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Generalized Landau-de Gennes theory of uniaxial and biaxial nematic liquid crystals
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The generalized Landau—de Gennes theory for uniaxial and biaxial nematic liquid crystals is analyzed using
tensor analysis. In this way all terms allowed by symmetry appear in the free-energy expression. This improves
the quantitative shortcomings of the commonly used theory. It appears that uniaxial nematic liquid crystals are
described by 12 independent generalized elastic terms and that biaxial nematic liquid crystals are described by
48 independent generalized elastic terms. For practical purposes, several approximations based on symmetry
arguments are discussed. The theory is applied to describe the variation in order and orientation near a surface.
The relevance of the theory to the debate on the surface elastic constgnis pointed out.
[S1063-651X97)06004-2

PACS numbgs): 61.30-v, 62.20.Dc, 64.70.Md

I. INTRODUCTION Kll= K33> K22,

2

More than two decades ago, de Gennes applied the Lan- Kii Qi
dau theory of second-order phase transitidng| to the first-  whereQ; is the scalar order parameter. In general these re-
order isotropic-uniaxial nematic phase transiti@j. This lations do not hold: the degeneracy Kf; and Kz is re-
Landau—de Gennes theory proved to be useful for the denoved when the Landau—de Gennes expansion is extended
scription of other phase transitions as well, e.g., thd® third order inQ, [31]. Apparently, the presently known
isotropic-biaxial nematic transiton and the uniaxial G-CT IS an approximation of a more complete theory. The
nematic—biaxial nematic transitioj#,5]. The influence of alm of this paper is to investigate this complete theory. Our

X o . . analysis is based on symmetry principles only. In this way,
spatial variations of the local order parameter is taken iNtQ | affects that are allowed by symmetry are incorporated in

account in the generalized Landau—de Gennes theory he theory. Moreover, the physical assumptions underlying

(GLGT) [6-9]. This GLGT naturally combines Landau the commonly used approximate GLGT become quite clear
theory with orientational elasticity theory, as the local orderin the present analysis.

of a nematic liquid crystal is determined by amplitude This paper is organized as follows. For the sake of clarity
(which describes the “degree” of ordeand anorientation ~ the main concepts are reviewed in Sec. Il. The symmetries of
Therefore, the GLGT can be used to describe phenomerihe different nematic phases and the corresponding tensor
which cannot be satisfactorily described by the originalorder parameters are discussed and the general expressions
Landau-de Gennes theory and elasticity theory separate{f’ the Landau free-energy density and the elastic free-
Such phenomena are expected when both the degree of orddterdy_density are given. Special attention is paid to the
and the orientation are important, as is the case with, e.g ,|st|nct|on between the surface free-energy density and the

phase transitions in confined geometries and wetting phé?u'k free-energy density. In Sec. lll the GLGT of uniaxial

nomena(10-14, surface-induced bulk aignmefts-1, + ¢1C1 A TERANE T CNERS Bk alowed by
and disclination$18,19. 9 gy exp y

. ! L . symmetry and discuss various approximations based on ap-
. I_n contrast to its _que applhcat|on., the GLGT is clearly proximate symmetries. The GLGT known from the literature
limited from a quantitative point of view, as the GLGT ex-

X ; ) X is obtained when the symmetry is approximately isotropic. In
pression for the free-energy density of orientational deformage. v/ the theory is applied fo the coupled variation of the

tions is not identical to the ones that are well known for 5rger parameters and the orientation close to a surface that
either uniaxial[20-24 or biaxial [25-30 nematic liquid  fayors an ordering of the nematic liquid crystal different
crystals. For example, according to the GLGT known fromfrom the thermodynamically stable ordering. The result is
the literature[3,6—9, the Frank elastic constanf22] for  directly related to the debate on the surface elastic constant
splay, twist, and bent;, Kz, andKss, respectively, sat- K,,. The paper is concluded in Sec. V by a short summary
isfy the relations of the main results.

Il. THEORY
A. The tensor order parameter

* Author to whom correspondence should be addressed. Electronic The macroscopic tensor order paramefers defined as
address: stalling@natlab.research.philips.com the anisotropic part of a susceptibilify [6—8],
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1 1
Qij=G(Ti,-—§Tr<T)a”), ® Q5=3QalLag=Map). @

whereT may represent the magnetic susceptibility tengor Recently, a tensor order parameter with nonzero trace has
or the dynamic dielectric tensef ) at a standard frequency been used by Totknoet al. [32] in order to describe the
w. The factorG is an arbitrary normalization constant. For phase diagrams of lyotropic nematic and lyotropic choles-
convenience, we chooge>0 and having dimensions such teric systems. The additional scalar order parameter that is
that Q becomes dimensionless. thus introduced describes a change in the shape of the mi-
The tensor order parametér being real, symmetric, and celles that constitute the lyotropic system.
of zero trace, can be written in the following diagonal form  The properties opolar liquid crystals have been system-
in a suitably chosen local frame of orthogonal eigenvector&tically descibed by Longa and Tredi@3] using the trace-
(I(r),m(r),n(r)): less, symmetric tensor order parameggy,; together with a
polar fieldP,. WhenP,=0, the GLGT expression known
- 1(Q,-Q,) 0 0 from the literature is obtained.
In the following, we confine ourselves to nonpolar, ther-
Q= 0 —3(Q:+Qz) 0 |. (2 motropic nematic and cholesteric liquid crystals with
0 0 2q uniaxial and biaxial symmetries. The uniaxial systems are
31 descibed by the uniaxial tensor order paraméXér The bi-
The representation of the tensor order parameter in thaxial systems can b_e descibed b_y _the_total tensor order pa-
space-fixed frame] ) reads ?ameterQ, but sometimes a description in terms of two sepa-
P &6 rate tensor order parameteé®’ and QP is more appropriate.

