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Noise, multistability, and delayed recurrent loops

Jennifer Foss,1 Frank Moss,2 and John Milton1
1Department of Neurology and Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637

2Department of Physics, University of Missouri at St. Louis, St. Louis, Missouri 63121
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The multistability that arises in delayed feedback control mechanisms has applications for dynamic short
term memory storage. Here we investigate the effects of multiplicative, Gaussian-distributed white noise on an
integrate-and-fire model of a recurrent inhibitory neural loop: when the neuron fires an inhibitory pulse
decreases the membrane potential by an amountD at time t later. For appropriate choices oft and D,
multistability occurs in the form of qualitatively different neuron firing patterns. In the absence of noise, the
number and nature of the coexistent attractors can be precisely determined. When noise is added toD,
noise-induced transitions occur between the attractors. The mechanism for these transitions is characterized
and it is shown that the rate of transitions has a nonexponential dependence on the noise variance. An
electronic circuit is constructed to assess the impact of noise on memory storage.@S1063-651X~97!08404-3#

PACS number~s!: 87.10.1e, 05.40.1j, 02.30.Ks
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I. INTRODUCTION

A multistable dynamical system is one in which multip
attractors coexist. Each attractor pulls in trajectories that
within a certain basin of attraction. Multiple limit cycle a
tractors have been observed in models of neurons@1# and
neural recurrent loops@2# and have been observed expe
mentally in excitable cells@3# and in neural circuits con
structed from invertebrate neurons@4#. More generically,
multiple limit cycle attractors arise in time-delayed feedba
mechanisms; an example is the first-order delay differen
equation~DDE!

ẋ1ax5 f „x~ t2t!…, ~1!

wherea is a positive rate constant@5,6#. Previous studies
have suggested that multistability occurs when the time
lay t is longer than the intrinsic time scale of the contr
mechanism, i.e.,t .a21, and the feedbackf is nonmono-
tonic @6#. This has been demonstrated in experiments invo
ing time-delayed electronic circuits~@7#, and this communi-
cation! and optical dye lasers@8#. When~1! is replaced by a
second-order DDE multistability arises even in the ca
where f is monotonic, negative feedback@9#. Here we con-
sider a multistable dynamical system in which the attract
are of limit cycle type.

Multistability has been emphasized as a mechanism
dynamic memory storage@2,6,8#; each attractor is identified
with a different memory. In neural networks the existence
multiple fixed point~or limit cycle! attractors lies at the basi
of proposed mechanisms for associative content-address
memory @10#. However, stochastic perturbations~‘‘noise’’ !
place important limitations on the ability of multistable sy
tems to store memory@1#. For example, noise can caus
switches between basins of attraction. Noise-induced tra
tions in bistable systems have been studied extensi
@11,12#, particularly in the context of the detection of wea
periodic signals@13#. However, little work has appeared o
the effects of noise on systems in which retarded variab
play a major role@14#. A fundamental difficulty is that in
551063-651X/97/55~4!/4536~8!/$10.00
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order to solve a DDE it is necessary to specify an init
functionf(s), sP@2t,0#. Thus it is necessary to study th
effects of noise in the setting of a functional space.

Here we study the noise-induced transitions that oc
between coexistent limit cycle attractors in an integrate-a
fire model for a recurrent inhibitory neural loop@Fig. 1~a!#
@2#. In Sec. II we determine the number of attractors a
their properties for this model in the absence of noise. In S
III we characterize the mechanism for noise-induced tran
tions between attractors. Finally, in Sec. IV we study t

FIG. 1. ~a! Schematic diagram of a neural recurrent inhibito
feedback loop. NeuronE makes an excitatory synapse onto t
inhibitory interneuronI , which in turn makes an inhibitory synaps
back ontoE. ~b! The time course of the membrane potentialv for
the integrate-and-fire neuronE under time-delayed inhibitory feed
back. The dashed line indicates the thresholdu. ~See text for de-
tails.!
4536 © 1997 The American Physical Society
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55 4537NOISE, MULTISTABILITY, AND DELAYED . . .
effects of noise on the memory storage capabilities of
electronic circuit analog of the integrate-and-fire delayed
current loop.

