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The multistability that arises in delayed feedback control mechanisms has applications for dynamic short
term memory storage. Here we investigate the effects of multiplicative, Gaussian-distributed white noise on an
integrate-and-fire model of a recurrent inhibitory neural loop: when the neuron fires an inhibitory pulse
decreases the membrane potential by an amdurtt time 7 later. For appropriate choices ef and A,
multistability occurs in the form of qualitatively different neuron firing patterns. In the absence of noise, the
number and nature of the coexistent attractors can be precisely determined. When noise is afided to
noise-induced transitions occur between the attractors. The mechanism for these transitions is characterized
and it is shown that the rate of transitions has a nonexponential dependence on the noise variance. An
electronic circuit is constructed to assess the impact of noise on memory s{@4g63-651X97)08404-3

PACS numbsgps): 87.10+e, 05.40+j, 02.30.Ks

[. INTRODUCTION order to solve a DDE it is necessary to specify an initial
function ¢(s), se[ —7,0]. Thus it is necessary to study the
A multistable dynamical system is one in which multiple effects of noise in the setting of a functional space.
attractors coexist. Each attractor pulls in trajectories that fall Here we study the noise-induced transitions that occur
within a certain basin of attraction. Multiple limit cycle at- between coexistent limit cycle attractors in an integrate-and-
tractors have been observed in models of neufdisand  fire model for a recurrent inhibitory neural lodgig. 1(a)]
neural recurrent loopg2] and have been observed experi-[2]. In Sec. Il we determine the number of attractors and
mentally in excitable cell§3] and in neural circuits con- their properties for this model in the absence of noise. In Sec.
structed from invertebrate neurorid]. More generically, 1ll we characterize the mechanism for noise-induced transi-
multiple limit cycle attractors arise in time-delayed feedbacktions between attractors. Finally, in Sec. IV we study the
mechanisms; an example is the first-order delay differential
equation(DDE) a

X+ ax=f(x(t— 7)), (1)
s
where a is a positive rate constaib,6]. Previous studies I
have suggested that multistability occurs when the time de-
lay 7 is longer than the intrinsic time scale of the control & -
mechanism, i.e.7>a !, and the feedback is nonmono- E Z
tonic[6]. This has been demonstrated in experiments involv-
ing time-delayed electronic circuit§7], and this communi-
cation and optical dye lasefs8]. When(1) is replaced by a
second-order DDE multistability arises even in the case
wheref is monotonic, negative feedba¢®]. Here we con-
sider a multistable dynamical system in which the attractors
are of limit cycle type.

Multistability has been emphasized as a mechanism for
dynamic memory storage?,6,8]; each attractor is identified
with a different memory. In neural networks the existence of
multiple fixed point(or limit cycle) attractors lies at the basis
of proposed mechanisms for associative content-addressable
memory[10]. However, stochastic perturbatiooise”)
place important limitations on the ability of multistable sys-
tems to store memory1]. For example, noise can cause g, 1. (a) Schematic diagram of a neural recurrent inhibitory
switches between basins of attraction. Noise-induced transjgedback loop. NeuroE makes an excitatory synapse onto the
tions in bistable systems have been studied extensivelynibitory interneurori, which in turn makes an inhibitory synapse
[11,12, particularly in the context of the detection of weak pack ontoE. (b) The time course of the membrane potentiaior
periodic signalg13]. However, little work has appeared on the integrate-and-fire neurdd under time-delayed inhibitory feed-
the effects of noise on systems in which retarded variableBack. The dashed line indicates the thresh@ldSee text for de-
play a major role[14]. A fundamental difficulty is that in tails)
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FIG. 3. Representation of the pattefh022¢ in intervals of
length 7, which are denoted by the brackets above and below. See
text for discussion.

whenr=4.1 andA =0.8 (Fig. 2). Here we demonstrate that
all attractors in this model are periodic and can be com-
pletely described. We introduce the following notation: A
periodic spike train consisting gf interspike intervalgISI)

