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Spatial dispersion and rotatory power of short-pitch periodic dielectric media

P. Galatola
Dipartimento di Fisica del Politecnico di Torino, Istituto Nazionale di Fisica della Materia,

Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
~Received 14 November 1996!

By a Bloch-wave decomposition, we deduce a general expression for the effective optical dielectric tensor of
a short-pitch periodic dielectric medium. The effective dielectric tensor describes an equivalent homogeneous
medium presenting spatial dispersion. We consider in detail the case of a cholesteric liquid crystal, deformed
by a flexoelectric torque induced by an electric field orthogonal to the helical axis. The distorted structure
displays a true rotatory power that scales as the ratio between the pitch of the cholesteric and the vacuum light
wavelength. The approximate analytical results are compared with exact numerical calculations, showing a
good agreement even far from the limits of validity of the theory. Possible generalizations of these results are
discussed.@S1063-651X~97!04104-4#

PACS number~s!: 61.30.2v, 78.20.Ek, 77.90.1k
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I. INTRODUCTION

Natural optical activity is usually associated wth mo
ecules, or arrangement of molecules, having a helical st
ture @1#. This fact was recognized by Pasteur@2# who argued
that the optical activity of natural substances comes fr
atomic arrangements inside the molecules that differ fr
their mirror image: he dubbed this propertydissyme´trie mo-
léculaire.One of the most striking examples in this sense
constituted by the DNA double helix. More generally, it c
be shown that optical activity arises from spatial inhomo
neities with atomic distances small with respect to the li
wavelength@3#. Such inhomogeneities give rise to an imag
nary antisymmetric contribution to the dielectric tensor th
displays spatial dispersion, i.e., depends on the li
wavevector, or, equivalently, on the gradients of the elec
field. This imaginary part is responsible for the rotato
power, and can be described in terms of a second-rank g
tion pseudotensor@3#. By general symmetry consideration
one can infer the permitted nonzero elements of the gyra
tensor for the different crystalline classes. However, the
tual determination of the optical properties of specific diel
tric structures requires elaborate numerical computations@4#.

Chiral liquid crystals@5#, and, in particular, cholesteri
and chiral smectic-C liquid crystals, offer a remarkable mac
roscopic model of the microscopic helical structure of chi
molecules. They also attract much interest for their poten
applications, such as the realization of fast electro-optic
vices @6#. The optics of chiral liquid crystals has been tho
oughly studied from a long time ago@5#. In particular, exact
analytical solutions exist for light propagation in choleste
liquid crystals along the helical axis@7#. They show a large
pseudo-rotatory-power close to the Bragg reflection ban
which changes its sign at the center of the band. In the c
of oblique propagation, instead, numerical calculations
required@8#. Recently, it has been numerically shown th
interesting unexplored properties arise when the pitch
much shorter than the light wavelength@9#: certain structures
acquire atrue rotatory power foroff-axis light propagation,
which scales as the ratio between the pitch and the wa
length, thus rapidly overcoming the usualpseudo-rotatory-
551063-651X/97/55~4!/4338~7!/$10.00
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power for propagationalong the helical axis, which scale
instead as the cube of the ratio between the pitch and
wavelength. This rotatory power is not simply related to t
helical arrangement of the molecules, but it depends on
spatial correlations of neighboring molecules. In fact, it
absent in unperturbed cholesteric liquid crystals.

In this paper, we derive a general formula that allows o
to compute the optical properties of an arbitrary short-pi
dielectric periodic medium, by modeling it as an effecti
spatially-dispersive homogeneous medium that displays
tical activity. We apply this model to the case of a chole
teric liquid crystal deformed by a flexoelectric coupling wi
a dc electric field orthogonal to the unperturbed helical a
@10#. We show analytically that in the distorted structure
true rotatory power arises, that scales as the ratio betw
the pitch of the cholesteric and the light wavelength, sim
larly to the case of a short-pitch chiral smectic-C liquid crys-
tal @11#. The comparison of these results with exact nume
cal calculations reveals a good agreement even far from
limits of validity of the theory.

In Sec. II we derive a general expression for the effect
dielectric tensor, in the limit of short-pitch and small diele
tric tensor modulations; in Sec. III we apply this expressi
to the case of a cholesteric liquid crystal deformed by
flexoelectric coupling with an external electric field; in Se
IV we obtain an exact numerical solution for the choleste
and we compare it with the predictions of our analytic
model. Finally, in Sec. V we summarize and discuss o
results.

