PHYSICAL REVIEW E VOLUME 55, NUMBER 4 APRIL 1997
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Protein folding is analyzed using a replica variational formalism to investigate some free energy landscape
characteristics relevant for dynamics. A random contact interaction model that satisfies the minimum frustra-
tion principle is used to describe the coil-globule transiticimaracterized b¥ «¢), glass transitiontby T, and
Tx), and folding transitioriby T¢). Trapping on the free energy landscape is characterized by two character-
istic temperatures, one dynamit4) and the other staticTx (T,>Tg) 1, which are similar to those found in
mean field theories of the Potts glaé$.AboveT,, the free energy landscape is monotonous and the polymer
is melted both dynamically and staticalliii) BetweenT, and Ty, the melted phase is still dominant ther-
modynamically, but frozen metastable states, exponentially large in number, afipeArfew lowest minima
become thermodynamically dominant beldw, where the polymer is totally frozen. In the temperature range
betweenT, and T, barriers between metastable states are shown to grow with decreasing temperature,
suggesting super-Arrhenius behavior in a sufficiently large system. Due to evolutionary constraints on fast
folding, the folding temperatur@; is expected to be higher thafy, but may or may not be higher than
T, . Diverse scenarios of the folding kinetics are discussed based on phase diagrams that take into account the
dynamical transition, as well as the static or/&1063-651X%97)11304-9

PACS numbgs): 87.15-v, 61.41+e, 64.70.Pf

[. INTRODUCTION such a system can fold on relevant biological time scales.
Buttressed by this asymptotic argument, but also calling
In recent years the problem of protein folding, namely,upon observed regularities in protein structure, Bryngelson
how a biological molecule spontaneously organizes itself unand Wolynes argued that most proteins are not random but
der appropriate thermodynamic conditions, has become additionally satisfy a principle of minimal frustration, so that
fertile field of investigation for statistical physi¢§—4]. The  conflicts in attempting to satisfy individual interactions are
conceptual difficulty of finding the global free energy mini- less than expected, allowing a transition to a unique configu-
mum, or native structure, reliably in a short amount of time,ration at a folding temperaturg: higher thanTx . The co-
the so-called_evinthal's paradoX5], has come to be under- herent part of the interactions could be taken into account in
stood as being related to the problem of broken ergodicity irthe statics by introducing a conventional order parameter for
glassy system$6]. In the modern version of the paradox, folding, as in mean field theory. For a small system this order
however, it is not the size of the configurational search alon@arameter can also act as an approximate global reaction
that is relevant but rather the topography of the free energgoordinate for describing the self-organization prockHs
landscape. The size of the free energy barriers between thghis relatively simple framework can be elaborated to take
metastable states of a finite size heteropolymer determindsto account additional order parameters for folding, such as
the local rate of exploration of the free energy landscape. Ifhocal secondary structure formati¢h2] and recently corre-
addition, the global topography, in particular, whether therdations in the free energy landscg{sd]. The framework and
is an energetic bias funnelif@] the molecule toward a na- the resulting mechanistic scenarios are also quite useful for
tive structure, is also important to understand the foldingorganizing the discussions of many experimdfs
rate. Another significant thread in the statistical physics of pro-
The earliest analytical approach to the problem capturedein folding has been provided by theories that use the rep-
these two aspects of the problem—the multiple minimalica technology of spin glass theo[$] along with polymer
problem and the guiding forces with the simplest descriptiorphysics to understand the free energy landsddge-19.
of the free energy landscap& 9]. The ruggedness of the free Garel and Orland14], as well as Shakhnovich and Gutin
energy surface was modeled by the random energy modgl5], studied random heteropolymers using the traditional
(REM) [10]. The REM is the simplest model of a system polymeric virial expansion Hamiltonian of a connected chain
that, like a spin glass, is frustrated through the conflict ofincorporating a Gaussian random pair interaction. These
many competing randomly chosen interactions. A suffi-workers showed the connection of the random heteropolymer
ciently large system with this free energy landscape washermodynamics with the phase transition of Potts dlaé$
shown to possess a Levinthal paradox in its folding. MoreQualitatively this was not entirely unexpected because a
precisely, at a characteristic glass transition temperatureide range of frustrated random systems without special
Tk , while the system may thermodynamically prefer to be insymmetries falls in this universality class, which also in-
a unique configuration, the time to search for it would scalecludes the REM moddl20—-23. This work was relevant to
exponentially in the system siz€.K” of Ty denotes Kauz- the ruggedness issues but not to the problem of guiding
mann, who attracted notice to the entropy crisis as the origifiorces. Soon after this work, Sasai and Wolynes dealt with
of the glass transitiofl1]. See below for more detaijsPro-  three aspects—polymeric interaction, ruggedness of free en-
teins are finite, however, so it is a quantitative issue whetheergy landscape, and results of evolution—in one motie).
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They employed a variational approach modeled on Feyn- g T>T,

man’s polaron theorj24] in the replica space to analyze the
associative memory Hamiltoniaf25]. (i) This model has SN— - k;
explicit chain connectivity(ii) the target structure, i.e., the b) T,<T<T, Fes P

native structure, included in the memory get data base

provides a route to incorporate the role of principle of mini-

mal frustration, while(iii) memories other than the target

induce ruggedness in the free energy landscape. Very re-  ¢) 1<T,
cently, Ramanathan and Shakhnovich shed light on effects of Fess
the evolutionary constraint of minimal frustration in more

detail[17]. Instead of assuming the pronounced energyayap

priori, they represented evolution as a process that yields el P
sequences distributed according to a Boltzmann distribution fsB R
for a fixed target structure. Their theory shows that it is pos- TAP variables

sible to have an energy gap large enough to stabilize the . .

. . . FIG. 1. Schematic view of the TAP free energy landscape with
native Stqut.ure only by ChOOSIng the sequence approprlatel¥he Boltzmann distribution plotga) Above T, tf?g free enSrgy
although Itl 'St.nOt Clear: |f.nature a(t:tlflly Ilthed t.SUCh at SetTandscape is monotonoud) At T,>T>Ty, the free energy land-
quence selection mec anlf_m or no n ajternative route gcape has a number of minima, and a collection of metastable states
minimal frustration called “imprinting” has also been dis-

. . . contributes to the Boltzmann average, which corresponds to the
cussed by Pandet al.[18], which finally gives almost same replica symmetric solutiorFgs. (C) Below Ty, the free energy

result ag17]. landscape has a number of minima but only a few lowest states

Levinthal's pgradox makes it clear t'hat'thg conceptual isgominate the Boltzmann average, which is calculated by the RSB
sues of the folding problem revolve dmneticsin at least a  sojution F rgg.

