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Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory
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Phase-contrast microscopy is used to monitor the shapes of micron-scale fluid-phase phospholipid-bilayer
vesicles in an aqueous solution. At fixed temperature, each vesicle undergoes thermal shape fluctuations. We
are able, experimentally, to characterize the thermal shape ensemble by digitizing the vesicle outline in real
time and storing the time sequence of images. Analysis of this ensemble using the area-difference-elasticity
(ADE) model of vesicle shapes allows us to associat@p each time sequence to a point in the zero-
temperaturéshapé phase diagram. Changing the laboratory temperature modifies the control pardareters
volume, etc). of each vesicle, so it sweeps out a trajectory across the theoretical phase diagram. It is a nontrivial
test of the ADE model to check that these trajectories remain confined to regions of the phase diagram where
the corresponding shapes are locally stable. In particular, we study the thermal trajectories of three prolate
vesicles which, upon heating, experienced a mechanical instability leading to budding. We verify that the
position of the observed instability and the geometry of the budded shape are in reasonable accord with the
theoretical predictions. The inability of previous experiments to detect the “hidden” control pararfreters
laxed area difference and spontaneous curvameke this the first direct quantitative confrontation between
vesicle-shape theory and experimdi81063-651X97)11604-X

PACS numbsgs): 68.10—m, 82.70-y, 07.60.Pb, 62.20.Dc

[. INTRODUCTION ent monolayer leaves and/or the different aqueous environ-
ments inside and outside the vesicle. This parameter is pre-

Micrometer-scale fluid-phase lipid-bilayer vesicles havesumably the same for all vesicles in a single homogeneous

been observed in recent years under controlled laborator§uspension. The other is the relaxed area differehég
conditions [1-11] to exhibit many amusing and diverse Detween the two leaves, based on the different number of

shapes. At the same time, there is now a one-parametdPid molecules which they contaif20], and the long relax-
theory of vesicle shapes, the so-called area-differencetion time for lipid exchange between theji2l,23. This

elasticity (ADE) model[12-15, which appears to be quali- Pr]a{ﬁ;nif&:’il&én gfsqggalbgzg%fgonr?lOnﬁo\ﬁr?'ﬂ]z;?];”%ther
tatively consistent with available experimental observations, hich icl Ip ’ d duri . d
It would be nice, however, to have a vesicle with an accu- ! VESIC'E CloSUre ‘occurred aunng preparation and on

' ' any interleaf “flip-flop” or intercalation events which may
rately measured shape and known parameters, to plug the &

. ! R&ve occurred subsequently. In addition, the vesicle shape
parameters into the theory, to predict a shape, and to co

. 2 . Meself is a significantly ambiguous quantity. At laboratory
pare with the measured one. Up to this time, this has nofmperatures, all nonspherical vesicles undergo significant

been possible, and, indeed, there have been(ifeany) di-  and unavoidable thermal fluctuations. Thus, at any nonzero
rect quantitative confrontations between theory and eXperitemperatureT, the experiment must characterize a thermal
ment. shape ensemble. A single “snapshot,” such as has often

The reasons for this unsatisfactory state of affairs havgeen exhibited in the previous literature, cannot do this. Fi-
their origins in both theory and experiment. On the theoretnally, experiments have not in practice probed the full, three-
ical side, the principal models which have been proposed tdimensional vesicle shape but at best a two-dimensional cut
describe vesicle shap¢$2,16—1§ all have in common the through it at the focal plane of the observing apparatus.
same catalog of stationary-energy shapes. Thus, simple ob- It is the aim of this paper to show how to deal with all
servation of a vesicle whose shape can be found in the catéhese problems in a serious manner. Using video phase con-
log, while evidence for the general validity of bending- trast microscopy, we recorded for each vesicle and at each
energy models, does not distinguish one variant fromemperature long time sequences of two-dimensional vesicle
another. In order to test the model, it is necessary to studgontours. We parametrized these images in terms of a set of
more indirect and/or delicate issues such as stalffibso- shape amplitudes. We used the shape-amplitude time se-
lute and relativeor shape-change systematics under a variaguences to construct a thermal ensemble, from which we
tion of control parameters. This has not often been dd8¢  extracted a set of thermal expectation values. Using this data,
for fundamental experimental reasons: First, there are tweve show below how to associate each vesicle with a particu-
important vesicle parameters which can be modified systemar point in the phase diagram. In principle, information is
atically in the lab but are not subject to direct measurementeft over after the mapping, so that a nontrivial confrontation
One of these is the spontaneous curval@ge which mea-  between theory and experiment is possible. In practice, avail-
sures the preferred radius of curvature of the relaxed bilayegble resolution limits what we can do; nevertheless, non-
based on the different lipid composition of the two constitu-trivial checks are possible.
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Overall, the results are encouraging. The vesicles that we AAG=(Noy— Nin)ao(T), )
have located in*“mapped into”) the theoretical phase dia-
gram do, generally, end up in regions where they are preef the two leaves is determined by the difference
dicted to be locally stable and to have low energies. Further¢Ny,— Ni,) between the number of lipid molecules in the
more, observed thermal trajectories exhibit shape instabilityputer and inner leaves. The relaxed aag€T’) per lipid mol-
close to(if not always exactly atpositions predicted by the ecule is a material parameter but can depend, of course, on
theory. Finally, after the instability the shape is in reasonabléhe temperaturd. Once the vesicle has closedA, can
agreement with theoretical expectations. only change due to lipid flip-flop between the two leaves
Gravitational effects play an important role experimen-and/or lipid interchange with the aqueous environment of the
tally. In order to record long time sequences of vesiclevesicle, processes which are believed to be slow on the time
shapes, it is convenient to adjust the density of the exterioscale of the mechanical shape changes we shall be discussing
solution so that the vesicles have a small negative buoyand®1,22. The second contribution 8/ S] measures the elas-
and collect at the floor of the experimental cell, where theytic energy necessary to forc®A[S] to differ from AA,,
remain within the focal plane of the microscope for longwhen the vesicle assumes the sh8pBecause the vesicle is
periods. In addition, gravity orients the long axis of vesiclesfluid, this (local) elastic strain is distributed uniformly over
of prolate shape so that it stays in or near the focal planethe vesicle surface and appears as an apparently nonlocal
These are practical issues. On the conceptual side, wheneverm controlled by a so-called nonlocal bending modutus
it has non-neutral buoyancy, a vesicle is subject to gravitaThe modulix and x are both of ordeKD?, whereK is the
tional shape deformations. The importance of these deformaarea stretching modulus of the bilayjd2], so the ratio,
tions has only recently been recognizgt8] and was not
considered in the analysis of earlier experiments. In this pa- a=klk, 3)
per, we first perform the full analysis without including grav-
ity. Then, we devote a separate section to the consideratidfi 9enerically of order unity. The material parameterand
of gravitational corrections. The upshot is that gravitationalx can be measured directly. For 1-stearoyl-2-oleoyl-sn-
effects can be significant; however, in the region of the phas@lycero-3-phosphatidylcholinéSOPQ, it is believed that
diagram upon which we focus attention, there is no change it~ (0.90+0.06)x 10~ *° J [27]. It has been estimated that
the qualitatively good agreement between theory and experk~1.4  [12]. [A  somewhat  higher  value,
ment. k~(1.20+0.17)x10 1 J, and a comparable but quite un-
The layout of the paper is as follows. Section Il intro- certain value ofa have been recently observed in tether-
duces the theoretical background necessary to analyze tillling experiments[28].] The energy scale« is much
experiments. Section Il describes the experimental procesmaller than the energies necessary to change significantly
dures. Section IV explains how the analysis of the experithe areaA and volumeV of the vesiclg[29], so these quan-
mental shape contours was carried out. Section V sets forttities may be regarded as fixed in comparing the energies
our results using a pure ADE mapping and ignoring gravita W[ S] of different shapes.
tional effects. Finally, in Sec. VI, we explore the effects of Combining the two terms described in the preceding para-
gravity. Section VII provides a final assessment and sumgraph(and dropping an irrelevant, shape-independent term
mary. leads to,

Il. BACKGROUND W[S]=«

G[SJ+§<m[S]—Fo>2}, @

A. The area-difference-elasticity model

In order to have a language for discussing the experiWhere

ments, it will be useful to present here a summary of some 1

principal features of the ADE model. Additional material is G[S]=% % dA(2H)?, (5)
available elsewhergl2—15,18,24,2b At mesoscopic length 2

scales, larger than molecular sizes but smaller than the P&lhich is th . int of h ical di . f
sistence length, the shafeof a fluid-bilayer vesicle is con- Wh Ich Is the starting point o (;ur t eﬁrenca |scuss;on ﬁ
trolled by an energy function&\/[ S] consisting of two parts. shapes. In writing Eq(4), we have chosen to rescale a

The first, due to HelfricH26], measures the overall bending figz:thzmTfl:rsnsth(e)farir; d?fr:rinlc?ength ‘:grsdienﬂtnheedre?jyuce d
energy and is scaled by the bending modutug he second —"TRA- ' PP

requires a brief explanation: Assuming a fixed bilayer sepatorm‘

ratior! D, theT actual area difference between the two leaves of m[S]=AA/2DR,, 6)
the bilayer is

and the relaxed area difference combines with the spontane-
AA[S]=2D % dA H(r), 1) ous curvatureC, into a single effective reduced area differ-
ence,

whereH(r) is the local mean curvature at the poinof the my=mMy+ 26,/ a, 7)
vesicle surface and the integral runs over (ttlesed vesicle

surface. On the other hand, the preferred or relaxed areaheremy=AAy/2DR, andcy=CyR, is the reduced value
difference, of the spontaneous curvature. Becatzeand AA, appear
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only in the combinatiormy, it is impossible in principle to

detect either one separately by a single shape measurementr—no,‘,,t

Note that the bracketed terms in E4) are all dimensionless

ratios of lengths, invariant under a scale change of the shape

S, provided that at the same tint&, is changed to keep,
fixed. In this sensé)V[ S] depends on the shape $fbut not

its overall size. An appropriate scale-independent volume

measure is the reduced volume=3V/47R3 , which lies in
the interval[ 0,1].