II. THEORY

Let us consider a periodic dielectric medium whose re
tive complex dielectric tensore(r) reads

e~r!5(
q

eqexp~ iq•r!, ~2.1!

where the summation runs over all theq vectors of the re-
ciprocal lattice. Any electromagnetic field vectorF can then
be decomposed in Bloch waves, given by
4338 © 1997 The American Physical Society
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F5(
q
Fqexp@ i ~k1q!•r#, ~2.2!

wherek is the Bloch vector and a time dependence of
kind exp(2ivt) is assumed. By inserting~2.1! and~2.2! into
Maxwell’s equations, one obtains the following propagati
equation for eachq component of a Bloch wave of the ele
tric field

~kq
2I2kq^kq2k0

2e0!•Eq5k0
2eq•E01k0

2 (
q8Þ0,q

eq2q8•Eq8 ,

~2.3!

wherek05v/c is the modulus of the vacuum wavevecto
I is the 333 identity tensor, and we putkq5k1q. Equation
~2.3! is similar to the wave equation used in the dynami
theory of X-ray scattering@12#, except that in the latter, on
usually writes the equation in terms of the dielectric d
placementD and considers the case of isotropic med
Moreover, in the dynamical theory of x-ray scattering a tw
wave approximation close to a Bragg reflection band is c
sidered. Here, instead, we shall suppose that we are far
a Bragg band and that the modulation of the dielectric ten
is sufficiently small,uequ!1 for qÞ0, such that we can solve
perturbatively Eq.~2.3! by first neglecting the summation i
the right-hand side, i.e., the effect of multiple scatteri
events: at this stage this amounts to a Born approximat
We can thus express each Fourier componentqÞ0 of the
k-th Bloch wave of the electric field as a function of th
zeroth-order component alone

Eq5k0
2G~q!•eq•E0 , ~2.4!

where we have defined the tensor

G~q!5~kq
2I2kq^kq2k0

2e0!
21. ~2.5!

The electric field components~2.4! will in turn induce a po-
larization and thus give rise to the dielectric displacem
D, whose Fourier components are given by

Dq5e0(
q8

eq2q8•Eq8 , ~2.6!

wheree0 is the vacuum permittivity. Let us now focus ou
attention on the case in which the pitch of the periodic m
dium is much shorter than the light vacuum waveleng
q5uqu@k0. In this situation, for almost all practical pur
poses, the meaningful quantity is not the exact value of
electromagnetic field at each point, but a suitable aver
over a volume sufficiently large with respect to the pitch
the periodic medium, and at the same time sufficiently sm
with respect to the light wavelength@3#. Such an effective
field corresponds to the zeroth-order Fourier componen
the Bloch wave. From Eq.~2.6! with q50 and~2.4!, one thus
sees that in this limit the periodic medium behaves as
effective homogeneous medium whose relative dielec
tensor is given by

eeff5e01k0
2(
qÞ0

e2q•G~q!•eq . ~2.7!
e
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This is the starting point of our analysis, that extends
quasi-static approach developed in@13#. The correction to
the effective dielectric tensor from the average valuee0 ,
expressed by the summation on the right-hand side of~2.7!,
describes the effect of two-photon scattering events. In
following we shall see on a specific example how, in gene
the effective homogeneous dielectric medium described
Eq. ~2.7! displays a spatial dispersion, accompanied by
rotatory power @3#, that scales as the ratio between t
vacuum wavelength and the pitch of the periodic medium

III. CHOLESTERIC LIQUID CRYSTALS

Locally, a cholesteric liquid crystal has the same symm
try as the nematic phase. However, in the cholesteric ph
the nematic directorn̂, which gives the average orientatio
of the molecules and coincides with the local optical axis
the system, describes a helix around a fixed axis, that we
as thez axis, uniformly rotating perpendicularly to it@5#.