semiquantitative fashion. Theory and many simulations
[26,27] in concurrence suggest that real proteins fold beloweplica symmetry breakindRSB) takes a discontinuous
their folding temperatur& g but somewhat above thstatio  jump atT,, which reminds us of a first order phase transi-
glass phase transition temperat(ig. Thus, to understand tion in the order parameter, but the transition looks second
the kinetics of folding, a microscopic description of the freeorder in that, thermodynamically, there is no latent heat.
energy landscape aboVg is indispensable. Is the effective (This was known and well understood in the case of REM.
free energy landscape monotonous and smooth aigPe  They called this class of phase transitisaadom first order
We claim no. Even abov&y there are a number of local phase transitionsCrisanti and Sommers found essentially
minima lasting many vibrational period®kouse relaxation the same behavior in the-spin spherical moddR8], which
times in the free energy landscape. Although the variationabuttresses the case that this type of behavior, very different
solution corresponding with the melt phase dominates thérom that of the Sherrington-Kirkpatrick model, is quite uni-
formal Boltzmann average, actually a protein is dynamicallyversal for systems without inversion symmetry. Using the
trapped and feels some of the ruggedness of the free energyspin spherical model Kurchan, Parisi, and Virasoro suc-
landscape and thus kinetics would strongly be affected by theeeded in describing the metastable states in greater detail
presence of local minima. Then the next question that arisesnd the barriers between them in the replica formaligaj,
concerns the barrier heights between these local minima bevhich we use in this paper. This formalism for describing
cause these barrier heights determine the kinetics. We shomietastable states has some forbidding aspects. Like the equi-
that barrier heights grow with decreasing temperature untilibrium replica technique, there are steps involving analytical
Tk is reached, which directly leads us to the super-Arrheniugontinuation to apparently nonphysical values of replica
activation behavior in this temperature regime. number. More work to clarify the techniques would be wel-
To make this analysis we utilize recently developed ideagome, but the physical content seems very much in keeping
in the spin glass theory, especially for the Potts-type spirwith a transition driven by configurational entropy. Barrier
glass[22,23,28,29 In a series of papers, Kirkpatrick, Thiru- heights are determined by a competition between the number
malai, and Wolynes, working on models of structural glassesf available states and the energetic advantage that a polymer
[21], p-spin interaction model glassep*2) [22], and the can achieve in a particular lower minimum. The results on
Potts glasses with more than four compon¢B8, made the barrier heights are the main focus of this paper.
following observations(i) The phase transition temperature  In this paper we employ the contact interaction model
T, obtained by the dynamical theory, i.e., mode-mode couused in[15] with the principle of minimal frustration imple-
pling theory based on Langevin dynamics, is higher than thenented at the level dfL6]. Methodologically, we rely on the
Tk obtained by the static theory, i.e., the ordinary replicareplica variational approach of Sasai and Wolynes, but ex-
method. (i) As temperature decreases, starting from thetend the interpretation to the level of Kurchan, Parisi, and
paramagnetic phase, solutions of the Thouless-Andersontirasoro[29] for metastable states and barriers. These meth-
Palmer(TAP) equationd30] (except the paramagnetic gne ods are summarized in Sec. Il. In Sec. I, we introduce some
appear exactly af 5 (see Fig. 1 (iii) ForT,>T>Tg, many approximations so that we can derive expressions for the free
metastable states are separated by high barriers and therefemeergy in as simple a form as possible. These expressions are
have a long lifetime. Thus activated transport is the typicalused in Sec. IV to locate the phase transitions between dif-
picture in this rangé" A” of T, denotes “activation’). (iv)  ferent phases. We derive explicit expressions for four phase
The overlap order parametgrin the same group of 1 level transition temperatures, the coil-globule transition tempera-
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ture T¢g, the folding temperaturd:, the dynamical glass (ris1—r)? v
temperaturdl , , and the static glass temperatiig. In par- H= kBTEi a2 (- Q) 5;1 bij 6(ri—r})
ticular, the ruggedness of the free energy landscape is char-
. .y . 2
acterized by two critical temperatures of freezifig, and v T
T« as in the case of Potts glass. In Sec. V we draw phase +(1_Q)C€i2;k a(ri—réry—r)+ak, (3
diagrams with fairly diverse states and discuss several sce-
narios of the folding kinetics, which can be thought of as 3yhere
refined version of the scenarios given[i]. Complete but

somewhat messy expressions for the free energy are given in 2

. v v 1%
the Appendix. qET=520 8(ri—r{)| 5 2 by s(ri—r)+c—
N4 2& 6
Il. REPLICA VARIATIONAL APPROACH X E 5(ri—rj)§(rj—rk)}, (4
A. Model e

The model we present here, while different from that usedHere we introduce an approximation,
by Sasai and Wolynd4.6], is motivated by it. Our main goal

in this section is to show how a model with short rarige ;v v T
spacg interaction can be treated with the same formalism as qE’~ ﬁEi o(ri=ry) Ei;j bij &(ri —ry)
the long range associative memory model.
As a simple model of protein, we start with a standard v? ot o7
beads-type Hamiltonian, which includes the interaction be- +C§i¢j2¢k a(ri—=ry)é(rj—ry) |, 5

tween monomers in the form of the virial expansion,
which is exact either when the system is in the native struc-

2
H=kgT>, MjL 22 bij&(ri—rj) ture or when the system is totally uncorrelated to the native
i 2a 217) structure. In Eq(3), the second and third terms are assumed
02 to be self-averaging, while the last term is non-self-
teg 2 S(ri—r;)8(rj—ry), (1)  averaging.After the non-self-averaging term representing
i#j#k minimal frustration of the target structure is taken into ac-

count, the interaction energieg in Eq. (3) may be modeled,
as was mentioned, by Gaussian random variables with prob-

where r; represents @ carbon of each amino acid D
ability distribution,

(i=1,...N), ais the Kuhn lengti31], v represents finite
resolution of spacésee below, andb;; andc are the second
and third virial coefficients, respectively. Depending on the
type of amino acids, individuah;; have apparently random Note that we danot take an average df;; in Eq. (5), which

values, whose distribution will be given below. We assume o .
the spatial resolution is'® and so gny function is smeared &' thought as sequence specific. Equati@s(5), and(6)

: : : T
out within this scale. Thereforeg(0)=v 1. The above define the model, in which parametéfsbo, b, andE" play

Hamiltonian itself is directly suitable to the random het- Cer|1—'|[rearler?/lvees;should bear in mind that the virial expansion is
eropolymer, as was used fii5]. ' P ’

Since a protein can fold because of its specific sequenc%f)rﬁ’ Z‘g:l';g?;v%’u?onocﬂ ?érexgiréifgt:t?gfshisuhclh iilltzes:a?jn-
it is indispensable to incorporate the principle of minimal y gnly P

frustration, as was mentioned in the Introduction. The keytshermod namic description of the radius of bolvmer. in par-
idea here is that the energy of ground state, which corres . | y tb pt larl i polymer, in p
sponds to the target structure defined by amino acid position_'c,Cu ar, may not be particularly accurate.
{rl} of the native state, depends strongly on the specific

sequence of amino acids, while properties of non-native®- Replica variational formalism and mean field approximation
structures can well be modeled by the random interaction \We summarize the variational polaron approach in replica
between amino acids. In other words, the energy of the naspace used earlief16]. We calculate the free energy
tive structure is non-self-averaging, while most others thajF],,= —kgT[InZ],, averaged over the random bond inter-
are structurally unrelated are self-averaging. This is supaction bi; with probability distribution Eq.(6), where[],,
ported by numerical enumeration of all the compact states ifmeans the average ovby, andZ is the canonical partition
the lattice 27-mef27]. Using a measure of nativene$®],  function. To avoid the difficulty of taking an average of
InZ, the replica trick[6] utilizes a mathematical identity,
Inx=lim,_ o(x"—=1)/n. Thus,

P(bi;) = (27b?) ~Y%exd — (bj; —bo)%/2b?]. (6)

_v T
=2 8ri=rl), 2 e
_ﬁ[F]av:[an]av: lim———. (7)

n—0
we rewrite the above Hamiltonian separating the non-self-
averaging part from the others, We then concentrate drz"],,, which is explicitly given as
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n " limit n—0. Using this principle we optimiz&,,, with re-
[Zn]av:f Il;[ [dbijp(bij)]j Hl Dr?e‘ﬁg HATh, (8) spect to order parameters included in the reference Hamil-
: “ tonian. With the optimized=,,, we get an estimate of the
where free energy we are seeking[F],=Ilim,_oFex/n
=lim,_,oF,/N.
Reference trial functions need to be simple enough to lead
Dri:l_i[ drié( E, r‘)' ©) o a soluble partition function but flexible eFr)10ugh toginclude
order parameters which characterize all relevant phase tran-
The & function in the above equation is used to fix the centersitions. The coil-globule transition, the folding transition,
of mass at the origin. Since the integrand in E8). is a  and the glass transition can be characterized by the radius of

Gaussian function with respect tg;, we can integratd;; gyration, by a fluctuation scale around the native structure,
out at the beginning to get and by an inter-replica correlatiofDebye-Waller factor in
the glass phaserespectively. A natural choice for a refer-
[Zn]avzf I] Dree—#ren (10 ence Hamiltonian is

— a a2 a2 a_ T\2
The effective Hamiltonian here is of the form 'Berf_A; (%2 =ri) +B§1 (rf) +C§1 (ri=ri)

