryngels
and Wolynes argued that most proteins are not random
additionally satisfy a principle of minimal frustration, so th
conflicts in attempting to satisfy individual interactions a
less than expected, allowing a transition to a unique confi
ration at a folding temperatureTF higher thanTK . The co-
herent part of the interactions could be taken into accoun
the statics by introducing a conventional order parameter
folding, as in mean field theory. For a small system this or
parameter can also act as an approximate global reac
coordinate for describing the self-organization process@9#.
This relatively simple framework can be elaborated to ta
into account additional order parameters for folding, such
local secondary structure formation@12# and recently corre-
lations in the free energy landscape@13#. The framework and
the resulting mechanistic scenarios are also quite usefu
organizing the discussions of many experiments@1#.

Another significant thread in the statistical physics of p
tein folding has been provided by theories that use the r
lica technology of spin glass theory@6# along with polymer
physics to understand the free energy landscape@14–19#.
Garel and Orland@14#, as well as Shakhnovich and Guti
@15#, studied random heteropolymers using the traditio
polymeric virial expansion Hamiltonian of a connected cha
incorporating a Gaussian random pair interaction. Th
workers showed the connection of the random heteropoly
thermodynamics with the phase transition of Potts glass@20#.
Qualitatively this was not entirely unexpected because
wide range of frustrated random systems without spe
symmetries falls in this universality class, which also i
cludes the REM model@20–23#. This work was relevant to
the ruggedness issues but not to the problem of guid
forces. Soon after this work, Sasai and Wolynes dealt w
three aspects—polymeric interaction, ruggedness of free
ergy landscape, and results of evolution—in one model@16#.
4562 © 1997 The American Physical Society
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55 4563STATICS, METASTABLE STATES, AND BARRIERS . . .
They employed a variational approach modeled on Fe
man’s polaron theory@24# in the replica space to analyze th
associative memory Hamiltonian@25#. ~i! This model has
explicit chain connectivity,~ii ! the target structure, i.e., th
native structure, included in the memory set~or data base!
provides a route to incorporate the role of principle of mi
mal frustration, while~iii ! memories other than the targ
induce ruggedness in the free energy landscape. Very
cently, Ramanathan and Shakhnovich shed light on effec
the evolutionary constraint of minimal frustration in mo
detail@17#. Instead of assuming the pronounced energy gaa
priori , they represented evolution as a process that yie
sequences distributed according to a Boltzmann distribu
for a fixed target structure. Their theory shows that it is p
sible to have an energy gap large enough to stabilize
native structure only by choosing the sequence appropria
although it is not clear if nature actually used such a
quence selection mechanism or not. An alternative rout
minimal frustration called ‘‘imprinting’’ has also been dis
cussed by Pandeet al. @18#, which finally gives almost same
result as@17#.

Levinthal’s paradox makes it clear that the conceptual
sues of the folding problem revolve onkineticsin at least a
semiquantitative fashion. Theory and many simulatio
@26,27# in concurrence suggest that real proteins fold bel
their folding temperatureTF but somewhat above the~static!
glass phase transition temperatureTK . Thus, to understand
the kinetics of folding, a microscopic description of the fr
energy landscape aboveTK is indispensable. Is the effectiv
free energy landscape monotonous and smooth aboveTK?
We claim no. Even aboveTK there are a number of loca
minima lasting many vibrational periods~Rouse relaxation
times! in the free energy landscape. Although the variatio
solution corresponding with the melt phase dominates
formal Boltzmann average, actually a protein is dynamica
trapped and feels some of the ruggedness of the free en
landscape and thus kinetics would strongly be affected by
presence of local minima. Then the next question that ar
concerns the barrier heights between these local minima
cause these barrier heights determine the kinetics. We s
that barrier heights grow with decreasing temperature u
TK is reached, which directly leads us to the super-Arrhen
activation behavior in this temperature regime.

To make this analysis we utilize recently developed id
in the spin glass theory, especially for the Potts-type s
glass@22,23,28,29#. In a series of papers, Kirkpatrick, Thiru
malai, and Wolynes, working on models of structural glas
@21#, p-spin interaction model glasses (p.2) @22#, and the
Potts glasses with more than four components@23#, made the
following observations.~i! The phase transition temperatu
TA obtained by the dynamical theory, i.e., mode-mode c
pling theory based on Langevin dynamics, is higher than
TK obtained by the static theory, i.e., the ordinary repl
method. ~ii ! As temperature decreases, starting from
paramagnetic phase, solutions of the Thouless-Ander
Palmer~TAP! equations@30# ~except the paramagnetic on!
appear exactly atTA ~see Fig. 1!. ~iii ! ForTA.T.TK , many
metastable states are separated by high barriers and ther
have a long lifetime. Thus activated transport is the typi
picture in this range~‘‘ A’’ of TA denotes ‘‘activation’’!. ~iv!
The overlap order parameterq in the same group of 1 leve
-

e-
of

s
n
-
e
ly,
-
to

-

s

l
e
y
rgy
e
es
e-
ow
til
s

s
in

s

-
e

e
n-

fore
l

replica symmetry breaking~RSB! takes a discontinuous
jump atTK , which reminds us of a first order phase tran
tion in the order parameter, but the transition looks seco
order in that, thermodynamically, there is no latent he
~This was known and well understood in the case of REM!
They called this class of phase transitionsrandom first order
phase transitions. Crisanti and Sommers found essentia
the same behavior in thep-spin spherical model@28#, which
buttresses the case that this type of behavior, very diffe
from that of the Sherrington-Kirkpatrick model, is quite un
versal for systems without inversion symmetry. Using t
p-spin spherical model Kurchan, Parisi, and Virasoro s
ceeded in describing the metastable states in greater d
and the barriers between them in the replica formalism@29#,
which we use in this paper. This formalism for describi
metastable states has some forbidding aspects. Like the e
librium replica technique, there are steps involving analyti
continuation to apparently nonphysical values of repl
number. More work to clarify the techniques would be we
come, but the physical content seems very much in keep
with a transition driven by configurational entropy. Barri
heights are determined by a competition between the num
of available states and the energetic advantage that a poly
can achieve in a particular lower minimum. The results
barrier heights are the main focus of this paper.

In this paper we employ the contact interaction mod
used in@15# with the principle of minimal frustration imple-
mented at the level of@16#. Methodologically, we rely on the
replica variational approach of Sasai and Wolynes, but
tend the interpretation to the level of Kurchan, Parisi, a
Virasoro@29# for metastable states and barriers. These me
ods are summarized in Sec. II. In Sec. III, we introduce so
approximations so that we can derive expressions for the
energy in as simple a form as possible. These expression
used in Sec. IV to locate the phase transitions between
ferent phases. We derive explicit expressions for four ph
transition temperatures, the coil-globule transition tempe

FIG. 1. Schematic view of the TAP free energy landscape w
the Boltzmann distribution plots.~a! Above TA , the free energy
landscape is monotonous.~b! At TA.T.TK , the free energy land-
scape has a number of minima, and a collection of metastable s
contributes to the Boltzmann average, which corresponds to
replica symmetric solutionFRS. ~c! Below TK , the free energy
landscape has a number of minima but only a few lowest st
dominate the Boltzmann average, which is calculated by the R
solutionFRSB.
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4564 55SHOJI TAKADA AND PETER G. WOLYNES
ture TCG, the folding temperatureTF , the dynamical glass
temperatureTA , and the static glass temperatureTK . In par-
ticular, the ruggedness of the free energy landscape is c
acterized by two critical temperatures of freezing,TA and
TK , as in the case of Potts glass. In Sec. V we draw ph
diagrams with fairly diverse states and discuss several
narios of the folding kinetics, which can be thought of as
refined version of the scenarios given in@1#. Complete but
somewhat messy expressions for the free energy are give
the Appendix.