Some time ago it has been shown@10# that a linear flexo-
electric coupling with a dc electric field, orthogonal to th
unperturbed helical axis, turns the plane of rotation of
molecules around the direction of the applied static elec
field by the angle

a5tan21~ ēE/q0K !, ~3.1!

whereē is an average flexoelectric coefficient,E is the am-
plitude of the static electric field,q0 is the unperturbed
wavevector of the cholesteric, andK is an elastic constant
Therefore, if we take the static electric field along they axis,
the directorn̂ will uniformly rotate about thez direction in
the plane (x8,y), wherex8 is the direction counterclockwise
rotated, around they direction, by the anglea from the x
axis in the (x,z) plane~see Fig. 1!. In the laboratory frame
(x,y,z), the directorn̂ is given by@10#

n̂5cosacos~qz!x̂1sin~qz!ŷ2sinacos~qz!ẑ, ~3.2!

where q5q0 /cosa. The relative dielectric tensor corre
sponding to the periodic structure is

e5ean̂^ n̂1e'I , ~3.3!

FIG. 1. Geometry of the flexoelectrically distorted cholester
The unperturbed helical axis is alongz. The static electric field is
applied alongy. The local optical axisn̂ uniformly rotates about
z in the plane (x8,y), wherex8 is a direction in the (x,y) plane
rotated by an anglea with respect tox.
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4340 55P. GALATOLA
where ea5ne
22no

2 is the optical anisotropy ande'5no
2 ,

whereno (ne) is the ordinary~extraordinary! index of refrac-
tion. In Eq. ~3.3! we have disregarded any biaxiality an
intrinsic molecular optical activity as they are largely neg
gible in practical cases@14#.

The reciprocal lattice of the periodic medium has wa
vectorsq5mqẑ, with m50,61,62, . . . . Theonly nonzero
Fourier components of the dielectric tensor are the com
nentsm50 andm562, with

e05S e'1
ea
2
cos2a 0 2

ea
4
sin2a

0 e'1
ea
2

0

2
ea
4
sin2a 0 e'1

ea
2
sin2a

D ,

~3.4!

e25e22* 5S ea
4
cos2a 2

i

4
eacosa 2

ea
8
sin2a

2
i

4
eacosa 2

ea
4

i

4
easina

2
ea
8
sin2a

i

4
easina

ea
4
sin2a

D .

~3.5!

In the asymptotic limitq→`, the tensor~2.5! becomes then

G~m!5
22

k0
2~2e'1easin

2a!

3S 0 0
kx
mq

0 0
ky
mq

kx
mq

ky
mq

11
eakxsin2a

mq~2e'1easin
2a!

D
1O~q22!. ~3.6!

From Eq.~2.7! and Eqs.~3.4!–~3.6! one readily obtains tha
the real parteeff8 of the effective dielectric tensor is uniaxia
with optical axis along the directionz8 ~cf. Fig. 1!. In the
rotated frame (x8,y8[y,z8) it reads explicitly

eeff8 5S ē' 0 0

0 ē' 0

0 0 ē i

D , ~3.7!

with
o-

ē'5e'1
ea
2

2
ea
2sin2a

4~2e'1easin
2a!

, ~3.8!

ē i5e' . ~3.9!

Therefore, if the cholesteric is a locally positive uniaxi
crystal, as it is usually the case, the real part of the effec
dielectric tensor turns out to correspond to a negat
uniaxial crystal@9#. Moreover, differently from the case of
chiral smectic-C liquid crystal @11#, it is not possible to re-
verse the sign of the optical anisotropy by changing the an
a.

The rotation of the macroscopic optical axis has been
perimentally detected at normal incidence@10#, and provides
the means for detecting the deformation of the cholest
structure under the influence of the applied electric fie
However, in the distorted cholesteric (aÞ0) the effective
dielectric tensor also displays a nonzero imaginary p
ieeff9 . In the same rotated frame it is given by

eeff9 5
kx
q

ea
2e'sin2a

4~2e'1easin
2a!2S 0 21 0

1 0 0

0 0 0
D . ~3.10!