Her=Ho+Hy+H,, 11
e Y +D 3 dag(ri=rf)?, (16
each term of which is given as ** B
(1, — o2 whereA=(2a% ' and allB, C, D, andd,,; are free param-
HOZKBTE '*;T', (12 eters to be optimized based on the variational principle Eq.
a,i

(15). Once these parameters are optimized, they play the role
b7 of the global order parameter8; C, D, andd,; represents
_ T 4 PP the radius of gyration, fluctuation around the native structure,
Hl_g a.E +§ 2 Po(1-0a) 2 (1=0) inter-replica correlation, and the mode of RSB, respectively.
As for the mode of RSB, we rely on analogy to the Potts
glass with components more than 4. As we mentioned, many
other models exhibit the same type of RSB and this is be-
lieved to be quite universal for the system without inversion

2
U
x> S(rf—rf+c—=> (1-q,)
1#] 6 a

a_,a o ,a symmetry. In this class of systems, one level of Parisi's RSB
Xig;k o =T ar—rio (13 scheme has been shown to be sufficient to describe the stable
and metastable statg29] and we concentrate on this level of
and description in this paper. Them, replicas are divided into
- n/m groups, each of which has size and the matrix ele-
Ho— — Bbv E (1-q,)(1—qp) mentd,; is 1 if « and B (a# B) belong to the same group
2 4 S @ B and 0 otherwise.
x; S(rr—rma(rf—rh). (14) C. Free energy
i#]

We just give an overview of the derivation and the ex-

Ho maintains the polymeric chain connectivity includes ~ Pression for the variational free eneréy,, defined in Eq.
the one-replica part, andl, represents the inter-replica in- (15 here. Detailed expressions may be found in the Appen-
teraction. Obviously, the latter term is the driving force of dix for completeness since these are not important to under-
the RSB. stand the present arguments. Physically, the free energy

Integration over the vast configuration space in @@) is ~ Fvar consists of three parts, a conformational entropy term
too complicated to execute exactly. So, we generalize the "TS @ one-replica par{H,) that contains the coherent
variational principle well-known in the statistical physics Part of the interactions, which ultimately give a folding fun-
[34] to replica space; For any reference Hamiltoniannel as well as an effective homopolymer term, and the inter-

He({r}), we have an inequality relation, rep_lica term{H,), which is responsible_for the random inter-
action between monomers. We explain each of them.
Fuar=Frert (Hefi— Hye =Fetr, (15) In order to carry out the variational procedure we start
with the calculation ofZ,¢, which is the same as that of
where Sasai and Wolynegl6]. More details can be found iri6].

We first diagonalized,; with respect to the replica index.
Concentrating on each block of sire we get two type of
eigenmodes, a symmetric mode with the eigenvalue=0
(we call + mode andm—1 degenerate asymmetric modes
— BFe=In[Z"] 5, and({- - -} means an expectation value for with the eigenvalue\ _=2m (— modg. With the diagonal-
the HamiltoniarH ;. This inequality holds before we take a ized replica indexu, we see that the integrand is just a

_BFrefZIanefZInf H 'Dri‘le_ﬁHref,
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Gaussian function off*. The exponent is of the forrAZ ;i r“Hrt, where the coefficient matrik(* (u==) is

wijti Zhjty o
2coshn.—1 -1 0 o .- 0
-1 2cosh . -1 o - 0
. 0 -1 2coshh. -1 .- 0
H™= ;
—1 2cosh. -1
0 -1 2cosh . —1

wherel .. is defined by 2cosh. =2+(B+C+A.D)/A. Thus,  (p ), (q), and(Q,z) can be calculated by direct integration
it is straightforward, although complicated, to integrate overgnd are expressed in terms Bf C, D, and m, which are
co+nﬁguration space and the result is represented in terms @jﬁven in the Appendix. We note that it is possible to calcu-
Gjj , the inverse matrix of{™. F ¢ is given as a function of |ate (H,) and (H,) without introducing these approxima-
B, C, D, andm, the explicit formula of which is given in the  tjons; the result becomes more complex but does not change
Appendix. _ _ the argument discussed in this paper. Therefore, we employ
The conformational entrop$ is expressed by this approximation to get simpler expressions keeping the
qualitative results unchanged. It is also advantageous to use
NTS=—F et (Hiep —(Ho)- A7 these approximations in that it makes it easy to compare our

. L . Its with th f Shakhnovich and Gutirb].
First, F s is simply obtained ag8F,= —InZ.. Second, resuits wi 0se o akhnovich and Gutr]

(Hie) can be evaluated from the scaling argument. If we
scale asri—n/fri’, the exponent of the integrand changes
BH e(ri)—2BH(r{) becauseH s is a homogeneous qua-
dratic function ofr;. Thus, taking a derivative of B writ- Although the above results are quite general, it is hard to
ten in terms ofr{ with respect toz we get an expres- grasp the physical picture directly from them without any
sion for (H.. Finally, (Hg) is simply given by numerical work. Therefore, we introduce several other ap-
(Ho)=—kgTA(dInZ,s/ dA). The conformational entrop$ proximations to get simple analytical expressions for free
expressed thus in terms of order parame®y<C, D, and  energy. We take a sort of self-consistent strategy in the fol-
m is explicitly written in the Appendix. lowing way. First, we assume for each phase that one spe-
For the estimate ofH,), we introduce an additional ap- cific order parametefor A) is much larger than the others.
proximation in the spirit of the mean field theory. Defining Second, using this inequality, we obtain an asymptotic ex-
the monomer density,(r) asp,(r)==;8(r —rf), replacing ~ Pression for the free energy and seek the stationary solution

the expectation value of products by the products of expecith respect to order parameters for each phase. Finally, we
tation valuesmean-field approximationwe get confirm that the solution indeed satisfies the inequality we

assumed.
Bb? The first approximation introduced is thidte>1 and most
bo(1—(q,)) — 7(1—(%))2} of the nonextensive terms are ignored. This may actually be
a severe approximation for practical work since proteins are
02 mesoscopic and possess a considerable surface area. Next,
X f (pa(r)>2dr+c€2 (1—(qa>)f (pa(r))3dr. we employ the simplest description of monomer density, the
@ so-called volume approximatid32,33; (p(r)) is a positive
(18) constantp inside the polymer and is zero outside. Thus,
[pX(r)dr=Vp*=Np*~1, whereV is the total volume of the
In the same way, introducing the overlap order parametepolymer and x is an integer. Thirdly, we approximate
function f(QaB>2drldr2 as (see the Appendix

Ill. COIL, GLOBULE, GLASS, AND FOLDED PHASES

(H)=3 (a)E™+3 3

Qaﬁ(rl,ra:Ei 8(ri—r)8(ry—rf),

f Qaﬁdrler:Np A

we can expreshl, as

Bb%v? (hereafter, we drog- - -) for simplicity) for the casex and
(Hy)=—— a;ﬁ (1=(aa))(1—=(qp)) B belonging to the same group of one-level RSB. For the
other cases(;; is replaced byg;=1/m[G; +(m—-1)G; ].
2 The other approximations we use are dependent on the phase
XJ j drydra(Qap(ri,ra))”. 19 e consider and will be explained below one by one.
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efficientsby,— Bb?/2 andc; the random interaction induces

The coil and globule phases may be characterized by th@" effective attraction proportional toTL/ The third term

inequalityA>B,C,2mD. Assuming this inequality, we con-
sider the radius of gyration defined by

R=\/<; rf’2>/nN,

and we get an asymptotic expression,

(20

1 1 m1 1
mJA(B+C) M JA(B+C+2mD)

Random-coil state should have the radRs N%a. Com-
bining it with the above equation we see tHat-C and
2mD are at most of ordeN™2A, which is consistent with
the inequality we assumed. In the same way, the radiu
scales aR~Na in the globule phase, which leads us to
the estimateB+C~N~#3A and 2nD~N~*3A. Approxi-
mating that the polymer is roughly spherical with radRis

p can be related t& by

2_3
4

N
P~ (413 7R3

An estimate of the free energy is quite straightforward. First
starting from the full expression given in the Appendix, we
can derive an asymptotic expression for the entropic part

TS—3NkT1 B+CLm—1 B+C+2mD
T MmN TA T Tm A :

which is of orderO(N°) for the coil state and i©(N) for
the globule state. Second, the inter-replica tefip is of
orderO(N~?) for the coil state an@d(N°) for the globule
state and thus is negligible.

comes from entropy loss due to packing. Although the latter
is nonextensive and is not important for many situations, we
retain it because it will play important roles for some cases,
as will be explained below.