To be a mechanically viable shape for a vesicle with
givenA andV, S must make the energy) stationary at the
corresponding values af andmg [30], i.e., it must satisfy

SW=0= k(5G[ S]— a(my—m[S]) Sm[S]). (8)
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In general, there are several distinct branches of stationary FIG. 1. ADE phase diagram fox=1.4, prolate region. First-

shapes, which we lab&™(v,m,), with corresponding en-
ergiesW("(v,mo). To be a candidate for observation in the
lab, a shap&™ (v, m,) must, in addition, be locally stable to
small shape perturbatior81]. The lowest-energy branch
(which must, of course, be stabldefines the ground state
and should, in principle, be observed at sufficiently long

times when the temperature is low. However, when eNergY¥ ergy sha

barriers are large on the scalelgfT, other low-lying locally

order boundaries¥) are indicated by solid lines; second-order
boundaries C), by dashed lines; and, spinodalst), by dotted
lines. Lowest-energy shapes are illustrated for each region. All
symmetry axes are vertical as indicated for the prolate. Prolate
shapes are locally stable between the upper spinoddﬂﬁé&;) and

the lower spinodal IineM?gf’Jr). The lines DPro-pear  cpro-pear
DPro-obl andDPO"aShound the region where prolates are the lowest-
pes. In the region immediately ab®&° P lowest-
energy shapes are pearlike’®® is the limiting line at which the

stable branches may remain metastable for long periods. FQEcy of the pear shape shrinks to zero radius producing a vesicu-

SOPC,k~20 kgT,00om [27], SO metastability is expected to
be common.

lated shape, as indicated. The lowest-energy states dd¥eare
dominated by vesiculated shapes. In the region immediately below

Finally, we shall need below an important connection be+he prolates, oblate and nonaxisymmetriag shapes have lowest
tween the ADE-model shapes and those of the so-callegnergy[34]. The pointT on the prolate-pear phase boundary is a

spontaneous curvatuSC) model [26,32, defined by the
energy functional,

WsdS]= 5 ﬁg dA(2H—Co)?

= k(G[ S]—2com[S] + const), 9

which describes a model without differential area elasticity

and having a spontaneous curvatg (c, is the corre-
sponding reduced spontaneous curvatufde variation of
Eq. (9) gives a condition which has the same form as B§.
only with the replacement,

2¢o=a(my—m[S™]). (10

It follows that any stationary sha®" of the ADE model

tricritical point, separating first-order and second-order behavior.
CEP labels a critical end point, where a second-order boundary
Cnasobl (not shown, since it is very close P disappears

underneath the lower prolate boundary. Note for future reference

that the limiting lineL"**' crosses the upper spinodal livefp”_ of
the prolate phase at=0.875 fora=1.4.
_ dGM(v,m)
2Co=————— =2Co+ a(mo—m[ sM]). (1)

B. T=0 phase diagram and the stability of prolate shapes

The map in theg,m,) plane of the regions where various
branches provide the lowest energy shape constitutes the
T=0 (shape¢ phase diagram for the ADE model. This phase
diagram, which depends an can now be constructed rather
easily numerically, at least, far not too small and when

(4) is also a stationary shape of a spontaneous curvatui@ /4 is not too far from unity12,33,34. The experiments
model (9) with the ¢, defined by Eq(10), which we shall  described in this paper deal with a branch of axisymmetric
henceforth refer to as the effective reduced spontaneous cushapes, called “prolates,” because they have up-down sym-
vature for the ADE Sh.apls(") - Notice that the control pa- metry and resemble prolate ellipses when they have reduced
rameters enter the variational shape equai®rentirely via  yolume not too much below unity. The region of the ADE
the coefficient of the second term. It follows that the station-phase diagram in which these prolates appear is shown in
ary shapeS™ is specified completely and in a way that is Fig. 1. It is bounded below by oblate axisymmetric shapes

independent ofr by givingv andc,. For this reason, it will
sometimes be convenient in what follows to think of the
stationary shapes a&&™(v,co) rather than ass™(v,my),
which still depends implicitly orx. The variation(8) may be
thought of as proceeding in two steps: First m&{eS] sta-
tionary at fixedm, thus defining a functio®™(v,m), then
subsequently carry out the variation with respectmio It
follows from Eq.(8) thatc, can be evaluated as

and by a region of nonaxisymmetric shapes, which need not
concern us further hef@5]. Above the prolates lies a region
of pear shapes, for which axisymmetry remains but the up-
down symmetry has been broken. This pear region is, in turn,
bounded above by a ling®®® of fully “vesiculated” limiting
shapes, consisting of two spheres joined by a narrow neck.
The region abov&P*®is incompletely explored but believed

to be dominated by additional interconnected vesiculated
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shapes. The boundary between the prolates and pears at rela- C. Prolate shapes for reduced volumes near unity:
tively high reduced volume involves a discontinuous shape The hierarchy and the mapping

change(corresponding to a simple crossing of the energy \ye priefly review here what is known theoretically about

branches\***’and WP™) along the lineDP™®P**’but a con- 1o T—( stationary shape8(v,cg) for the relatively high

tinuous shape changeeorresponding to a bifurcation of req,ced volumes which will be relevant for the experiments

WP away fromWP™©) along the line labeledCP™P¢? for [12,34.

lower reduced volumes beyond the tricritical point Both Prolate shapes are axisymmetric. Therefore, they are com-

transitions are often called "budding. letely described by the curve made by their intersection
It is important to emphasize that the prolate shape branc{ity any plane which includes the symmetry axis. This curve

continues to exist outside of the “prolate region” of the may be written in terms of an arclengshwhich starts at the
phase diagram. Indeed, within the context of the ADE mode},,h, pole 6=0) and ends at the south pole<{s*). We
and in the region of reduced volume shown in Fig. 1, at

stationary prolate shape exists for every valuengf[36]. E_lke the _d|re(_:t|on of th? polar axis to ly_eand the perpen—

These shapes can only be observed, of course, when they &Heular direction to bex. A representation which will be

locally stable. The region dbcal prolate stability includes Convenient for our purposes is

the “prolate region” of the phase diagram but extends be- s 2 <

yond it into metastable regions, where the true ground state __ > (0) i >

has some other shape. It is a crucial test of the theory that v s +n§=:1 @n sm( nm *) ’ 13

prolate shapes observed in the lab should, indeed, map to the R

region of predicted prolatdocal) stability. wherey(s) is the angle betweey and the outward-pointing
Metastability boundaries are marked by the first appearnormal to the curve. The overall length scale is setsby

ance of a soft mode, i.e., a family of fluctuations which lowerNote thaty(0)=0 andy(s*)= . The first term on the right

the overall energy. The region of Fig. 1 within which pro- describes a semicircular arc, i.e., a spherical vesicle shape.

lates are predicted by the ADE model to be locally stable isThe coefficients{al”’} parametrize deviations from the

bounded above by the lin#1§ and below by the line sphere. For shapes like prolates, which are up-down symmet-

ngz . These lines are calculated by an analysis of conric, the oddn coefficients vanish. We note, as an aside, that

strained Gaussian fluctuations about the calculated stationatiie coefficientgal®’} cannot be set independently, since clo-

shape[34]. The subscripts label the rotation mofte| and  sure of the curve at the south pole requires that

(even or odd parity of the sector where the first instability

occurs. It is an important result of this thed7] that insta-

bilities in sectors which break the symmetry are a property of

the shapes(™ alone, while those in nonsymmetry-breaking

sectors depend in addition independentlyaanFor the pro-  This places a complicated nonlinear condition on the set

late shapes, the boundari€§™***andM{§” in Fig. 1 both {a?}, which for any real vesicle shape will automatically be

reflect instability in the symmetry-breaking sector satisfied.