This imaginary part, which comes from the spatial variati
of the dielectric tensor, displays a spatial dispersion, i
depends on the light wave vectork, and gives rise to an
optical activity @3#. According to Eq.~3.10!, the optical ac-
tivity is maximum for light propagating along thex direc-
tion, i.e., along the direction perpendicular to the unp
turbed helical axis and to the applied static electric field. T
imaginary part of the dielectric tensor is usually interpret
by supposing that, for a spatially nonuniform linear dielect
medium, the average optical dielectric displacem
^D&[D0 depends not only on the average electric fie
^E&[E0 , but also on its spatial derivatives@3#. In Cartesian
coordinate components

^Di&5e0F ē i j ^Ej&1g i jm

]^Ej&
]xm

G5e0~ ē i j1 ig i jmkm!^Ej&,

~3.11!

where summation over repeated indices is implied and
last equality holds true for a plane wave whose wavevecto
k. It can be shown@3# that the third-rank tensorg i jm is an-
tisymmetric with respect to the first two indice
g i jm52g j im and can therefore be written as a function
the second-rank gyration pseudotensorg, having Cartesian
componentsgi j , according to

g i jm5k0
21ei jngnm , ~3.12!

where ei jn is the Levi-Civita antisymmetric unit pseudo
tensor. In the present case, in the rotated frame in which
real part of the dielectric tensor is diagonal, the gyrati
tensor reads
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g5gxS 0 0 0

0 0 0

2cosa 0 2sina
D , ~3.13!

with

gx5
k0
q

ea
2e'sin2a

4~2e'1easin
2a!2

. ~3.14!

Therefore the rotatory power depends on the handedne
the cholesteric helix and on the sign of the rotation an
a, i.e., on the sign of the applied field; it does not depend
the sign of the optical anisotropyea . This rotatory power
scales as the ratio between the pitch of the cholesteric
the light wavelength. For typical values of the indices
refraction of liquid crystals,gx can reach values of the orde
of 1022, to which they correspond huge rotatory powers
the order of a degree per wavelength. We note that the
ration tensor~3.13! is not symmetric; however, in the dete
mination of the optical activity, only its symmetric part e
ters.

IV. EXACT NUMERICAL SOLUTIONS

In order to check the limits of validity of the previousl
obtained expressions for the effective dielectric tensor of
distorted cholesteric, we performed a fully numerical sim
lation of the optical behavior of a finite cholesteric slab sa
wiched between two equal isotropic dielectric media hav
index of refractionn1.

In this section we take thez axis as the sample norma
with the cholesteric comprised between the planesz50 and
z5d, the light impinging from thez,0 half-space, the un
perturbed helical axis along thex direction and finally the
static electric field applied alongz, such that the optical axis
of the effective medium rotates in the (x,y) plane. In this
geometry the sample behaves as a phase diffraction gra
to numerically analyze its optical properties we follow t
procedure employed in@15#, that we briefly recall for the
case at hand. The electromagnetic field is expressed a
Bloch wave

E5Z0
1/2 (

m52`

1`

emexp@ i ~km•r2vt !#1c.c., ~4.1a!

H5Z0
21/2 (

m52`

1`

hmexp@ i ~km•r2vt !#1c.c., ~4.1b!

whereZ05Am0 /e0 is the vacuum characteristic impedanc
c.c. indicates complex conjugate and the wave vectorskm are
given by
of
e
n

nd
f

f
y-

e
-
-
g

g;

the

,

km5k0@~pi1mp!x̂1qi ŷ#, ~4.2!

where, as in Eq.~3.2!, k0p5q is the wavevector of the nem
atic director—and thus of the dielectric tensor—andpi and
qi are the normalizedx and y components of the inciden
wavevector, defined in terms of the polar anglesq i andw i of
the incident beam by

pi5n1sinq icosw i , ~4.3a!

qi5n1sinq isinw i . ~4.3b!

With decomposition~4.1!, Maxwell’s equations can be
cast in the matrix form

dc

dz
5 ik0Dc, ~4.4!

wherec is the column matrix

c5S Ex

Hy

Ey

2Hx

D , ~4.5!

in which each element is in turn an infinite column matr
containing the various Fourier components of the transve
part of the fields~4.1!

Ex5S A

ex21

ex0

ex1

A
D , Ey5S A

ey21

ey0

ey1

A
D , Hx5S A

hx21

hx0

hx1

A
D ,

Hy5S A

hy21

hy0

hy1

A
D , ~4.6!

andD is the propagation matrix
D5S 2PEzz
21Ezx 12PEzz

21P 2PEzz
21Ezy 0

Exx2ExzEzz
21Ezx 2ExzEzz

21P Exy2ExzEzz
21Ezy 0

0 0 0 1

Eyx2EyzEzz
21Ezx 2EyzEzz

21P Eyy2EyzEzz
21Ezy2P2 0

D . ~4.7!
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Here 1 and 0 are the identity and the null matrix, resp
tively. P is an infinite diagonal matrix having diagonal el
ments equal topi1mp (m52`, . . . ,1`), and Eab
(a,b5x,y,z) are infinite square matrices with elements

~Eab!mn5eab,~m2n! , ~4.8!

whereeab,(m2n) is the (m2n) Fourier harmonic of theab
component of the dielectric tensor~2.1!.