_ N o~ 15 )+ 2Q,(L. ,—M.p), 3 This distinction between a separate uniaxial and biaxial ten-
Qup=Qu(Nup™590p) +5QalLap™Map) @ sor order parameter, which, to our knowledge, has not been
where we have used the definitions made before, is of importance when discussing the different
approximations to the GLGT presented in Sec. Ill. When the
Lap=lalg, (4g  distinction is not made and only the total tensor order param-

eterQ is used, the GLGT known from the literature is ob-

M ,p=Mm,mg, (4b)  tained.
NaB: N,Ng (40 B. The Landau free-energy density

Consider an arbitrary thermodynamic system that is char-
acterized by a uniform temperatufig a uniform pressure
(5) p, and some tensor order parame@y,(r). Such a system
can be described by the so-called Landau free-energy density

The nematic phase with the highest symmetry is thedL which is a function of the temperat_uﬁé the_ pressure
uniaxial nematic phas&,, which has a continuous rota- P the local order paramet®,4(r), and its spatial deriva-
tional symmetry around a unique axis. This symmetry axis igives of all orders, denoted a#Op,(r). For sufficiently
thought to coincide with the eigenvector The two eigen- Smooth variations of the order parameter, the Landau free-
vectorsl and m are degenerate. The order of tNg phase ~ €nergy density can be expanded in powers of the spatial de-
with respect to the isotropic phase is described by thdivatives of the order parameter. Usually only terms that are

and the completeness of the set of eigenvectors

Lzll,B+ Maﬁ+ NQB: 604;

uniaxial tensor order parameter linear in the first-order derivatives, terms that are quadratic in
the first-order derivatives, and terms that are linear in the
QiB:Ql(Naﬁ_ %%3)- (6) second-order derivatives are taken into account,

The N, phase is nonchiral, i.e., symmetric under spatial in-90(O(r), ™ O(r), T, p)

version, and nonpolar, i.e., the states describechbgnd =0,u(O(r),T,p) +Keap,(O(r), T,p)d,0,/(r)
—n are indistinguishable. The chiral variant of this phase is ’
the cholesteric or chiral nemath® phase. +Kapynun(O(N), T,0)920 (1) 910 ,(T)
A nematic phase with lower symmetry is thiaxial nem- +ICaBy(;(O(r),T,p)aaaﬁoy(;(r)Jr . (8)

atic phaseN,. Here the continuous rotational symmetry
aroundn is also broken: the two eigenvectdrandm are no  whereg, (O(r),T,p) denotes the Landau free-energy den-
longer degenerate. The order of tNg phase with respect to sity of the system when the order parameter is uniform. The
the isotropic phase is described by the full tensor order paether terms in the expansion describe the elastic free-energy
rameter(3). The chiral variant of this phase is denoted asdensity. The tensorg, K, IC, ... have the symmetry of the
Np . lower symmetric O,;#0) phase. They are functions of the
The Ny, phase is more ordered than thg phase. The local order parameteD,4(r), the temperaturd, and pres-
order of theN, phase with respect to thd, phase is de- surep.
scribed by the biaxial tensor order parame@®; which is The Landau free-energy density can also be expanded
obtained by subtracting both the isotro@ind the uniaxial in powers ofO, ;. The expansion of), , with respect to the
part of the tensofl, O,5=0 phase reads
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9L,u(O(r), T, p) hand, there is a one-to-one correspondence betagamet-
ric surface termswith S;,,.,=S;,,;) and terms that are
=g0(T,P)+Z450up+ 3257500505 linear in the second-order derivative.
~ 3Bupy5et0a50,60¢ lll. THE GLGT OF NEMATIC LIQUID CRYSTALS
+ %Caﬁ'yéegnﬁoaﬂoyﬁoegon(fl— . 9) A. Uniform systems: Phase transitions

Thel-N, phase transition may be described by an expan-
whereg, denotes the Gibbs free-energy density of the highegjon ofg, ,, in powers of the uniaxial tensor order parameter
symmetricO, ;=0 phase. The tensoks K, and/C can be  Qu. The tensors that appear in this expansion must have the
expanded as well: symmetry of theisotropic (Q“=0) phase, i.e., these tensors

are combinations of scalas Kronecker deltass,z, and

=K0
Kagy(O(N), T.P)=Kapy(T.P) + -+, (109 productspe g4, Of a pseudoscalap with the Levi-Civita
0 symbole .z, (Which is a pseudotenspor
Kagynu(O(N), T,p) =Ko, (T, P) -+, (10b) The tensorpe,z, does not appear in the expansion of
0 gLy, as all tensors in this expansion must have an even
Kapys(O(r), T,p)=Kop,s(T.P)+- - - (100 number of indicegsee Eq.(9)]. In fact, the general expan-

It is important to note that the tensaZs A, B, C, k% K©°, fé?,gorfgféﬁs c;?;ymttgvgoséowest—order contractions of the

K° ... have the symmetry of théigher symmetric P e

(O,5=0) phase. They are functions of the temperatiire QzﬁQ;angi' (149

and pressure.
u u u _ 2~3
C. Surface terms QupQp,Q7.= 3Q1, (14b

A number of terms appearing in expansi@ of the Lan-  which gives rise to the well-known expression for the Lan-
dau free-energy density can be written in the form of diver-dau expansion near theN, transition,
gences. These terms are called “surface terms,” as they only
contribute to the surface free energy according to Gauss's — gt LAO2— 2ZBO3+ CO%+ ... 1
theorem. The remaining terms in expansi@h are referred Ou=Gisot SAQL™ #BQIH 5CQ - @9

to as “bulk terms.” In the thermodynamic limit the contri- . 4 . , .
. X .where the expansion ffi ribe the experi-
bution of the surface terms to the total free energy is negli- ere the expansion up @, suffices to describe the expe

gible compared to the contribution of the bulk terms. In thismentally observed first-order phase transition. The coeffi-

section, we derive the general form of the surface terms thacf'emSA’B’C’ ... and the fre_e-energy density .Of the '.SOUOD'C
occur in expansiors). phaseg;s, are smooth functions of andp. A discussion of

By definition, the general form of a surface term is the I'I\.'“ transition and the Landau expansi¢tp) can be
found in, e.g., Refg.6-9].
,8,(0,dM0), (11) Thel-Ny, phase transition is described by an expansion of