(Im|=0, odd parity). These boundaries are, thus, indepen- The stationary shapes of the prolate branch are given by

dent ofa in a (v,C,) representation of the phase diagram, sothe coefficientsall)(v,co). It is clear that, when is near

in the usual {,m,) representation, they shift with accord-  unity, the coefficientsa(zﬂ) will all be small. It is a conse-

x(s*)=fos*ds cosy(s)=0 . (14

ing to guence of the stationarity conditid8) that these nonvanish-
s ing coefficients have the structure of a well-defined hierarchy
_ _ c
mo=m[ S, )]+ —°. 12 28

al’ = Ay(1- )2+ By(Co) (1- ) +O((1~v)¥?)
These lines of shape instabilifyand not the actual shape

(phasé boundariepare the experimentally relevafabserv- all= B4(Co)(1-v)+0((1-v)*?) , (15
able ones. .
Strictly speaking, the above picture holds only in the low- &g = o((1-v)%*) ,

temperature limit, since fof >0 sharp phase boundaries do 2 .

not exist, because the vesicle is a finite system with finitdVhere A}2:(135/64)1 =145 and the coefficient8, and
energy and always explores its full phase space. Neverth&4 are linear functions of, with coefficients of .order unity.
less, in practice, as long as the prolate branch remains locallj"€Se results follow from Ref§12] and[24]. Itis a conse-
stable and surrounded by energy barriers appreciably largétence of (O)th's structure  that foru near unity
than kT, thermally fluctuating prolate shapes are readily@z >as >ag >---, a hierarchy which reflects the fact
seen in the lab. In the prolate region of the phase diagranthat modes of highen correspond to shorter wavelengths
these fluctuating shapes constitute a true, stationary, equilittnd cost more bending energl’) is independent o€, at
rium ensemble. In regions which are only metastable, the séowest order, because this is the only contribution of order
of prolate shapes should be regarded as a restricted eft—v)Y? and is, therefore, entirely determined by the con-
semble, which may, however, be quasistationary for apprestraint on the reduced volume

ciable periods of time. In practice, metastability is expected Figure 2, which was calculated by numerically solving the
to break down slightly inside the boundaried™, when the variational equatior8), illustrates the dependenceaff) on
metastability barrier becomes comparablekd . v andc, for the prolate branch near=1. It is clear that for
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discuss these important points in Secs. 1V, V, and VI, respec-

&  0.024 tively. But, before doing so, we turn to the experiments.
0.01 lll. EXPERIMENTAL TECHNIQUES
A. Materials and preparation
0.00 For all experiments, vesicles were prepared from the com-
mon phospholipids 1-stearoyl-2-oleoyl-sn-glycero-3-
-0.01 phosphatidylcholing SOPQ or 1,2-dimyristoyl-sn-glycero-
3-phosphatidylcholinéDMPC). These lipids have their main
phase transitions at 5 °C and 23 °C, respectiy88]. They
-0.029 were purchased in powder forAvanti Polar Lipids, Bir-
mingham, AL, USA and stored dissolved in chloroform-
-0.034 :methanol(2:1) in special chemically inert glass vialBisher
Scientifig below —15 °C.

0.75 0.80 0.85 0.90 0.95 1.00 Preparation was done using standard techniques

[25,40,41: A few drops(30 wl) of lipid solution (10 mg per
reduced volume v ml chloroform:methanolare spread with a syringe needle on
0 . a roughened Teflon disk. The solvent is evaporated in a

FIG. 2. The shape coefficieat” as a function of reduced vol- 2 um chamber overnight. The disk with the dried lipid is
umev for various values of the effective reduced spontaneous_cur- laced in a glass beakéb0 m) and prehydrated with a
vaturecy, aﬁlndlcated on the curves. These curves allow us to |nfeEtream of argon saturated with water vapor for about 20 min
a value ofto, if a5 is known at giverv. This is the basis of the Then, the desired solution for vesicle swelling is added and
mapping procedure discussed in Sec. Il C. All the curves PaSthe b’eaker is covered with Parafilm and placed in the oven
throughago)_:o atthe sphere; =1. Althoughay? is almost inde- To avoid heat shock, the solution and the beaker with the.
pendent ofc, atv =0.85, there is no common crossing point. Teflon disk are heated separately to the swelling temperature

prior to incubation. Swelling was done with 50 mMol su-
v<0.95 the terms of order (2v)*¥? and higher have an crose solution at a temperature of 36 °C.
appreciable effect. Note that, except near the anomalous Successful vesicle development is indicated by whitish
point[38] v=0.85, knowledge o0& andv uniquely deter-  streaks in the swelling solution. These streaks are collected
minescy. into an Eppendorf tube with cleaned glass pipettes and incu-

This brings us, finally, to the issue of the “mapping,” i.e., bated at the swelling temperature. Excess glucose solution
of associating an experimentally observdd=0 prolate (48_mMo!) is then added to obtain the desired density for the
vesicle shape with a point in the ADE phase diagram, Fig. 1vesicles in the observation chamber. The end result of this

Knowing the vesicle shape means that we have direct exper2focedure is a vesicle suspension with an interior sucrose
mental access to “geometrical” quantities such wsand solution and an exterior glucose solutiomith a slight ad-

m, through the shape coefficiera§) . The abscissa, of the {R)étl:éetﬁé S‘elj((t:;?%? Zzeaixscgli?igrf?sslg Ofrotgﬁn 'g:;”o:; ;ela/—l
phase diagram, is geometrical; however, the ordinatéq. 9 bp y -3 gil

des inf . b he initial dif This is needed in order that the vesicles sink gently to the
(7), encodes information about the initial area di ErenCeyottom of the experimental cell, as discussed further below.

AA, and the spontaneous curvatug, which are neither  y/egicles were stored at the swelling temperature and used
geometric nor directly observable in any other way. The soyithin a few days.

lution to this apparent impasse is to wseand Fig. 2 to infer
a value ofcy(v,al")), the effective reduced spontaneous cur- B. Experimental setup and data acquisition
vature, which is not observable, and to combine this with the

then (theoretically fixed m(v ) to calculatemg [Eq. (10)]. For observation, vesicles are placed in a specially de-

Note that, in principle, any of the nonzero coefficientsSigned microchamber, tightly ;ealed with glass pllates apove
0) ,Id b d ; d h . and below to prevent evaporat|@26]. Temperature is moni-
{_a2n} ((():)ou € used 1o produce such a mapping,q.qq by a thermocouple inserted into the observation cham-
Co(v,@zy). In practice, however, as the hierarchty5)  per A water bath, incorporated integrally into the chamber,
shows,af) is very insensitive ta&, (because?; is indepen-  provides temperature uniformity and control at the level of
dent ofc, andB, is only weakly dependent onjiandal’ is  +0.1°C. Because their density is slightly higher than that
sufficiently small so that experimental noise makes it a pooof the surrounding solution, the suspended vesicles fall to
candidate. the bottom of the cell, where they rest gently against the

This framework is still incomplete in three senses. Firstlower plate and are observed from below via video phase-
what the experiment observes is not a sinbfe0 shape but contrast microscopy. We use a standard inverted Leitz mi-
an ensemble of thermally fluctuating shapes. Second, theroscope equipped with phase contrékseitz Phaco 40/
mapping as described above simply takes an experimental65, capable of an overall magnification of 500 times and
point and associates it in a one-to-one manner with a point iincorporating annular illumination and a phase ring. The
the theoretical phase diagram. It does not yet in any obvioukight source was a Hg arclamp powered by a high-voltage
way test the correspondence between theory and experimemtansformer. A permanent green filter and various gray filters
Third, effects of gravity should be taken into account. Wewere used to minimize degradation of the lipids. The video
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camera was positioned above the eye piece in such a way a
to gain a resolution of 86 nm per pixel in a 48@80 frame.
The visible phospholipid structurgd42] which collect at
the bottom of the observation chamber in the microscope’s
focal plane are typically very diverdd,7], including topo-
logically complex and multilamellar structures, small
vesicles included within larger ones, vesicles connected to
one another by submicroscopic tethers or tubes, vesicles witt
obvious adhesions, etc. For a detailed observation, we try tcf =
select simple, topologically spherical, unilamellar structures, ¢ :
without identifiable microscopic connections or adhesions. In '
addition, we monitor the fluctuations of each candidate = ' 3 i
vesicle for some time prior to data acquisition in order to
reject those with obviously “abnormal” behavior, e.g., those FIG. 3. Time sequence of phase-contrast video images of
exhibiting unexplainable asymmetry or sudden changes jMesicle A at v=0.954. T.he images are ordgred in time from thg
apparent area or volume. The final fraction of usable vesicledPPer left to the lower right. The elapsed time between images is
is less than 1%. 6.3 s. The Ie_ngth of the long vesicle axis is approxmately 20
Images of selected vesicles are simultaneously displayeﬁm' The vesicle flgctuates about. an_axsymmetrl(_: prolate shape;
. ] . owever, each particular contour is different and, in general, non-
on the video monitor, saved to tag¥-Matic, Sony, and axisymmetric.
processed in real time, as will be described in Sec. Il C. To
sample at a fixed temperature a single thermal “shape en-

semble” takes about 20 min. Recording a thermal shape tra2" the order of 0.1 s, which have been reported in the litera-

jectory requires data at several different temperatures for th@fre[iﬁ 3].hHowet;/ etrt' |ntﬁontra}st Ito these fa?‘ groc;:_edl{[:]es, our
same vesicle. The chamber is allowed to equilibrate for aft9°thMm Nas a better-than-pixel accuracy in finding the con-

least 5 min after each temperature change. Temperature iigur[44]. This high resolution turns out to be critical to the
recorded with a precision of 0.1°C. The total amount of success of our experiments, since we shall need to resolve
data gathered consists of over 80 h of video tape of mor mall changes in mean shape in tracking the thermal trajec-

than 150 vesicles, including a wide range of shapes. Buddin ry [45]. . . .

