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Spatial dispersion and rotatory power of short-pitch periodic dielectric media
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By a Bloch-wave decomposition, we deduce a general expression for the effective optical dielectric tensor of
a short-pitch periodic dielectric medium. The effective dielectric tensor describes an equivalent homogeneous
medium presenting spatial dispersion. We consider in detail the case of a cholesteric liquid crystal, deformed
by a flexoelectric torque induced by an electric field orthogonal to the helical axis. The distorted structure
displays a true rotatory power that scales as the ratio between the pitch of the cholesteric and the vacuum light
wavelength. The approximate analytical results are compared with exact numerical calculations, showing a
good agreement even far from the limits of validity of the theory. Possible generalizations of these results are
discussed[S1063-651X97)04104-4

PACS numbgs): 61.30-v, 78.20.Ek, 77.90rk

I. INTRODUCTION power for propagatioralong the helical axis, which scales
instead as the cube of the ratio between the pitch and the

wavelength. This rotatory power is not simply related to the

ecules, or arrangement of molecules, having a helical strugigjica| arrangement of the molecules, but it depends on the
ture[1]. This fact was recognized by Past¢@f who argued  gnatia| correlations of neighboring molecules. In fact, it is

that t'he optical activity qf natural substances comes fromypsent in unperturbed cholesteric liquid crystals.
atomic arrangements inside the molecules that differ from j this paper, we derive a general formula that allows one
their mirror image: he dubbed this propedissym&ie mo-  to compute the optical properties of an arbitrary short-pitch
leculaire. One of the most striking examples in this sense iSdie|ectriC periodic medium, by mode“ng it as an effective
constituted by the DNA double helix. More generally, it can spatially-dispersive homogeneous medium that displays op-
be shown that optical activity arises from spatial inhomogetical activity. We apply this model to the case of a choles-
neities with atomic distances small with respect to the lightteric liquid crystal deformed by a flexoelectric coupling with
wavelength 3]. Such inhomogeneities give rise to an imagi- a dc electric field orthogonal to the unperturbed helical axis
nary antisymmetric contribution to the dielectric tensor that{10]. We show analytically that in the distorted structure a
displays spatial dispersion, i.e., depends on the lightrue rotatory power arises, that scales as the ratio between
wavevector, or, equivalently, on the gradients of the electri¢he pitch of the cholesteric and the light wavelength, simi-
field. This imaginary part is responsible for the rotatorylarly to the case of a short-pitch chiral smed@idiquid crys-
power, and can be described in terms of a second-rank gyr&al [11]. The comparison of these results with exact numeri-
tion pseudotenso3]. By general symmetry considerations cal calculations reveals a good agreement even far from the
one can infer the permitted nonzero elements of the gyratiofimits of validity of the theory.
tensor for the different crystalline classes. However, the ac- In Sec. Il we derive a general expression for the effective
tual determination of the optical properties of specific dielec-dielectric tensor, in the limit of short-pitch and small dielec-
tric structures requires elaborate numerical computafiéhs  tric tensor modulations; in Sec. Ill we apply this expression
Chiral liquid crystals[5], and, in particular, cholesteric t0 the case of a cholesteric liquid crystal deformed by a
and chiral smecti€©s ||qu|d Crysta|S, offer a remarkable mac- flexoelectric Coupling with an external electric field; in Sec.
roscopic model of the microscopic helical structure of Chira”V we obtain an exact numerical solution for the cholesteric
molecules. They also attract much interest for their potentiafRnd we compare it with the predictions of our analytical
applications, such as the realization of fast electro-optic demodel. Finally, in Sec. V. we summarize and discuss our
vices[6]. The optics of chiral liquid crystals has been thor- results.
oughly studied from a long time ag6]. In particular, exact
analytical solutions exist for light propagation in cholesteric Il. THEORY
liguid crystals along the helical ax[§]. They show a large ) o ] ]
pseuderotatory-power close to the Bragg reflection band, Let us cons[der a_perlodlc dielectric medium whose rela-
which changes its sign at the center of the band. In the cadi/® complex dielectric tensag(r) reads
of oblique propagation, instead, numerical calculations are
_require(_ll[8]. Recently, it has been numerically shown that er=> e£XHig-T), 2.1)
interesting unexplored properties arise when the pitch is q
much shorter than the light wavelend®: certain structures
acquire atrue rotatory power foroff-axislight propagation, where the summation runs over all thevectors of the re-
which scales as the ratio between the pitch and the wavesiprocal lattice. Any electromagnetic field vectercan then
length, thus rapidly overcoming the usysdeuderotatory- be decomposed in Bloch waves, given by