FIG. 2. The four distinct attractor®—(d), which coexist when g completely described by the notatigmq,n,, ... 'nj}'
7=4.01 andA=0.89 for the circuit mode{AppendiX. The same  wheren; is the number of times that the inhibitory neuron
attractors are found analytical($ec. 1). The notation(} describes  fires in theith interval. Necessarilyj,=Elem . i.e., some of
Fhe per_iodi_c sequences by the number of inhibitory pulses in eac{he n, may be zero.
interspike interval. In order to determine the general solution of this model,

consider the spike pattern shown in Fig. 3. We construct the
effects of noise on the memory storage capabilities of afime series in intervals of lengthand identify the beginning
electronic circuit analog of the integrate-and-fire delayed reof this interval with the occurrence of a spike. The time
current loop. between two consecutive excitatory spikes isdA, p a
non-negative integer, and the time between two consecutive
inhibitory pulses that are not separated by a spike i b
Following each spike an inhibitory pulse occursater. For

An integrate-and-fire model for a recurrent inhibitory loop example, considear=a in Fig. 3. The voltage at the time the
is presented in Fig. (b). The membrane potential of the  inhibitory pulse occursy ., is (Fig. 3
neuron increases linearly at a r&eauntil it reaches the firing
thresholdd. Whenv = 6, the neuron fires and is reset to its
resting membrane potentiah. The firing of the neuron ex- \wherem,, n, are non-negative integers angis the voltage
cites the inhibitory interneuron such that at a timkater the  at the timet,, the first inhibitory pulse that occurs following

membrane potential of the excitatory neuron is decreased biie |ast spike, &2v,< 1, and it follows that 8<v .<1. In Fig.
an amountA. In the absence of recurrent inhibition the pe-3 whent=a, v,=v,+1—A.

Il. MODEL

v,=vtm,—n,A, 2

riod T=6/A. . _ o The timet, can be uniquely determined by
For ease of analysis, we have nondimensionalized the sys-
tem so that the rate of rise of the membrane potential and the T=tetm+nA, (©)

threshold are 1, while the resting potential is taken to be O, e _
S - ; Wherem_,n_ are positive integers and<0t;<<1. Att=a we
giving the neuron a firing period of 1. We shall use the SAME et — 71— 2 2A
variable names to denote the new dimensionless versions. Sintce bt (these are dimensionless numbers and
Now the temporal pattern of the spikes generatedchye- A=1) we (t:antsubstitute Eq2) into (3) to obtain
pends on two parameters:and A. The special case=qd,
g a positive integer, has been briefly considered previously =v,+(m—m)+(n+n)A=v _+M+NA. (4
[15]. Here we consider all positive.
When <1, the RI(recurrent inhibitioh model produces At t=a we havev,=7—1-3A. _
only a regular periodic firing pattern. Each excitatory spike ~Eduations(3) and(4) are of the same general form, i.e.,
produced is followed by an inhibitory pulse at timdater. F=m+nA+X, (5)
The inhibitory pulse decreasesby an amountA and hence
prolongs the period by an amouft Thus all solutions are where m,n are positive integers such that<On<r,
periodic with period - A. This case has been explored ex- 0=n=<7/A, and 0<x<1. For7,A fixed, the total number of
tensively in the context of fixed delay stimulation of cardiac(m,n) pairs that satisfy Eq5) is [7/A], where the notation
and respiratory oscillatofd 6]. We do not consider this case [] denotes the smallest integer greater thah.
further. Thus the solution of the RI model is constructed from
Multistability arises wherr>1 [2]. This complex behav- segments of lengthr, each of which is described by
ior becomes possible since the inhibitory pulses are not neche double pair of non-negative integers, denoted
essarily the result of the immediately preceding excitatorym,,n.)v Ny, where n.,n;) and (M,N) simultaneously
spike (Fig. 2). For example, four different attractors occur satisfy, respectively, Eq$3) and(4) (Fig. 3) subject to the
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conditions that m.>m, and m,=n, [17]. For each
(m;,n;)m Ny the total number of allowable segments of
length7 (i.e., M<m_, N>n)), P, is
(Mt n i
I —— if m>1 b) 4 5 6 7 8
i=1 l 17 - - o .
P={1 if M=1 AG
1 if M=n_=0
c)
L0 if M=0,n#0 .
For example, wherr=4.1 andA=0.8, the possiblerg,n) A1 ,ﬁ
pairs satisfying Eq(11) are(4,0), (3,1, (2,2), (1,3, and(0,4) 0 . . . i . . .
corresponding to 16 distinct segments_(n.)u n)-
Since the number ofni,,n;) v Ny Segments is finite for