II. MODEL

An integrate-and-fire model for a recurrent inhibitory loo
is presented in Fig. 1~b!. The membrane potentialv of the
neuron increases linearly at a rateA until it reaches the firing
thresholdu. Whenv5u, the neuron fires andv is reset to its
resting membrane potentialv0. The firing of the neuron ex-
cites the inhibitory interneuron such that at a timet later the
membrane potential of the excitatory neuron is decrease
an amountD. In the absence of recurrent inhibition the p
riod T5u/A.

For ease of analysis, we have nondimensionalized the
tem so that the rate of rise of the membrane potential and
threshold are 1, while the resting potential is taken to be
giving the neuron a firing period of 1. We shall use the sa
variable names to denote the new dimensionless versi
Now the temporal pattern of the spikes generated byE de-
pends on two parameters:t andD. The special caset5q,
q a positive integer, has been briefly considered previou
@15#. Here we consider all positivet.

Whent,1, the RI~recurrent inhibition! model produces
only a regular periodic firing pattern. Each excitatory sp
produced is followed by an inhibitory pulse at timet later.
The inhibitory pulse decreasesv by an amountD and hence
prolongs the period by an amountD. Thus all solutions are
periodic with period 11D. This case has been explored e
tensively in the context of fixed delay stimulation of cardi
and respiratory oscillators@16#. We do not consider this cas
further.

Multistability arises whent.1 @2#. This complex behav-
ior becomes possible since the inhibitory pulses are not n
essarily the result of the immediately preceding excitat
spike ~Fig. 2!. For example, four different attractors occ

FIG. 2. The four distinct attractors~a!–~d!, which coexist when
t54.01 andD50.89 for the circuit model~Appendix!. The same
attractors are found analytically~Sec. II!. The notation$% describes
the periodic sequences by the number of inhibitory pulses in e
interspike interval.
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whent54.1 andD50.8 ~Fig. 2!. Here we demonstrate tha
all attractors in this model are periodic and can be co
pletely described. We introduce the following notation:
periodic spike train consisting ofj interspike intervals~ISI!
is completely described by the notation$n1 ,n2 , . . . ,nj%,
whereni is the number of times that the inhibitory neuro
fires in thei th interval. Necessarily,j5( i51

j ni , i.e., some of
theni may be zero.

In order to determine the general solution of this mod
consider the spike pattern shown in Fig. 3. We construct
time series in intervals of lengtht and identify the beginning
of this interval with the occurrence of a spike. The tim
between two consecutive excitatory spikes is 11pD, p a
non-negative integer, and the time between two consecu
inhibitory pulses that are not separated by a spike is one@17#.
Following each spike an inhibitory pulse occurst later. For
example, considert5a in Fig. 3. The voltage at the time th
inhibitory pulse occurs,vt , is ~Fig. 3!

vt5v t1mv2nvD, ~2!

wheremv, nv are non-negative integers andv t is the voltage
at the timet t, the first inhibitory pulse that occurs following
the last spike, 0,v t,1, and it follows that 0,vt,1. In Fig.
3, whent5a, vt5v t112D.

The timet t can be uniquely determined by

t5t t1mt1ntD, ~3!

wheremt ,nt are positive integers and 0,t t,1. At t5a we
havet t5t2222D.

Since v t5t t ~these are dimensionless numbers a
A51) we can substitute Eq.~2! into ~3! to obtain

t5vt1~mt2mv!1~nt1nv!D5vt1M1ND. ~4!

At t5a we havevt5t2123D.
Equations~3! and ~4! are of the same general form, i.e.

t5m1nD1x, ~5!

where m,n are positive integers such that 0<m<t,
0<n<t/D, and 0,x,1. Fort,D fixed, the total number of
(m,n) pairs that satisfy Eq.~5! is dt/D e, where the notation
d e denotes the smallest integer greater thant/D.