B. Glass phase

Since the glass phase is characterized by small thermal
fluctuations around individual minima, we assume
2mD>A>B,C. Using this relation we can straightfor-
wardly obtain the asymptotic expression for the entropic
contribution to the free energy §%6],

)3/2

| .

This can be interpreted as a confinement entropy.

Next, let us consider the random interaction phi.
G;; behaves a®\/(2mD) in the present limit and we have
J Q% gdr dr,=Np(4m) ~¥(2mD)*2 because the cases
and B belong to the same group of RSB and otherwise.
Here, we have to take care of the finiteness of spatial reso-
lution as mentioned before. The above estimate holds only
when|r,—r,|~G;; /A is of orderv?® or larger. Otherwise,
Q. should be replaced by th& function with 5(0)=v1,
which givesziﬁdrldrzszvfl. To make the expression
continuous with respect to the order param&eme switch
two expressions when both take the same value. In summary,

2mD

A

3

Ts= "Nkt
T m B 20

J Q% gdrdr,

|

(477)73/2Np(2mD)3/2
Npv 1

if (2mD)*?<(4m)%%v
otherwise.

For convenience, we change the independent variables |, the same way as above, we change independent vari-

from B, C, and 2nD to p, q, and 2nD. Then, we can easily
optimize 2nD andq to get the solution &biD=q=0 (under
some conditions discussed belpwvhich leads to

Rz_3 1 _(3N)2’3
4 JA(B+C) \4mp

and

3 [B+C
—TS= 7 NksT [ ——*N"%gTp?".

The latter is of orde®(N°) for the coil state an@®(N*) for
the globule state.

Thus, the free energy can be represented only as a fun
tion of p as

2

b? v
p+Nc p?+NY3pp?3TIA, (20

v
2

2

FCG: N bo_
where[ - - -], in the left-hand sidgLHS) is dropped for
simplicity andp is a constant of order unity, the value itself

(9/16) (47/13)%"is not important for the present purpose. The
first two terms are of the form of virial expansion with co-

ables fromB, C, D, andm to p, q, 2mD, andm. We can
show thatq=0 is stable unless the stability gap is too large
and thus we can write down the free energy expression,

v b? v? ) b2v?
Fglass:NE bO_T P+NC€P —N 4 (m—1)
[(477)3/2p(2mD)3/2]
X -1
pU
N LT in 202 T3 22
N Tl | S| -3, @2

where the uppeflowen term is taken when (D)2 is
Smaller(largen than (4m)*%v. The first two terms are those
of virial expansion as above, the third term represents inter-
replica interaction and is the driving force for the RSB, and
the last term is obviously entropic.

C. Folded phase

The folded phase is characterized by a la@geé.e., small
fluctuations around an ideal native structure and so we as-
sume C>A,B,2mD. We can easily obtain an asymptotic
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expression for the entropic part, as was done[16]; the third term plays roles. First, for a short polymer at high
—TS=(3/2)NkgTIn(C/A). The inter-replica part H, temperature, the third term becomes dominant; this term
has the replica-symmetric contributionJQinrldrz makes the globule state unstable and so the random-coil
=(2m)  ¥NpC>2 for any pair ofa and 8. Nativenessy in  phase always appears in the limit of high temperature. Sec-
this limit is obtained ag|=v(C/ )2 Using this we change ond, in the vicinity ofp=0, the third term is the largest and
independent variables fron8, C, and D to p, q, and  thus dF/dpl|,—¢ is positive infinite and so the transition is
2mD. first order with very small barrie®(N~1). We should men-
We can show that@ D=0 is the stable solution and thus tion that extending the argument to include a nonuniform
description of the polymer leads us to a surface term of order
O(N??) [32], which is not taken into account here. The third
term here i9O(N*3), which is smaller than the surface term
32 and so the reasoning leading to the first order phase transi-
(_) 9} tion given here might not be appropriate. In any case, the
A coil-globule transition is a first order phase transition with a

2

1% 1%
> p+Nc(1-q)p?

Bb? 5
Froigea= N7 bo(1—q)— 7(1—(1)

+gET+NkgTIn

b2 very small barrier and because of this it might be recognized
PUBL, 4 — )2 as a second-order-like transition by numerical simulations, or
+N 27%q(1-q)?, (23 ¢

4 in the laboratory.

whereg~ 1. The first two terms, as is usual, have the form of

a virial expansion, the third and fourth terms represent the B. Globule-glass transition

enthalpy and entropy change due to folding, respectively. . . ) i

The last term, coming from inter-replica interaction, tends to Nex’E, we discuss the glass transition. F'*rSt of all, we fix

cancel out the effective attraction due to the randomness a- & p* given in Eq. (24) [15]. Roughly, p* should not

peared in the first term because protein does not feel randor?@nge significantly after the collapse although, rigorously

ness when it precisely coincides with the native structure. SP€aking,p should be optimized simultaneously with the
In summary, Eqs(21), (22), and(23) are the expressions other order parameters. Here, we should remember that our

for the free energy for all relevant phases, which will be usedtarting point was based on the virial expansion, which is not
in the next sections. very accurate in any collapsed phase. Thus we feel that the

virial approach will overemphasize density variatiops.in
the virial approximation changes too rapidly with the other
thermodynamic parameters, which would be the case for a
more accurate homopolymer equation of states. Therefore, it
Since we have obtained simple enough expressions for the better to fixp* by choosingc appropriately at this level of
free energies of several phases, we can now discuss tigeescription. In other words, we change from the independent
“phase transitions” for finite systems. Our emphasis is onparameterc to p*. Qualitative features do not change very
the description of ruggedness of the free energy landscape.much by this prescription. Again this will be a most accurate
has been argued repeatedly that there are a number description when strong collapse is favored by the ho-
minima in the glass phase. We emphasize here, howevemopolymeric part of the pair interactions.
that even above théstatig glass transition temperature the ~ We seek the saddle solutions dfy.{m,X) [i.e.,
appropriate free energy landscape has many minima whicBq. (22)] with respect tom and X=(2mD)*? First, let us

IV. PHASE TRANSITIONS AND FREE ENERGY
LANDSCAPE

affect folding kinetics drastically. minimize Fy,s/(M—1) with respect toX. Forgetting the
first two terms which are constant i we have two relevant
A. Coil-globule transition (collapse terms which have opposite effects. The third term, the driv-

, . . » ing force to stabilize the replica symmetry breaking solution,
We first discuss the coil-globule phase transition based Ofbnds to pushX to its maximum valueX, .= (4)3%
max .

the free energy expression E@1) as a function of density g0 Fig. 2, in which a dotted line withTInX" corresponds

p (p=0). First of all, we ignore the third term, which IS, the third term. On the other hand, the fourth term, the
sTaIIer inN. Then, the Iozwest free Eenergy 1S attamed_ f"‘t theentropy loss due to freezing, prefers snmil{another dotted
p* =0 whenbey=bo— sb%/2>0, while it becomes positive, |ine ity « —BX” in Fig. 2). At sufficiently high tempera-

3 Bb? ture, the fourth term, which is proportional b, always
p*=- ( 0~ T) (24)  dominates and s&X=0 is the only stable solution, as is il-

lustrated in the figure. At decreasing temperature, the third

term, which is inverse proportional {6, becomes important
at largeX and, in addition to the solutioX=0, a new solu-
tion X=X,ax becomes locally stable when