fixed 7,A, it follows that all solutions of the Rl model are d)
periodic. Moreover, since there is a one-to-one relationship 1 n_
between excitatory spikes and inhibitory pulses, and since A
each inhibitory pulse prolongs the period Ay the period of . ‘ . . . ) ' ' .
these solutions iS(1+A), whereS is a positive integer (] 2 4 6 8
equal to the number of excitatory spikes per period. The

mean interspike interval is therefore {1A).
The solution of the RI model can be _unlquely ertt_en 458 £iG. 4. The regions inr-A parameter space corresponding to

sequence ofri,,N,) v n) SEgments; which segment is used o Jyactors shown in Fig. 2 wher=4.01 andA=0.89[® in

depends on.the previous segm@ﬁg. 3. 1In general, not all (d)]: (@ Fig. 2a); (b) Fig. 2Ab); () Figs. 2c) and Zd). (d) shows

of the possible Segme”ts are mcor_porated into one of thﬁle region irr-A parameter space where all four solutions coexist.

steady state solutions. However, in the caseref4.1,

A=0.8, all of the possible segments are utilized. There is . . .
one periodic solution described Hy2,2), ! [Fig. 2a)] N has nonzero measure lies at the basis of the solution mul-
P 1e)(2.2) 9. ' tistability of this model. For choices afandA in N, all four

a_md three different per.'Od'C solutions corresponding, T€SPEGSt the above solutions coexist. Thus it is possible, for ex-
tively, to a bursting pattern, {(4,0)40),(4,0)31)

X ample, by introducing a carefully timed inhibitory pulse, to
(4.0)z2.2),(4.0)1.9), (4.0)09} [Fig. 2b)], and two more . ,no0 from one type of pattern to anothi
complex patterns{(3,1)s 1), (3,1)22)(2:2)2.2):(2,2)13), g ype of p kieig. 5.
(22)22} [Fig. 20)] and {(3,1)3,),(3.1)2.2).(3.1)1.3)
(1,3)1.3),(3, 1)z, [Fig. 2d)]. IIl. NOISE

Once the solutions are known we can readily determine . . o ) .
all values ofr andA for which each solution exists. Regular _ We consider the case of Gaussian-distributed white noise

spiking pattern$Fig. 2@)], i.e.,{1};={1,,1, . ..} occur [19,20. Only the timing of the spike is important in our
when[18] model. Thus it is equivalent to inject noise into eithieror
7. for convenience we choose to add noiseAtoSince the

(—D(1+A)<7<(j—D)(1+A)+1 interspike interval is ¥ pA, the lengths of the interspike

and bursting patternigrig. 2(b)], i.e.,{0,j};={0,0,...,0,}
when

ft1111} 113100}

j—1<7<A(j—1)+1.

The more complex patterns shown in Fig$c)2and 2d),
respectively, i.e.,

{131004={Ry, Ry, Rs ..., Rd,
{10224={S;, S, S5, ..., Sl

whereR; and S; correspond, respectively, to the symbolic
sequences 13100 and 10220, &nmdj/5 coexist when

3+A+5k(1+A)<7<2+3A+5k(1+A).
FIG. 5. Whenr=4.01 andA =0.89, a carefully timed inhibitory
The regions in7-A space for which these four spiking pulse, indicated by *, induces a transition from one basin of attrac-
patterns are observed are shown in Fig®)44(c). Figure tion to another. This phenomenon is demonstrated for the electronic
4(d) shows the intersectiom), of these regions. The fact that circuit described in the Appendix.
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o 1000 2000 &1+ E,<T—1-2A, @)
ts where §i=Ai—A_and A is the mean value oA. The first

constraint, Eq(6), ensures that a second IP falls within the

FIG. 6. Plot of the fraction of trajectoriet, remaining in a  ISI, while the second one, Eq7), ensures that the subse-
given basin of attraction at timg. The time unit is the standard quent IP falls in the next ISI. A sequence of three consecu-
nondimensionalized time unit used in the model. tive interspike intervals is required to unambiguously assign

the spike train to one of the four coexisting attractors. The

intervals will be Gaussian distributed. To illustrate our find-condition for the next interspike interval to have exactly 1 IP
ings we taker=4.0167 andA=0.8918, which are in the Iis
region of overlap of the four attractors described in Sec. Il. —