Thus the solution of the RI model is constructed fro
segments of lengtht, each of which is described b
the double pair of non-negative integers, deno
(mt ,nt)(M ,N) , where (mt ,nt) and (M ,N) simultaneously
satisfy, respectively, Eqs.~3! and ~4! ~Fig. 3! subject to the

ch

FIG. 3. Representation of the pattern$10220% in intervals of
lengtht, which are denoted by the brackets above and below.
text for discussion.
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4538 55JENNIFER FOSS, FRANK MOSS, AND JOHN MILTON
conditions that mt.mv and mv5nv @17#. For each
(mt ,nt)(M ,N) the total number of allowable segments
lengtht ~i.e.,M,mt , N.nt), P, is

P55 )
i51

M21
nt1 i

i
if M.1

1 if M51

1 if M5nt50

0 if M50,nt5” 0

For example, whent54.1 andD50.8, the possible (m,n)
pairs satisfying Eq.~11! are~4,0!, ~3,1!, ~2,2!, ~1,3!, and~0,4!
corresponding to 16 distinct segments (mt ,nt)(M ,N) .

Since the number of (mt ,nt)(M ,N) segments is finite for
fixed t,D, it follows that all solutions of the RI model ar
periodic. Moreover, since there is a one-to-one relations
between excitatory spikes and inhibitory pulses, and si
each inhibitory pulse prolongs the period byD, the period of
these solutions isS(11D), whereS is a positive integer
equal to the number of excitatory spikes per period. T
mean interspike interval is therefore (11D).

The solution of the RI model can be uniquely written a
sequence of (mt ,nt)(M ,N) segments; which segment is us
depends on the previous segment~Fig. 3!. In general, not all
of the possible segments are incorporated into one of
steady state solutions. However, in the case oft54.1,
D50.8, all of the possible segments are utilized. There
one periodic solution described by$(2,2)(2,2)% @Fig. 2~a!#,
and three different periodic solutions corresponding, resp
tively, to a bursting pattern, $(4,0)(4,0) ,(4,0)(3,1) ,
(4,0)(2,2) ,(4,0)(1,3) ,(4,0)(0,4)% @Fig. 2~b!#, and two more
complex patterns:$(3,1)(3,1) ,(3,1)(2,2) ,(2,2)(2,2) ,(2,2)(1,3) ,
(2,2)(2,2)% @Fig. 2~c!# and $(3,1)(3,1),(3,1)(2,2) ,(3,1)(1,3) ,
(1,3)(1,3) ,(3,1)(3,1) @Fig. 2~d!#.

Once the solutions are known we can readily determ
all values oft andD for which each solution exists. Regula
spiking patterns@Fig. 2~a!#, i.e., $1% j[$11,12 , . . . ,1j% occur
when @18#

~ j21!~11D!,t,~ j21!~11D!11

and bursting patterns@Fig. 2~b!#, i.e., $0,j % j[$0,0, . . . ,0,j %
when

j21,t,D~ j21!11.

The more complex patterns shown in Figs. 2~c! and 2~d!,
respectively, i.e.,

$13100%k[$R1, R2, R3, . . . , Rk%,

$10220%k[$S1, S2, S3, . . . , Sk,%,

whereRi and Si correspond, respectively, to the symbo
sequences 13100 and 10220, andk5 j /5 coexist when

31D15k~11D!,t,213D15k~11D!.

The regions int-D space for which these four spikin
patterns are observed are shown in Figs. 4~a!–4~c!. Figure
4~d! shows the intersection,ù, of these regions. The fact tha
ip
e

e

e

is

c-

e

ù has nonzero measure lies at the basis of the solution m
tistability of this model. For choices oft andD in ù, all four
of the above solutions coexist. Thus it is possible, for e
ample, by introducing a carefully timed inhibitory pulse,
change from one type of pattern to another~Fig. 5!.