0.y in powers of the full tensor order paramet®c All

where S can be any vector function of the order parametertensors that appear in this expansion must have the symmetry

and its spatial derivatives. Expanding this function in powersf the isotropic (Q=0) phase. The general expansion re-

of the spatial derivatives, quires only the two lowest-order contractions of the full ten-
sor order parametgB],

S.(0,8M0)=S)(0)+SL5,5(0) 50,5+ -+, (12
2 2 12
= 2(Q%+ 102), 16

one finds that the two lowest-order terms comprise all the QusQpa=5(Qi+ 3Q2) (163
surface terms in Eq8):

) QusQp,Qye= 01(Q3-QD), (160

0
0_ o . .
aaSa—aoﬁyaaOM, (13a yielding

98ty s OLu=0isot SAQI+ 3Q3) ~ #BQu(QI- Q)
(?a(siﬁyﬁl?ﬁo),&):Wgﬁaoég(?'goyg‘F Sl 56)&(?5075.

af
' (13b) + 3C(QF+ 3Q9)°+ 5D (Qi+ 3Q9)Q1(QT- Q)
2 2_A2\124 4y 2 1A2\3, .
We note that surface terms of the fotfi8a are absent in the +73E[Q1(Q1— Q) I°+ 5 E (QT+ 3Q2)°+- - - .
uniaxial and biaxial nematic phases, due to the nonpolar 17

character of these phases. For surface terms of the form

(13b), we make a distinction between symmetric and anti-The full expansion up to sixth order @, andQ- allows for
symmetric surface terms, as in RES0]. For theantisymmet- a description of either a first-order or a second-oridé\,
ric surface termswith S};Mf —Siﬁw), the terms that are transition, depending on the values of the coefficiefts
linear in the second-order derivative vanish. On the otheE’.
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A simplified expansion with C>0, E>0, and It should be remarked that the uniaxial symmetry allows for
D=E’'=0 has been studied by Gramsbergenal. [8]. an additional term linear i8Q,. However,Z,; must be zero
de Gennes and Prof] discuss a slightly more general ex- at T=T" and p=p" since we have define®] to be the
pansion withC>0, E>0, D#0, andE’=0. In both cases, equilibrium value ofQ, at this temperature and pressure.
a second-orderr-N,, transition is described fd8=0. For all Summarizing, we have demonstrated how an approximate
other values oB, the directl-N, transition does not exist, expression for the free-energy density of a nematic phase can
but is replaced by-N, andN,-N, transitions. Clearly, the pe optained by an expansion with respect to a higher sym-
expansior(17) is not appropriate to describe these successiveseiric phase. For uniaxial nematic liquid crystals, this is an
:jr_ansnmns, as itis based on the symrt?etry breaking at @xpansion with respect to the isotropic phé&g. (15)]. For
irect|-Ny, transition. Expansiofil7) can be seen as an ap- o ia| nematic liquid crystals, three different approxima-
proximation of a more g'eneral expansion, the approximatioions can be used: a direct expansion with respect to the
being valid close toa d'.redt'Nb transition. isotropic phas¢Eq. (17)], an indirect expansion with respect
The N,-N, transition is properly described by an expan-y, y,q isotropic phase through an intermediate uniaxial nem-

sion ofg, , in powers of the biaxial tensor order parameter ;. phasd Eq. (20)], and an expansion with respect to the
QP. The tensors that appear in this expansion must have théhiaxial nematic phasgEq. (21)].

symmetry of theuniaxial (Q°=0) phase, i.e., these tensors
are combinations 0§, 6,5, Pe.g,, andN,z. The expan-

sion reads B. Nonuniform systems: Elasticity

For nonuniform systems with a smoothly varying order
—g, +AQ2+ COA+EQS+ - 18 parameter, the Landau free-energy dengjtycan be ex-
OLu=Oun T AQHCQ+EQs (189 panded in powers of the spatial derivatives of the order pa-
rameter, as in E(Q8). The terms in that expansion that con-

where g,; denotes the Landau free-energy density of thd@n only the spatial derivatives of the directors

uniaxial phase. This free-energy density, and the coeffi- (I(r),m(r),n(r)) describe theorientational elasticity of the
cientsA, C, E, . .. arefunctions ofQ;, T, andp. system. In the generalized elasticity theory, there are also

Although Eq.(18) suffices for a description of thal,- terms that contain only spatial derivatives of the scalar order
. u : .

N}, transition, one can expand this expression further, eithepqrqmeterséQl(r),er(]r)), wh|c.h (?)esEnbe thmrfd((ajr e.laST

with respect to thesotropic phase or with respect to the ticicity, and terms that contain both types of derivatives

uniaxial phase. (mixedterms.

In the first caseg, , is expanded in powers of bof@" In the following, the general expressions for the general-
and QP L ized elastic free-energy density of a uniaxial nematic liquid

crystal and of a biaxial nematic liquid crystal are given,
where we distinguish between surface elastic terms and bulk
u b _ u AU b Ab elastic terms, as defined in Sec. IIC. We further derive ap-
=g, + + . . . ;
9Lu(QLQ%TP)=Giso TP+ ZapQupt ZapQap proximate expressions for the generalized elastic free-energy
+Ali’¢l;yanngl;5+ Aﬁf}y&QﬁﬁQ% density by making expansions with respect to higher sym-

b b b metric phases.
T AsysQapQys™t (19 L N
1. Uniaxial nematic liquid crystals

i ) i , The contribution of the elastic free-energy density to the
where giso, the Gibbs freg—energy density of the isotropic| onqay free-energy densigy of the uniaxial nematic phase
phase, and the tensafS, Z°, . .. depend ofil andp. Using  ig optained by substituting expressio8) for the uniaxial
isotropic tensors, we find tensor order paramet&" in expansion(8) of g, . The ap-

U ~b _ 2 2 3 2 pearing tensork, K, and/C must have the symmetry of the
gLu(Q%,Q” T,p) =0isot A1Q1+ A,Q5+B1Q1+B2Q;Q3 uniaxial phase. All independent elastic terms are found by
4 22 4, forming all possible combinations of the tensors with