The matrix Eq.~4.4! is solved by considering only a lim
ited set2M ,2M11, . . . ,21,0,1, . . . ,M21,M of the Fou-
rier components. The propagation matrixD is constant in the
external homogeneous dielectric media and inside the p
odic slab; in the external media its eigenvectorscem repre-
sent plane waves whose nonzero components are given

exm5
1

A2
i mcmur emu1/2

n1
, ~4.9a!

hym5
1

A2
cmn1

ur emu1/2
, ~4.9b!

eym5
1

A2
i msmur emu1/2

n1
, ~4.9c!

2hxm5
1

A2
smn1

ur emu1/2
, ~4.9d!

for the transverse magnetic~TM! waves and by

exm5
1

A2
sm

ur emu1/2
, ~4.10a!

hym5
1

A2
i msmur emu1/2, ~4.10b!

eym5
21

A2
cm

ur emu1/2
, ~4.10c!

2hxm5
21

A2
i mcmur emu1/2, ~4.10d!

for the transverse electric~TE! waves. Here

cm5coswm , ~4.11a!

sm5sinwm , ~4.11b!

wm5tan21S qi1mp

pi
D , ~4.11c!

wherewm represents the azimuthal propagation angle of
m-diffracted beam,r em is the eigenvalue associated to t
eigenvectorcem, that gives thez component of the wave
vector normalized tok0

r em56An122~pi1mp!22qi
2, ~4.12!
-

ri-

y

e

and, finally, i m is a coefficient equal to11 for forward
waves (r em.0), 21 for backward ones (r em,0), and6 i
for inhomogeneous waves (r em

2 ,0). The eigenvectors hav
been normalized in such a way that the forward~backward!
solutions have energy flux in thez direction equal to11
(21).

Inside the periodic medium, the eigenvectorscpm of the
propagation matrix~4.7! can be found only numerically
Truncating the maximum Fourier components to6M , we
obtain 4(2M11) different eigenvectors. Each of them re
resents a proper wave propagating according to

cpm~z!5exp~ ik0lmz!cpm~0!, ~4.13!

wherelm is the eigenvalue associated withcpm . Real eigen-
values correspond to propagating solutions, complex one
inhomogeneous waves. In the limit of short pitch with r
spect to the light wavelength (p→`), both outside and in-
side the medium, only four eigenvalues remain real, co
sponding to two forward and to two backward solution
However, the other inhomogeneous waves cannot be
glected, as they are responsible for the rotatory power
we are looking for.

As p→`, the imaginary parts Im(lm) of the complex
eigenvalueslm grow very rapidly, giving diverging propa
gation factors exp(ik0lmd) for Im(lm),0. In order to cope
with this divergence, we divide the eigenvalues~and the cor-
responding eigenvectors! in two sets:l1, containing the ei-
genvalues with Im(lm)>0, andl2, containing the eigenval-
ues with Im(lm),0. The field c(z) inside the periodic
medium is then expressed as a function of the eigenvec
of the propagation matrixD as

c~z!5(
lm

1
am

1exp~ ik0lm
1z!cpm

1

1(
lm

2
am

2exp@ ik0lm
2~z2d!#cpm

2 . ~4.14!

In other words, we take as unknowns the amplitudesam
1

(am
2) of the exponentially decaying~growing! waves in

z50 (z5d); this ensures that finite values of the field insi
the periodic medium correspond to finite values of the u
known amplitudes, thus removing any fictitious divergen
in the solution of the equations.

The eigenvectorscpm can be arranged in columns to form
the 4(2M11)34(2M11) square matrixTp , where we
choose to order them in such a way that thecpm

1 come first.
Then, from Eq.~4.14! we can write the values of the trans
verse fields on the two internal boundariesz501 and
z5d2 as

c~01!5TpL0a, c~d2!5TpLda, ~4.15!

wherea is the column matrix containing the amplitudesam
1

and am
2 arranged in the same order as the correspond

eigenvectors in the matrixTp , and the diagonal square ma
trices L0 and Ld contain the propagation factors of th
eigenvectors
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L05diag„1, . . . ,1,exp~2 ik0l1
2d!,exp~2 ik0l2

2d!, . . . …,
~4.16a!