III. NOISE

We consider the case of Gaussian-distributed white no
@19,20#. Only the timing of the spike is important in ou
model. Thus it is equivalent to inject noise into eitherD or
t: for convenience we choose to add noise toD. Since the
interspike interval is 11pD, the lengths of the interspike

FIG. 4. The regions int-D parameter space corresponding
the attractors shown in Fig. 2 whent54.01 andD50.89 @d in
~d!#: ~a! Fig. 2~a!; ~b! Fig. 2~b!; ~c! Figs. 2~c! and 2~d!. ~d! shows
the region int-D parameter space where all four solutions coexi

FIG. 5. Whent54.01 andD50.89, a carefully timed inhibitory
pulse, indicated by *, induces a transition from one basin of attr
tion to another. This phenomenon is demonstrated for the electr
circuit described in the Appendix.
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55 4539NOISE, MULTISTABILITY, AND DELAYED . . .
intervals will be Gaussian distributed. To illustrate our fin
ings we taket54.0167 andD50.8918, which are in the
region of overlap of the four attractors described in Sec.

To characterize the effects of noise, we measured
dwell timests of trajectories in each basin of attraction@21#.
The dwell time is defined as the time between when a tra
tory first enters a given basin of attraction to the time tha
leaves. A trajectory is said to leave a basin of attraction w
the number of inhibitory pulses~IP’s! in an ISI differs from
that expected for the attractor. For example, if we start in
regularly spiking attractor$11111% and see the sequenc
$112%, we know that the system has just left the attract
Figure 6 shows that a plot of lnfs versusts , when f s , the
fraction of trajectories remaining at timets , versusts is lin-
ear. An exponential distribution ofts is the characteristic
distribution observed for the times to cross a threshold i
stochastic@23# or chaotic@24# dynamical system. Thus th
observations in Fig. 6 suggest that switches between ba
of attraction occur whenD ~or more likely some number o
consecutiveD ’s! are changed by the appropriate amount.

To illustrate how noise-induced transitions occur betwe
attractors, we discuss the switches from the attrac
$11111% to two of the coexisting attractors,$13100% and
$10220%. Two steps are involved in a switch between attra
tors: ~1! leaving the first attractor, and~2! entering the sec-
ond. Once a trajectory leaves the neighborhood of an att
tor, it may return eventually to the original attractor, or
may enter a new attractor. Either may occur after an a
trarily long sequence of transient ISI’s. In all cases we o
served that the trajectory eventually settles into one of
attractors known to exist in the absence of noise; i.e., no n
stable states appear in this system as a consequence of
@22#.

Figure 7 illustrates schematically the most frequent p
by which the transition from$11111% to $13100% occurs. For
convenience we label with positive subscripts thoseD ’s that
occur after the trajectory leaves the attractor~the onset of the
interval with two IP’s!; negative subscripts refer to those th
occur prior to this event. The conditions for the trajectory
leave the attractor by generating an interspike interval w
two IP’s are

FIG. 6. Plot of the fraction of trajectoriesf s remaining in a
given basin of attraction at timets . The time unit is the standard
nondimensionalized time unit used in the model.
-
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j211j1.t2222D̄, ~6!

j11j2,t2122D̄, ~7!

where j i5D i2D̄ and D̄ is the mean value ofD. The first
constraint, Eq.~6!, ensures that a second IP falls within th
ISI, while the second one, Eq.~7!, ensures that the subse
quent IP falls in the next ISI. A sequence of three conse
tive interspike intervals is required to unambiguously ass
the spike train to one of the four coexisting attractors. T
condition for the next interspike interval to have exactly 1
is

j11j2.t2222D̄ ~8!

and the condition for the third and fourth interspike interva
to have 0 IP’s is

j3,t232D̄. ~9!

The sequence$100% is unique to the attractor$13100%. Equa-
tions ~6!–~9! define a volume in four-dimensional space;
the sequence of fourD ’s fall within this region a switch
occurs between the attractors.

For the transition$11111% to $10220%, numerical simula-
tions indicate that there are two common pathwa
1 1 2̂ 0 1 0 2~path 1! and 1 1 2ˆ 1 0 1 0~path 2!, where the
caret identifies the ISI in which the trajectory leaves the
tractor$11111%. By repeating the above calculation, we fin
that for the first path constraints are required on fourD ’s
(D22 ,D21 ,D1 ,D2); whereas for the second path constrain
are required on fiveD ’s (D23, D22, D21, D1, D2).