TC1Q1+ G002+ CsQa -+, (20 uniaxial symmetry, i.e., combinations 8f 8,5, pe and
D . - N,z
g\r/]laclh-lils t:r?dglj\lerjﬁlra!{rgﬁzﬁir:)s;:gn for & description of succes 6Ve find eight independent bulk terms and four indepen-
u u™Nb . . g

In the second case, , is expanded in powers @ and de_nt su'rface terms, which can be classified .further as four
5QU=QU—Q"", whereQ" " is the equilibrium tensor order orientational elastic terms, two order elastic terms, two

parameter describing a uniform uniaxial phase at a suitabl ixed terms, one antisymmetric surface term, and three sym-

chosen temperatufE’ and pressur@'. Using an expansion etric surface terms. In terms of the usual vector notation,
. oo . the elastic free-energy density
analogous to Eq19), but now withuniaxial tensors, we find

aByr

gL,u(QanbaTap):guni+215Ql+A15Q12+A2Q§
+B18Q;3+B,8Q,Q3+C,6Q,*
+C20Q:°Q5+C4Q5+ -, (2D s given by

OL,e=9L—0L,u (22
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gL e=k'n-(VXn)+KY(V-n)2+Kyn-(Vxn)]? TABLE I. Bulk elastic terms for the uniaxial nematic phase. The
' “uniaxial” elastic constants are functions of the uniaxial order pa-
+Kg[n(V><n)]2+ Kg(n.VQl)2+ Kg(VQl)2 rameter, temperature, and pressure. Near the isotropic phase, the
elastic constants can be approximated by the expressions in the last
+Kg[nX (VX]-(VQy)+K37(V-n)(n-VQy) column. The “isotropic” elastic constant§; andK., are functions

of temperature and pressure only.

+VA{S)[(n-V)n—n(V-n)]}+V -{SVQ,}

+V-{S3”n(n-VQ1)}+V-{Sﬁ[(n~V)n+n(V-n)]}, Invariant Constant I
23) n-(Vxn) kY 0
where all elastic constants are functions@f(r), T, and  (V-n)? K} (2K} +KH)Q?
p. In most literature on orientational elasticity, the elastic[n-(V xn)]? K} 2K Q?
constantK} , K3, andK} are referred to aK,1/2, K,4/2, and  [nx(V xn)]? K (2K +KL)Q?
K342, respectively. The surface elastic constaé8tandS;  (n-VQ;)? K4 2K},
are related to the surface elastic constafys andK3, as  (VQ,)? K¢ 5(6KL+Kb)
defined by Nehring and Saup24]. As can be seen from the [nx(Vxn)]-VQ, KY (4K} + KD Q,
; u u N

terms corres_pqndlng thg and_K7, a gradient in the order %V-n)(n-VQl) Ky (KL + 3K1)Q,
parameter will induce a combined splay-bend deformation o

the director field.

It is important to note that the elastic tektin-(VXn) itatively correct description and one should resort to the
only appears in the cholesterld]; phase since it changes general expressio23) presented here.
sign under spatial inversion. Remarkably, the property ofg
chirality only introduces awrientationalelastic term and no 2. Biaxial nematic liquid crystals
chiral order elastic terms. This can be understood as follows. . . o :
The elastic free-energy densily  of the biaxial nematic

A chiral order elastic term is proportional ta-VQ;. . . -
Clearly, such a term is forbidden in case of a nonpolar nemphase is obtained by substituting expressi@nfor the full

L . o . tensor order parameté) in Eq. (8). The appearing tensors
atic liquid crystal, i.e., a nematic liquid crystal that is sym- .
metric under the substituti n k, K, and IC must have the symmetry of tHaaxial phase.

The elastic free-energy expression known from the Iitera—Thus all independent elastic terms are found by forming all

ture is obtained as an approximation of the general expreéj-oss'ble combinations of biaxially symmetric tensors, i.e.,

sion presented here. The approximation is based on an egpmblnatlons O, Peagy: Lag: Mag, andN,g [the Kro-

ansion with respect to the isotropic phasee Sec. IlI neckers can_be left out due to th? completeness rgla‘tﬁjﬂl

i?e., the elastic tFe)nsors are expaﬁdeg Ei(s in E1R. T#e The elastic free-energy density of a nonchietiiral) bi-

resulting tensor&®, K°, and K° have the symmetry of the axial nematic liquid crystal is described by 336) bulk

isotropic phase. terms and 12(12) surface term's. The;e are given in the
It appears that the elastic free-energy density in thi Tables lll and IV at the end of this section. In these tables we

lowest-order approximation can be written in the form of two%a\./e used the following notation for the invariants that de-
8cr|be orientational deformatioh80]:

independent bulk elastic terms, one antisymmetric surfac
term, and one symmetric surface term. All terms are _1
“mixed” elastic ter?/ns Dij = 2¢juRiaRigdaRip 26

where the matrix elemen®;, with i=1,2,3 anda=x,y,z

ILe= KllaaQ?%yaaQ;ﬁ KIZﬁain‘?Ang define the local framel (m,n) with respect to the space-fixed
+ Sil{aaQZy&BQiy_ (?anyﬁkQ;\jy}+ SiZU’)aO-'BQzB . frame (ex ’ey ,eZ) '
(24) |= Rlaea ' (273)
Note that, e.g., thde(il term is not simply the lowest-order m=R,.&,, (27b)
approximation to th&} term in Eq.(23). Nevertheless, there
are relations between the “isotropic” and the “uniaxial” N=Rg3,&,. (279

elastic constants, which can be found by substituting the ex- . . .
pression forQ into Eq. (24). Explicit (vectop expressions of the invarian®;; can be

As follows from Table | the isotropic approximation en- fpund in Rgf.[BO]. Thg appearing _chirql terms are orienta-
; tional elastic terms; chiralrder elasticity is also absent here.
tails the results X . .
Of the other bulk terms, 12 are orientational elastic terms,

K11=Kas>Koo, (259  nhine are order elastic terms and the remaining 12 are mixed
terms. There are three antisymmetric surface terms and nine
Kii och_ (25b) symmetric surface terms.