2cv

whenb4<0. Thus, the phase transition temperattifg, is
determined by

b Bcab? o (25 OF giass
° 2 ’ X =0, (26)

where Bce=1/(kgTcg). The third term in the free energy
(21) does not change this temperature significantly for suffi-
ciently large polymer. There are two cases, however, wherahich gives
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F/(m-1)

X Xmax 1

. e 3/2
FIG. 2. The fr‘ee energy as a function ¥f=(2mD)”*. The FIG. 3. The free energy as a function wf The dotted curve
dotted curve with ‘TInX" represents the third term of E¢22) and with “ T(m—1)/m” represents the second term of H@8) and the

the dotte_d curve with *-BX” corresponds to the_fourth term. dotted curve with “= B(m—1)" corresponds to the third term.
Three solid curves represent the sum of them for different temperary e solig curves represent the sum of them for different tempera-

tures.T=T, is the critical temperature below which there is a mini- ;.o T=T, corresponds to the critical temperature at which
mum atX= Xax- m*=1

B?b%p*vm leads us tam* = 2kgT/b(Inp’ y—3/2/p* v)*2 Inserting this
4 =1 (27 into Eq. (27) we get
We call this critical temperaturd, following [23]. For kBTAzg\/p*U(mp' y—3/2). (30)

structural and Potts spin glasses this is the transition tem-

perature predicted by mode coupling thed21]. Below . . ) ] )
T,, there are always two locally stable solutioks-0 and At T=Ta, my=Inp’y—3/2 is larger than unity, and so in
X=Xmax, @ Melted phase and frozen phase, respectively. wihe ordinary replica formalism this solution has been ignored
should mention that Eq22) is derived under the assumption for the reason that it does not contribute to the Boltzmann
that D>A,B,C, which does not hold true for the solution average. Physically this means the configurational entropy of
X=0 (i.e., D=0). Thus, we have to use the free energythese local free energy minima is extensivd gt Recently,
expression for the coil-globule phase keeping a small deper{ﬁurchan, Parisi, and Virasor®9] interpreted this solution

dence orD. We findX=0 is indeed a stable solution, at the @S Yielding the metastable states in the case ofpispin
end. spherical model. We follow their argument and allowto

Next, atT<T,, we optimize be larger than unity. Then* decreases linearly witfi and
coincides with unity aff =T, defined by
2

1 Bb2| 1
F(m,XmaX)=ZNp*v(bo— T)—ZNp*v,Bbz(m—l) kBTK=E [ p*v 31
2 Vinp'y—3/2

m—1
+NkgT——(Inp"y=3/2) (28)  Below this temperature, this frozen solution becomes domi-
nant in the Boltzmann average. The Kauzmann temperature
T corresponds to the case where the configurational entropy
of the basins reaches zero. Equat{8i) is the same as that
of Shakhnovich and Gutifil5] except that the estimates of
the entropy losskg(Inp’ y—3/2) here, are not the sanig is

with respect tan, wherep’ =(87)%? and y=a®/v. (y rep-
resents flexibility of the chain and is about 5 for very flexible
chainlike protein[32,35. The value ofp’ depends to some
extent on the approximations we use and thus we think it

. ; . o roportional to the randomneds, and is inversely propor-
precise value is somewhat uncertain. Qualitative results artfonal to the square root of the entropy loss, which is the
not affected by its value as long as it is of order unity. In .

di g lati del it therefore treat it ame dependence found by Bryngelson and Wolynes using a
discussing fattice model results we theretore reat It as alqqyistica) field version of Flory theoy8]. Moreover, Ty is
justable) In the same way as above, the second and thir

. e ) roportional to the square root pf v, which represents the
terms Iee_ld to effg_cts in opposite directidisee Fig. 3 The packing fraction. This dependence is found [ib3]. (At
stationarity condition,

first glance, one may notice the difference by a facf@r
between the present result and that of RE8s1]. This is
0 29 simply because of the difference in the definition of random-
' ness, as will be discussed lajer.

é’FgIas{maXmax) _
am



4570 SHOJI TAKADA AND PETER G. WOLYNES 55

Let us estimate the free energy at the saddle solutions. For
the solution withX=0,
2
* N2 _ & * <
globuie= N7 ( bo > |PT (32 i
£
while for the solution withX= Xy, t
v Bb?
;|aSS=NZ(b0_ T) *~Nbyp*v(Inp’ y—3/2) g =
1
+NkgT(Inp’ y—3/2)+ ZN,Bpr*v. (33
The energy difference between them has the simple form
* * ! T TK . >
Fglass_ Fg|0bu|e:(|np y_3/2)NkBTK T_K+?_2 20, TK/TA 1

T/T,

FIG. 4. The free energy barrier between the two lowest minima
which touches zero &=Ty . It should be noted that in the as a function of temperature.
replica formalism the solution with the larger free energy . o o ) .
dominates the Boltzmann average wheh<1 as is known Arrhenius behavior in the kinetics, as is well-known in the
[6]; the solution with lower energy becomes dominant wherstructural glass physics. Notice that this behavior is consis-

m*>1. Therefore,F¥,,. dominates the thermal average tent with T 5 being a sort of.spinodlal for the random minima.
aboveTy , while F%,..becomes dominant belot We also show a numerical estimate of the barrier heights
' glass '

Following Kurchan, Parisi, and Virasoro, we can estimatet,1 > T=Tk in Fig. 4. We solve Eq(35) numerically for

a lower bound for the free energy of transition Staf€s) m* and put it, together with Eq36), into Eq. (22). Here,
between the lowest local minima in the temperature rang@/i€r heights grow near, as was shown above and then
T,>T>T«. We conjecture that the behavior of the RSB in Start decreasing. The latter is becausein Eq. (36) de-
our model is analogous to that of tespin spherical model creases with decreasing tempergture and the apprommgﬂon
and so the TS solution is again represented by one-level RS&TD>A,B,C becomes worse. It is expected that real barrier
in the temperature range considered now. Then, the TS s \eights grow monotonlc_ally. The value of the barrier height
lution (m*,X*) may be assigned to the one which makesdepends on the nonuniversal numhgr and may not be

: : : '—(832 i
F/(m—1) maximum with respect tX (X' in Fig. 2. The ~ accurate; the naive choice ofp’=(8m)"" gives

saddle condition gives AF*~1.0Nkg Ty at aroundT,, which is three times higher
than that estimated from the 27-mer lattice model by simu-
m* lation [36]. A smaller valuep’=(87)%?%5 gives a compa-
2|”T—_|”W+mﬁ_m¢:0 (35  rable barrier height to the simulation-0.4NKsT. We
A A should also note that the barrier height is always proportional
and to the size of polymeN in the present description, which
might be appropriate for relatively small proteins but is prob-
. AkeT)%(4m)>? ably not accurate for larger ones, where inhomogeneous
X :W- (36) saddle points may dominate. This may also be the reason the

naive estimate gives a larger barrier than the simulation. We
The parametem*>1 indicates these are configurational en-Will touch upon the latter case in Sec. V.
tropy driven transitions. In general the parameatexl is
conjugate to the nonextensive complexity of states below the C. Globule-folded transition (fast folding)
thermal transition, while herm*>1 presumably represents To consider the folding transition we need a free energy
the fact that multiple escape routes are possible from @xpression applicable in the whole range@<1. As dis-
trapped state. The upper equation cannot be solved analyilyssed above, the entropic term in the globule phase is small
cally in its general form. By the Taylor expansion aroundyn is negligible as the lowest approximation. Thus we sim-
Ta (T<T,) we get ply interpolate the entropic term between two regimes, i.e.,
g~0 andg~1. Thus one uses a simple fof®7]:

AF¥= Félass_ I:;Iass
v b? v?
MA—L(T—Ta)®, O[(T=Ta) Fecr(@) =N bo(1-a)~ 2 (1-0)%|p+ Ne'2-(1- )2
_NkBTAm T +0 T , (37 2 2 6
A A A

+gET+NkgTIn(p”yq+1), (38
which clearly shows that barrier heights grow with decreas- a ® P

ing temperature starting from zero®t T, . Obviously, this  wherep”=(27)%? the value of which should not be taken
temperature-dependent barrier height will give a non-as very precise. We again fix at p* given by Eq.(24) by
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A The first term, mainly representing the enthalpy change due
to the folding, is linearly decreasing with respectjtdOn the
other hand, both the second term, the effective attraction due
to the randomness, and the third term, representing the en-
tropy loss through the folding, are monotonically increasing

g functions ofq. Therefore, the physical origin of the barrier
u for the folding is partly the reduction of randomness upon
o folding and partly the entropy loss; depending on the values

of parameters, either one can be dominant. Because of this
complication, the estimate of the barrier height becomes
2 complicated too. When the barrier is small, we can write it as

(5€"+5p* v Bb2I8+KTp"y)?

o
AR N T o B 2ka T (P 7)?