To illustrate graphically the three most common nois
induced transitions from the attractor$11111% a five-
dimensional plot is required. Figure 8 shows cross secti
of this space. Only values ofj ’s for which transitions were
detected are shown. As expected from our discussion,
conditions on the consecutiveD ’s that permit switches be
tween attractors appear as thresholds@the solid line is the
condition given by Eq.~6!#.

The probabilityP that a givenj satisfiesa,j,b is sim-
ply

P;E
a

b

exp~2u2/2s!du,

wheres is the standard deviation of the Gaussian-distribu
white noise. Thus, we can write the total probability for
given transition between two attractors as

P5P11P21P31•••1Pi , ~10!

FIG. 7. Most common path by which the transition fro
$11111% to $13100% occurs. See text for discussion.
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4540 55JENNIFER FOSS, FRANK MOSS, AND JOHN MILTON
where thePi are the probabilities that the trajectories escap
from the basin of attraction by thei th path. For example, for
the transition$11111% to $13100% one path predominates and

P;P15E
S
exp~2^u,u&/2s!du, ~11!

whereu is a vector and̂u,u& denotes the inner product. The
integration is performed over the regionS described by Eqs.
~6!–~9!. For the switch from$11111% to $10220% P can be
approximated by two terms: one for path 1, the other for pat
2.

In general, there are an arbitrarily large number of path
from one attractor to another; however, most of these path
have a negligible probability of occurring for two reasons
constraints on more than five consecutiveD’s and the values
of D more than three standard deviations from the mean a
required. Hence, we can terminate the above sum at an ar
trary amount of precision. Moreover, this is the reason tha
the third possible transition, which exists for these values o
t,D, i.e., $11111% to $00005%, occurs so infrequently.

Figure 9 compares the measured rates@estimated from the
slope of lnfs versusts shown in Fig. 6# s a function of the
standard deviation of the injected Gaussian white noise
that calculated from Eq.~10!. As can be seen, the measured
transition rates agree well with those predicted by Eq.~10!.

In principle, the same approach can be used to describ
the noise-induced transitions from the other attractors. How
ever, in these cases many more paths for noise-induced tra

FIG. 8. Cross sections of the spacej21 ,j1 ,j2 ,j3 ,j4. The val-
ues ofj ’s for which transitions were detected are scatter plotted
Light gray indicates path 1 for the transition from$11111% to
$10220%, black indicates path 2, while dark gray shows the transi
tion from $1111% to $13100%. Each plot is repeated twice at differ-
ent noise levels to illustrate how increasing noise increases th
number ofD ’s that fall in the transition regions of the space. Panels
~a! and~b! show transitions whens50.08 while for panels~c! and
~d!, s50.10. Panels~a! and~c! show plots ofj1 vs j21. It is clear
that Eq.~6! holds for all of the transitions. In panels~b! and ~d!,
j2 is plotted vsj1. Again, we see that for the transition from
$11111% to $13100% ~8! holds, while for the main transition from
$11111% to $10220%, the opposite inequality holds.
e

h
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re
bi-
t
f

to

e
-
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sitions arise since not every ISI is equivalent, as they are
$11111%. For instance, when starting in$13100%, there would
be five distinct sets of transitions, each corresponding
changing the number of IP’s in any one of the standard ISI
These calculations rapidly become tedious and therefo
were not pursued.

IV. DYNAMIC MEMORY STORAGE

In order to obtain a practical assessment of the impact
noise on memory storage by a multistable dynamical syste
we constructed an electronic circuit that mimics th
integrate-and-fire model discussed in Secs. II and III~Fig.
10!. This circuit is fully described in the Appendix. Briefly,
neuron E @Fig. 1~a!# is represented by a capacitor tha
charges linearly. The role of the neuronI is played by a
time-delay circuit~bucket brigade device!, which introduces
an incremental reductionD to the capacitor charging voltage
at a timet after the capacitor discharges. In order to pu
noise onD ~Sec. III! we added noise to the discharging cur
rent source, which normally discharges the capacitor by t
exact amountD through switchS2. The noise was generated
by a random noise generator~General Radio Company,
Model 1390-B! and was first passed through a filter circu
with a time constant of 1 ms.