Natural optical activity is usually associated wth mol-
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o] O e}
= i(k+0q)- .

F % Feexdi(k+q)-r], (2.2 -~ o~ -
wherek is the Bloch vector and a time dependence of the <z Z’ ‘so so so
kind exp(-iwt) is assumed. By insertin@.1) and(2.2) into ° ° o
Maxwell's equations, one obtains the following propagation o~ SN oy
equation for eacly component of a Bloch wave of the elec- X
tric field ~. ~ ~.
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q'#0,q
(2.3
) FIG. 1. Geometry of the flexoelectrically distorted cholesteric.
whereky= w/c is the modulus of the vacuum wavevector, The unperturbed helical axis is aloag The static electric field is

| is the 3x 3 identity tensor, and we plt,=k+q. Equation  applied alongy. The local optical axigi uniformly rotates about
(2.3 is similar to the wave equation used in the dynamicalz in the plane ’,y), wherex’ is a direction in the X,y) plane
theory of X-ray scatterin§l12], except that in the latter, one rotated by an angle with respect tox.

usually writes the equation in terms of the dielectric dis-

placementD and considers the case of isotropic media.This is the starting point of our analysis, that extends the
Moreover, in the dynamical theory of x-ray scattering a two-quasi-static approach developed[it3]. The correction to
wave approximation close to a Bragg reflection band is conthe effective dielectric tensor from the average vakge
sidered. Here, instead, we shall suppose that we are far froexpressed by the summation on the right-hand sid@ 4,

a Bragg band and that the modulation of the dielectric tensodescribes the effect of two-photon scattering events. In the
is sufficiently small)e,|<1 for g+0, such that we can solve following we shall see on a specific example how, in general,
perturbatively Eq(2.3) by first neglecting the summation in the effective homogeneous dielectric medium described by
the right-hand side, i.e., the effect of multiple scatteringEq. (2.7) displays a spatial dispersion, accompanied by a
events: at this stage this amounts to a Born approximatiorrotatory power[3], that scales as the ratio between the
We can thus express each Fourier comporgead of the  vacuum wavelength and the pitch of the periodic medium.
k-th Bloch wave of the electric field as a function of the

zeroth-order component alone Ill. CHOLESTERIC LIQUID CRYSTALS
Eq= kéG(q)-eq~ Eo, (2.9 Locally, a cholesteric liquid crystal has the same symme-
_ try as the nematic phase. However, in the cholesteric phase
where we have defined the tensor the nematic directon, which gives the average orientation
5 2 1 of the molecules and coincides with the local optical axis of
G(q) = (kgl —kq®kq—ko€o) . 29 the system, describes a helix around a fixed axis, that we take
o - . as thez axis, uniformly rotating perpendicularly to [if].
Thg e[ectrlc field com.pongn(§.4) will in turn |.ndu.ce a po- Some time ago it has been shofd] that a linear flexo-
larization and thus give rise to the _dlelectrlc displacementyectric coupling with a dc electric field, orthogonal to the
D, whose Fourier components are given by unperturbed helical axis, turns the plane of rotation of the
molecules around the direction of the applied static electric
D= 602 € q Eq» 2.6y  field by the angle
q _
a=tan (eE/qoK), (3.1