Note that in this analysis the barrier height is always propor-
tional to N, as in the case of the barrier between the lowest
misfolded states discussed before.

FIG. 5. The free energy as a function of nativengs®r four
different temperaturesi) T>Tg, (i) T=Tg, the folding transition
temperature(iii) T=>T>Ty, where folding occurs through the
activation process, an@v) T=Tp below which downhill folding
takes place. First, we fixp atp* by eliminatingc through Eq.(24), as

usual. The first order phase transition between the glass
choosingc appropriately. Typical free energy curves alongphase and the folded phase is defined by
order parameteq are drawn in Fig. 5, which clearly shows
that the folding transition is the first order. Thus, the globule- F;,ass= Fcee1), (43
folded phase transition is defined by the relation

D. Glass-folded transition

which now becomes
Fceer0)=FcaH 1), (39

1
which now gives —| €|+ kg TEInp” y= §p*v,8,':b2— bvp*v(Inp’y—3/2)

~ Ep*uBeb?=—|5c +keTelnp"y, (40 HeTr(npTy=32), (49

whereT is the folding temperature from the glass phase and

whereTg is the folding temperaturgg= 1/(kgTg). We also BL=1/(ksTL).

defined the energy gager monomer e' between the na-
tive energy and the average energy of collapsed states by
V. DISCUSSIONS

Se"=ETIN—p*vby/4, (41 A. Phase diagram

since the energy gape' is a more useful parameter than Taking results in _the precedi_ng sectio_n togeth(_ar we can
ET to represent the bias towards foldifigg]. The LHS of draw a few ph{:\se dlagrams_ which are given in Fig. 6. .The
Eq. (40) is the free energy of the globule, the first term in thePresent model includes four independent parameters of inter-

RHS is the energy in the native state, and the second term S fche mean value of contact enetmy variance of a con-
the entropy loss due to the folding. tact interactiorb, the energy gap between the native energy

The critical situation at which the free energy barrier for 21d the mean energy of collapsed statiss| [defined in Eq.

the folding transition disappears is determined by the relatioh?], and temperatur&, and so we have no choice but to
draw a few surfaces of sections of the complete four-

dimensional phase diagram. As was mentioned before, we

JF
a—CGF =0, (42 are not taking some numerical factges p’, and p” very
9 l4-o literally at this level of description, and we use the values

deduced from the lattice model, as will be explained below.
which now leads to|5e"|=kgTpp”y+ 2 p*vBpb? Here A more sophisticated treatment is required to decide these
Tp is the critical temperature below which downhill folding values without the use of simulation data. We also note that
occurs and8p=1/(kgTp). the qualitative features of the phase diagram do not change
Above this critical temperatur@;, folding takes place Wwith the choice of these parameters so long as they are of
over a free energy barrier. To think about it, we rewrite theorder unity.

g-dependent part of the free energy as Figure @a) shows a surface of section on the-|de'|
plane, which is the same representation as that of Bryngelson
Feor/N= (8= % p*v8b2)g— % p*vBb3(1—q)3 and Wolynes[8]. In the figure, there are three phases

(bounded by solid curvesthe globule phase denoted by
+kgTIn(p”yq+ 1)+ const. M, the glass phase denoted By and the folded phase de-
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scape is monotonous and no local minimum except the glob-
ule state exists, and thd, regime, where there are many

F local minima, each of which is separated by a barrier of order

N, though the formal Boltzmann average is dominated by the

globule state. Next, the folded phase can be separated into

three parts. These are the regime, where protein must pass
over a free energy barrier to fold but is not trapped by the
frozen state, thé, regime, where the protein does not ex-
perience an activation barrier for the folding transition and
fast downhill folding occurs, and thEé; regime, where be-
fore reaching at the folded state, the protein can be found in
the glassy state and thus corresponds to a slow folding pro-
cess with intermediate growth. In the recent synthesis by
Bryngelsonet al.[1], several scenarios of folding were clas-
sified. The type-0 scenario there corresponds toRhee-
gime here, the type-l scenario takes place inEheaegime,

"3_0 and the type-Il scenario roughly corresponds to fhere-

gime. For the latter case, Bryngelsehal.discussed the case

@) l6 el where the glass transition takes place at the middle of the

folding process, assuming that the glass transition tempera-

ture Tk (q) increases as a function gf This seems to be the
case in the lattice models studif@B]. The present analysis,
however, suggests the possibility of the opposite situation,

i.e., the glass transition temperature decreases as a function

of q and thus there can be a case where the prefolding state

is glassy, while the folded state is nonglassy. There is indeed

a subtle issue whether the glass transition temperature in-

creases or decreases as a functiongabecause both the

ruggednessAE? and the residual entrop$ decrease with
respect togq. The latter quantity depends on the variational
approximation used.

Figure @b) shows another surface of section on the
kg T—b plane(whenb is negative. This representation cor-
responds to that of Sasai and Wolyrjé8]. The same nota-
tion as above is used to describe each phase or regime. It is

4.0
—

M,

2.0

‘/,’ I I T T R A well known that the temperature dependence of folding is not
1.0 2.0 simple to discuss in laboratory studies of proteins because
(b) b every parameter, in principle, depends on temperature

through the entropic contribution to the hydrophobic force. A
similar problem occurs when comparing the phase diagram
for the virial expansion Hamiltonian to a lattice model with
{gid excluded volume. In order not to make the argument

which metastable states disappear, and the dashed curve shows E.[gblguous, WTe first ignore any dependence of t,he parameters
glass transition in the metastable unfolded state. WMheregion is 0 b, and|5e | on temperature. The phase diagram looks

the molten globule phase with a monotonous free energy landscapeiMilar to that found by Sasai and Wolynes. One outstanding
The M, region still corresponds to the molten globule state, but thedifference is that, in the present diagram, we have no
rugged free energy landscape has many miniadenotes the random-coil phase, which appeared in Sasai and Wolynes.

glassy phase where protein misfolds to any one of the lowest state©ne reason is that we have ignored the entropic term to
F, with n=1, 2, and 3 is the folded phase; tFg region has an locate the coil-globule transition. As was mentioned, the en-

energy barrier to folding but the system is not frozen, while there isropic term always creates the coil phase in the high tempera-
no barrier in theF, region.F; corresponds to the regime where the ture limit. The other reason is related to the difference in the
prefolding state is glassy and thus the folding transition can be verynodel itself; we assumed that all parameters are independent
slow. The values of the parameters used ape=1, of T for clarity, and this is why we have no coil phase in this
Inp’y—3/2=1.6, and Ip"y=0.74, which are deduced from map- surface of section.
ping onto the 27-mer lattice simulation. To be more realistic, we next consider the temperature
dependence of the average virial coefficibgt which leads
noted byF. Roughly speaking, the phase diagram at thisus to the random-coil phase in this representation. To see
level is essentially the same as that of Bryngelson andhis, we employ the temperature dependencbhoés
Wolynes. Now, we can go forward to put in more informa-
tion on the kinetics. First, the globule phase is separated into
two regimes, theM, regime, where the free energy land-

FIG. 6. Phase diagrams derived from the present mdde/
diagram on thé—| 5€"| plane with energy unikgT. (b) A diagram
on thekgT—b plane with energy unitde'|. Solid curves separate
different (statig phases, dotted curves represent the boundaries

T—6
boz 0

2kgT (45)
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o factors which are not very exact in either analysis. Next, we
~ A C comment on the phase diagram given in Ramanathan and
- ShakhnovichH 17]. Roughly speaking, the selective tempera-
ture there plays a similar role to/| e'| here. Thus, inter-
'_} M, changing the vertical and horizontal axes, we see that Fig.