Figure 11 shows the distribution of interspike intervals fo
different injected noise levels~measured asVrms, the root-
mean-square voltage!. In all cases the model was initialized
to the regular spiking attractor@Fig. 2~a!#. As expected when
Vrms50, the distribution of ISI is approximated by a single
delta function@Fig. 11~a!#. AsVrms increases, the distribution
of ISI broadens@Figs. 11~b! and 11~c!#. This occurs because
the interspike interval is equal to 11pD and noise is injected
throughD. OnceVrms becomes large enough, the histogram

.

-

e

FIG. 9. Plot of the rate constantk for trajectory egress, for each
basin of attraction as a function of the noise value~a temperature-
like variable!. The rate constants are determined by measuring t
slope of the plot of lnfs vs ts ~Fig. 6!. The noise value was measured
as the standard deviation of the distribution ofD. The dashed lines
represent the calculated rate constants, while the solid lines refl
the actual measured rate constants. Lines merely connect the
points, which are indicated by their respective markers.
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55 4541NOISE, MULTISTABILITY, AND DELAYED . . .
becomes multimodal@Fig. 11~d!#. These modes appear b
cause once the noise level becomes sufficiently h
switches between basins of attraction frequently occur.
same experiment can be repeated by starting the circuit
a different spiking pattern corresponding to a different attr
tor. The amplitude ofVrms necessary for switches to occur
a noticeable rate depends on the starting attractor. This
servation implies that the stability of each attractor to no
perturbations differs.

FIG. 10. Schematic diagram of the electronic circuit construc
to mimic a neural recurrent inhibitory feedback loop@shown in Fig.
1~a!# in which the excitatory neuron is modeled by a capacitor. S
the Appendix for details.

FIG. 11. Interspike interval histograms recorded from the el
tronic circuit as a function of theVrms of the noise injected into the
parameterD. The experiment was initiated by using perturbatio
~Fig. 5! to ensure that the circuit was in the basin of attraction t
corresponded to the regular spiking pattern$11111%. The multimo-
dal histogram in~d! arises when the noise is large enough to ca
switches between basins of attraction. Whent54.01 andD50.89
the possible interspike intervals are 11pD, wherep equals 0, 1, 2,
3, and 5.
h,
e
th
-

b-
y

The dwell timets discussed in Sec. III corresponds to th
time that a memory, represented by a temporal pattern
ISI’s, is preserved. A plot of lnfs versusts is linear with
slope k for each of the attractors in this circuit~data not
shown!. The constantk21 can be interpreted as the avera
time that a memory persists. WhenVrms54 V, the average
survival times for the attractors in the circuit are 1.53102t
for $11111%, 1.253102t for $10220%, 0.753102t for
$13100%, and.2.53103t for $00005%.

In the complete absence of noise, no switching betw
attractors should occur. However, some switches betw
attractors occur, albeit rarely, in our circuit in the absence
added noise. The largest source of error in the circuit is
bucket brigade device used to create the delay. The bu
brigade quantizes the delay into 0.14-ms bins. This qua
zation error acts as a noise source in our circuit and
cause switches between basins of attraction. We estimate
under these conditions the survival times of all of the attr
tors are.106t.

V. DISCUSSION

Multistability readily arises in control mechanisms wi
delayed feedback. Since these mechanisms operate in n
environments, it is likely that noise-induced transitions pl
a major role in shaping the observed dynamics. The stud
noise-induced transitions in multistable dynamical system
facilitated when the number and properties of the attrac
are known. For each choice oft,D it is possible to deter-
mine, using the methods we have outlined, the numbe
coexistent attractors. Although the number of attractors
their basins of attraction can change as a function oft,D, we
expect that noise-induced transitions will be qualitative
similar to the example discussed in Sec. III. WhenD.1, the
nature of the multistability becomes more complex and w
be dealt with in a separate communication.

Two mechanisms exist for noise-induced transitions
multistable dynamical systems@12#. First, a single perturba
tion can cause a switch between two attractors. Second
switch between attractors may occur only after a series
perturbations. This latter mechanism is by far the most co
mon one for noise-induced transitions between attractor
systems continuously perturbed by noise such as we s
here.