where €, is the vacuum permittivity. Let us now focus our

attention on the case in which the pitch of the periodic mewnheree is an average flexoelectric coefficief,is the am-
dium is much shorter than the light vacuum wavelengthplitude of the static electric fieldg, is the unperturbed
q=|g/>ko. In this situation, for almost all practical pur- wavevector of the cholesteric, atdis an elastic constant.
poses, the meaningful quantity is not the exact value of therherefore, if we take the static electric field along thaxis,
electromagnetic field at each point, but a suitable averagghe directorn will uniformly rotate about thez direction in
over a volume sufficiently large with respect to the pitch ofthe plane &’,y), wherex’ is the direction counterclockwise
the periodic medium, and at the same time sufficiently smallgtated, around thg direction, by the anglexr from the x

with respect to the light wavelengfl8]. Such an effective axjs in the &,z) plane(see Fig. 1 In the laboratory frame
field corresponds to the zeroth-order Fourier component ofy v 7), the directom is given by[10]

the Bloch wave. From Ed2.6) with g=0 and(2.4), one thus

sees that in this limit the periodic medium behaves as an A= cosecod qz)X+sin(qz)y—sinacogqz)z, (3.2
effective homogeneous medium whose relative dielectric
tensor is given by where q=qg/cose. The relative dielectric tensor corre-

sponding to the periodic structure is

=€tk € o €. 2. AQRA
€cfi = €0 oqé:of 0 G(0)-€ (2.7 e=e,N®N+¢ |, (3.3
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where e,=n2—n? is the optical anisotropy and, =n2,
wheren, (n,) is the ordinaryextraordinary index of refrac-

tion. In Eq. (3.3 we have disregarded any biaxiality and
intrinsic molecular optical activity as they are largely negli-

gible in practical casegl4].

The reciprocal lattice of the periodic medium has waveryerefore

vectorsq=maz, with m=0,=1,=2, .... Theonly nonzero
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E_H: € . (3.9

if the cholesteric is a locally positive uniaxial
crystal, as it is usually the case, the real part of the effective

Fourier components of the dielectric tensor are the compogiglectric tensor turns out to correspond to a negative

nentsm=0 andm= =2, with

€
€, +?acosza 0 - ZasinZa
€
€= 0 € + ?a 0 ,
€ €
— fsinZa 0 € +?asinza
(3.9
€a [ €, .
Zco§a — 7 €aCosr  — gsin2a
. [ €, i
€)= €_,= - ZEaCOSa’ - Z ZEaSIna
€ | €
- §S|n2a 7 €aSina Zasinza
(3.9

In the asymptotic limitg— o, the tensol2.5) becomes then

-2
G(m)= I((Z)(ZeL + €,Sirfa)
0 0 ﬁ
mq
k
0o o0 -
ke Ky €K, Sin2a
— L 1+ :
mqg mq mq(2e, + €,8ifa)
+0(q72). (3.6

From Eq.(2.7) and Egs{(3.4—(3.6) one readily obtains that
the real parte;; of the effective dielectric tensor is uniaxial,
with optical axis along the direction’ (cf. Fig. 1). In the
rotated frame X',y’'=y,z’) it reads explicitly

e 0 0
€= 0 e 0], (3.7
0 0

with

uniaxial crystal9]. Moreover, differently from the case of a
chiral smectic€ liquid crystal[11], it is not possible to re-
verse the sign of the optical anisotropy by changing the angle
.
The rotation of the macroscopic optical axis has been ex-
perimentally detected at normal inciderid®], and provides
the means for detecting the deformation of the cholesteric
structure under the influence of the applied electric field.
However, in the distorted cholesteriee€ 0) the effective
dielectric tensor also displays a nonzero imaginary part
i €L . In the same rotated frame it is given by

-1 0

.k €2e, Sin2a 0 0o

eﬁ:a 4(2€, + €,5ia)?