is an ubiquitous process, which we observed at least 15 times In pha'se_-cont‘r‘ast rwcrpscopy the image Of. the ve;smle
in a controlled fashion. It is important to get long runs at edge exhibits a “halo,” with a light bandintensity maxi-
each fixed temperature in order to properly sample the full
thermal shape ensemble. On the other hand, thermal
trajectory runs which extend over more than a few hours |*
appear to be contaminated by systematic drifts, presumably
due to lipid degradation and/or flip-flop between bilayer '
leaves, which establishes intrinsic limits on sampling density
and run time.

In this paper we restrict analysis to three particular SOPC |
vesicles A, B, and C), which have in common that they
started with prolate elliptical shapes and, on heating, eventu
ally underwent budding transitions, as illustrated in Figs.
3-6. Qualitatively, other vesicles monitored behaved simi-
larly, although they followed different trajectories, some ex-
hibiting sharp shape transitions and others not. The reasol
for selecting the budding trajectories is that the location of
the budding instability provides a particularly stringent test |
of the theory, as we shall discuss in Sec. V.

C. Processing the video image

In order to analyze the data, it is necessary to reduce the
video image to a time sequence of digitized shape contours
This was done by using a frame grabl§btatrox, Dorval,
Quebec, Canaddo capture each image, computer process- =
ing the image in real time, storing the digitized contour point |
in memory, and then grabbing a new image. The image pro-
cessing algorithm(described beloyvrequires between 0.4
and 0.6 gdepending on vesicle sigen a personal computer FIG. 4. Time sequence of phase-contrast video images of
with a 486 DX CPU and a 66 MHz clock speed. Thus, for avesicleA atv=0.912. Times and scale are as in Fig. 3. The vesicle
video frequency of 30 frames/s, we are processing every 15tk now more elongated than it was in Fig. 3. Strong pearlike fluc-
frame. This is relatively slow compared to processing timesuations in each direction are now clearly visible.
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ried out only at the beginning of each r{u7].

The digitized contours exhibit noise at the pixel level
pixel=86 nm. This behavior presumably reflects the intrin-
sic noise of the original optical signal, the pixelation statis-
tics, the digitization of the gray scale, and other factors. To
remove some of this microscopic noise before data analysis,
it is convenient to smooth the observed contours. This was
done by applying a tenth-order binomial filtgt8] to the x
andy contour coordinates, thus averaging over an effective
width of about 5 pixels. The distribution of deviations of the
original data points from the smoothed contour is Gaussian
with a typical full width at half maximum of about 0.7 pix-
els, thus giving an effective local lateral resolution of about

FIG. 5. Time sequence of phase-contrast video images 080 nm (compared to a typical vesicle size of several mi-
vesicleA (Ry=9.2 um) atv=0.878, illustrating the budding pro- ¢rong. This resolution, well below the nominal optical reso-

cess. The scale is as in Figs. 3 and 4. The time elapsed betwegiyio given by the wavelength of light, illustrates the deli-

Images here is L2s A pearll!<e fluctuation, much like thos_e V'S'blecate line-shape discrimination achievable via phase contrast
in Fig. 4, now carries the vesicle over the metastable barrier to th

budded state. The pear shaped contours corresporhngient EA'Q], and is more than adeql.Jate for quf':mtlfylng the overall
shapes and aneot stable. Note that the ratio of the vesicle size to vesicle shape and .the Iow-lymg fluqtuatlon modes.
the satellite size after budding is roughly 2.8. The result of this process is a time sequence of several
thousand digitized contours, illustrating the shape ensemble

mum) just outside the vesicle and a dark bafidtensity — of each vesicle at each temperature. The relationship of these
minimur) just inside. Typically, the intensity profile crosses two-dimensional contours to the three-dimensional vesicle
the gray value of the local background at its steepest poinghape requires a brief discussion. The “general wisdom”
and we have taken this point to be the nominal position oseems to be that what is seen in phase contrast microscopy is
the vesicle boundarj46]. a cut through the vesicle in the focal plafig43,50-53

The contour-digitizing algorithm is fully described in Ref. However, this is an oversimplification. Phase contrast is par-
[25]. The algorithm works on thelintege) pixel grid ticularly sensitive to edges, so vesicle boundaries which
(ny,ny) and requires initialization by hand to the vicinity of “overhang” the focal plandrelative to the optical axjsnay
the outline of the particular vesicle to be studighere are  contribute to the image to a greater or lesser extent depend-
ordinarily several vesicles in the field of viewSuppose that  jng on the focal depth and the amplitude of the edge contrast.
a scan im, at fixedn,=n{” intersects the halo. By averag- Following the practice of the literature, we shall ignore such
ing the gray values in the vicinity of the halo, we establish aeffects in what follows. We wish only to point out that there
local background intensity. The profile of intensity versusare substantive issues here which deserve to be addressed
n, crosses this background value at a pairigenerally non-  more fully in future work.
intege) which may be determined by linear interpolation. |n collecting data, the microscope is focused on the maxi-
The point &,n{”) is then stored as a contour point, and themal cross section of the vesicle under observation, and this
algorithm stepsn,—n,+1 and starts again. Note that the focal plane does not change over time. For vesicles such as
interpolation procedure allows determination of theoor- A, B, andC which are(on the averageprolate and axisym-
dinate of the contour point with better-than-pixel precision.metric, gravity tends to orient the symmetry axis horizon-
Whenever the contour profile becomes steeper when scanneally, i.e., to bring it into the focal plane. Thus, the contours
in they direction rather than in the direction, the algorithm  (such as those based on Figs. 3~éhich constitute our raw
automatically switches to scannimg at fixedn,, and vice data, may be thought of as an ensemble of cuts through the
versa. Each contour is terminated at closure. Motion of thenean symmetry axis of the fluctuating vesicle. Fluctuations
vesicle between successive frames is normally small enoughf the symmetry axis out of the horizontal plane modify this
so that each subsequent frame can be started where the esimple picture: If the focal plane no longer includes the sym-
lier one terminated, so the initialization step needs to be cametry axis, then the depth of focus and the edge enhance-
ment mentioned in the previous paragraph probably give the
resulting image the character of a projected outline of the
tilted vesicle. In principle, this projected shape is different
from a true axial section. In practice, the stabilizing effect of
gravity is large enough so that these out-of-plane fluctuation
effects are almost always smédixcept near the spinodal line
of the budding transition so we will treat the two-

FIG. 6. Time sequence of phase-contrast video images oflimensional contours as if they represent axial sections. Note
vesicleB (Ry=5.5 um) atv=0.945, illustrating the budding pro- that there is a balance here. In order to keep the theoretical
cess for a smaller size vesicle. The time elapsed between imagesa§alysis simple, we would like to ignore the effects of grav-
the same as in Fig. 5. Here, the transition from the prolate via théty on the vesicle shape. On the other hand, in order to per-
transient pear to the budded state happens much more quickly thdarm the experiment conveniently, we use gravity to localize
for vesicleA, due to the smaller hydrodynamic radius. the vesicle in the bottom of the chamber and to orient the
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symmetry axis(of prolate vesiclesto the horizontal plane kgT/«k, the center of mass is located (ine., neay the focal

(see further discussion at the end of Set¢. V plane at(i.e., neay the point which is the center of mass of
the digitized contour. We determine this point numerically

IV. ANALYSIS OF THE TWO-DIMENSIONAL for each contour. We then find tHapproximatg principal
SHAPE CONTOURS (long) vesicle axis by calculating the two-dimensional

) ) ) ] ~_ moment-of-inertia tensor with respect to the center of mass
This section describes how we parametrize the individuahng giagonalizing. This determines theomina) principal
digitized two-dimensional shape contours discussed in Segyis of each vesicle shape and identifies the north and south
lll, how we average the ghape paramete.rs over each therm&'}les We call the direction of the principal a>§isand the
ensemble, and how we inf@r=0 three-dimensional shape ' ) ) oA N
information from these averaged parameters. correspondlng perpen_dpular dlrgctlmmwhlch is, of course,
not necessarily a principal axis of the three-dimensional

vesiclg. Thus each experimental contour is reduced to a set
A. Thermal fluctuations of the vesicle shape: of points{x;,y;}. In what follows, we treat each half-contour
General discussion separately(each image has two half-contourand take
Varying the temperature has two effects. On the one handi=0.
it modifies, through ordinary thermal expansion, the Itis convenientto represent each half-contour in the angle
temperature-dependent control parameta(d;), V(T), and  arclengthy(s) representation of Sec. Il C by calculating