6(b) and Fig. 1 off17] look very similar. Socci and Onuchic
drew a phase diagram based on the lattice MC simulation.
Unfortunately, we cannot compare directly with their results
because they fix the sequence while changing interactions
between monomers, thus bdih and|Se'| depend on inter-
actions simultaneously.

1.0

B. Free energy landscape

Fo %j» Fy We can get some insight into the ruggedness of the free
energy landscape based on the analogy between the Potts-
L e o e e . — type spin glass and the present model. Figure 1 represents
1.0 2.0 schematically the TAP free energy in the Potts-type spin
@) b system. This can also be viewed as a TAP free energy land-
scape of the random heteropolymer, although we do not
i present here any explicit form of TAP free energy; we can
define “pure states” if the potential surface has many
minima, each of which is separated from the others by an
infinite barrier in the thermodynamic limit. An individual
pure states can be identified with the expectation value
{r?} of monomers averaged for a particular local minimum.
Referring to Fig. 1 we discuss characteristics of the free
energy landscape for each temperature ratigét any tem-
peratureT aboveT 4, the landscape is monotonous and there
is only one trivial solution in the TAP equation. In the rep-
lica formalism, this is represented by the replica-symmetric
solution (the solution withD=0), which corresponds to the
globule state physicallyii) At the temperature betwe€ly
andTg, there are both replica-symmetric and RSB solutions.
The latter energy coincides with the lowest TAP free energy.
To account for the formal Boltzmann average we sum over

2.0

1.0 2.0 many TAP solutions as
(b) b
FIG. 7. Phase diagrams derived from the present model with :f _
temperature-dependent, defined in Eq.(45) (with energy unit z dFrarexd o (Frap) = BFrapl, (46)

|5<T)). (@ Eor a pToorer sqlvenka?: 1.0 5¢’| and (b) a better wherew is the density of TAP solutions. In this temperature
solventkg#=0.5 d¢'|. Notation and values of parameters used are .
the same as those of Fig. 6 in addition to the random-coil phaserange’ the exponent here has the stationary gefnaibove
which we denote by. the Iowest.TAP energy. Therefore, a number of TAP solu'-
tions contribute to the Boltzmann average and, due to this
following Grosberg and Khokhloy32]. Here, ¢ is the so- degeneracy(complexity, the free energyF=—1/8InZ,
called theta temperature whelog becomes zero. The phase which coincides with the replica-symmetric free energy
diagrams for this model are given in Fig. 7 for two different Frs, becomes lower than the lowest TAP energy
values off. This has the random-coil phase denotedbsis (=Fggp). For finite systems such as actual proteins, the in-
is expected and is closer to that of Sasai and Wolyhékas finitely long time behavior can be represented by the replica-
well as that of Bryngelsoret al. [1]. For a better solvent symmetric solution, i.e., the globule state, while the protein
[Fig. 7(b)], the coil phase becomes more stable and thus theevertheless has a large barrier to move between globally
coil-globule transition curve goes down. Depending on thedifferent states and finite time dynamics may be controlled
nature of the solvent, a direct transition from the coil phaseby the metastable RSB solution, i.e., the glassy state. Acti-
to the folded phase may also occur. vated transport among many TAP minima takes pldiie.

We now comment upon relations to other phase diagramBelow Ty, the stationary poinE* in the exponent of Eq.
given in the literature. Shakhnovich and Gutirb] showed a  (46) disappears and a few lowest minima in the free energy
phase diagram on thé—b, plane for the random het- landscape dominate the Boltzmann average. Since the lowest
eropolymer. Restricting©=0, we can compare two results TAP free energy still coincides with the RSB free energy, the
guantitatively.(i) The coil-globule transition curve is exactly glassy state becomes globally stable.
the same(ii) Comparing Eq(31) with Eq. (26) of [15] we Next, we discuss the physical interpretationsTgf and
see that the only difference arises in the form of numericall . Tk is the temperature where the entropy becomes zero,
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sometimes called “entropy crisis.” The average number ofand thus usually folding occurs beloWw:, so the protein
contacts can be estimated @sv/2 and variance of the ran- encounters multiple minima along its folding route. There-
dom energy distribution per monomer becomesfore, the most probable scenario is that, after hopping among
Ae?~p*vb?/2, while the entropy loss per monomsegss  many local minima, protein finds its native structure which is
through freezing iskg(Inp’y—3/2). Therefore, Ty is ex-  stable thermodynamically. On the other hand, because the

pressed as estimates are uncertain, one should consider the possibility
that folding may occur in a regime where chain dynamics is
KT — / (Aé)z not far from Rouse dynamics renormalized by mode cou-

BK 25055/ ks’ pling effects[40].

We should give a warning that changes in the mapping
which is consistent with the analysis of the REM8]. Note  procedure may change this assignment of the scenario to
that the entropy factor is in the denominator; increashi®  some extent. Folding is expected to occur at temperatures
flexibility per Kuhn segmeng [35], the entropy to be lost for  somewhat abov@y and thus the characteristics of the free
freezing increases and then the Kauzmann temperdidre energy landscape in this regime are of most interest. More
becomes lower. On the other hand, sinte is given by  exhaustive study of off-lattice simulation seems to be desir-
keTa=b/2{p*v(Inp’y=3/2), increasing the flexibilityy, it aple to study details of the free energy landscape and kinet-
becomes easier to make multiple minima in the free energy.s. The present analytical calculation should be tested more
landscape and thug, increases. As a result, a polymer with carefully by off-lattice simulation.
large y possesses a relatively wide temperature range be- very recently, Shakhnovich and co-workers have carried
tweenT, and Ty . out lattice simulations that suggest that random heteropoly-

.In the preceding section, we ha}ve shown that barrie'f'ner dynamics is not activated at high temperaf{drg, ad-
heights between two lowest minima in the free energy Iandaucing a polynomial dependence of the time scale on system

scape increase with decreasing temperature balowThis size. This would be consistent with the expectation of a

directly leads to the super-Arrhenius temperature behaviorl,node counling analvsis aboiit . where polvnomial diver-
for example, in the diffusion constant in this temperature ping y W poly

regime. On the other hand, from the analogy to the RBM gences V.Vith chain length are expected]. At low tempera-

we expect that barrier heights saturatelat, below which t_ures ac'u_vated dependenc_e IS Seen, howe_ver. A more exhaus-
the diffusion constant recovers the Arrhenius temperature délv& Version of such studies may help in quantifyifig
pendence. To deal with the temperature range bdlgvex- ~ VersusTk.

plicitly, following Ref. [29], we need to employ two-level

RSB, which is straightforward but somewhat more elaborateD. Folding kinetics: Comments on the effects of inhomogeneity

In this paper we concentrated on the case where all order
C. Mapping onto the 27-mer lattice model of protein parameterd, C, andD are independent df, we have re-