II. REPLICA VARIATIONAL APPROACH

A. Model

The model we present here, while different from that us
by Sasai and Wolynes@16#, is motivated by it. Our main goa
in this section is to show how a model with short range~in
space! interaction can be treated with the same formalism
the long range associative memory model.

As a simple model of protein, we start with a standa
beads-type Hamiltonian, which includes the interaction
tween monomers in the form of the virial expansion,

H5kBT(
i

~r i112r i !
2

2a2
1
v
2(
iÞ j

bi jd~r i2r j !

1c
v2

6 (
iÞ jÞk

d~r i2r j !d~r j2r k!, ~1!

where r i represents a carbon of each amino aci
( i51, . . . ,N), a is the Kuhn length@31#, v represents finite
resolution of space~see below!, andbi j andc are the second
and third virial coefficients, respectively. Depending on t
type of amino acids, individualbi j have apparently random
values, whose distribution will be given below. We assu
the spatial resolution isv1/3 and so any function is smeare
out within this scale. Therefore,d(0)5v21. The above
Hamiltonian itself is directly suitable to the random he
eropolymer, as was used in@15#.

Since a protein can fold because of its specific seque
it is indispensable to incorporate the principle of minim
frustration, as was mentioned in the Introduction. The k
idea here is that the energy of ground state, which co
sponds to the target structure defined by amino acid posit
$r i

T% of the native state, depends strongly on the spec
sequence of amino acids, while properties of non-na
structures can well be modeled by the random interac
between amino acids. In other words, the energy of the
tive structure is non-self-averaging, while most others t
are structurally unrelated are self-averaging. This is s
ported by numerical enumeration of all the compact state
the lattice 27-mer@27#. Using a measure of nativeness@50#,

q5
v
N(

i
d~r i2r i

T!, ~2!

we rewrite the above Hamiltonian separating the non-s
averaging part from the others,
ar-
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H5kBT(
i

~r i112r i !
2

2a2
1~12q!

v
2(
iÞ j

bi jd~r i2r j !

1~12q!c
v2

6 (
iÞ jÞk

d~r i2r j !d~r j2r k!1qET, ~3!

where

qET5
v
N(

i
d~r i2r i

T!Fv2(
iÞ j

bi jd~r i2r j !1c
v2

6

3 (
iÞ jÞk

d~r i2r j !d~r j2r k!G . ~4!

Here we introduce an approximation,

qET.
v
N(

i
d~r i2r i

T!Fv2(
iÞ j

bi jd~r i
T2r j

T!

1c
v2

6 (
iÞ jÞk

d~r i
T2r j

T!d~r j
T2r k

T!G , ~5!

which is exact either when the system is in the native str
ture or when the system is totally uncorrelated to the na
structure. In Eq.~3!, the second and third terms are assum
to be self-averaging, while the last term is non-se
averaging.After the non-self-averaging term representi
minimal frustration of the target structure is taken into a
count, the interaction energiesbi j in Eq. ~3! may be modeled,
as was mentioned, by Gaussian random variables with p
ability distribution,

P~bi j !5~2pb2!21/2exp@2~bi j2b0!
2/2b2#. ~6!

Note that we donot take an average ofbi j in Eq. ~5!, which
are thought as sequence specific. Equations~3!, ~5!, and~6!
define the model, in which parametersT, b0, b, andE

T play
central roles.

Here, we should bear in mind that the virial expansion
as is well-known, good for extended states such as the
dom coil state but not very accurate for highly collaps
states, in which we are mainly interested. Thus, the pres
thermodynamic description of the radius of polymer, in p
ticular, may not be particularly accurate.

B. Replica variational formalism and mean field approximation

We summarize the variational polaron approach in rep
space used earlier@16#. We calculate the free energ
@F#av52kBT@ lnZ#av averaged over the random bond inte
action bi j with probability distribution Eq.~6!, where @ #av
means the average overbi j andZ is the canonical partition
function. To avoid the difficulty of taking an average o
lnZ, the replica trick@6# utilizes a mathematical identity
lnx5limn→0(x

n21)/n. Thus,

2b@F#av5@ lnZ#av5 lim
n→0

@Zn# av21

n
. ~7!

We then concentrate on@Zn#av, which is explicitly given as
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@Zn#av5E )
i. j

@dbi j P~bi j !#E )
a51

n

Dr iae2b(
a

H~$r i
a%!, ~8!

where

Dr i[)
i
dr idS (

i
r i D . ~9!

Thed function in the above equation is used to fix the cen
of mass at the origin. Since the integrand in Eq.~8! is a
Gaussian function with respect tobi j , we can integratebi j
out at the beginning to get

@Zn#av5E )
a
Dr iae2bHeff. ~10!

The effective Hamiltonian here is of the form

Heff5H01H11H2 , ~11!

each term of which is given as

H05kBT(
a,i

~r i11
a 2r i

a!2

2a2
, ~12!

H15(
a

qaE
T1(

a

v
2Fb0~12qa!2

bb2

2
~12qa!2G

3(
iÞ j

d~r i
a2r j

a!1c
v2

6 (
a

~12qa!

3 (
iÞ jÞk

d~r i
a2r j

a!d~r j
a2r k

a! ~13!

and

H252
bb2v2

4 (
aÞb

~12qa!~12qb!

3(
iÞ j

d~r i
a2r j

a!d~r i
b2r j

b!. ~14!

H0 maintains the polymeric chain connectivity,H1 includes
the one-replica part, andH2 represents the inter-replica in
teraction. Obviously, the latter term is the driving force
the RSB.

Integration over the vast configuration space in Eq.~10! is
too complicated to execute exactly. So, we generalize
variational principle well-known in the statistical physic
@34# to replica space; For any reference Hamiltoni
H ref($r i

a%), we have an inequality relation,

Fvar[F ref1^Heff2H ref&>Feff , ~15!

where

2bF ref5 lnZref5 lnE )
a
Dr iae2bHref,

2bFeff5 ln@Zn# av and^•••& means an expectation value fo
the HamiltonianH ref . This inequality holds before we take
r

e

limit n→0. Using this principle we optimizeFvar with re-
spect to order parameters included in the reference Ha
tonian. With the optimizedFvar* , we get an estimate of the
free energy we are seeking,@F#av5 limn→0Feff /n
. limn→0Fvar* /n.

Reference trial functions need to be simple enough to l
to a soluble partition function but flexible enough to inclu
order parameters which characterize all relevant phase t
sitions. The coil-globule transition, the folding transitio
and the glass transition can be characterized by the radiu
gyration, by a fluctuation scale around the native structu
and by an inter-replica correlation~Debye-Waller factor in
the glass phase!, respectively. A natural choice for a refe
ence Hamiltonian is

bH ref5A(
a,i

~r i11
a 2r i

a!21B(
a,i

~r i
a!21C(

a,i
~r i

a2r i
T!2

1D (
aÞb,i

dab~r i
a2r i

b!2, ~16!

whereA5(2a2)21 and allB, C, D, anddab are free param-
eters to be optimized based on the variational principle
~15!. Once these parameters are optimized, they play the
of the global order parameters;B, C, D, anddab represents
the radius of gyration, fluctuation around the native structu
inter-replica correlation, and the mode of RSB, respective

As for the mode of RSB, we rely on analogy to the Po
glass with components more than 4. As we mentioned, m
other models exhibit the same type of RSB and this is
lieved to be quite universal for the system without inversi
symmetry. In this class of systems, one level of Parisi’s R
scheme has been shown to be sufficient to describe the s
and metastable states@29# and we concentrate on this level o
description in this paper. Then,n replicas are divided into
n/m groups, each of which has sizem and the matrix ele-
mentdab is 1 if a andb (aÞb) belong to the same grou
and 0 otherwise.