(3.10

This imaginary part, which comes from the spatial variation
of the dielectric tensor, displays a spatial dispersion, i.e.,
depends on the light wave vect&r and gives rise to an
optical activity[3]. According to Eq.(3.10, the optical ac-
tivity is maximum for light propagating along the direc-
tion, i.e., along the direction perpendicular to the unper-
turbed helical axis and to the applied static electric field. The
imaginary part of the dielectric tensor is usually interpreted
by supposing that, for a spatially nonuniform linear dielectric
medium, the average optical dielectric displacement
(D)y=D, depends not only on the average electric field
(E)=Ejy, but also on its spatial derivativ¢3]. In Cartesian
coordinate components

d(E;) —
Tr:’] = €ol€ij + i vijmkm) (Ej)

(3.11

(Di)=€o| €{E}) + ¥ijm

where summation over repeated indices is implied and the
last equality holds true for a plane wave whose wavevector is
k. It can be showr3] that the third-rank tensog;r, is an-
tisymmetric with respect to the first two indices
Yijm= — ¥;im @nd can therefore be written as a function of
the second-rank gyration pseudotengprhaving Cartesian
componentsy;; , according to

Yijm= Ko 1eijngnmv (3.12
where g;;, is the Levi-Civita antisymmetric unit pseudo-
tensor. In the present case, in the rotated frame in which the
real part of the dielectric tensor is diagonal, the gyration
tensor reads
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0 0 0 Kkm= Kol (pi+mp)X+a;y], 4.2
g=gsf O O 0 |, (3.13

. where, as in Eq(3.2), kgp=q is the wavevector of the nem-
—cosr 0 —sina a3.2), kop=(

atic director—and thus of the dielectric tensor—amdand
with g; are the normalizeck andy components of the incident
wavevector, defined in terms of the polar anglesand ¢; of
ko €€ sin2a the incident beam by

gx:E 4(2€, +e,Sifa)?” (3.14

pi = N4Sind;cosp; , (4.39
Therefore the rotatory power depends on the handedness of
the cholesteric helix and on the sign of the rotation angle 0= N,Sind;sing; . (4.3
a, i.e., on the sign of the applied field; it does not depend on
the sign of the optical anisotropy,. This rotatory power With decomposition(4.1), Maxwell's equations can be
scales as the ratio between the pitch of the cholesteric and,«; in the matrix form
the light wavelength. For typical values of the indices of
refraction of liquid crystalsg, can reach values of the order d
of 1072, to which they correspond huge rotatory powers of —l'bzikoD ¥, (4.4)
the order of a degree per wavelength. We note that the gy- dz
ration tenson3.13 is not symmetric; however, in the deter-
mination of the optical activity, only its symmetric part en- wherey is the column matrix

ters.
Ex
IV. EXACT NUMERICAL SOLUTIONS H
In order to check the limits of validity of the previously Y= Ey (4.5
obtained expressions for the effective dielectric tensor of the y
distorted cholesteric, we performed a fully numerical simu- —H,

lation of the optical behavior of a finite cholesteric slab sand-
wiched between two equal isotropic dielectric media having

index of refractionn;. in which each element is in turn an infinite column matrix

_In this section we take the axis as the sample normal, containing the various Fourier components of the transverse
with the cholesteric comprised between the plaze® and  part of the fields(4.1)

z=d, the light impinging from thez<<0 half-space, the un-
perturbed helical axis along the direction and finally the
static electric field applied alormy such that the optical axis

of the effective medium rotates in the,§) plane. In this € 1 ey-1 hy_1
geometry the sample behaves as a phase diffraction grating; N N h
to numerically analyze its optical properties we follow the Ex=| 7 [, Ey=| ™0 |, Hy= X0,
procedure employed ihl5], that we briefly recall for the €x1 €y1 el
case at hand. The electromagnetic field is expressed as the : :
Bloch wave