AAH(T), as well as the material control parametets,«, .
and C,, which appear in the Hamiltoniaf#). These effects = —arctarE M) , (16)
produce the so-called “thermal trajectories,” which we shall Xit17Xj-1

discuss in Sec. V. On the other hand, even if all these pa- ) ) ) ) )

rameters were temperature independent, there would still p¥here the arctangent is defined on its Riemann surface, i.e.,

ordinary thermal fluctuations. It is, for the moment, these?(S) is continuous at the equator. The arclengtfs mea-

purely thermal fluctuations to which we direct our attention.Sured from the north pole. The parametrization parallels Eq.
There is, in principle, no way of taking a single fluctuat- (13),

ing shape contour and inferring the correspondifig 0

shape. At best, we must take a full thermal shape ensemble

and use theory to infer thE=0 shape of the vesiclgith the

same control parameterdVhen the fluctuations are large,

even this is beyond present theoretical capability. HoweverThe coefficientda,} are obtained by a numerical integration

when fluctuations are small enough so that they may besing the trapezoidal rule,

treated at the Gaussian level, progress can be made.

S
nﬂs—*) . (17)

S < ,
p(s)=m 5+ > a,sin
n=1

The upshot of a recent study of Gaussian fluctuations of 2 M ) S
vesicles of arbitrary axisymmetric shag&¥,34,54 may be an=(— 1)"5 +Zl l//ism( st_*)
summarized as follows: Any typical fluctuating shape may o
be regarded as @=0 shape appropriately translated and ) Sit1)||Sit1—Si
rotated (the so-called Euclidean modeplus an area- and +¢iaSin N S* ) PR (18

volume-conserving normdi.e., perpendiculardisplacement

u(r) at each point of the surface. It is a special feature of gnq, henceforth, they replace the poifits,y;} in represent-
these fluctuations th@because of the strict area and volumeing the half-contour. M is the number of digitized points in
constraints both the average displacemefut(r)) and the the half-contou). Note that the contours here are not up-
mean-square fluctuatiogs®(r)) are generically of the order down symmetric, so the odul-coefficients do not in general
kgT/w, wherew is a typical static fluctuation-mode energy vanish, as they did for th&=0 prolate shapes. Similarly,
[55]. Note that the rms fluctuations are always larger than the,(0) andy/(s*) are normally nonzero.

shift when the fluctuations are small. In the analysis which
follows, we shall assume that the Gaussian regime holds and
we shall ignore the mean shifts. Ordinarily, the fluctuation-
mode energiesw are of the orderx. For our vesicles For each half-contour of each video image, we calculate
k/kgT=20, so for most regions of the phase diagram, this ighe shape coefficientga,} plus the nominal“effective” )

an excellent approximation. There is, however, an importanyesicle area and volume,

exception. At the instability boundarid&ig. 1) one of the

C. Thermal ensembles andl =0 shapes

M
modes becomes soft. Thus, near enough such boundaries, the _ _
Gaussian treatment fails, and we may expect difficules Ae= 7721 (Xi+Xi+1)(Si+1 i) (19
Sec. V.
and

B. Parametrization of the two-dimensional shape contours "

We interpret the measured two-dimensional contours as Vo= — ™ X2+ x2 . 20
being sections which include the principal symmetry axis of © .21 O x ) Vi) 20

the vesicle(Sec. Il Q. Thus, in the spirit of the last para-
graph and up to corrections which are normally of orderln a similar spirit, we compute an effective reduced volume,
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FIG. 7. Typical time series for the amplitudag anda, and for FIG. 8. Same data as in Fig. 7 but for reduced volume

the effective reduced volume, for vesicleA at reduced volume (ve)=0.912. Note the longer time scales for fluctuations inahe
(ve)=0.954. The dashed line corresponds to the mean amplitudgiode as the shape instabilitypinodal is approached.

(an), which is close to zero foa; [59]. According to Eq(22), the

mean values(v,) and (a,) correspond to the zero-temperature observations of the optical image. As the vesicle approaches
quantitiesy andal®, respectively, which are the basis for the map- an instability (which occurred av =0.878 for vesicleA),

ping. one sees rapidly increasing relaxation times, corresponding
to a spinodal slowing dowh10]. This tendency is clearly

Ve visible when comparing Figs. 7 and 8. As long as the data set

Ue:m . (21 spans a time interval much larger than the longest relaxation

—<— time, we may expect that the time sequence samples an ef-
3 \4m fective stationary ensembl[&6]. In this sense, the thermal

) ) ) ) ensemble of fluctuating shapes is characterized by the set of
For axisymmetric vesicle shapes, these equations would cal,sample averagéa, ), (ana,), (ve), <vg>’ etc. Indeed, the

c_ulate the true area, V°'“me’ and reduced volume, reSPefistribution functionsP(a,), P(v.), etc., are typically a
tively. Since each image is only a snapshot of a section . \ssian form in shag@s]
through a fluctuating vesicle,, is only approximately equal In order to proceed with the mapping, we now need a

o the true reduced volume Note thatv fluctuates in time ey re for inferring the zero-temperature quantiiesd
for successive images of a given vesicle at a fixed temper%a(o)} from the thermal data. We do this in the crudest way,
ture, whilev is in principle constant, since the true area andb n . . . e

) . y simply making the identifications,
volume are conserved during the shape fluctuation.

The several thousand images which constitute a typical
experimental run with a given vesicle at a fixed temperature
lead to characteristic time series for the quantifies; and ) S
ve, as illustrated by Figs. 7 and 8. Although the series aré’S explained abovéSec. IV A), the justification for these
noisy, we expect to see memory effects between successivdentifications is that the averaging process suppresses the
images, as long as there are any characteristic physical relakns fluctuations, which are of ordekgT/w. This leaves the
ation times longer than the 0.5 s between successive grabbdermal shifts plus the terms of ordéu®), both of which
images. We have estimated elsewhdr@] the typical relax- ~ scale akgT/w, which we ignore in first approximatidis7].
ation times expected for these vesicles. Away from instabili-These values ob anda$’’ allow us (Sec. Il Q to infer ¢,
ties, the characteristic times are expected to be at most setand, therebymg) from Fig. 2, and, thus, to complete the
eral seconds, which is consistent with direct visualmapping.

v={(ve) and a¥=(a,). (22)
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TABLE |. Experimental results for vesicle&, B, and C. At

each temperaturg, the values ofv,.), and(a,) are shown. The
final budding temperature is also given, along with tfe¢ A and
B extrapolatefireduced volume at budding.
Vesicle T (°C) (ve) (ag)
28.7£0.1 0.954-0.001 —0.00370.0011
32.7+0.1 0.932:0.001 0.00540.0013
A 37.8£0.1 0.912:0.001 0.00380.0022
42.4+0.1 0.894-0.001  0.00920.001
45.8+0.01 budding 0.8780.002 N/A
329+0.1 0.976-0.001  0.005-0.001 088 090 092 094 096 088 1.00
B 40.3-0.1 0.950-0.001  0.016:0.001 reduced volume v
42.0£0.1 budding 0.94%0.002 N/A
) FIG. 9. Experimental trajectories witho@®ec. V, open sym-
C 27.0£0.1 budding 0.9830.001  0.008:0.002

bols) and with(Sec. VI, filled symbolsgravitational corrections in
the (v,c,) diagram for vesicles\, B, andC. Corrected and uncor-
rected data points are joined by a thin line. As explained in the text,
It is hard to give any meaningful estimate of the realthe vesicle follows a path from lower right to upper left, as it is
uncertainty in the derived quantitiesand aﬁo). For a truly  heated. Vesiclea andB underwent a budding instability after the
stationary ensemble, the purely statisticgdmpling uncer-  upper-leftmost point of the trajectory, vesidlz budded from the
tainties in the average quantities should decrease as the eppint shown. The spinodal linédP are the same as those shown
semble sampling becomes denser. In practice, our runs ai® Fig. 1 and mark the upper and lower boundaries of the region
necessarily of finite lengttSec. 11l B). Indeed, if we divide predicted by theory to be locally stable for prolate shapes. Thus, for
the data set into two parts, corresponding to earlier and latdll consistency, the trajectories must terminate below the upper
times, we typically see a spread of values correspondinﬁp'_”Odal- Vesmlc_eB andC satls_fy th!s criterion. The fl_nal raw-_data
typically to = 0.001 forv and = 0.002 for the{ago)}’s point on the trajectory of vesicl@ is inconsistent with stability.