C. Free energy

We just give an overview of the derivation and the e
pression for the variational free energyFvar defined in Eq.
~15! here. Detailed expressions may be found in the App
dix for completeness since these are not important to un
stand the present arguments. Physically, the free en
Fvar consists of three parts, a conformational entropy te
2nTS, a one-replica part̂H1& that contains the coheren
part of the interactions, which ultimately give a folding fun
nel as well as an effective homopolymer term, and the in
replica term^H2&, which is responsible for the random inte
action between monomers. We explain each of them.

In order to carry out the variational procedure we st
with the calculation ofZref , which is the same as that o
Sasai and Wolynes@16#. More details can be found in@16#.
We first diagonalizedab with respect to the replica index
Concentrating on each block of sizem, we get two type of
eigenmodes, a symmetric mode with the eigenvalueL150
~we call1 mode! andm21 degenerate asymmetric mod
with the eigenvalueL252m (2 mode!. With the diagonal-
ized replica indexm, we see that the integrand is just
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Gaussian function ofr i
m . The exponent is of the formA(m i j r i

mHi j
mr j

m , where the coefficient matrixHm (m56) is

H65S 2coshl621 21 0 0 ••• 0

21 2coshl6 21 0 ••• 0

0 21 2coshl6 21 ••• 0

•••

••• 21 2coshl6 21

••• 0 21 2coshl621
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hase
wherel6 is defined by 2coshl6521(B1C1L6D)/A. Thus,
it is straightforward, although complicated, to integrate o
configuration space and the result is represented in term
Gi j

6 , the inverse matrix ofH6. F ref is given as a function of
B, C, D, andm, the explicit formula of which is given in the
Appendix.

The conformational entropyS is expressed by

nTS52F ref1^H ref&2^H0&. ~17!

First, F ref is simply obtained asbF ref52 lnZref . Second,
^H ref& can be evaluated from the scaling argument. If
scale asr i→Azr i8 , the exponent of the integrand chang
bH ref(r i)→zbH ref(r i8) becauseH ref is a homogeneous qua
dratic function ofr i . Thus, taking a derivative of lnZref writ-
ten in terms ofr i8 with respect toz we get an expres
sion for ^H ref&. Finally, ^H0& is simply given by
^H0&52kBTA(] lnZref /]A). The conformational entropyS
expressed thus in terms of order parametersB, C, D, and
m is explicitly written in the Appendix.

For the estimate of̂H1&, we introduce an additional ap
proximation in the spirit of the mean field theory. Definin
the monomer densityra(r ) asra(r )[( id(r2r i

a), replacing
the expectation value of products by the products of exp
tation values~mean-field approximation!, we get

^H1&.(
a

^qa&ET1(
a

v
2 Fb0~12^qa&!2

bb2

2
~12^qa&!2G

3E ^ra~r !&2dr1c
v2

6 (
a

~12^qa&!E ^ra~r !&3dr .

~18!

In the same way, introducing the overlap order parame
function

Qab~r1 ,r2!5(
i

d~r12r i
a!d~r22r i

b!,

we can expressH2 as

^H2&.2
bb2v2

4 (
aÞb

~12^qa&!~12^qb&!

3E E dr1dr2^Qab~r1 ,r2!&
2. ~19!
r
of

e

c-

er

^ra&, ^q&, and^Qab& can be calculated by direct integratio
and are expressed in terms ofB, C, D, andm, which are
given in the Appendix. We note that it is possible to calc
late ^H1& and ^H2& without introducing these approxima
tions; the result becomes more complex but does not cha
the argument discussed in this paper. Therefore, we em
this approximation to get simpler expressions keeping
qualitative results unchanged. It is also advantageous to
these approximations in that it makes it easy to compare
results with those of Shakhnovich and Gutin@15#.

III. COIL, GLOBULE, GLASS, AND FOLDED PHASES

Although the above results are quite general, it is hard
grasp the physical picture directly from them without a
numerical work. Therefore, we introduce several other
proximations to get simple analytical expressions for fr
energy. We take a sort of self-consistent strategy in the
lowing way. First, we assume for each phase that one s
cific order parameter~or A) is much larger than the others
Second, using this inequality, we obtain an asymptotic
pression for the free energy and seek the stationary solu
with respect to order parameters for each phase. Finally,
confirm that the solution indeed satisfies the inequality
assumed.

The first approximation introduced is thatN@1 and most
of the nonextensive terms are ignored. This may actually
a severe approximation for practical work since proteins
mesoscopic and possess a considerable surface area.
we employ the simplest description of monomer density,
so-called volume approximation@32,33#; ^r(r )& is a positive
constantr inside the polymer and is zero outside. Thu
*rx(r )dr5Vrx5Nrx21, whereV is the total volume of the
polymer and x is an integer. Thirdly, we approximat
*^Qab&2dr1dr2 as ~see the Appendix!

E Qab
2 dr1dr2.NrS 4pGii

2

A D 23/2

~hereafter, we drop̂•••& for simplicity! for the casea and
b belonging to the same group of one-level RSB. For
other cases,Gii

2 is replaced bygi[1/m@Gii
11(m21)Gii

2#.
The other approximations we use are dependent on the p
we consider and will be explained below one by one.
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A. Coil and globule phases

The coil and globule phases may be characterized by
inequalityA@B,C,2mD. Assuming this inequality, we con
sider the radius of gyration defined by

R5AK (
a,i

r i
a2L Y nN, ~20!

and we get an asymptotic expression,

R25
3

4 F 1m 1

AA~B1C!
1
m21

m

1

AA~B1C12mD!
G .

Random-coil state should have the radiusR;N1/2a. Com-
bining it with the above equation we see thatB1C and
2mD are at most of orderN22A, which is consistent with
the inequality we assumed. In the same way, the rad
scales asR;N1/3a in the globule phase, which leads us
the estimateB1C;N24/3A and 2mD;N24/3A. Approxi-
mating that the polymer is roughly spherical with radiusR,
r can be related toR by

r5
N

~4/3!pR3 .

An estimate of the free energy is quite straightforward. Fi
starting from the full expression given in the Appendix, w
can derive an asymptotic expression for the entropic par

2TS5
3

4
NkBTF 1mAB1C

A
1
m21

m
AB1C12mD

A G ,
which is of orderO(N0) for the coil state and isO(N1/3) for
the globule state. Second, the inter-replica termH2 is of
orderO(N21/2) for the coil state andO(N0) for the globule
state and thus is negligible.

For convenience, we change the independent varia
from B, C, and 2mD to r, q, and 2mD. Then, we can easily
optimize 2mD andq to get the solution 2mD5q50 ~under
some conditions discussed below!, which leads to

R25
3

4

1

AA~B1C!
5S 3N

4pr D 2/3
and

2TS5
3

4
NkBTAB1C

A
}N1/3kBTr2/3.

The latter is of orderO(N0) for the coil state andO(N1/3) for
the globule state.

Thus, the free energy can be represented only as a f
tion of r as

FCG5N
v
2 S b02 bb2

2 D r1Nc
v2

6
r21N1/3pr2/3kBT/A, ~21!

where @•••#av in the left-hand side~LHS! is dropped for
simplicity andp is a constant of order unity, the value itse
(9/16)(4p/3)2/3is not important for the present purpose. T
first two terms are of the form of virial expansion with c
e

s

t,

es

c-

efficientsb02bb2/2 andc; the random interaction induce
an effective attraction proportional to 1/T. The third term
comes from entropy loss due to packing. Although the la
is nonextensive and is not important for many situations,
retain it because it will play important roles for some cas
as will be explained below.

B. Glass phase

Since the glass phase is characterized by small ther
fluctuations around individual minima, we assum
2mD@A@B,C. Using this relation we can straightfor
wardly obtain the asymptotic expression for the entro
contribution to the free energy as@16#,

2TS5
m21

m
NkBTF lnS 2mD

A D 3/22 3

2G .
This can be interpreted as a confinement entropy.