+ o

E=z > eexdi(ky r—ot)]+cc., (4.13
m=—x

o h
H,= yo |, (4.6
H=Z52 > hpexdi(kny r—ot)]+c.c., (4.1 Y hys
m=—oo
whereZ,= \ug/€g is the vacuum characteristic impedance,
c.c. indicates complex conjugate and the wave vedtgrare
given by andD is the propagation matrix
|
-PE,'E 1-PE,'P —-PE,]'E 0
zz =X zz 2z =2y
Exx_ Esz;zlsz - Esz;zlP Exy_ Esz;zlEzy 0
D= 0 0 0 1 4.7
Eyx—EyE7, Esx —EyE P Ey,—EyE'E,,—P? 0
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Here 1 and O are the identity and the null matrix, respecand, finally, i, is a coefficient equal to+1 for forward
tively. P is an infinite diagonal matrix having diagonal ele- waves (.,,>0), —1 for backward onesr¢,<0), and *i
ments equal top;+mp (m=-=,...,+»), and E,;  for inhomogeneous Wave$3ﬂ<0). The eigenvectors have
(a,B=x,y,z) are infinite square matrices with elements  been normalized in such a way that the forwérdckward
solutions have energy flux in the direction equal to+1
(Eaﬁ)mn: €aB,(m—n) > (4.8 (—1).

Inside the periodic medium, the eigenvectgrs;, of the
propagation matrix(4.7) can be found only numerically.
Truncating the maximum Fourier components#tiv, we
obtain 4(2V + 1) different eigenvectors. Each of them rep-
resents a proper wave propagating according to

where e, g m-n is the (n—n) Fourier harmonic of ther3
component of the dielectric tens(.1).

The matrix Eq.(4.4) is solved by considering only a lim-
ited set-M,—-M+1,...,-1,0,1... M—1M of the Fou-
rier components. The propagation matiixs constant in the
external homogeneous dielectric media and inside the peri- _ :
odic slab; in the external media its eigenvectgts, repre- Ypm(2) = explikohm2) Yipm(0), 4.13

sent plane waves whose nonzero components are given by . . : . :
wherel , is the eigenvalue associated with,,. Real eigen-

1 i IF o] V2 values correspond to propagating solutions, complex ones to
_ |mCm rem

= , (4.99 inhomogeneous waves. In the limit of short pitch with re-
V2 N1 spect to the light wavelengthp(-<), both outside and in-
side the medium, only four eigenvalues remain real, corre-
1 cyny sponding to two forward and to two backward solutions.
hym:ﬁ m/? (4.9 However, the other inhomogeneous waves cannot be ne-
glected, as they are responsible for the rotatory power that
: 12 we are looking for.
ZLM (4.99 As p—, the imaginary parts InN,) of the complex
ym V2 Ny ’ eigenvalues\ ,, grow very rapidly, giving diverging propa-
gation factors expo\d) for Im(\,)<0. In order to cope
1 s, with this divergence, we divide the eigenvaliasad the cor-
- hxmzﬁ e (4.90  responding eigenvectori two sets:A *, containing the ei-

genvalues with Im{,,)=0, and\ ~, containing the eigenval-
ues with ImQ,)<0. The field #(z) inside the periodic
medium is then expressed as a function of the eigenvectors
of the propagation matri as

for the transverse magneti@M) waves and by

1 s
exmzﬁ—r|r ”l‘l , (4.103
em
W2)= 2 anexplikohm2) don
1 Mm
hym=—=1mSmll eml % (4.10b
2 S acextfikor- )
+2 ameXdikohn(z—d)J¢pp,. (419
A
-1 cpy "
eym=—"= 12 (4.1009
meJ2 [Fem In other words, we take as unknowns the amplitudés
(a,) of the exponentially decayinggrowing waves in
-1 " z=0 (z=d); this ensures that finite values of the field inside
_hxmzﬁlmcm“eml : (4.100  the periodic medium correspond to finite values of the un-

known amplitudes, thus removing any fictitious divergence
in the solution of the equations.

for the transverse electridE) waves. Here : .
The eigenvectorg,, can be arranged in columns to form

Crn=COSpy, (4.113 the 4(M+1)x4(2M+1) square matrixT,, where we
choose to order them in such a way that m}en come first.
Sm=SiNe,, (4.11p  Then, from Eq.(4.14 we can write the values of the trans-
verse fields on the two internal boundariess0* and
+m z=d~ as
<pm='[anl(QI 5 p), (4.119
i