To characterize the effects of noise, we measured the 11 &>7—-2-2A (8)
dwell timest, of trajectories in each basin of attractiffi].
The dwell time is defined as the time between when a trajecand the condition for the third and fourth interspike intervals
tory first enters a given basin of attraction to the time that itt© have 0 IP’s is
leaves. A trajectory is said to leave a basin of attraction when —
the number of inhibitory pulse@P’s) in an ISI differs from §3<7-3-A. 9
that expected for the attractor. For example, if we start in the , .
regularly spiking attractof1111%} and see the sequence The sequencgl00} is unique to the attractqr310Q. Equa-
{112}, we know that the system has just left the attractorions (6)~(9) define a volume in four-dimensional space; if
Figure 6 shows that a plot of fpversusts, whenf., the the sequence of foud’s fall within this region a switch
fraction of trajectories remaining at tintg, versust, is lin-  0CCurs between the attractors. o
ear. An exponential distribution dof; is the characteristic . FOrf the transitio1111% to {1022Q, numerical simula-
distribution observed for the times to cross a threshold in 410NS indicate that there are two common pathways:
stochastiqd 23] or chaotic[24] dynamical system. Thus the 1 12010 2(path J and 1 1 21 0 1 O(path 3, where the
observations in Fig. 6 suggest that switches between basigaret identifies the ISl in which the trajectory leaves the at-
of attraction occur wherh (or more likely some number of tractor{1111%. By repeating the above calculation, we find
consecutived’s) are changed by the appropriate amount. that for the first path constraints are required on faus

To illustrate how noise-induced transitions occur betwee{A -2,A_1,A;,A5); whereas for the second path constraints
attractors, we discuss the switches from the attractore required on five\’s (A_3, A_,, A_3, Aq, Ay).
{11113 to two of the coexisting attractor,1310¢ and To illustrate graphically the three most common noise-
{1022@. Two steps are involved in a switch between attracinduced transitions from the attractdrl111} a five-
tors: (1) |eaving the first attractor, an@) entering the sec- dimensional plot is required. Figure 8 shows cross sections
ond. Once a trajectory leaves the neighborhood of an attra®f this space. Only values @fs for which transitions were
tor, it may return eventually to the original attractor, or it detected are shown. As expected from our discussion, the
may enter a new attractor. Either may occur after an arbiconditions on the consecutivk’s that permit switches be-
trarily long sequence of transient ISI's. In all cases we obiween attractors appear as threshdlte solid line is the
served that the trajectory eventually settles into one of theondition given by Eq(6)].
attractors known to exist in the absence of noise; i.e., no new The probabilityP that a given¢ satisfiesa<<£<b is sim-
stable states appear in this system as a consequence of nojgg
[22].

Figure 7 illustrates schematically the most frequent path ow
by which the transition fron§1111% to {1310G occurs. For
convenience we label with positive subscripts thase that
occur after the trajectory leaves the attractbe onset of the whereo is the standard deviation of the Gaussian-distributed
interval with two IP’9; negative subscripts refer to those thatwhite noise. Thus, we can write the total probability for a
occur prior to this event. The conditions for the trajectory togiven transition between two attractors as
leave the attractor by generating an interspike interval with
two IP’s are P=P;+Py+P3+---+P;, (10

b
exp(— u?/20)du,
a
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FIG. 9. Plot of the rate constaktfor trajectory egress, for each
basin of attraction as a function of the noise valagemperature-
like variablg. The rate constants are determined by measuring the
slope of the plot of Iif vstg (Fig. 6). The noise value was measured
as the standard deviation of the distributionAaf The dashed lines
represent the calculated rate constants, while the solid lines reflect
g1e actual measured rate constants. Lines merely connect the data
points, which are indicated by their respective markers.