Next, let us consider the random interaction partH2.
Gii

2 behaves asA/(2mD) in the present limit and we hav
*Qab

2 dr1dr2.Nr(4p)23/2(2mD)3/2, because the casesa
andb belong to the same group of RSB and;0 otherwise.
Here, we have to take care of the finiteness of spatial re
lution as mentioned before. The above estimate holds o
when ur12r2u;Gii

2/A is of orderv1/3 or larger. Otherwise,
Qab should be replaced by thed function with d(0)5v21,
which gives*Qab

2 dr1dr2.Nrv21. To make the expression
continuous with respect to the order parameterD, we switch
two expressions when both take the same value. In summ

E Qab
2 dr1dr2

.H ~4p!23/2Nr~2mD!3/2 if ~2mD!3/2<~4p!3/2/v

Nrv21 otherwise.

In the same way as above, we change independent v
ables fromB, C, D, andm to r, q, 2mD, andm. We can
show thatq50 is stable unless the stability gap is too lar
and thus we can write down the free energy expression,

Fglass5N
v
2 S b02 bb2

2 D r1Nc
v2

6
r22N

bb2v2

4
~m21!

3H ~4p!23/2r~2mD!3/2

rv21 J
1N

m21

m
kBTF lnS 2mD

A D 3/22 3

2G , ~22!

where the upper~lower! term is taken when (2mD)3/2 is
smaller~larger! than (4p)3/2/v. The first two terms are thos
of virial expansion as above, the third term represents in
replica interaction and is the driving force for the RSB, a
the last term is obviously entropic.

C. Folded phase

The folded phase is characterized by a largeC, i.e., small
fluctuations around an ideal native structure and so we
sumeC@A,B,2mD. We can easily obtain an asymptot
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4568 55SHOJI TAKADA AND PETER G. WOLYNES
expression for the entropic part, as was done in@16#;
2TS.(3/2)NkBTln(C/A). The inter-replica part H2

has the replica-symmetric contribution,*Qab
2 dr1dr2

5(2p)23/2NrC3/2 for any pair ofa andb. Nativenessq in
this limit is obtained asq.v(C/p)3/2. Using this we change
independent variables fromB, C, and D to r, q, and
2mD.

We can show that 2mD50 is the stable solution and thu

F folded5N
v
2 Fb0~12q!2

bb2

2
~12q!2Gr1Nc

v2

6
~12q!r2

1qET1NkBTlnF S p

AD 3/2qv G
1N

rvbb2

4
223/2q~12q!2, ~23!

whereq;1. The first two terms, as is usual, have the form
a virial expansion, the third and fourth terms represent
enthalpy and entropy change due to folding, respectiv
The last term, coming from inter-replica interaction, tends
cancel out the effective attraction due to the randomness
peared in the first term because protein does not feel rand
ness when it precisely coincides with the native structure

In summary, Eqs.~21!, ~22!, and~23! are the expression
for the free energy for all relevant phases, which will be us
in the next sections.

IV. PHASE TRANSITIONS AND FREE ENERGY
LANDSCAPE

Since we have obtained simple enough expressions fo
free energies of several phases, we can now discuss
‘‘phase transitions’’ for finite systems. Our emphasis is
the description of ruggedness of the free energy landscap
has been argued repeatedly that there are a numbe
minima in the glass phase. We emphasize here, howe
that even above the~static! glass transition temperature th
appropriate free energy landscape has many minima w
affect folding kinetics drastically.

A. Coil-globule transition „collapse…

We first discuss the coil-globule phase transition based
the free energy expression Eq.~21! as a function of density
r (r>0). First of all, we ignore the third term, which i
smaller inN. Then, the lowest free energy is attained at
r*50 whenbeff[b02bb2/2.0, while it becomes positive

r*52
3

2cv S b02 bb2

2 D ~24!

whenbeff,0. Thus, the phase transition temperatureTCG is
determined by

b02
bCGb

2

2
50, ~25!

wherebCG51/(kBTCG). The third term in the free energ
~21! does not change this temperature significantly for su
ciently large polymer. There are two cases, however, wh
f
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the third term plays roles. First, for a short polymer at hi
temperature, the third term becomes dominant; this te
makes the globule state unstable and so the random
phase always appears in the limit of high temperature. S
ond, in the vicinity ofr50, the third term is the largest an
thus ]F/]rur50 is positive infinite and so the transition i
first order with very small barrierO(N21). We should men-
tion that extending the argument to include a nonunifo
description of the polymer leads us to a surface term of or
O(N2/3) @32#, which is not taken into account here. The thi
term here isO(N1/3), which is smaller than the surface ter
and so the reasoning leading to the first order phase tra
tion given here might not be appropriate. In any case,
coil-globule transition is a first order phase transition with
very small barrier and because of this it might be recogni
as a second-order-like transition by numerical simulations
in the laboratory.

B. Globule-glass transition

Next, we discuss the glass transition. First of all, we
r at r* given in Eq. ~24! @15#. Roughly, r* should not
change significantly after the collapse although, rigorou
speaking,r should be optimized simultaneously with th
other order parameters. Here, we should remember that
starting point was based on the virial expansion, which is
very accurate in any collapsed phase. Thus we feel that
virial approach will overemphasize density variations.r* in
the virial approximation changes too rapidly with the oth
thermodynamic parameters, which would be the case fo
more accurate homopolymer equation of states. Therefor
is better to fixr* by choosingc appropriately at this level of
description. In other words, we change from the independ
parameterc to r* . Qualitative features do not change ve
much by this prescription. Again this will be a most accura
description when strong collapse is favored by the h
mopolymeric part of the pair interactions.

We seek the saddle solutions ofFglass(m,X) @i.e.,
Eq. ~22!# with respect tom andX[(2mD)3/2. First, let us
minimize Fglass/(m21) with respect toX. Forgetting the
first two terms which are constant inX, we have two relevant
terms which have opposite effects. The third term, the d
ing force to stabilize the replica symmetry breaking solutio
tends to pushX to its maximum valueXmax5(4p)3/2v21.
See Fig. 2, in which a dotted line with ‘‘TlnX’’ corresponds
to the third term. On the other hand, the fourth term, t
entropy loss due to freezing, prefers smallX ~another dotted
line with ‘‘2bX’’ in Fig. 2!. At sufficiently high tempera-
ture, the fourth term, which is proportional toT, always
dominates and soX50 is the only stable solution, as is il
lustrated in the figure. At decreasing temperature, the th
term, which is inverse proportional toT, becomes importan
at largeX and, in addition to the solutionX50, a new solu-
tion X5Xmax becomes locally stable when

]Fglass

]X U
X5Xmax

50, ~26!

which gives
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b2b2r* vm
4

51. ~27!

We call this critical temperatureTA following @23#. For
structural and Potts spin glasses this is the transition t
perature predicted by mode coupling theory@21#. Below
TA , there are always two locally stable solutionsX50 and
X5Xmax, a melted phase and frozen phase, respectively.
should mention that Eq.~22! is derived under the assumptio
that D@A,B,C, which does not hold true for the solutio
X50 ~i.e., D50). Thus, we have to use the free ener
expression for the coil-globule phase keeping a small dep
dence onD. We findX50 is indeed a stable solution, at th
end.

Next, atT<TA , we optimize

F~m,Xmax!5
1

4
Nr* vS b02 bb2

2 D2
1

4
Nr* vbb2~m21!

1NkBT
m21

m
~ lnp8g23/2! ~28!

with respect tom, wherep8[(8p)3/2 andg[a3/v. (g rep-
resents flexibility of the chain and is about 5 for very flexib
chainlike protein@32,35#. The value ofp8 depends to some
extent on the approximations we use and thus we think
precise value is somewhat uncertain. Qualitative results
not affected by its value as long as it is of order unity.
discussing lattice model results we therefore treat it as
justable.! In the same way as above, the second and th
terms lead to effects in opposite directions~see Fig. 3!. The
stationarity condition,

]Fglass~m,Xmax!