(and somewhat larger near the budding instabilityis this Including gravitational effects moves the thermal trajectories to
9 9 smaller reduced volume. Fag=2.2 (appropriate only for vesicle

me?s-wt’-e Wh(ljih we adotF;]t asan esltlmate ?f th?. statistical u'la, the instability boundaries are shifted by gravity, as shown. The
certainties. course, there are also systemaliC errors, Sugii,, point on the vesicleA trajectory becomes consistent with

as the therma}l Sh'f,tSNh'Ch we have neglecté:,dthe failure theory, only when, in addition to gravitational effects on the map-
of the Gaussian picturévhere fluctuations are largethe  ing “the gravitational tipping of the fluctuating pearlike shapes is
sampling errofwhen the relaxation times are longhe fluc-  jncorporated by excluding a cluster of data poifssuare symbols
tuations of the major axis out of the focal plane, and theys giscussed at the end of Sec. V. Uncertainties are generally large

effects of gravity(Sec. V). The upshot is that well away near the spinodal lines and close to the sphere, where fluctuations
from the instability boundary the statistical uncertainties arebecome important.

probably realistic, except for the systematic influence of ] ]

gravitational effects. Near the instabilities, the situation is[58]. The size of the fluctuations and the scale of the longest
less well defined. These statistical uncertainties trangkie ~ '€laxation time increases dramatically as the temperature ap-

Fig. 2 into uncertainties irc,, as we shall illustrate in Sec. Proaches the budding temperatysee Figs. 3, 4, 7, and 8
V. These effects have been interpreted in terms of a simple Lan-

dau theory{10].
Our results for the three budding vesiclés, B, andC,
V. RESULTS (WITHOUT GRAVITATIONAL are summarized in Table I. The average amplitutgs
CORRECTIONS) were generally very small for odd, as expected in the pro-
late phasd59]. The even coefficientéag) and above were
Each of the three budding vesiclés,B, andC, started at  too small to distinguish from zero, presumably because of
a relatively low temperature with a nearly spherical shapehe hierarchy(15). The valuev, of the reduced volume at
(i.e.,v~1). As the temperature was raised, the reduced volbudding was determined by extrapolating the experimental
ume decreased, until at a certain temperatdifferent for  temperature dependencéT) to the observed budding tem-
the different vesiclgsa “budding” instability occurred(see  peratureTy, .
Figs. 5 and § i.e., the vesicle suddenly necked down and, Figure 9 shows the result of mapping this data into the
over a time interval of 1-10 s, developed a small quasitheoretical ¢,cy) diagram by usindgv.), (a4}, and Fig. 2, as
spherical satellite(This time range is due to the different explained in Sec. Il C. The instability lineé P and M "'
vesicle sizes, since typical relaxation times scale with there just the appropriately mapped versions of the correspond-
third power of the vesicle radiul0].) Up to the budding ing spinodal lines of Fig. 1. The advantage of this represen-
threshold, the thermally induced changes in the fluctuatingation is that it is completely independent of the value of
ensemble are reversible to within experimental precisiona, as explained after Eq10) [60]. Theory predicts that the
The budding process, itself, is a mechanical instabjHtif)]. prolate shapes are locally stable only between the two spin-
In fact, the budding can be reversed, but only by cooling to adals. With the exception of the highest-temperature point in
temperature significantly below the budding temperaturehe trajectory of vesiclé, we see that the mapped shapes do
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are calculatedylobally from an integralsee Eq.(18)] over

"‘°’2‘_‘§_ about 600 contour points, each of which deviates from the
reference shape. Second, one is interested in a low mode,
which is insensitive to local perturbations in the membrane.

204 And, third, the amplitudes are averaged over typically sev-
eral thousand contours, giving an effective sample size on
. the order of 18. Thus shape differences on the 10 nm scale
15 A f are detectablg49].
M,V = const The “thermal trajectories” corresponding to each vesicle
encode the effect of the experimental control paramgten-
104 Moo peraturg on the quantities andc, (or my), defined in Sec.
Y — Il A. These quantities, in turn, depend on the voluxhearea

088 090 092 094 096 098 1.00 A, relaxed area differencéA, of the vesicle, on the thick-
reduced volume v nessD and spontaneous curvatu@g of the membrane, and
on the ratioa of elastic constants. All these quantities are, in

FIG. 10. Experimental trajectories witho(Bec. V, open sym-  principle, temperature dependent, and, if these dependences
bols) and with(Sec. VI, filled symbolsgravitational corrections in ~ were known, we could calculate the thermal trajectory and
the (v,m,) phase diagram for vesicles, B, andC usinga=1.4  compare it with that found in Figs. 9 and 10. The volume
(see Fig. 9 for a legend The stability of data points does not thermal expansion coefficienB(~3x 10" 4/K for wate is
depend orw and mirrors Fig. 9. As for Fig. 9, the last point of the known to be small compared to the area thermal expansion
vesicleA trajectory becomes consistent with the theoretically cal-coefficient (Bx~3x10 3/K for SOPC [61]). It is also
culated stability when corrected for gravitational effe@teluding known[62] that the total bilayer volumAD is only weakly
the cluster exclusion, as discussed in thejtektheoretical thermal temperature dependent. A simple model is to assume that
trajgctory(with the s_imple formmgu = con_st)_ is shown for com- only A andD are temperature dependent. Wi@4=0, as is
parison. Although Figs. 9 and 10 look similar, they @@ con-  reasonable for a symmetric bilayer, this assumption leads to
nected by a simple rescaling of the vertical axis. the simple result that the produetn, is temperature inde-

pendent16,25. This hypothesis predicts trajectories of the
lie in this region. Figure 10 shows the same data plotted ifyeneral shape and scale shown in Figs. 9 and 10 but signifi-
the (,my) phase diagram, Fig. 1. The required relation be-cantly less steep than those observed. It is not hard to make
tweenc, andmy is based on Eq(10). In order to evaluate more refined models consistent with the data, for example,
m[S(M], we solve the variational shape equations derivecby using a nonzero spontaneous curvatGgeand/or a dif-
from energy functional Eq9) for the given values of and  ferential thermal expansion for the two leaves of the bilayer
Cco. We have takere=1.4 in making this transformation [16,25. Unfortunately, direct measurements of these quanti-
[28,32. Since the spinodal boundaries map right along withties are not available, so no useful conclusions can be drawn
the data points, there is no change in the predicted stabilityat this stage.

The fact that, with a single exception, the mapped data Another set of evidence bearing on the consistency of the
points lie neatly sandwiched in the region of prediofedal)  observations with the theory is the relative size and shape of
stability is a stringent quantitative test of the theory and conthe main vesicle and the bud which forms at the instability.
stitutes the single most important result of this work. WeAt the crudest level, theory predicts that the final state after
emphasize agai(see Sec. Il Bthat the shapes mapped by budding will be pear shape@ather than fully vesiculated,
Fig. 2 are variationally stationar§by construction but not  with a microscopically narrow negkwvhen the budding oc-
necessarily locally stable, so that an arbitrary shape couldurs for reduced volumes less thap=0.875, where the
end up anywhere in the phase diagram. spinodal crosses the limiting-pear lihd°¥ (see Fig. L As
It is worth pointing out that the fact that the values of « increases, this crossing point moves to higher values of
Co derived from the data points are all of order unigs v, so the observation that vesicle buds to a fully vesicu-
expected on the basis of the thepiy also an important test. lated state would be inconsistent with a valuesoflarger
Figure 2 shows that, values betweer-5 and 10 are asso- than 1.4. This observation places an upper boundro@n
ciated with values ofal” in the narrow range between the other handa has to be larger then zero since we do find
—0.02 and 0.02. If the theory were significantly in error, it a large variety of shapggorresponding to different sponta-
would be quite easy to have produced very large or venneous curvaturex,) within the same preparation, even
small values ot . within the same chamber. Far=0, the effective spontane-

Indeed, in a certain sense, our ability reliably to distin-ous curvaturec, would be fixed by the solution asymmetry
guish shape changes corresponding to differences of ordéws a particular value foeveryvesicle. Only a finitew larger
unity in ¢, is, in itself, surprising. Consider that, for a vesicle than zero allows for a dependencecgfon the difference in
of radius 10um at a reduced volume=0.9, a difference in the number of molecules between the outer and the inner
¢y of =1 corresponds to a change in shape which modifiesnonolayer of the membrane which is varying from vesicle to
the pole-to-pole contour lengf by only 20 nm. This num- vesicle. Thus we find & «<<1.4. In fact, we expect to be
ber (the smallness of which is a direct consequence of th@f order unity since values much smaller than one would
hierarchy is below thelocal lateral resolution of the contour. imply an unreasonably large difference in the number of
How is this possible? First, one has to realize that one doemolecules between the inner and outer monolayers in order
not measure a single distance only. Rather, the amplitudds obtain the observed large variety of shapes.
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Another qualitative prediction is that the ratiof the bud Finally, we have so far treated the effect of gravity as only
radius to the radius of the remaining main vesicle shouldsomething which positions the vesicles at the bottom of the
increase as the reduced volume at budding decreases. Thgbamber and alignrolate axes in the horizontal plane. In
r should be largest for vesicld and smallest for vesicle fact, it will also modify the zero-gravity shape analysis
C, as is, indeed, observed. On the other hand, on the limitiny/hich has been, up to this point, the basis of our mapping
line LP*® the vesiculated configuration consists of two procedure. What effect do gravitational shape changes have
spheres, so there is a simple relation between the ragiocd 0N the analysis and can they explain the observed discrepan-
reduced volume [32,63. In particular, close examination Ci€s? This is the subject of Sec. VI.
of Fig. 5 provides a value af close to 2.8(pure geometry,
since the shape is very close to being two spher€kis
corresponds te (r)=0.873. Indeed, budding is observed at VI. GRAVITATIONAL EFFECTS
v,=0.878:0.002 for vesicleA.