FIG. 8. Cross sections of the spage;,&,&5,&3,&4. The val-
ues of¢'s for which transitions were detected are scatter plotted.
Light gray indicates path 1 for the transition frofi1113} to
{10224, black indicates path 2, while dark gray shows the transi-
tion from {1111 to {1310Q. Each plot is repeated twice at differ-
ent noise levels to illustrate how increasing noise increases th
number ofA’s that fall in the transition regions of the space. Panels
(a) and(b) show transitions when-=0.08 while for panelgc) and
(d), 0=0.10. Panel$a) and(c) show plots of¢; vs ¢_;. Itis clear  sitions arise since not every ISl is equivalent, as they are in
that Eq.(6) holds for all of the transitions. In pane(s) and(d),  {11112. For instance, when starting {1310@, there would
&, is plotted vs¢&;. Again, we see that for the transition from be five distinct sets of transitions, each corresponding to
{1111% to {1310Q (8) holds, while for the main transition from changing the number of IP’s in any one of the standard ISI’s.
{11113 to {10220, the opposite inequality holds. These calculations rapidly become tedious and therefore

o . ) were not pursued.
where theP; are the probabilities that the trajectories escape

from the basin of attraction by thi¢h path. For example, for

the transition{1111% to {1310Q¢ one path predominates and IV. DYNAMIC MEMORY STORAGE
. In order to obtain a practical assessment of the impact of
P~P;= Lexp( —(u,u)/20)du, (12) noise on memory storage by a multistable dynamical system,

we constructed an electronic circuit that mimics the

whereu is a vector andqu,u) denotes the inner product. The integrate-and-fire model discussed in Secs. Il andFly.
integration is performed over the regi@udescribed by Eqs. 10). This circuit is fully described in the Appendix. Briefly,
(6)—(9). For the switch from{1111% to {1022¢ P can be neuron E [Fig. 1(@] is represented by a capacitor that
approximated by two terms: one for path 1, the other for patieharges linearly. The role of the neurénis played by a
2. time-delay circuit(bucket brigade devigewhich introduces

In general, there are an arbitrarily large number of path&in incremental reductioA to the capacitor charging voltage
from one attractor to another; however, most of these pathgt a time r after the capacitor discharges. In order to put
have a negligible probability of occurring for two reasons:noise onA (Sec. Il)) we added noise to the discharging cur-
constraints on more than five consecutive and the values rent source, which normally discharges the capacitor by the
of A more than three standard deviations from the mean arexact amoun\ through switchS,. The noise was generated
required. Hence, we can terminate the above sum at an arllly a random noise generat¢General Radio Company,
trary amount of precision. Moreover, this is the reason thaModel 1390-B and was first passed through a filter circuit
the third possible transition, which exists for these values ofvith a time constant of 1 ms.

7,A, i.e., {11117 to {00008, occurs so infrequently. Figure 11 shows the distribution of interspike intervals for
Figure 9 compares the measured ra=timated from the different injected noise level@neasured a¥,.s, the root-
slope of Irfg versusts shown in Fig. 8 s a function of the mean-square voltageln all cases the model was initialized

standard deviation of the injected Gaussian white noise tto the regular spiking attractgFig. 2(a)]. As expected when
that calculated from Eq10). As can be seen, the measuredV,ns=0, the distribution of ISl is approximated by a single
transition rates agree well with those predicted by @&€). delta functionFig. 11(a)]. As V,sincreases, the distribution
In principle, the same approach can be used to describef ISI broadengFigs. 11b) and 11c)]. This occurs because
the noise-induced transitions from the other attractors. Howthe interspike interval is equal tot1pA and noise is injected
ever, in these cases many more paths for noise-induced tratiroughA. OnceV,, becomes large enough, the histogram
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The dwell timet, discussed in Sec. Il corresponds to the
time that a memory, represented by a temporal pattern of
ISI's, is preserved. A plot of Ify versustg is linear with
slope k for each of the attractors in this circuilata not
shown. The constank™ ! can be interpreted as the average
time that a memory persists. Whéh,.=4 V, the average
survival times for the attractors in the circuit are X.50°
for {11111, 1.25x10?r for {1022Q, 0.75x1C°7 for
{1310Q, and>2.5x 10°r for {00003.

In the complete absence of noise, no switching between
attractors should occur. However, some switches between
attractors occur, albeit rarely, in our circuit in the absence of
added noise. The largest source of error in the circuit is the
bucket brigade device used to create the delay. The bucket
brigade quantizes the delay into 0.14-ms bins. This quanti-
zation error acts as a noise source in our circuit and can
cause switches between basins of attraction. We estimate that