Ld5diag„exp~ ik0l1
1d!,exp~ ik0l2

1d!, . . . ,1, . . . ,1…,
~4.16b!

where it is meant that inL0, a 1 in the diagonal appears fo
each coefficientam

1 , and a term exp(2ik0lm
2d) appears for

each correspondingam
2 , and similarly forLd .

The unknown amplitudesa can be found by imposing th
continuity of the transverse fieldc across the boundaries
Precisely, the eigenvectorscem of the external media can b
arranged in columns in the square matrixTe , that plays the
same role asTp . We order the eigenvectors in such a w
that the forward solutions~i.e., those havingr em.0 for the
propagating solutions and Im(r em).0 for the inhomoge-
neous waves! come first. Then, since forz.d1 only forward
solutions must be present, while forz,02 both forward~in-
cident! and backward~reflected! waves are present, the va
ues of the transverse fields on the external boundaries ca
written as

c~02!5Te~bi1Prb!, c~d1!5TePtb, ~4.17!

wherebi is the column vector containing the known amp
tudes of the incident field,Pr (Pt) is the projection matrix on
the subspace of the reflected~transmitted! waves; it is a di-
agonal matrix whose first~last! 2(2M11) diagonal ele-
ments are equal to 0(1), and theremaining are equal to 1
(0) and finallyb is the column vector containing the amp
tudes of the unknown transmitted@in the first 2(2M11)
rows# and reflected@in the last 2(2M11) rows# plane
waves. Imposing the continuity of Eqs.~4.15! and ~4.17!,
with the help of the projection matrices, we get the system
4(2M11) linear equations

PrTe
21TpLda50, PtTe

21TpL0a5bi , ~4.18!

which determine the unknown amplitudesa of the internal
proper waves as a function of the known amplitudes of
external incident plane wavesbi . We stress that in Eq.~4.18!
only 4(2M11) equations are present, in fact, in the fi
matrix equation, the first 2(2M11) rows are identically
zero, as are the last 2(2M11) rows of the second matrix
equation. We also note that the matricesTe andTp can be
very easily inverted using the orthogonality relationships
the proper waves of theD matrix @15#. The transmitted and
reflected amplitudes are then obtained from the remain
4(2M11) relationships

bt[Ptb5Te
21TpLda, br[Prb5PrTe

21TpL0a. ~4.19!

A comparison between the exact numerical calculati
and the effective homogeneous model is shown in Fig
There we plotted, as a function of the incidence polar an
q i , the rotation and the ellipticity of the transmitted bea
for incident linear TE polarization. The curves correspond
to the homogeneous effective model were computed fr
the effective index of refraction obtained in the previous s
tion using a standard Berreman matrix approach@16#. Since
the transmitted beam is generally elliptically polarized, d
to the birefringence of the medium, we define the polari
be

f

e

t

f

g

s
.
le

g
m
-

e
-

tion rotation as the angle of the major axis of the polarizati
ellipse of the transmitted beam with respect to the direct
of the incident linear polarization; similarly, the ellipticity is
defined as the ratio of the intensities of the transmitted be
along the major and minor axes, respectively. In order
minimize the effect of the birefringence, the incidence pla
is taken parallel to the direction of the optical axis of th
effective homogeneous medium; in Fig. 2 the distorti
angle of the cholesteric is chosen in order to maximize
rotatory power,a545° and the azimuthal incidence angle
then taken asw i5a545°. The other parameters are chos
to correspond to typical experimental values: Precisely,
index of refraction of the external media isn151.5. The
indices of refraction of the cholesteric aren051.5 and
ne51.7. The thickness of the cell isd510l, where
l52p/k0 is the vacuum wavelength. Finally, the pitch o
the cholesteric is 2p/q50.33l. From Fig. 2 it is apparent
that the homogeneous effective model works quite well ev
far from its expected limits of validity: in fact with our pa
rameters the optical anisotropy is quite large (ea50.64) and
the pitch of the cholesteric is only one third of the ligh
vacuum wavelength. We also note that, according to F