Clearly, the number of independent elastic constants is
In some cases this may be a reasonable approximation. boo large to be experimentally accessible. For that reason,
general, however, Eq&25) will not be valid. In that case the sensible approximations are needed. Instead of postulating
isotropic approximation cannot be expected to give a quanad hocapproximations, we propose three possible approxi-
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mations, all based on symmetry arguments. These approxi- TABLE II. Surface terms for the uniaxial nematic phase. The
mations are similar in character to the quasi-uniaxial ap-uniaxial” elastic constantsS* are functions of the uniaxial order
proximation proposed for smect@* liquid crystals[34]. parameter, temperature, and pressure. Near the isotropic phase, the
The first approximation is the isotropic approximation elastic constants can be approximated by the expressions in the last
commonly used in the literature. The approximate elasticolumn. The “isotropic” elastic constants are functions of tempera-
free-energy expression is obtained by expanding the Landdre and pressure only.
free-energy densityg, in powers of the full tensor order
parameterQ and its spatial derivatives. The expansion o
gL is given in Eq.(17), whereas the elastic tensors are 9,{S(Nd N, —Nydgng)} Si~ (2K} +3))Q?

fSurface term |

expanded according to Eqgel0). Taking into account only 5 rguy Q) St~ 1s
the lowest-order terms, the elastic free-energy density can b [SUN, 49,01} " 3|
approximately described by two bulk elastic terms and two ¢ SaNpdpQ1 S5~ S,
surface terms, as in the uniaxial case: 9o{Sa(Npd gt Nudpng)} Si~S$Q:

—Klg 9 +Kig 9 order terms, we finq that, in this appr_oximation, the elastic
L=t _“Qﬁ’/ «Qpy*K2duQuryh Qi _ free-energy density is described by 6 independent bulk elas-
+S19,(Qp,95Quy= QuydsQpy) +$59495Qup - tic terms and 5 independent surface elastic terms

(28 gi o= K19aQpy0aQp,+ KadaQlyh QX+ K3daQy00Qp,

i b i b b
. . . . . + Khaainaka 7+ Kg’?aQﬁvﬂaQﬁv
The starting point of the other two approximations is an

expansion of the Landau free-energy density in which the +K59.Q0,0 Q%+ S19,4(Q%,5Q4,— Q4,35Q},)
uniaxial and the biaxial tensor order parameter are treated as i u i b
independent order parameters: +520205Qap+ S39005Qup
i b b
0.(Q"Q,I"MQ, d™Q, T, p) ¥ 840 Q325 Qay = Quy 5 Q)
+S504(QpypQuy~ QypQB), (31)
=g u(QQ°T,p) +KY 5 (Q1Q% T, p)d,QY, T memEmem
b "y b b where the isotropic elastic constamtsandS' are functions
+Kap QL QT P)0aQpy of T andp. This so-called indirect isotropic approximation
I Ku,;; L (QYQT.p)d Q; 3,QY contains the isotropic approximati@®8) in the limiting case
aBy\uv 1 T @By mv
R (Q QTP 7,Q% QL K= 2K3= 2K, (329
+KE Q' Q0 T, ) 9aQB, QL Ky= 2K5= 2K, (32b)
+ Kapyo Q' QN TP) 0a95Q55 S=S, (329
b U Qb b o _ _ _
+]Caﬁ'y§(Q !Q yT:p)ﬁaaBQ75+ ’ (29) S|4= 25:5= 2S|1 (32d)
whereg, , and the tensork®, kb aredefined with re- Finally, we can also expand E¢9) with respect to the
u KoL

uniaxial nematic phase. The expansiongpf, is given in Eq.

spect to the biaxial phase. The general form of the elasti ; : ;
free-energy density of théchiral) biaxial phase is obtained fgl)é ;he tensors in the elastic terms are expanded according

by substituting all possible combinations of biaxial tensors in " 0 b WO

the tensors of expansiq@9). Obviously thesamethree chi- Kapy(Q1 Q% T,P) =Kgp,(QNT,p) - - -, (33

ral bulk elastic terms, 33 bulk elastic terms, and 12 surfacevhere the appearing tensdtike k"% have the symmetry of
terms are obtained as when using E&).(see Tables lll and the uniaxial phase and only the lowest-order terms are taken
V). into account.

The elastic tensors in E¢29) can be expanded with re-  Obviously, the elastic terms containing only the spatial
spect to the isotropic phase or with respect to the uniaxiaflerivatives ofQ" (the k"?, K“!"0 and1C"° termg give rise
phase. The expansion with respect to the isotropic phase witb the 8 uniaxial bulk elastic terms and the 4 uniaxial surface
be treated first. The elastic terms are expanded according tgsrms (see Tables | and I The remaining termsthe kPO
e.g. KWPO Kb.LO andxcP0 termg give rise to 5 additional bulk

elastic terms, 1 additional antisymmetric surface term, and 2
additional symmetric surface terms; there are no additional
Ky, (QLQ° T, p) =Ky (T.p)+ -, (30)  chiral terms. Then

OLe=0L et gE,er (39
where all appearing tensofiike k"% have the symmetry of
the isotropic phase. Taking into account only the lowestwhereg) . is given by Eq.(23) andg[’m by
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gE,eI: Kg{(I:VQ2) D3yt (M- VQ;) D31+ 2Qy(D13D31— Dp3D3o) } + Kg{ — (I: VQ) (I- VQo) + (M- VQq) (M- VQ,)
+2Q,(1- VQ1)Dag+2Qy(m- VQp)Dygt + Kol (N VQ,)2+4Q3D 54 + Kiy{ (I- VQy2) 2+ (M- VQ,)?
+4Q3(D35+ D3} +Kif — QaD ol VQyp) +QaD 15(M- VQ,) }+ ,u{ SE( 84y N g5 85, N o) 95Q5 5}

+9a{S8(8ayNpst 85y Nas) 95Q0 51+ 9{ S7 80y 850 5Q0 5} (35)
I
The 12 uniaxial bulk elastic constark$' and seven uniaxial a'(z—»)=0, (380
surface elastic constan®' are functions ofQ4(r), T, and

p.
The general expression for the elastic free-energy densityhere the prime denotes the spatial derivative with respect to
of the biaxial nematic phase and the three approximate €Xne 7 coordinate.