Overall, the agreement of theory and experiment is rea- ) ) i i .
sonable with the exception of the last point of the thermal When the density of the solution which fills the vesicle
trajectory of vesicleA, which lies distinctly above the theo- interior is greater than that of the exterior solvent, _the vesicle
retical spinodal boundar}P™® (Figs. 9 and 1D This last W!|| fall to the bottpm of the_contamer and, once in contact
point is worrying. Indeed, even below the spinodal line, therg/ith the bottom, will deform in such a way as to decrease the

should be dfuzzy) unstable region where the energy barriergravitgtional potential energy of the interior, higher-density
out of the metastable state is of ordeyT. (The fact that material. The overall shape involves a balance between the

vesiclesB andC appear to bud increasingly belaw™ for previous bending energy) and a new gravitational energy,

higher reduced volume suggests that there may be some sys-

tematic effect at work which is distorting the locus of insta- Wgra\[S]:goApf zdV, (23
bility.) We have considered three possible reasons for this

discrepancy.

First, our identification22) involves the assumptions that whereg, is the local acceleration due to gravitp is the
(@) the fluctuations are small enough to be treated at the Y0 density of the interi Igt' P
Gaussian level antb) the (Gaussianhthermal shifts and rms ﬁxpehsts Lnassth eT)S' y 0 ‘ eh In (re]norbso u |((1;1,r:]1egsures i
fluctuations(of orderkgT/w) can be neglected. At the spin- eight above the bottom of the chamber, and the integral is

) ) . over the interior volume of the vesicle.
odal, fluctuations divergglQ], so neither of these assump- . il . o
tions is valid, and the identificatiof22) is expected to fail. It The ratio of the energy scaiApR, of this gravitational

is entirely plausible that these assumptions are already breafe'™ t© the scalex of the bending energy defines a dimen-
onless parameter,

ing down near the spinodal, at the last stable point. Becausd
the effects of fluctuations beyond the Gaussian level have yet
to be calculated, we cannot, at this stage, assess the impact Ap R
that such corrections might have on the near-spinodal points g 90 8P Ra ' (24)
of trajectoryA. K

Second, we have assumed that the major prolate axis is
(effectively) in the focal plane of the microscope. If this axis
is appreciably out of the focal plane, then the digitized im-Which measures the relative size of gravitational and bending
ages cannot be thought of as sampling axial sections of thenergie23]. Wheng is very small, we may expect shapes
three-dimensional fluctuating shape, and the whole analysighich are not significantly deformed relative to the gravity-
of these images would have to be redone. As long as fludree case. Wheg is very large, gravitational energy domi-
tuations are small, it is reasonable to assume that gravity acgates and vesicles will tend towards circular pancdkes,
to keep the prolate axis aligned. But, near the spinodal linesquashed against the chamber bottom, insofar as constraints
there are large, slow pearlike fluctuatidd€)], which are not on area and volume allow©Of course, ifv =1, then the
“up-down” symmetric (i.e., which break the symmetry be- vesicle can only be spherical.
tween the north and south polesn this situation, gravity Experimental values for our vesiclés B, andC were
may be expected to systematically reorient the small end afiominally g=2.2, 0.3, and 1.9, respective[$5]. Here, we
the pear towards the bottom of the chamber, thus tipping these a value ofc=0.9x10 ' J for our estimatiorf4]. We
effective symmetry axis away from the horizontal. Oncemay, thus, expect gravitational corrections to be appreciable
tipped, the symmetry axis is inhibited by gravity from return- for vesiclesA andC but relatively less important for vesicle
ing to the horizontal, so one expects long intervals of asymB. The qualitative effect of gravity on the mapping is not
metric, pearlike data to appear in the near-spinodal time sehard to see. Roughly speaking, a “pancake” deformation
guences. In fact, the data for the last point of the vesicle will make the focal-plane section of a prolate rounder and
trajectory do show an “anomalous” cluster of frames with larger in area than it would otherwise be. Therefore, gravita-
simultaneously large; and a,, and these frames exhibit a tional corrections will lead to larger values of. Although
fuzzy contour profile near the small end of the pear, indicatthe coefficientsa, must approach zero for largg it is not
ing an overhang of the vesicle membrane beyond the focaibvious where the asymptotic regime sets in, so the sign of
plane. The effect of excluding this segment of the time sethe gravitational shift ina, cannot be inferrec priori. In
quence is to lowefa,) nearly to the spinodal, thereby im- order to estimate these effects quantitatively, we need to be
proving agreement between theory and experiment. able to calculate vesicle shapes in the presence of gravity.

A. Qualitative considerations
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B. T=0 shapes in the presence of gravity 0.025 . ; . .

The only previous calculation of vesicle shapes including Veg— V %=25 ©
gravitational effects was done by Kraus, Seifert, and Lip- 0.02 - 50 +
owsky [23]. These authors found a gravity-induced prolate- 1;:2 ‘i .
oblate transition for values @ similar to those encountered 0.045 - .
in our experiments. Following this work, we use a polyhedral ' .
discretization of the vesicle surface and employ the program .
SURFACE EVOLVER[66] to search iteratively for the shape- 0.01 - +
energy minimum. Numerical minimization in the presence of N * .
a hard-wall constraint for the chamber floor leads to special 0005 - 3 - x
problems in stability. For this reason, we replaced the hard g
wall by a soft substrate potentiaV/,,(z) =Vq,exp(—2zy), . . . .

with Vo, =5k and z;=0.1R,. These parameters seem to
provide a good compromise between numerical stabifiy
vored by a softer potentinhnd a deformation of the shape _ ) _
. . o FIG. 11. Computed gravitational corrections to the effective re-
causgd by the soft t"’?" of the potential which is as small as uced volume aFt)g=2.§2] as is appropriate for vesice The shift
pOSS|bIe[23]..Con.st.ra!ntS on area gnd vqume. are TESpea‘?‘gve—v) is shO\;/n vertically as a function af, andv. The dashed
The' enerfg;;} is minimized t,)y movmgl the \{ertllces in the ql'line corresponds to the prolate-oblate transition. All shifts meet this
rection o _t e energy gradient or, alternative Y by a CONUjing with a slope different from-1, as explained in the text. The
gate gradient method. Symmetries such as mirror planes cai,qeq regionu,>1) is unphysical.
be exploited. For most of this work, only a vertically cut ¢

guarter section of the vesicle was actually computed. It turns ise. We did he | . fth
out that the results for the final shape and energy are ver oes not seem wise. Yve di not cpmputet e location of the
ull lower spinodal including gravity; however, for,=0

sensitively dependent on the triangulation in a way that w
cannot completely control. We have tried to overcome thigandg=2.2), we do know[23] that the prolate-oblate tran-

problem by fitting a linear interpolation to a grid of data Sition occurs ab=0.94(as plotted, which also corresponds

points, as described in Sec. VI B below. This procedure avi© @ small upward shift.

erages out random fluctuations from one point to another but

cannot address any subtle systematic dependence on grid

size which might be hidden beneath the fluctuatiowms did ] o )

check directly for such a grid-size effect, and none is appar- We estimated gravitational effects by running the

ent at the level of accuracy we can achieva the absence SURFACE EVOLVERprogram forv between 0.875 and 0.975

of a more reliable measure, we have simply used the devidD Steps of 0.025 and far, between 2.5 and 10.0 in steps of

tion of the computed data points from the smoothed interpo2-5- For each pair of these parameters, we computed shapes

lation to give an estimate of the error introduced by the tri-Over a range of smaly values. For each shape, we took a

angulation. maximal horizontal section and computed effective values of
Finally, we point out that, not only does gravity influence Ve, @2, anda, using formulas(18) and (21). These values

the shape and energy of a vesicle at giveandc,, but it ~ varied in a roughly linear way witly, only with some super-

also changes the relative energy of different shape branchei§yposed fluctuations which we attributed to the triangulation

thus shifting phase boundaries and stability boundaries in théensitivity mentioned in the previous subsection. We then

phase diagram. Thus, in looking for gravitational correctionsassigned effective values of(g), a»(g), anda,(g) for the

to the experiments, we also need to compute the gravitatiorgravitationally distorted shapes by making a straight-line fit

ally shifted spinodal lineMP™®. We have done this in the to these computed points passing through the values previ-