The observations in Figs. 6 and 11 suggest the possib
of characterizing the rates of transition,k, as k
}exp(2Ea /RT), whereEa is the height of an effective en
ergy barrier. The temperaturelike variableT is typically pro-
portional to the square of the variance of the noise, i.e.,s2. It
has been shown previously that the rate of noise-indu
transition from a chaotic attractor has an exponential dep
dence ons22 @21#. In our case,Ea corresponds to the in
stantaneous energy of the system, ands, the rms level of the
noise onD, corresponds to the temperature of the syste
Rate constants reflect the probability that the system
make a transition per unit time. In our case, the rate cons
is directly proportional toP given in Eq.~10! and depends
on s, not s2. The dependence ofk on s is not necessarily
exponential. Indeed this dependence may be rather com
through its relation to the erf function. It is quite possib
that complex dependencies ofk ons may be a characteristic
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feature of noise-induced transitions between multiple lim
cycle attractors.

Multistable dynamical systems have potential as mem
storage devices@2,6,8#. It is certainly relatively easy to con
struct multistable electronic circuits~Sec. IV,@7#!. However,
although for low noise levels the average time that a tra
tory remains in a given attractor can be quite long, there
nonetheless a nonzero probability that switches occur
tween attractors. Thus, noisy multistable dynamical syste
are clearly best suited for short-term dynamical memory s
age. Our circuit suggests the feasibility of construction
multistate computational devices.
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APPENDIX

The schematic diagram of the electronic circuit of t
integrate-and-fire model described in Secs. II and III
shown in Fig. 10. NeuronE @Fig. 1~a!# is represented by the
capacitorC. This capacitor can be charged with the const
current sourceI c and discharged by the two switchesS1 and
S2. SwitchS1 is closed on the leading edge of a pulse fro
the flip-flop circuit shown. The flip-flop is operated by com
J

v

.

ol.

J.

d

t

y

-
is
e-
s
r-
f

e
ic
n
-
h

s

t

paritors 1 and 2, which cause it to change state when
voltage across the capacitor touches eitherV1 or V2, which
are fixed at13 and

2
3 of the supply voltage, respectively. Th

comparitors, flip-flop and switchS1 are actually part of a
single chip: the NE555 countertimer chip. In operation, t
capacitor charges linearly with time~rate5116 V/s! from
V1 ~‘‘resting membrane potential’’! until the voltage reaches
V2 ~‘‘firing threshold’’! at which timeS1 closes and dis-
charges~‘‘neural spike’’! the capacitor again toV1 where-
upon the process begins again~in the absence of an inhibi
tory signal described next!. Thus far the circuit operation is
identical to a relaxation oscillator with period
T1(V22V1)/A s. Upon discharge byS1 the flip-flop output
is also differentiated and pulse shaped~circuitry not shown!
into a sharp spike similar to a neutral firing event.

In order to introduce the delayed inhibitory feedba
loop, the flip-flop output is also sent to a time delay circu
This is a ‘‘bucket brigade’’ device: an RD5107~EG&G Reti-
con!. The bucket brigade is driven by a clock TTL puls
~Hewlett Packard 33120A arbitrary signal generator!. The
clock frequency determines the time delay: higher frequ
cies result in smaller time delays. The time-delayed flip-fl
pulse then operates switchS2, which connects to a secon
constant current source to the negative voltage supply.
magnitude of this current source and the width of the clos
pulse onS2, i.e., the closing time, determine how muc
charge is removed fromC. This results in an incrementa
reduction in the capacitor voltage by an amountD ~‘‘inhibi-
tory pulse’’!. Thus the normal charging cycle of the capa
tor is interrupted by the inhibitory signalD, which is applied
following a time delayt after every neutral spike. In order t
put noise onD, as done in the model, we put noise on t
discharging current source, which discharges the capac
though switchS2, using a random noise generator~General
Radio Company, Model 1390-B! whose signal was firs
passed through a filter circuit with time constant 1.0 ms.
s.
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