We can try to map the present model onto the three-lettetricted our description to a homogeneously ordered or
code 27-mer lattice model studied exhaustively by MC simuirapped polymer. In particular, because of this the two types
lations [39,36], although the present model is not a lattice- of barrier heights discussed in this paper are proportional to
type one. While this mapping must be ambiguous to somé&, which may not be appropriate for relatively large protein.
extent, it is helpful in understanding the simulation results. InFor the latter, many inhomogeneous states may play impor-
the lattice mode[39,36, (i) the average energy of the glob- tant roles, especially to describe the folding kinetics. First, a
ule state is—50, which corresponds tpvby/4— —50/27  folding nucleus can be represented as a state where part of
=—1.8; (ii) the energy of the native structure is84 and the chain has much larg€l; than the other part. Nucleation
thus subtracting the average energy, we get the stability gd@3—46 would naturally be followed by the growth of the
per monomer,|Se'|«— (84—50)/27=1.3; (iii) the entropy number of monomers having larg€;. The question ad-
loss for freezing to a unique structure from a free chaindressed by such a analysis would be the size dependence of
should be roughly In5 for the cubic lattice giving the esti- the free energy barrier for the folding transition. Second, for
mate kg(Inp’ y—3/2)« 1.6; (iv) on the other hand, the en- quite a large polymer, a specific separationGyfinto two
tropy loss for the globule-folded transition was estimated agalues may create @netgstable state. This might be related
20kg from simulation of 27-mer at the folding temperature to a foldon, a small quasi-independent folding U#i]. An-
giving a different value Ip"y«20/27=0.74; (v) the mea- other possibility of inhomogeneous states is a locally trapped
sured energy fluctuation at the folding temperature is 51 andtate, which means only part of the chain has lddgewhile
so pvb?/2—51/27=1.88. From these mappings, we can de-the others hav®;~0. This might be a transition state be-
termine the dynamic glass temperature, the static glass tertween totally frozen states and that between a frozen state
perature, and the folding temperature to Bg=1.23, and a melted state. We can extend our treatment to these
T«=0.77, andT=1.25, respectively. On the other hand, inhomogeneous cases with the trial Hamiltonian,
there is no real solution fof, ; apparently a strictly down-
hi]l scenario folding(spinodal folding cannot be reached IBHref:Az (riaﬂ_ria)erz Bi(fia)erz Ci(ria_riT)z
with these parameters. @i a, @

These estimates are very crude and tentative, but it still
may be interesting to discuss the folding scenario based on it. + 2 Did, 4(r—rb)2. (47)

From this estimate] , and Tg are very close to each other oI af T
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Detailed results for these problems are under study and willliffusion constant. We believe that folding occurs somewhat
be reported elsewhere. aboveTy, which implies a mechanism of hopping between

These inhomogeneous descriptions of the polymer requiraumerous local minima until finding the native structure
more elaborate modes of replica symmetry breaking. For exthrough the guiding forces provided by minimal frustration
ample, in the case of thp-spin spherical model, one-level and the concomitant folding funnel. We have also drawn a
RSB is enough to represent stable states at temperature hghase diagram having seven qualitatively different dynami-
low Tk, while at the same temperature range two-level RSBcal regimes. Several scenarios of folding were discussed
describes transition states between two lowest mirji2h based on this diagram although it may not be quantitatively
Correlation of the free energy landscape has been modeled accurate in all details.
terms of generalized REM, which includes the continuous
part of Parisi’'s order parameter and is a step in this direction ACKNOWLEDGMENTS
[13]. . . .
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tained the same dependence as KW oh—{y), i.e.,

AF*~(T—Ty) 2 for Potts glasses in three dimensions. APPENDIX A: EXPLICIT EXPRESSIONS
Later, Kirkpatrick, Thirumalai, and Wolynes showed how
wetting of the interface between two TAP solutions in a
gﬁgﬁ,e;rbgeﬁ?ﬁ;gﬁfguf(%n?fl?d[;i(g;ﬁe r_pr?i;evt\;iﬂ%l ;/o_geI-C’ D, andm that appear in the reference Hamiltonian.

) K s ; P SinceZ, is a many dimensional Gaussian integral with
parently require a more complete spatially inhomogeneous AS e te the int tion b
RSB for the saddle point. We note that recently Thirumalaic (PONENTAZ Ty 7Ty, We can e+xecu € Ihe Integration by
has argued, based on the KTW style argument, that barriel%alcm‘"’ltlngl the inverse matrix 61,
for traps should scale only 39;1’_2 [46]. In our view further coshi — 1/2)\ .coshN—j + 1/2)\ -
analysis is needed because this scaling argument should be

Here we give explicit expressions for the variational free
energyF,, defined in Eqg.(15) in terms of parameterB,

only valid in the strict vicinity of i, not necessarily the s=_ SINANA . sinfh . (A1)
high temperature relevant for folding of minimally frustrated " cosij—1/2N.coshN—i+1/2N. . .
proteins. sinhNA . sinhi - rT

As was noted, virial expansion used in this paper is not
very appropriate to describe compact states. Incorporatingnd the determinant, whebe. is defined by
rigid chain connectivity with hard core repulsion will over-
come this disadvantage. In principle, Fixman’s independent-
oscillator comparison potenti@#9] might be applied to do
this, although qualitative results discussed here are believed
to be unchanged. The effects of the hardcoreTgmay be ~ where f.=B+C+A.D and A,=0, A_=2m. Using
considerable, since even the homogeneous hard sphere flultese, we can write dowh,e as
possesses a mean field dynamical transition. Also the some- an(N—1)/2 ) 3n/2m
what subtle questions such as change in the radius of gyra- 7 :(z) N‘3“’2( sinhh )
tion from the molten-globule state to the folded state may be e A sinhN\ |
analyzed by this extension.

f+ f+
sinth. =52V1+4A/f.,  cosh.=1+-+, (A2)

( sinh _ ) 3n(m—1)/2m

X| ==

VI. CONCLUSIONS SiniNA
We have analyzed the free energy landscape of model nC? T+ T T2

protein based on the replica variational method. The rugged- ><exp( T%“ i Gi] —nCZ fi ) (A3)

ness of free energy landscape is manifested by two glass

transition temperaturesf, and Ty (To>Tk). (i) Above As was explained in Sec. Il, the conformational entropy

Ta, the landscape is monotonous. Dynamics is like that of & expressed as

free Rouse chain modified by mode coupling effects. These

effects would give dynamical freezing @ . (i) Between _ _ a _pan2

T, and Ty, the landscape has a number of metastable S/ke =~ BFrert B(Hrer Aaz,i (=% (A4

minima but the collection of them dominates the Boltzmann

average as a whole. These are represented by the replican be computed directly frof.¢ and is written as

symmetric solution, while the RSB solution is metastable. )

(i) Below Ty, only a few lowest states contribute to the ¢ _ =N (1+Ai)ln sinh . 3n(m-1) (1+Ai)

Boltzmann average and this is well-described by the RSB~ " ° dA) " sinhN | 2m A

solution. In the second regime, the barrier between the two . 9

lowest minima grows with decreasing temperature, which xIn sinf —nC—Z rT(l—Ai)Gf’rT (A5)

. n i il
leads to the super-Arrhenius temperature dependence of the SinhNA _ AT gA) !

2m
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where we dropped a trivial constant term which represents 1
Gaussian free chain entropy. gi=—[Gi+(m—1)G; ], (A7)

For the one-replica part{H,) is written in terms of m
(p,) and(q) in the text. Thus, what we need to do here is to

: . " C T
give expressions for the latter two quantities. The expres- 35—2 Girl, (A8)
sions for these just have an additionafunction from the AT
definition of Z,; and are easily computed to give and
o\ —3/2 v g =312
(p(r))=2>, (%g') exd —A(r—s)%gl, (A6) <Q>=N§i: (f) exd —A(r{ —)%/gi].  (A9)
1

Finally, the inter-replica terndH,) is written in terms of
where p. and(Q,g). The latter is computed as

7g;| Y mG; | ¥ 2A (141, \2 A ,
(3] 1] o 2
(Qap)= o) 2 A A 2 (A10)
Ei T) eXF{_a(rl_S)_a(rz_S) ,

where the uppeflower) line is for the caser and 8 belong to the saméifferent group of RSB andj; is defined by

~ 2
gi:EGiJir_’_

2) _

In the limit of largeN, expressions become considerably simple. G@r,

*

Gijzmexp(—h—m\i), (A12)

which depends only on the sequential distaficej| between monomers. Therefol®;; is independent of and so

2mG | 2 A , g\ 7 28 (ry+r, |7
(Qap)= A ex —ﬁ(fﬁfz) EI A ex —E 5 S (AL13)
r+r,) [ 2wGy | 32 A , ALd
b 5 || TA | R ag (i) (A14)
for the casex and B belonging to the same group of one-level RSB, and
ot [ wg| 732 A )
(Qup)=pa| —5— T) exp — a(fl—fz) (A15)

otherwise.
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