(v,Co) representatioriSec. Il A) for g=2.2, in which now ously computed forg=0. For the values of, v, 'andg
[cf., Eq.(11)] relevant to the experiments, the gravitational shiftagfis

comparable to the numerical errors. On the other hand, the
difference betweemw(g) and the actual reduced volunse

0.875 0.9 0.925 0.95 \Y; 0.975 1

C. Gravitational corrections to the mapping

9G(0,m) 1 MWoafv,m)

Co= Im P am =2Co+ a(mo—m[S™]). (see Fig. 11 does lead to a noticeable correction in the val-
(25) ues ofc, inferred from the experimental data for vesicles

A andC.
This involves two numerical fits tSURFACE EVOLVERdata, This family of lines may then be used to calculate gravi-

first for the computation ofn(MP™) and then for the deriva- tational corrections to the experimental data. Simgcds

tive which evaluates,. As a consequence, the quality of the known, it is only necessary to take the measured values of
results is rather poor. As shown in Fig. 9, the result for ourve anda,, which belong(presumably to shapes which are
experiments is a shift of the upper spinodal upwardgjrby ~ gravitationally distorted, and to infer the corresponding val-
about one unit; but, the numerical uncertainties are unfortuues ofv andc,. Figure 11 shows, for example, the calculated
nately comparable in size to the shift. More detailed calcugravitational shift in the apparent volumepv), at
lations would require finer triangulations and much longerg= 2.2 (appropriate for vesiclé\) for representative values
relaxation times. Since the computational investment is alef v and c,. Note that thev, is always larger thaw, in
ready appreciable and experimental uncertainties are alreadgreement with the qualitative argument of Sec. VI A, so
large near the spinodal, additional investment at this timehat gravitational correction always shifts the data points to
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the left in Fig. 9. The corrections increase for valuecgf
close to the prolate-oblate transition, i.e., for snegllwhere
increasing the volume of a prolate vesicle at fix@dleads
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mov =const. We may speculate that thermal shifts play a role
here, too, near the lower spinod&l7].
A few comments are in order concerning gravitational

eventually to a transition to an oblate shape with a verticatorrections to the vesicl€ data. The reduced volume of
symmetry axis, thus producing a circular focal-plane sectiorvesicle C is shifted to the left, as expected. Unfortunately,
(i.e.,ve=1). The behavior of the shift of the apparent vol- the effective spontaneous curvaturg is not well deter-
ume near this prolate-oblate transition can be understood afined, due to the large experimental and numerical errors.
follows: Above the transition, fos >v.(co,g), the focal cut  (We remind the reader that vesicedid bud at this location

of the oblate vesicle is circular, independent 0§,@), i.e.,  and, thus, exhibited large spinodal fluctuatioriBhis data
point appears to be located appreciably below the spinodal

vemv=1-v, v>ve (260 jine. This could be an artifact created by effects not included
in the mapping(see the discussion at the end of Seg. V
For v<vg, we find from geometry and/or it could be due to a low activation energy for budding
ve=1—(64/135p5 + O(aj,as,...). Furthermore, the near the sphere.

v)1/? The upshot of this exploration of gravitational corrections

is that gravity does, indeed, have a substantial numerical
effect, as might be anticipated from the fact that the dimen-
sionless parameteyis around 2 for vesicled andC. How-
ever, the qualitativéand generally encouragipgonclusions

of the gravity-free analysis are not changed.

amplitudea, is given bya,~c(v.— , Where the coeffi-
cientc depends on botb, andg. Thus, immediately below
the transition, we have

64

1_§500 +

64
—=C —1)v, v=v. (27

Ve 135

. . . . . VIl. CONCLUSION
This equation implies that all the shifts in the apparent re-

duced volume for different, meet the curve,—v=1—v Previous experiment&e.g., Ref.[6]) have compared ex-
with a slope[ (64/135)2— 1], larger than— 1. Inspection of  periment with theory by, in effect, exhibiting a set of control
Fig. 11 suggests that the slope is, in fact, positive for smalparametersu, cg, my, @) which lead to theoretical shapes
Co- similar to those observed in the laboratory. It is important

Figures 9 and 10 show the gravitationally correctedthat this exercise can be successfully carried through; but, for
(phase diagrams with the corrected data points for vesiclesvarious reasons, it constitutes far less than a full test of the
A and C. The uncertainties of the gravitationally corrected theory.
points include both the original experimental uncertainties The first problem is that different variants of the theory,
and the numerical uncertainties of the gravitational shaperanging from the SC modela(=0) to the AA (bilayer-
energy calculations. Note that the data points are shifted toouple model (@==), all share the same set of stationary
the left in v, as expected qualitatively. All experimental shapes, so that observation of a shape which can be suitably
points are in the(metastable prolate phase, except the parametrized only distinguishes models in which the shape is
“bad” point which still remains above the upper spinodal, stable from those in which it is not. One would like to be
unless the “anomalous” cluster is removed, as discussed iable to measure all the control parameters for a given vesicle
Sec. V. Accepting this somewhatl hocprocedure, one may and then to verify that a vesicle with those control param-
argue that this last stable pointwat0.890 lies within error  eters does, indeed, have the observed shape. The difficulty is
bars inside the prolate phase after the gravitational corredhat, whilev and « are measurable,, andm, (which enter
tions have been performed. We note, however, that the actuttie shape problem in the combinatioy) are not. We have
point of budding at,=0.878, which must, in principle, be surmounted this problem by concentrating on the equivalent
beneath the spinodal, would still appear to lie slightly in thevariablec, (which incorporates,, m,, anda) and inferring
unstable region, even after gravitational and tipping correcthis variable directly from the shape dat,). Although the
tions. We may speculate that this apparent inconsistency isference process uses theory, there are nontrivial checks left
due to thermal shiftgdneglected so far in our treatment over. Local stability is still an important check, as we have
which could be appreciable near the spinodal. argued. In particular, the observ@gasonableagreement of

So far, we have discussed stability of vesidl®nly with  the experimental budding boundary with the calculated the-
respect to the uppefpear-modg spinodal. We have also oretical spinodal is encouraging, as is the qualitative agree-
checked that the data points of vesiéldall above the lower ment of the postbudding shape with that predicted by the
limit of stability of the prolates, which is an instability to- theory. Once the mapping is done, observation of other shape
wards the oblate phase. In fact, the first point of vesktlie  coefficients @5, ag, etc., for the prolatgsprovides, in prin-
located (including the gravity correction at ciple, a further test of agreement between theory and experi-
(v=0.937¢c,=1.6). The location of the prolate-oblate tran- ment. Unfortunately, at the level of precision we have been
sition at the same volum@ndg=2.2) is known to occur at able to achieve here,, is too weakly dependent ar to be
¢,=0 (see the preceding sectipnwhich is comfortably be- useful, andag is too small.
low our data point. Thus, the vesicletrajectory doegprop- The second and, in many ways, more important advance
erly) start in the stable-prolate region. On the other hand, thisvhich our experiment makes over previous ones is in the
first point still appears somewhat out of line with the remain-monitoring and analysis of the full thermal shape ensemble.
ing three points of the trajectorggee Fig. 10 which (after  Previous workers have certainly observed the shape fluctua-
gravity correction fit quite well to the simple forn{12],  tions; however, shape comparisons between theory and ex-
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periment have, heretofore, relied on comparison of a singléions) is crude but satisfactory. It is important at this point
judiciously selected image with a theoretically calculated(and entirely feasibleto carry out similar analyzes in other
shape. When fluctuations are appreciadich they cer- parts of the phase diagram. When more precision becomes
tainly become near any instability boundarthis process is  available in future experiments, more consistency checks
clearly unacceptable. We have illustrated how to monitor angyill be possible(e.g., by looking ata,) and(ag)), and it

to analyze the full shape ensemble, and we have shown hoyil| be worthwhile to include in the analysis the corrections
to relate the ensemble data to the correspondind theo-  of order kyT/w, which we have ignored herein. It is clear
retical shapes, at least in situations where fluctuations are ngdat gravitational corrections will have to be included and

too large. Treatment of larger fluctuations, which are com+hat non-Gaussian effects will be important near instabilities.
mon near instabilities and will certainly be increasingly im-

portant at lowv (where mechanical modes will tend to be
soften, will require a new theoretical approach capable of
going beyond the Gaussian level.

Finally, at a somewhat technical level, we have illustrated We thank M. Jaric J. K&, L. Miao, K. Ritchie, E.
that the effects of gravity, which have been ignored in earlieiSackmann, and T. Yeung for helpful discussions, and R.
works, are quantitatively important. And, we have shownLipowsky for generous support. Technical advice and help
how to adjust for them in comparing theory and experimentfrom A. Leung and W. Rawicz is appreciated. This work was

In summary, our work provides, in principle, a quantita- supported in part by the Natural Sciences and Engineering
tive test of the ADE model of vesicle shapes. AgreemenResearch Council of Canadid.-G.D. and M.W) and by the
between theory and experimetihcluding suitable correc- Medical Research Council of Cana¢a.E).
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