]m
50, ~29!

FIG. 2. The free energy as a function ofX5(2mD)3/2. The
dotted curve with ‘‘TlnX’’ represents the third term of Eq.~22! and
the dotted curve with ‘‘2bX’’ corresponds to the fourth term
Three solid curves represent the sum of them for different temp
tures.T5TA is the critical temperature below which there is a min
mum atX5Xmax.
-

e

n-

ts
re
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leads us tom*52kBT/b(lnp8g23/2/r* v)1/2. Inserting this
into Eq. ~27! we get

kBTA5
b

2
Ar* v~ lnp8g23/2!. ~30!

At T5TA , mA*5 lnp8g23/2 is larger than unity, and so in
the ordinary replica formalism this solution has been igno
for the reason that it does not contribute to the Boltzma
average. Physically this means the configurational entrop
these local free energy minima is extensive atTA . Recently,
Kurchan, Parisi, and Virasoro@29# interpreted this solution
as yielding the metastable states in the case of thep-spin
spherical model. We follow their argument and allowm to
be larger than unity. Them* decreases linearly withT and
coincides with unity atT5TK defined by

kBTK5
b

2
A r* v

lnp8g23/2
. ~31!

Below this temperature, this frozen solution becomes do
nant in the Boltzmann average. The Kauzmann tempera
TK corresponds to the case where the configurational entr
of the basins reaches zero. Equation~31! is the same as tha
of Shakhnovich and Gutin@15# except that the estimates o
the entropy loss,kB(lnp8g23/2) here, are not the same.TK is
proportional to the randomness,b, and is inversely propor-
tional to the square root of the entropy loss, which is t
same dependence found by Bryngelson and Wolynes usi
statistical field version of Flory theory@8#. Moreover,TK is
proportional to the square root ofr* v, which represents the
packing fraction. This dependence is found in@13#. ~At
first glance, one may notice the difference by a factorA2
between the present result and that of Refs.@8,1#. This is
simply because of the difference in the definition of rando
ness, as will be discussed later.!

a-

FIG. 3. The free energy as a function ofm. The dotted curve
with ‘‘ T(m21)/m’’ represents the second term of Eq.~28! and the
dotted curve with ‘‘2b(m21)’’ corresponds to the third term
Three solid curves represent the sum of them for different temp
tures. T5TK corresponds to the critical temperature at whi
m*51.
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Let us estimate the free energy at the saddle solutions.
the solution withX50,

Fglobule* 5N
v
4 S b02 bb2

2 D r* , ~32!

while for the solution withX5Xmax,

Fglass* 5N
v
4 S b02 bb2

2 D r*2NbAr* v~ lnp8g23/2!

1NkBT~ lnp8g23/2!1
1

4
Nbb2r* v. ~33!

The energy difference between them has the simple form

Fglass* 2Fglobule* 5~ lnp8g23/2!NkBTKS TTK 1
TK
T

22D>0,

~34!

which touches zero atT5TK . It should be noted that in the
replica formalism the solution with the larger free ener
dominates the Boltzmann average whenm*,1 as is known
@6#; the solution with lower energy becomes dominant wh
m*.1. Therefore,Fglobule* dominates the thermal averag
aboveTK , while Fglass* becomes dominant belowTK .

Following Kurchan, Parisi, and Virasoro, we can estim
a lower bound for the free energy of transition states~TS!
between the lowest local minima in the temperature ra
TA.T.TK . We conjecture that the behavior of the RSB
our model is analogous to that of thep-spin spherical mode
and so the TS solution is again represented by one-level R
in the temperature range considered now. Then, the TS
lution (m‡,X‡) may be assigned to the one which mak
F/(m21) maximum with respect toX (X‡ in Fig. 2!. The
saddle condition gives

2ln
T

TA
2 ln

m‡

mA*
1mA*2m‡50 ~35!

and

X‡5
4~kBT!2~4p!3/2

m‡b2r* v2
. ~36!

The parameterm‡.1 indicates these are configurational e
tropy driven transitions. In general the parameterm,1 is
conjugate to the nonextensive complexity of states below
thermal transition, while herem‡.1 presumably represent
the fact that multiple escape routes are possible from
trapped state. The upper equation cannot be solved ana
cally in its general form. By the Taylor expansion arou
TA (T<TA) we get

DF‡[Fglass
‡ 2Fglass*

5NkBTA
mA*21

mA*11 S T2TA
TA

D 21OF S T2TA
TA

D 3G , ~37!

which clearly shows that barrier heights grow with decre
ing temperature starting from zero atT5TA . Obviously, this
temperature-dependent barrier height will give a no
or

n

e

e
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Arrhenius behavior in the kinetics, as is well-known in th
structural glass physics. Notice that this behavior is con
tent withTA being a sort of spinodal for the random minim

We also show a numerical estimate of the barrier heig
at TA.T.TK in Fig. 4. We solve Eq.~35! numerically for
m‡ and put it, together with Eq.~36!, into Eq. ~22!. Here,
barrier heights grow nearTA as was shown above and the
start decreasing. The latter is becauseX‡ in Eq. ~36! de-
creases with decreasing temperature and the approxima
2mD@A,B,C becomes worse. It is expected that real barr
heights grow monotonically. The value of the barrier heig
depends on the nonuniversal numberp8 and may not be
accurate; the naive choice ofp85(8p)3/2 gives
DF‡;1.0NkBTK at aroundTK , which is three times highe
than that estimated from the 27-mer lattice model by sim
lation @36#. A smaller valuep85(8p)3/2/5 gives a compa-
rable barrier height to the simulation;0.4NkBTK . We
should also note that the barrier height is always proportio
to the size of polymerN in the present description, whic
might be appropriate for relatively small proteins but is pro
ably not accurate for larger ones, where inhomogene
saddle points may dominate. This may also be the reason
naive estimate gives a larger barrier than the simulation.
will touch upon the latter case in Sec. V.

C. Globule-folded transition „fast folding…

To consider the folding transition we need a free ene
expression applicable in the whole range 0<q<1. As dis-
cussed above, the entropic term in the globule phase is s
and is negligible as the lowest approximation. Thus we s
ply interpolate the entropic term between two regimes, i
q;0 andq;1. Thus one uses a simple form@37#:

FCGF~q!5N
v
2 Fb0~12q!2

bb2

2
~12q!3Gr1Nc

v2

6
~12q!r2

1qET1NkBTln~p9gq11!, ~38!

wherep95(2p)3/2, the value of which should not be take
as very precise. We again fixr at r* given by Eq.~24! by

FIG. 4. The free energy barrier between the two lowest mini
as a function of temperature.
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choosingc appropriately. Typical free energy curves alo
order parameterq are drawn in Fig. 5, which clearly show
that the folding transition is the first order. Thus, the globu
folded phase transition is defined by the relation

FCGF~0!5FCGF~1!, ~39!

which now gives

2 1
8 r* vbFb

252udeTu1kBTFlnp9g, ~40!

whereTF is the folding temperature,bF51/(kBTF). We also
defined the energy gap~per monomer! deT between the na-
tive energy and the average energy of collapsed states b

deT5ET/N2r* vb0/4, ~41!

since the energy gapdeT is a more useful parameter tha
ET to represent the bias towards folding@38#. The LHS of
Eq. ~40! is the free energy of the globule, the first term in t
RHS is the energy in the native state, and the second ter
the entropy loss due to the folding.

The critical situation at which the free energy barrier f
the folding transition disappears is determined by the rela

]FCGF

]q U
q50

50, ~42!

which now leads toudeTu5kBTDp9g1 5
8 r* vbDb

2. Here
TD is the critical temperature below which downhill foldin
occurs andbD51/(kBTD).

Above this critical temperatureTD , folding takes place
over a free energy barrier. To think about it, we rewrite t
q-dependent part of the free energy as

FCGF/N5~deT2 1
8 r* vbb2!q2 1

4 r* vbb2~12q!3

1kBTln~p9gq11!1const.