¢(0+)=TpA0a, P(d7)=TpAqa, (4.15
where ¢, represents the azimuthal propagation angle of the
m-diffracted beamy ., is the eigenvalue associated to the wherea is the column matrix containing the amplitude$
eigenvectory,y,, that gives thez component of the wave and a,, arranged in the same order as the corresponding
vector normalized td, eigenvectors in the matriX,,, and the diagonal square ma-

5 s trices Ay and Ay contain the propagation factors of the
Fem=* VNI~ (pi+mp)?—q?, (4.12  eigenvectors
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Ao=diagl, . .. 1,exg—ikohid),exp—ikoh; d), . ..),

(4.16a 07F
A y=diaglexp(ikoh ] d),expikoh; d), . ..,1,...,D,
4.16hH 00F
1]
where it is meant that ik, a 1 in the diagonal appears for =<,
each coefficien,,, and a term expfiko\d) appears for § 07}
each corresponding,,, and similarly forAg. 3§
The unknown amplitudea can be found by imposing the % g4k
continuity of the transverse fielgh across the boundaries.
Precisely, the eigenvectors. ,, of the external media can be
arranged in columns in the square maffix, that plays the 21F
same role a§,. We order the eigenvectors in such a way . . . . .
that the forward solution§.e., those having.,,>0 for the 72 36 0 36 72
propagating solutions and Im{,)>0 for the inhomoge- (a) Incidence angle [deg]
neous wavescome first. Then, since fa>d™ only forward
solutions must be present, while fp< 0~ both forward(in- 0.016 . . . , '
cidend and backwardreflected waves are present, the val-
ues of the transverse fields on the external boundaries can be
written as 0.0128
P(07)=Te(bj+P;b), ¢(d")=TcPb, (4.17 °
S 0.009 }
whereb; is the column vector containing the known ampli- 2
tudes of the incident field?, (P,) is the projection matrixon &
the subspace of the reflectémlansmitted waves; it is a di- £ 00064
agonal matrix whose firsflasy 2(2M +1) diagonal ele-
ments are equal to Q1), and theremaining are equal to 1 0.0032 b
(0) and finallyb is the column vector containing the ampli-
tudes of the unknown transmittdéh the first 2(2v1 +1)

rows| and reflected[in the last 2(M+1) rows| plane 0.0
waves. Imposing the continuity of Eq§4.15 and (4.17),
with the help of the projection matrices, we get the system of
4(2M +1) linear equations

-36 0 36
(b) Incidence angle [deg]

FIG. 2. (a) Rotatory power andb) ellipticity of the transmitted
P.T. lTpAda: 0, PT, 1TpA0a= b, (4.18 light as a function of the incidence angl for TE incidence. Solid
lines: effective homogeneous model; dashed lines: exact numerical
which determine the unknown amplitudasof the internal  calculation.
proper waves as a function of the known amplitudes of the ) _ _ o
external incident plane wavés. We stress that in Eq4.18  tion rotation as the angle of the major axis of the polarization
only 4(2M+1) equations are present, in fact, in the first €llipse of the transmitted beam with respect to the direction
matrix equation, the first 2(2+1) rows are identically of the incident Imgar polarl'zatlon'; .S|m|IarIy, the elllptlcny is
zero, as are the last 2K+ 1) rows of the second matrix defined as the_ ratio of th_e intensities of the_transmltted beam
equation. We also note that the matricksand T, can be along the major and minor axes, respectively. In order to
very easily inverted using the orthogonality relationships ofMinimize the effect of the birefringence, the incidence plane
the proper waves of thB matrix [15]. The transmitted and S taken parallel to the direction of the optical axis of the

reflected amplitudes are then obtained from the remainin§'fective homogeneous medium; in Fig. 2 the distortion
4(2M +1) relationships angle of the cholesteric is chosen in order to maximize the

rotatory powera=45° and the azimuthal incidence angle is
b= Ptb=T;1TpAda, b,=P,b= PrT;lTpAoa- (4.19 then taken ag;= a=45°. The other parameters are chosen

to correspond to typical experimental values: Precisely, the

A comparison between the exact numerical calculationgndex of refraction of the external media ig=1.5. The