pressions are given in the Tables Ill and IV. It should be The GLGT can be used to obtain the tilt angle and the
remarked that some of the terms of higher ordeQinthat . scalar order parameters as a functiorz,ahereby describing

are neglected in the uniaxial approximation are included inpe influence of the surface orde®{., Q,.) and orientation
the indirect isotropic approximation. Within this last ap- @) on the orientation in ’Sthe 'Sbulk given by
S. [l

L (
proximation they cannot be left out, as they may be of the = 7o, The Landau free-enerav densitv is given b
same order of magnitude as terms of the same ordéx;in ap=a(z=). 9y yis9 y

IV. SURFACE-INDUCED LIQUID-CRYSTAL ALIGNMENT OL=0L ut 0L (39

In this section the GLGT is used to analyze the relation
between the orientation and order of a nematic liquid crystal
in the bulk and at the surface. To that end, consider a nem¥hereg, , has the form of the Landau free-energy density of
atic liquid crystal that fills the infinite half space=0, the uniform state and, . denotes the elastic free-energy
bounded by an aligning substratezat 0. We choose the density. Variational cglculus leads to the set of coupled
direction of the laboratory frame along the direction of the Euler-Lagrange equations
alignment at the surfacésee Fig. 1 The x-y plane is a
mirror plane here. For that reason the local orientation of the
nematic liquid crystal can be expressed as

99 _d[ 79, | (409
I(2)=(0,1,0), (363 0Q; dz|aQ;|
m(z) = (—sina(z),0,cosx(z)), (36b)
n(z)=(cosa(z),0,sin(2)), (360 79 _d179.] (40b)
9Q, dz|aQs|’
where the so-called tilt angle(z) is defined as the angle ) ’
between the director field(z) and the surface plane.
We assume the nematic liquid crystal to be strongly an- g9, d[ag
chored to the substrate, i.e., the boundary conditions at the S _'7 . (400
surface are fixed, da dz[da
Q1(z=0)=Qys, (373 _
The order parameter®,(z) and Q,(z) and the tilt angle
Q2(z=0)=Q3s, (37b) a(z) must be solved from these Euler-Lagrange equations
and from the boundary conditior(87) and (38). The solu-
a(z=0)=ag, (3709  tion of these equations constitutes a formidable problem as

gLy and the elastic constants appearing in the expression for
where we have taken the surface order to be biaxial. In thg,_,, are(unknown functions ofQ;(z) andQ,(z). However,

bulk, the nematic liquid crystal is uniform and uniaxial: an approximate analytical solution is quite possible. The
_ starting point of the approximation is the assumption that the
Q1(z—%)=Qy, (383  difference between the order near the surface and the order in
the bulk is small, i.e., the assumption thalQ,(z)
Q2(z—%)=0, (380 =Q1(2)— Q4 andQ,(2) are small for allz. Then the Euler-
Lagrange equations can be expanded@y(z), Q,(z), and
Qi(z—=)=0, (380 their spatial derivatives and solved up to first order. To that

, end expressions fog, , and g_¢ up to lowest order in
Qz(z—)=0, (38d  5Q,(z) andQ,(z) are needed.
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TABLE Ill. Bulk elastic terms for the biaxial nematic phase. The 36 “biaxial” elastic constants can be
approximated by linear combinations of either 2, 6, or 13 elastic constants, depending on the approximation

According to Eqg.(21), the lowest-order expression for with g,,x the free-energy density of the uniform bulk and

that is used.

Invariant Constant N, | (indirect | (direch
Dy kg kY 0 0
D,, k> kY 0 0
Das kS 0 0 0
D,/ K3 K 2KiQI+3K5Q1Q,+5K5Q5  2Ki(Q;+3Q,)?
D2z’ Kg Ks 2K'1Q%—%§'3Q1<222+5Kg@§ 2K'1(—8Q1+2%,QZ)Z
D33 K3 4K50Q2 §K:5Q2 §KI1Q2
D,/ Kq K (2K} +K5)Q3 (2K} +KH)(—Q1+3Q,)?
—3(2K5+K)Q1Q,
+5(2K5+KE) Q3
Dy K2 4K4,Q3 3(2K5+Kp) Q3 §(2K} +K5) Q3
Da/? Kg § (2K} +K5H) Q3 (2K} +K5)(Q1+3Q2)
+3(2K5+K)Q1Q,
+35(2K5+Kp) Q3 o
Day? K? K (2K} +K5) Q3 (2K} +KH)(Q1+3Q2)°
Jr%(ZKIB.JFKIA,)Qle
+5(2K5+K5) Q3 o
D37’ Kg K (2K} +KH)QF (2K} +KH) (- Q1+ 3Q,)2
—3(2K3+K)Q1Q,
+5(2K5+K) Q3
D,7? K3 4K1,Q5 §(2K5+KE) Q5 (2K +KH) Q5
D1Dy; K2 2(K3—KY) —2K5Q1+ 8K Q5 2K5(—Qi+35Q3)
D23D3, K3y —2K5Q, KLQ1Q, — 5KEQ3 3K5Q2(Q1~ 3Q2)
D3iDy3 K2, 2K5Q> - %KLIQl_QZ_ gKlng - %Klez(Ql"‘_ 3Q2)
(1-vQy)? K K 3(6K} +Kb) 3(6K; +Kb)
(M-VQ,)? K2, Kg 3(6K} +Kb) 3(6K} +K
(n-VQy)? K?s K5+K3 HKL+3KY) HKL+ 3K,
(1'VQ1)(I-VQy) K?s LE - 3K, — 8K
(MmVQ)(mVQ,) K K¢ Ky K
(nVQ)(N-VQy)  Kig 0 [ (U
(1'VQ,)? K3 KY 3(2K5+Kp) 3(2K}; +Kb)
(M- VQy)? KD KY, 3(2K5+Kp) 3(2K}; +Kb)
(n-VQ,)? K5, o O K
(1-VQ1)D3, K, Kg— dK3/dQq %Klelf%Klthz %KE(Q;_%Qz)
(I-VQ1)Dys K3 2K§Q, 3KLQ2 5K5Q,
(Mm-VQ;)Dg; Kg4 —Kg+dK3/9Q, —%K'ZZQ;—%KLQZ —%K'a(Qﬁ%Qz)
(m-VQ;)Dy3 Kos 2K3Q2 §K'4Q2 §KI2Q2
(n-VQy)Dy, Kb —KY+aKy9Q, — 3K5Q,+ 5K,Q, 3KH(—Q1+3Q))
(n-VQq)Dyy Kk2;7 K?—&Kuglan g*flzin+§za}2<Iz1in %'2(|2le+ %le)
(1-VQ3)Dgs, Kzs Ksg —3K4Q1+ 5KsQ2 —3K5(Q1—3Q5)
(1-VQ2)D2s K —KiQ2 —3KsQ2 —3K5Q2
(Mm-VQ,)Da, K K — 3K4Q:— 8KEQ, —3K5(Q1+3Q2)
(m-VQ,)Dy3 Kgl KEzQz gKIGQZ %Klez
(n-VQ,)D1, KS, 0 0 0
(n-VQ,)Dyy ng, 0 0 0