FIG. 5. The free energy as a function of nativenessq for four
different temperatures.~i! T.TF , ~ii ! T5TF , the folding transition
temperature,~iii ! TF.T.TD , where folding occurs through th
activation process, and~iv! T5TD below which downhill folding
takes place.
-

is

n

The first term, mainly representing the enthalpy change
to the folding, is linearly decreasing with respect toq. On the
other hand, both the second term, the effective attraction
to the randomness, and the third term, representing the
tropy loss through the folding, are monotonically increasi
functions ofq. Therefore, the physical origin of the barrie
for the folding is partly the reduction of randomness up
folding and partly the entropy loss; depending on the val
of parameters, either one can be dominant. Because of
complication, the estimate of the barrier height becom
complicated too. When the barrier is small, we can write it

DF‡;N
~deT15r* vbb2/81KBTp9g!2

3rvbb212kBT~p9g!2
.

Note that in this analysis the barrier height is always prop
tional toN, as in the case of the barrier between the low
misfolded states discussed before.

D. Glass-folded transition

First, we fixr at r* by eliminatingc through Eq.~24!, as
usual. The first order phase transition between the g
phase and the folded phase is defined by

Fglass* 5FCGF~1!, ~43!

which now becomes

2udeTu1kBTF8 lnp9g5
1

8
r* vbF8b

22bAr* v~ lnp8g23/2!

1kBTF8 ~ lnp8g23/2!, ~44!

whereTF8 is the folding temperature from the glass phase a
bF851/(kBTF8 ).

V. DISCUSSIONS

A. Phase diagram

Taking results in the preceding section together we
draw a few phase diagrams which are given in Fig. 6. T
present model includes four independent parameters of in
est, the mean value of contact energyb0, variance of a con-
tact interactionb, the energy gap between the native ener
and the mean energy of collapsed statesudeTu @defined in Eq.
~41!#, and temperatureT, and so we have no choice but t
draw a few surfaces of sections of the complete fo
dimensional phase diagram. As was mentioned before,
are not taking some numerical factorsp, p8, and p9 very
literally at this level of description, and we use the valu
deduced from the lattice model, as will be explained belo
A more sophisticated treatment is required to decide th
values without the use of simulation data. We also note t
the qualitative features of the phase diagram do not cha
with the choice of these parameters so long as they ar
order unity.

Figure 6~a! shows a surface of section on theb2udeTu
plane, which is the same representation as that of Brynge
and Wolynes @8#. In the figure, there are three phas
~bounded by solid curves!, the globule phase denoted b
M , the glass phase denoted byG, and the folded phase de
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noted byF. Roughly speaking, the phase diagram at t
level is essentially the same as that of Bryngelson
Wolynes. Now, we can go forward to put in more inform
tion on the kinetics. First, the globule phase is separated
two regimes, theM1 regime, where the free energy lan

FIG. 6. Phase diagrams derived from the present model.~a! A
diagram on theb2udeTu plane with energy unitkBT. ~b! A diagram
on thekBT2b plane with energy unitudeTu. Solid curves separate
different ~static! phases, dotted curves represent the boundarie
which metastable states disappear, and the dashed curve show
glass transition in the metastable unfolded state. TheM1 region is
the molten globule phase with a monotonous free energy landsc
TheM2 region still corresponds to the molten globule state, but
rugged free energy landscape has many minima.G denotes the
glassy phase where protein misfolds to any one of the lowest st
Fn with n51, 2, and 3 is the folded phase; theF1 region has an
energy barrier to folding but the system is not frozen, while ther
no barrier in theF2 region.F3 corresponds to the regime where th
prefolding state is glassy and thus the folding transition can be v
slow. The values of the parameters used arerv51,
lnp8g23/251.6, and lnp9g50.74, which are deduced from map
ping onto the 27-mer lattice simulation.
s
d

to

scape is monotonous and no local minimum except the g
ule state exists, and theM2 regime, where there are man
local minima, each of which is separated by a barrier of or
N, though the formal Boltzmann average is dominated by
globule state. Next, the folded phase can be separated
three parts. These are theF1 regime, where protein must pas
over a free energy barrier to fold but is not trapped by
frozen state, theF2 regime, where the protein does not e
perience an activation barrier for the folding transition a
fast downhill folding occurs, and theF3 regime, where be-
fore reaching at the folded state, the protein can be foun
the glassy state and thus corresponds to a slow folding
cess with intermediate growth. In the recent synthesis
Bryngelsonet al. @1#, several scenarios of folding were cla
sified. The type-0 scenario there corresponds to theF2 re-
gime here, the type-I scenario takes place in theF1 regime,
and the type-II scenario roughly corresponds to theF3 re-
gime. For the latter case, Bryngelsonet al.discussed the cas
where the glass transition takes place at the middle of
folding process, assuming that the glass transition temp
tureTK(q) increases as a function ofq. This seems to be the
case in the lattice models studied@39#. The present analysis
however, suggests the possibility of the opposite situat
i.e., the glass transition temperature decreases as a fun
of q and thus there can be a case where the prefolding s
is glassy, while the folded state is nonglassy. There is ind
a subtle issue whether the glass transition temperature
creases or decreases as a function ofq because both the
ruggednessDE2 and the residual entropyS decrease with
respect toq. The latter quantity depends on the variation
approximation used.

Figure 6~b! shows another surface of section on t
kBT2b plane~whenb0 is negative!. This representation cor
responds to that of Sasai and Wolynes@16#. The same nota-
tion as above is used to describe each phase or regime.
well known that the temperature dependence of folding is
simple to discuss in laboratory studies of proteins beca
every parameter, in principle, depends on tempera
through the entropic contribution to the hydrophobic force
similar problem occurs when comparing the phase diag
for the virial expansion Hamiltonian to a lattice model wi
rigid excluded volume. In order not to make the argume
ambiguous, we first ignore any dependence of the parame
b0, b, and udeTu on temperature. The phase diagram loo
similar to that found by Sasai and Wolynes. One outstand
difference is that, in the present diagram, we have
random-coil phase, which appeared in Sasai and Woly
One reason is that we have ignored the entropic term
locate the coil-globule transition. As was mentioned, the
tropic term always creates the coil phase in the high temp
ture limit. The other reason is related to the difference in
model itself; we assumed that all parameters are indepen
of T for clarity, and this is why we have no coil phase in th
surface of section.

To be more realistic, we next consider the temperat
dependence of the average virial coefficientb0, which leads
us to the random-coil phase in this representation. To
this, we employ the temperature dependence ofb0 as

b05
T2u

u
2kBT ~45!
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following Grosberg and Khokhlov@32#. Here,u is the so-
called theta temperature whereb0 becomes zero. The phas
diagrams for this model are given in Fig. 7 for two differe
values ofu. This has the random-coil phase denoted byC as
is expected and is closer to that of Sasai and Wolynes@16# as
well as that of Bryngelsonet al. @1#. For a better solven
@Fig. 7~b!#, the coil phase becomes more stable and thus
coil-globule transition curve goes down. Depending on
nature of the solvent, a direct transition from the coil pha
to the folded phase may also occur.