and the effective homogeneous model is shown in Fig. 2indices of refraction of the cholesteric argy=1.5 and
There we plotted, as a function of the incidence polar angle.=1.7. The thickness of the cell igl=10\, where
39, the rotation and the ellipticity of the transmitted beam\ =2m/k, is the vacuum wavelength. Finally, the pitch of
for incident linear TE polarization. The curves correspondingthe cholesteric is 2/q=0.33\. From Fig. 2 it is apparent
to the homogeneous effective model were computed fronthat the homogeneous effective model works quite well even
the effective index of refraction obtained in the previous secfar from its expected limits of validity: in fact with our pa-
tion using a standard Berreman matrix appropl®). Since  rameters the optical anisotropy is quite largg=0.64) and
the transmitted beam is generally elliptically polarized, duethe pitch of the cholesteric is only one third of the light
to the birefringence of the medium, we define the polarizavacuum wavelength. We also note that, according to Fig.
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2(a), the rotatory power seems not to have a definite signmodel of a homogeneous optically active dielectric medium.
actually, the apparent inversion of the rotatory power at largéAnother situation in which the effective homogeneous model
incidence angles is an effect of the birefringence thatannot properly describe the periodic structure is when the
dephases the local ordinary and extraordinary waves as thatter is sandwiched between boundary planes orthogonal to
light travels inside the sample. As it is apparent from Fig.one of the axes of the reciprocal lattice. In the case of the
2(b), the ellipticity of the transmitted beam is always quite cholesteric, this situation corresponds to having the helical
small: this is due to our choice of the incidence plane, whichaxis perpendicular to the boundary planes. In this degenerate
is parallel to the direction of the optical axis of the equivalentcase, the transmission and reflection properties crucially de-
homogeneous medium. For light traveling along the opticapend on the position of the boundary planes, i.e. on the phase
axis of the equivalent homogeneous medium, the cholesteriaf the optical dielectric tensor. The homogeneous model only

would behave as an isotropic optically active material. gives the optical properties of the finite sample averaged
over all these possible phases.
V. CONCLUSIONS The optical properties of an undeformed cholesteric liquid

_ ) crystal can be computed analytically for light propagating
To conclude, we have obtained a general expression fofjong the helical axi§7]. A pseudo-rotatory-power is found

the effective dielectric tensor of an arbitrary periodic dielec-that for short helical pitches with respect to the light wave-
tric medium haylng a sho.rt pl_tch vvllth' respect to the light length, scales ask{/q)?, and therefore becomes rapidly
Wavelen_gth. This expression is valid in the limit of small negligible[9]. Here we have shown, instead, that in the pres-
modulations of the dielectric tensor, as it accounts only folance of a flexoelectric distortion, the cholesteric acquires a
two-photon scattering events. By applying it to a particularye rotatory power, that scales ks/q, in the direction or-
case, we have shown that the effective medium displays gogonal to the direction of the unperturbed helical axis and
spatial dispersion related to an optical activity. This opticalyf the applied electric field. Such a rotatory power, similar to
activity arises from t_he spatial _correlatlons of neighboring\ynat found in undeformed chiral smect@iiquid crystals
points, i.e., from multiple scattering events, and scales as thg 17] has not yet been experimentally detected and could be
ratio between the pitch of the periodic medium and the lightynortant also for the realization of practical electro-optic
wavelength. Higher-order corrections should be taken intQjevices[6]. Finally, we note that the expressi¢2.7) of the

account for large modulations of the dielectric tensor. How-gffective dielectric tensor can be easily generalized to aperi-
ever, the numerical simulations have shown that the effectivggic systems, by replacing the discrete sum over the recip-

dielectric tensor accounts for the main optical properties ofgca Jattice points with a Fourier integral.
the periodic medium also for relatively large dielectric
anisotropies and for pitches up to one half of the light wave-
length inside the medium. For pitches close to the light
wavelength, new phenomena, such as selective Bragg reflec- | wish to express my thanks to Professor C. Oldano for
tions [7], occur, which cannot be accounted for within the fruitful discussions.
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