gLy reads A1, A, positive constants.
The form of the elastic free-energy densdy . can be
obtained from Table Ill. Surface term{able IV) can be
1 1 - ”
_ - 2,5 2. neglected as we have assumed fixed boundary conditions. As
9L.u=Goukt 5 A2(0Q) 5 AQpF -, @Y e biaxial order parameter is assumed to be srgall can
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TABLE IV. Surface terms for théchiral) biaxial nematic phase. The elastic const&@itare functions of
Qq(r), Qu(r), T, andp. The 12 biaxial elastic constants can be approximated as discussed in the text.

Surface term Ny | (indirect | (direch
I SU(NadpNg—NpdpN,)} K3—Si 5100+ 5550 Si(-Qi+ Q)
IS (1 o9l 5= 504l )} 35:Q, 39,Q:Q.— 935_Q§ 3SI1Q2(Q1 3Q2)
3a{s3b(ma5’5m5* Mgdgm,)} -358Q, 3S|4Q1Q2 3s,Q3 SSI:LQZ(Q1+ 3Q2)
I SINpdpQ1} S+ S 352 332
aa{SgNaﬁa,BQZ} 0 . )
o {SEM apdsQ1} S - % I - % I
9a{ SIM 037 5Q2} - 35, -3 -3
ﬂa{SgLaﬁa,BQl} Sg 382 382
9{SOL ap9pQ2} S _ S _ _ S
IS0 —M,D3a1— D)} —Si-3(Si+S)Q, _Slel ngz _Slz(Ql"‘ 3Q2)
Io{Sh(—NaD 12~ 1,D39)} Si—3(S5+S)Q2 SHQ1— 3$5Q2 sz(Ql 3Q2)
07a{522(_ meD13—1,D29} %S7UQ2 %Sng 352Q2

be approximated according to E(85) and (23). The fol- 2(KE+Kjsirta,) 6Q) +Kscofa,Q)

lowing expression fog, ¢ is found:
+3(KY—Kg)sin(2ap) af — A1 6Q; =0, (459
~(KYcoSa+Kisifa)a'2+ (Ki+KYsirta)(5Q})?
uer=tf s o ! KicoSa,5Q)+ 2(KYcoay+ Kisirta,) Qs
+Kycofa6Q] Qs+ (KYcoda+ K sirfa)

+3Kgsin(2ap) af—A,Q,=0, (45b)
+3(KS—Kg)sin(2a)a’ 6Q;+ 3Kisin(2a)a’ Qj.
(42) 2(KfcoSa,+Kisiray) af + 3(KY—Kg)sin(2a,) 6Qf
o _ +3Kgsin(2a,)Q5=0. (450
The dependence of the uniaxial elastic constant§@pn can
be neglected, agQ, is assumed to be small. The solution to Eq(450) can be expressed as
Now the Euler-Lagrange equations can be expanded in
terms of §Q4(z) and Q,(z). The equations of order zero (KY—KY)sin(2a,)
appear to lead to ay(2)=— L~ L 5Q4(2)
4(KicoSa,+Kisirtay,)
ag=0. (43 Kgsin(2a,)
i Qx2).  (46)

~ 4(KicoSa,+Kisiray,)
Taking into account boundary conditiori88), the zeroth-

order tilt angle profile follows as Now Egs.(453 and (45b) can be written as
ao(2)=ay. (44) B15Q]+BsQ3—A15Q:=0, (473
This is hardly surprising, as the Frank free energy, i.e., the B36Q1"+B2Q;~A2Q2=0, (470

elastic free energy in the case of uniform order parameters, is
minimized by a uniform director profile. wit
The Euler-Lagrange equations of first order are
grange €q (KY—K§)?sirt(2ay,)

8(K{cosa,+Kjsirtay)’

B, =2(Ki+Kjsirfa,) —

(489
/
/ / / u2 n2 2
- /L/O‘p/// — &, B,=2(K}coda,+Kisirfa,)— 8(K”c08§ivl JfKauZ?nza 3
S e,
Bs=KjcoSa, . (489

FIG. 1. Nematic cell. The orientation of the director is deter-
mined by the tilt anglex, the value of which at the surface, is It follows that the scalar order parameters vary according to
usually different from the value in the bulk of the nematic liquid
crystal. The latter is referred to as the pretilt ang|e. 8Qq1(2)=Ciexp(—a,z)+Crexp(—a_z), (499
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Q2(2)=Cgexp(—a,z)+Cuexp—a_z),

where the coefficienta.. are given by

(49b)

a.— \/(51A2+ B2A1) £ V(B1A;—ByA;) 2+ 4AA,BS?