We now comment upon relations to other phase diagra
given in the literature. Shakhnovich and Gutin@15# showed a
phase diagram on theb2b0 plane for the random het
eropolymer. RestrictingC[0, we can compare two result
quantitatively.~i! The coil-globule transition curve is exactl
the same.~ii ! Comparing Eq.~31! with Eq. ~26! of @15# we
see that the only difference arises in the form of numer

FIG. 7. Phase diagrams derived from the present model w
temperature-dependentb0 defined in Eq.~45! ~with energy unit
udeTu). ~a! For a poorer solventkBu51.0udeTu and ~b! a better
solventkBu50.5udeTu. Notation and values of parameters used
the same as those of Fig. 6 in addition to the random-coil ph
which we denote byC.
e
e
e

s

l

factors which are not very exact in either analysis. Next,
comment on the phase diagram given in Ramanathan
Shakhnovich@17#. Roughly speaking, the selective temper
ture there plays a similar role tob/udeTu here. Thus, inter-
changing the vertical and horizontal axes, we see that
6~b! and Fig. 1 of@17# look very similar. Socci and Onuchic
drew a phase diagram based on the lattice MC simulat
Unfortunately, we cannot compare directly with their resu
because they fix the sequence while changing interact
between monomers, thus bothb0 andudeTu depend on inter-
actions simultaneously.

B. Free energy landscape

We can get some insight into the ruggedness of the
energy landscape based on the analogy between the P
type spin glass and the present model. Figure 1 repres
schematically the TAP free energy in the Potts-type s
system. This can also be viewed as a TAP free energy la
scape of the random heteropolymer, although we do
present here any explicit form of TAP free energy; we c
define ‘‘pure states’’ if the potential surface has ma
minima, each of which is separated from the others by
infinite barrier in the thermodynamic limit. An individua
pure states can be identified with the expectation valu
$ r̄ i

s% of monomers averaged for a particular local minimum
Referring to Fig. 1 we discuss characteristics of the f

energy landscape for each temperature range.~i! At any tem-
peratureT aboveTA , the landscape is monotonous and the
is only one trivial solution in the TAP equation. In the re
lica formalism, this is represented by the replica-symme
solution ~the solution withD50), which corresponds to the
globule state physically.~ii ! At the temperature betweenTA
andTK , there are both replica-symmetric and RSB solutio
The latter energy coincides with the lowest TAP free ener
To account for the formal Boltzmann average we sum o
many TAP solutions as

Z5E dFTAPexp@ lnv~FTAP!2bFTAP#, ~46!

wherev is the density of TAP solutions. In this temperatu
range, the exponent here has the stationary pointF* above
the lowest TAP energy. Therefore, a number of TAP so
tions contribute to the Boltzmann average and, due to
degeneracy~complexity!, the free energyF521/b lnZ,
which coincides with the replica-symmetric free ener
FRS, becomes lower than the lowest TAP ener
(5FRSB). For finite systems such as actual proteins, the
finitely long time behavior can be represented by the repli
symmetric solution, i.e., the globule state, while the prot
nevertheless has a large barrier to move between glob
different states and finite time dynamics may be control
by the metastable RSB solution, i.e., the glassy state. A
vated transport among many TAP minima takes place.~iii !
Below TK , the stationary pointF* in the exponent of Eq.
~46! disappears and a few lowest minima in the free ene
landscape dominate the Boltzmann average. Since the lo
TAP free energy still coincides with the RSB free energy, t
glassy state becomes globally stable.

Next, we discuss the physical interpretations ofTA and
TK . TK is the temperature where the entropy becomes z

th
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sometimes called ‘‘entropy crisis.’’ The average number
contacts can be estimated asr* v/2 and variance of the ran
dom energy distribution per monomer becom
De2;r* vb2/2, while the entropy loss per monomersloss
through freezing iskB(lnp8g23/2). Therefore,TK is ex-
pressed as

kBTK5A ~De!2

2sloss/kB
,

which is consistent with the analysis of the REM@1,8#. Note
that the entropy factor is in the denominator; increasingthe
flexibility per Kuhn segmentg @35#, the entropy to be lost for
freezing increases and then the Kauzmann temperatureTK
becomes lower. On the other hand, sinceTA is given by
kBTA5b/2Ar* v(lnp8g23/2), increasing the flexibilityg, it
becomes easier to make multiple minima in the free ene
landscape and thusTA increases. As a result, a polymer wi
large g possesses a relatively wide temperature range
tweenTA andTK .

In the preceding section, we have shown that bar
heights between two lowest minima in the free energy la
scape increase with decreasing temperature belowTA . This
directly leads to the super-Arrhenius temperature behav
for example, in the diffusion constant in this temperatu
regime. On the other hand, from the analogy to the REM@9#,
we expect that barrier heights saturate atTK , below which
the diffusion constant recovers the Arrhenius temperature
pendence. To deal with the temperature range belowTK ex-
plicitly, following Ref. @29#, we need to employ two-leve
RSB, which is straightforward but somewhat more elabor

C. Mapping onto the 27-mer lattice model of protein

We can try to map the present model onto the three-le
code 27-mer lattice model studied exhaustively by MC sim
lations @39,36#, although the present model is not a lattic
type one. While this mapping must be ambiguous to so
extent, it is helpful in understanding the simulation results
the lattice model@39,36#, ~i! the average energy of the glob
ule state is250, which corresponds torvb0/4↔250/27
521.8; ~ii ! the energy of the native structure is284 and
thus subtracting the average energy, we get the stability
per monomer,udeTu↔(84250)/2751.3; ~iii ! the entropy
loss for freezing to a unique structure from a free ch
should be roughly ln5 for the cubic lattice giving the es
mate kB(lnp8g23/2)↔1.6; ~iv! on the other hand, the en
tropy loss for the globule-folded transition was estimated
20kB from simulation of 27-mer at the folding temperatu
giving a different value lnp9g↔20/2750.74; ~v! the mea-
sured energy fluctuation at the folding temperature is 51
so rvb2/2↔51/2751.88. From these mappings, we can d
termine the dynamic glass temperature, the static glass
perature, and the folding temperature to beTA51.23,
TK50.77, andTF51.25, respectively. On the other han
there is no real solution forTD ; apparently a strictly down-
hill scenario folding~spinodal folding! cannot be reached
with these parameters.

These estimates are very crude and tentative, but it
may be interesting to discuss the folding scenario based o
From this estimate,TA andTF are very close to each othe
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and thus usually folding occurs belowTF , so the protein
encounters multiple minima along its folding route. Ther
fore, the most probable scenario is that, after hopping am
many local minima, protein finds its native structure which
stable thermodynamically. On the other hand, because
estimates are uncertain, one should consider the possib
that folding may occur in a regime where chain dynamics
not far from Rouse dynamics renormalized by mode c
pling effects@40#.

We should give a warning that changes in the mapp
procedure may change this assignment of the scenari
some extent. Folding is expected to occur at temperatu
somewhat aboveTK and thus the characteristics of the fre
energy landscape in this regime are of most interest. M
exhaustive study of off-lattice simulation seems to be de
able to study details of the free energy landscape and ki
ics. The present analytical calculation should be tested m
carefully by off-lattice simulation.

Very recently, Shakhnovich and co-workers have carr
out lattice simulations that suggest that random heterop
mer dynamics is not activated at high temperature@41#, ad-
ducing a polynomial dependence of the time scale on sys
size. This would be consistent with the expectation o
mode coupling analysis aboutTA , where polynomial diver-
gences with chain length are expected@42#. At low tempera-
tures activated dependence is seen, however. A more exh
tive version of such studies may help in quantifyingTA
versusTK .

D. Folding kinetics: Comments on the effects of inhomogeneity

In this paper we concentrated on the case where all o
parametersB, C, andD are independent ofi ; we have re-
stricted our description to a homogeneously ordered
trapped polymer. In particular, because of this the two ty
of barrier heights discussed in this paper are proportiona
N, which may not be appropriate for relatively large prote
For the latter, many inhomogeneous states may play imp
tant roles, especially to describe the folding kinetics. Firs
folding nucleus can be represented as a state where pa
the chain has much largerCi than the other part. Nucleatio
@43–46# would naturally be followed by the growth of th
number of monomers having largerCi . The question ad-
dressed by such a analysis would be the size dependen
the free energy barrier for the folding transition. Second,
quite a large polymer, a specific separation ofCi into two
values may create a~meta!stable state. This might be relate
to a foldon, a small quasi-independent folding unit@47#. An-
other possibility of inhomogeneous states is a locally trap
state, which means only part of the chain has largeDi , while
the others haveDi;0. This might be a transition state be
tween totally frozen states and that between a frozen s
and a melted state. We can extend our treatment to th
inhomogeneous cases with the trial Hamiltonian,

bH ref5A(
a,i

~r i11
a 2r i

a!21(
a,i

Bi~r i
a!21(

a,i
Ci~r i

a2r i
T!2

1 (
aÞb,i

Didab~r i
a2r i

b!2. ~47!
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Detailed results for these problems are under study and
be reported elsewhere.