FIG. 2. ~a! Rotatory power and~b! ellipticity of the transmitted
light as a function of the incidence angleq i for TE incidence. Solid
lines: effective homogeneous model; dashed lines: exact nume
calculation.
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2~a!, the rotatory power seems not to have a definite si
actually, the apparent inversion of the rotatory power at la
incidence angles is an effect of the birefringence t
dephases the local ordinary and extraordinary waves as
light travels inside the sample. As it is apparent from F
2~b!, the ellipticity of the transmitted beam is always qu
small: this is due to our choice of the incidence plane, wh
is parallel to the direction of the optical axis of the equivale
homogeneous medium. For light traveling along the opti
axis of the equivalent homogeneous medium, the choles
would behave as an isotropic optically active material.

V. CONCLUSIONS

To conclude, we have obtained a general expression
the effective dielectric tensor of an arbitrary periodic diele
tric medium having a short pitch with respect to the lig
wavelength. This expression is valid in the limit of sma
modulations of the dielectric tensor, as it accounts only
two-photon scattering events. By applying it to a particu
case, we have shown that the effective medium display
spatial dispersion related to an optical activity. This opti
activity arises from the spatial correlations of neighbori
points, i.e., from multiple scattering events, and scales as
ratio between the pitch of the periodic medium and the li
wavelength. Higher-order corrections should be taken i
account for large modulations of the dielectric tensor. Ho
ever, the numerical simulations have shown that the effec
dielectric tensor accounts for the main optical properties
the periodic medium also for relatively large dielectr
anisotropies and for pitches up to one half of the light wa
length inside the medium. For pitches close to the lig
wavelength, new phenomena, such as selective Bragg re
tions @7#, occur, which cannot be accounted for within t
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model of a homogeneous optically active dielectric mediu
Another situation in which the effective homogeneous mo
cannot properly describe the periodic structure is when
latter is sandwiched between boundary planes orthogona
one of the axes of the reciprocal lattice. In the case of
cholesteric, this situation corresponds to having the hel
axis perpendicular to the boundary planes. In this degene
case, the transmission and reflection properties crucially
pend on the position of the boundary planes, i.e. on the ph
of the optical dielectric tensor. The homogeneous model o
gives the optical properties of the finite sample averag
over all these possible phases.

The optical properties of an undeformed cholesteric liq
crystal can be computed analytically for light propagati
along the helical axis@7#. A pseudo-rotatory-power is found
that, for short helical pitches with respect to the light wav
length, scales as (k0 /q)

3, and therefore becomes rapid
negligible@9#. Here we have shown, instead, that in the pr
ence of a flexoelectric distortion, the cholesteric acquire
true rotatory power, that scales ask0 /q, in the direction or-
thogonal to the direction of the unperturbed helical axis a
of the applied electric field. Such a rotatory power, similar
what found in undeformed chiral smectic-C liquid crystals
@9,17# has not yet been experimentally detected and could
important also for the realization of practical electro-op
devices@6#. Finally, we note that the expression~2.7! of the
effective dielectric tensor can be easily generalized to ap
odic systems, by replacing the discrete sum over the re
rocal lattice points with a Fourier integral.
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@3# L. Landau and E. Lifchitz,Électrodynamique des Milieux Con

tinus ~Mir, Moscow, 1969!.
@4# C. W. Pattersonet al., J. Chem. Phys.84, 1916~1986!.
@5# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals

~Clarendon, Oxford, 1993!.
@6# L. Komitov, S. T. Lagerwall, B. Stebler, and A. Strigazzi,

Appl. Phys.76, 3762~1994!.
@7# H. de Vries, Acta Crystallogr.4, 219 ~1951!.
@8# D. W. Berreman and T. J. Scheffer, Mol. Cryst. Liq. Cryst.11,

395 ~1970!.
@9# P. Allia, P. Galatola, C. Oldano, M. Rajteri, and L. Trossi,

Phys.~France! II 4, 333 ~1994!.
@10# J. S. Patel and R. B. Meyer, Phys. Rev. Lett.58, 1538~1987!.
@11# C. Oldano, Phys. Rev. Lett.53, 2413~1984!.
@12# J. Slater,Insulators, Semiconductors and Metals: Quantu

Theory of Molecules and Solids,~McGraw-Hill, New York,
1967!, Vol. 3.

@13# R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan, Zh
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