2(B1B;—B3%)

The lengths H, and 14_ are of the order of what is usually
called the coherence length. The coefficie@s—C, are

given by

1
Clzz(l_ Rl) 5Ql,s_ R2Q2,51
1
C2:§(1+ R1)6Q15+R2Qz5,
1
Cazi( 1+R1) Q25— RaAR26Q; 5,

1
C4=5(1-Ry) Qs+ RaR28Qss,

with the dimensionless constants
Ay
R,=—
A A2 3

B1A,— BoA,
Ry= — 2 2’
V(B1A;—BoA)?+4AA,B;3

BsA;
R2: — > >+
V(B1Az— ByA1)?+4A,A,B;

Summarizing, the tilt angle profile up to first order in

6Q1(2) andQy(2) is
a(2)=ay(2)+ a;(2)

(K7—Kg)sin(2ap)
4(K{coSa,+Kisirfa,)

=a,—

6Q1(2)

KYsin(2ap)
4(KicoSap,+Kisirta,)

Q2(2).

The constantr, must be solved from the following equation,

which follows from the boundary condition(87):

(K7—Kpg)sin(2ay) —
= 4(Kicoda, + Kisiray) 2t~ QY
1 pT Kzsinap)
Kisin(2a,)
4(KicoS ap+Kisirfay)

as

Qzs-

(50

(51a

(51b

(510

(51d

(529

(52b

(520

(53

(54)

KL[Q,—
wy=ag 1- o[ Q1 in,si‘"gz,s] , (55
3(2K;+K3)Qy

which is the same result as that obtained in REf§,17.

We conclude that the nonuniformity of the scalar order
parameters in a region with a thickness of the order of the
coherence length induces a combined splay-bend deforma-
tion of the director field in this subsurface region. For a
liquid-crystal layer with a thickness much larger than the
coherence length, the director profile seems uniformly tilted
with a tilt anglea,, . Thus the interaction of the liquid-crystal
with the substrate apparently favors the alignment of the di-
rector along a preferential axis that makes an aagjavith
the substrate. It follows that, is equal to the so-called
pretilt angle, which is an important parameter for liquid crys-
tal display devices. Knowledge of the relation between the
pretilt angle and surface properties suchaas Q,, and
Q5. Which can be measured using second-harmonic genera-
tion [15-17, might be quite useful.

The obtained result has some relevance to the debate on
the surface elastic constai; as well. This elastic constant
introduces an artifact in the continuum theory of nematic
liquid crystals. A straightforward minimization procedure for
the free-energy functional, including the ; term, leads to a
discontinuity of the director field at the surfak®5]. In order
to remedy this artifact of the theory Barbero and co-workers
introduced a higher-order elastic const@®®]. This proce-
dure results in a variation of the director tilt in a small layer
near the surface. The tilt variation over this subsurface layer
appears to be given by

A ~K—135in(2 ) (56)
AT TNeas)

with K of the order of the Frank elastic constants. This pro-
posal to remedy th& 5 artifact was subsequently criticized

in the literature[37]. A tilt variation close to the surface is
also found in the framework of the present GLGT. More-
over, Eq.(54) for the tilt variation over the subsurface layer

is quantitatively similar to Eq(56). For this reason the ap-
proach of[ 36] can be seen as an effective theory for describ-
ing the influence of order variations near a surface on the
liquid-crystal orientation. As a consequené&g,; must then

be seen as an effective parameter, related to the order varia-
tion near the surface and the elastic constants of the under-
lying GLGT in the following way:

1 1
K$§=5 (KY=K§ oQus+ 5 K5Qzs. (57)

In the direct isotropic approximatiofsee Table ) this re-
duces toK$1~K,Q;(8Q1s— Q,4)/3. It follows thatK$h is
negative for a disordering surfacé@, ;<0) and positive
for an ordering surfacedQ,s>0), in the case where biaxi-
ality is neglected. CIearI;A,(‘jfgf is not a genuine elastic con-

In the direct isotropic approximation and in the case of smalktant, as it depends on the properties of the substrate with

anglesa,, and ay this result reduces to

which the liquid crystal is in contact.
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V. SUMMARY Concerning the elastic part of the free-energy density, it is

The Landau free-energy density and the elastic freefo_und that uniaxial nematic liquid crystals are described by

energy density of nematic and cholesteric liquid crystals Withe'ght independent bulk elastic terms and four independent

either uniaxial or biaxial symmetry are considered. A tensorSUIface terms. In the isotropic approximation, the number of
analysis is used to find all the terms that are allowed by th®UK terms(surface termsis reduced to twdtwo). Biaxial
symmetries of these liquid-crystalline phases. nematlc liquid crystals, on.the other hand, are described by
The expression for the Landau free-energy density is de36 independent bulk elastic terms and 12 independent sur-
rived for the isotropic-uniaxial nematic phase transition, theface terms. The number of bulk ternsurface termsis re-
isotropic-biaxial nematic phase transition, and the uniaxiaduced to 137) in the uniaxial approximation, to sifive) in
nematic-biaxial nematic phase transition. It appears that &he indirect isotropic approximation, and to tWiwo) in the
direct isotropic-biaxial nematic transition imposes more sedirect isotropic approximation. This last direct isotropic ap-
vere constraints on the expression for the Landau free-energyoximation is the approximation corresponding to the
density of the biaxial nematic phase than two successiv&LGT known from the literature
isotropic-uniaxial nematic—biaxial nematic transitions. The As an illustrative example, the theory has been used to
expression for the direct isotropic-biaxial nematic transitioncalculate the variation in liquid-crystal orientation in a thin
corresponds to the expression known from the literaturelayer near a surface due to variations in the nematic order in
Clearly, this expression is not generally valid. this subsurface layer. Such order variations are induced by a
~ The same observation holds for the GLGT, which com-gypstrate imposing order to the liquid crystal differing from
bines Landau theory with elasticity theory. The GLGT tne thermodynamically stable order. The resulting tilt varia-
known from the literature appears to be an approximation ofis, js quantitatively similar to the variation expected to be
the more general theory that is investigated in this paper. FOl, seq by the surface elastic constént. However, the

biaxial nematic liquid crystals, the well-known approximateeffect described here depends on the type of substrate,

G_LGT expression, as well as two other approximate eXPreSy nereas the tilt variation due # 5 does not.
sions, is derived.
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