FIG. 10. Schematic diagram of the electronic circuit constructedinder these conditions the survival times of all of the attrac-

to mimic a neural recurrent inhibitory feedback ldghown in Fig.  tors are> 10°7.
1(a)] in which the excitatory neuron is modeled by a capacitor. See

the Appendix for details. V. DISCUSSION

becomes multimoddlFig. 11(d)]. These modes appear be-  Multistability readily arises in control mechanisms with
cause once the noise level becomes sufficiently highgelayed feedback. Since these mechanisms operate in noisy
switches between basins of attraction frequently occur. Th@nvironments, it is likely that noise-induced transitions play
same experiment can be repeated by starting the circuit wit major role in shaping the observed dynamics. The study of
a different spiking pattern corresponding to a different attrachoise-induced transitions in multistable dynamical systems is
tor. The amplitude o¥/,,s necessary for switches to occur at facilitated when the number and properties of the attractors
a noticeable rate depends on the starting attractor. This otire known. For each choice ofA it is possible to deter-

servation implies that the stability of each attractor to noisymine, using the methods we have outlined, the number of
perturbations differs. coexistent attractors. Although the number of attractors and

0 Vrms

1Vrms

fISI

)

3 Vrms

4 Vrms

ISI

their basins of attraction can change as a function, &f, we
expect that noise-induced transitions will be qualitatively
similar to the example discussed in Sec. lll. Wher 1, the
nature of the multistability becomes more complex and will
be dealt with in a separate communication.

Two mechanisms exist for noise-induced transitions in
multistable dynamical systeni42]. First, a single perturba-
tion can cause a switch between two attractors. Second, the
switch between attractors may occur only after a series of
perturbations. This latter mechanism is by far the most com-
mon one for noise-induced transitions between attractors in
systems continuously perturbed by noise such as we study
here.

The observations in Figs. 6 and 11 suggest the possibility
of characterizing the rates of transitionk, as k
xexp(—E,/RT), whereE, is the height of an effective en-
ergy barrier. The temperaturelike variaflas typically pro-
portional to the square of the variance of the noise, &-&. )t
has been shown previously that the rate of noise-induced
transition from a chaotic attractor has an exponential depen-
dence ono? [21]. In our casefE, corresponds to the in-
stantaneous energy of the system, andhe rms level of the

FIG. 11. Interspike interval histograms recorded from the elec-" . A ds to the t i f th ;
tronic circuit as a function of th¥/,,¢ of the noise injected into the NOISE ona, corresponds 1o he temperature of the System.

parameterA. The experiment was initiated by using perturbations Rate constant; reflect t_he_ probability that the system will
(Fig. 5) to ensure that the circuit was in the basin of attraction that™@Ke & transition per unit time. In our case, the rate constant
corresponded to the regular spiking pattéta113. The mulimo- IS directly proportional toP given in Eq.(10) and depends

dal histogram in(d) arises when the noise is large enough to cause@n o, nNot 0. The dependence ¢f on ¢ is not necessarily
switches between basins of attraction. When4.01 andA=0.89  exponential. Indeed this dependence may be rather complex
the possible interspike intervals are-pA, wherep equals 0, 1, 2, through its relation to the erf function. It is quite possible
3, and 5. that complex dependencieslobn o may be a characteristic
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feature of noise-induced transitions between multiple limitparitors 1 and 2, which cause it to change state when the
cycle attractors. voltage across the capacitor touches eittigror V,, which
Multistable dynamical systems have potential as memongre fixed at; and § of the supply voltage, respectively. The
storage deviceR2,6,8. It is certainly relatively easy to con- comparitors, flip-flop and switcl$, are actually part of a
struct multistable electronic circuitSec. IV,[7]). However,  single chip: the NE555 countertimer chip. In operation, the
although for low noise levels the average time that a trajeccapacitor charges linearly with timgate=116 V/9 from
tory remains in a given attractor can be quite long, there i&/1 (“resting membrane potentia)’until the voltage reaches
nonetheless a nonzero probability that switches occur be¥z (“firing threshold”) at which time S, closes and dis-
tween attractors. Thus, noisy multistable dynamical systemgharges(“neural spike”) the capacitor again t&; where-

are clearly best suited for short-term dynamical memory stor4POn the process begins agdin the absence of an inhibi-
age. Our circuit suggests the feasibility of construction offory ?'gna' described ne)xt'l_'hus far the circuit operation is
multistate computational devices. identical to a relaxation oscillator with period,

T+ (V,—V4)/A s. Upon discharge bg, the flip-flop output
is also differentiated and pulse shagedtcuitry not shown
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