These inhomogeneous descriptions of the polymer req
more elaborate modes of replica symmetry breaking. For
ample, in the case of thep-spin spherical model, one-leve
RSB is enough to represent stable states at temperatur
low TK , while at the same temperature range two-level R
describes transition states between two lowest minima@29#.
Correlation of the free energy landscape has been modele
terms of generalized REM, which includes the continuo
part of Parisi’s order parameter and is a step in this direc
@13#.

We note here that an inhomogeneous version of the an
sis here gives results analogous to Kirkpatrick a
Wolynes’s first calculation of barriers based on a simple
terface between TAP solutions@23#. Indeed Parisi@48# ob-
tained the same dependence as KW on (T2TK), i.e.,
DF‡;(T2TK)

22 for Potts glasses in three dimension
Later, Kirkpatrick, Thirumalai, and Wolynes showed ho
wetting of the interface between two TAP solutions in
droplet by other TAP solutions led to the more usual Vog
Fulcher behaviorDF‡;(T2TK)

21 @21~b!#. This would ap-
parently require a more complete spatially inhomogene
RSB for the saddle point. We note that recently Thiruma
has argued, based on the KTW style argument, that bar
for traps should scale only asN1/2 @46#. In our view further
analysis is needed because this scaling argument shou
only valid in the strict vicinity ofTK , not necessarily the
high temperature relevant for folding of minimally frustrate
proteins.

As was noted, virial expansion used in this paper is
very appropriate to describe compact states. Incorpora
rigid chain connectivity with hard core repulsion will ove
come this disadvantage. In principle, Fixman’s independe
oscillator comparison potential@49# might be applied to do
this, although qualitative results discussed here are belie
to be unchanged. The effects of the hardcore onTA may be
considerable, since even the homogeneous hard sphere
possesses a mean field dynamical transition. Also the so
what subtle questions such as change in the radius of g
tion from the molten-globule state to the folded state may
analyzed by this extension.

VI. CONCLUSIONS

We have analyzed the free energy landscape of mo
protein based on the replica variational method. The rugg
ness of free energy landscape is manifested by two g
transition temperatures,TA and TK (TA.TK). ~i! Above
TA , the landscape is monotonous. Dynamics is like that o
free Rouse chain modified by mode coupling effects. Th
effects would give dynamical freezing atTA . ~ii ! Between
TA and TK , the landscape has a number of metasta
minima but the collection of them dominates the Boltzma
average as a whole. These are represented by the re
symmetric solution, while the RSB solution is metastab
~iii ! Below TK , only a few lowest states contribute to th
Boltzmann average and this is well-described by the R
solution. In the second regime, the barrier between the
lowest minima grows with decreasing temperature, wh
leads to the super-Arrhenius temperature dependence o
ill
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diffusion constant. We believe that folding occurs somew
aboveTK , which implies a mechanism of hopping betwe
numerous local minima until finding the native structu
through the guiding forces provided by minimal frustratio
and the concomitant folding funnel. We have also drawn
phase diagram having seven qualitatively different dyna
cal regimes. Several scenarios of folding were discus
based on this diagram although it may not be quantitativ
accurate in all details.

ACKNOWLEDGMENTS

We thank Masaki Sasai and Eugene I. Shakhnovich
discussions of their results. S.T. is supported by the Ja
Society for the Promotion of Science. P.G.W.’s work
folding is supported by NIH grant PHS 1 R01 GM44557.

APPENDIX A: EXPLICIT EXPRESSIONS

Here we give explicit expressions for the variational fr
energyFvar defined in Eq.~15! in terms of parametersB,
C, D, andm that appear in the reference Hamiltonian.

SinceZref is a many dimensional Gaussian integral w
exponentA(m i j r i

mHi j
mr j

m , we can execute the integration b
calculating the inverse matrix ofH6,

Gi j
65H cosh~ i21/2!l6cosh~N2 j11/2!l6

sinhNl6sinhl6
, i, j

cosh~ j21/2!l6cosh~N2 i11/2!l6

sinhNl6sinhl6
, i> j

~A1!

and the determinant, wherel6 is defined by

sinhl65
f6

2A
A114A/ f6, coshl6511

f6

2A
, ~A2!

where f65B1C1L6D and L150, L252m. Using
these, we can write downZref as

Zref5S p

AD 3n~N21!/2

N23n/2S sinhl1

sinhNl1
D 3n/2m

3S sinhl2

sinhNl2
D 3n~m21!/2m

3expS nC2

A (
i j

r i
TGi j

1r j
T2nC(

i
r i
T2D . ~A3!

As was explained in Sec. II, the conformational entro
S expressed as

S/kB52bF ref1b^H ref&2A(
a,i

^~r i11
a 2r i

a!2& ~A4!

can be computed directly fromZref and is written as

S/kB5
3n

2m S 11A
]

]AD ln sinhl1

sinhNl1
1
3n~m21!

2m S 11A
]

]AD
3 ln

sinhl2

sinhNl2
2n

C2

A (
i j

r i
TS 12A

]

]ADGi j
1r j

T , ~A5!
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where we dropped a trivial constant term which represe
Gaussian free chain entropy.

For the one-replica part,̂H1& is written in terms of
^ra& and^q& in the text. Thus, what we need to do here is
give expressions for the latter two quantities. The expr
sions for these just have an additionald function from the
definition ofZref and are easily computed to give

^r~r !&5(
i

S pgi
A D 23/2

exp@2A~r2si !
2/gi #, ~A6!

where
G

s-
ts

s-

gi[
1

m
@Gii

11~m21!Gii
2#, ~A7!

si[
C

A(
l
Gli

1r l
T , ~A8!

and

^q&5
v
N(

i
S pgi
A D 23/2

exp@2A~r i
T2si !

2/gi #. ~A9!

Finally, the inter-replica term̂H2& is written in terms of
ra and ^Qab&. The latter is computed as
^Qab&55 (
i

S pg̃i
A D 23/2S pGii

2

A D 23/2

expF2
2A

g̃i
S r11r2

2
2si D 22 A

2Gii
2 ~r12r2!

2G
(
i

S pgi
A D 23

expF2
A

gi
~r12si !

22
A

gi
~r22si !

2G , ~A10!

where the upper~lower! line is for the casea andb belong to the same~different! group of RSB andg̃i is defined by

g̃i5
2

m
Gii

11S 12
2

mDGii
2 . ~A11!

In the limit of largeN, expressions become considerably simple. ForGi j
6 ,

Gi j
6.

1

2sinhl6
exp~2u i2 j ul6!, ~A12!

which depends only on the sequential distanceu i2 j u between monomers. Therefore,Gii
6 is independent ofi and so

^Qab&5S 2pGii
2

A D 23/2

expF2
A

2Gii
2 ~r12r2!

2G(
i

S pg̃i
2A D 23/2

expF2
2A

g̃i
S r11r2

2
2si D 2G ~A13!

;raS r11r2
2 D S 2pGii

2

A D 23/2

expF2
A

2Gii
2 ~r12r2!

2G ~A14!

for the casea andb belonging to the same group of one-level RSB, and

^Qab&5raS r11r2
2 D S pgi

A D 23/2

expF2
A

gi
~r12r2!

2G ~A15!

otherwise.
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