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Monte Carlo simulations of solute ordering in nematic liquid crystals:
Shape anisotropy and quadrupole-quadrupole interactions as orienting mechanisms
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Monte Carlo computer simulations were used to investigate the effects of shape anisotropy and electrostatic
interactions as mechanisms for orientational ordering of solutes in nematic liquid crystals. The simulation
results were analyzed in terms of two theories of solute ordering which derive mean-field orientational poten-
tials from the intermolecular pair potential. In the calculations, solute and solvent molecular shapes were
approximated by hard ellipsoids. Most simulations also incorporated the interaction between point quadrupole
moments placed at the centers of the ellipsoids. In the hard-core systems, orientational order parameters and
distribution functions were calculated for a collection of different solutes under a variety of conditions. A
theory due to Terzis and Photinfidol. Phys.83, 847 (1994 ] was found to underestimate the effect of shape
anisotropy on orientational ordering drastically. The introduction of an effective solvent packing fraction was
unable to improve the predictive power of the theory significantly. The quadrupolar systems were used to
investigate a mean-field model for solute ordering which considers an interaction between the solute molecular
guadrupole moment with an average electric-field gradient. The simulations indicate that the electric-field
gradient sampled by the solute is highly dependent on the properties of the solute, contrary to some experi-
mental evidence. Further, the effects of the intermolecular quadrupolar interactions on orientational ordering
and the electric-field gradient were analyzed using a mean-field potential derived here and based on the theory
due to Emsley, Palke, and Shilstofigg. Cryst.9, 649(1991)]. This model was found to provide a qualita-
tively correct but quantitatively imprecise prediction of orientational ordefi83063-651X97)14003-X]

PACS numbdps): 61.30.Cz, 61.20.Ja

I. INTRODUCTION orientational ordering in liquid crystal&—7]. An analysis of
the spectra of orientationally ordered molecules provides val-
The property of orientational ordering in the nematic ues of various NMR coupling constants, which in turn yield
liquid-crystalline phase arises from the presence of anisosecond-rank orientational order parameters. However, appli-
tropic intermolecular forces. Important examples of these in€ation of the technique to study the nematogens themselves
clude short-range repulsive forces and long-range dispersioran be complicated by the structural complexity and inherent
electrostatic and induction interactions. Among these, thdlexibility of the molecules. These factors tend to complicate
short-range interaction, coupled with the high degree othe analysis of both the spectra and the NMR coupling con-
shape anisotropy typical for most nematogens, is generallgtants, and thus to preclude an accurate measurement of ori-
believed to be the principal factor underlying the stability of entational order. This problem can be circumvented by the
the phasg1-4]. The long-range interactions, which arise use of probe solutes, which in principle sample the same
from the presence of permanent molecular electrostatic mulntermolecular forces that order the nematogens. Generally, a
tipole moments and polarizabilities, are believed to have aigid molecule with lower thay symmetry will be partially
smaller effect on the molecular ordering. An important ob-oriented when dissolved in an anisotropic nematic environ-
jective in the study of liquid crystals is the attempt to gain ament. Solutes may be chosen to simplify the spectral analysis
detailed understanding of the effects of each of the compoand interpretation of the coupling constants; rigid solutes
nents of the intermolecular pair potential on the structure ofvith relatively few nuclear spins are ideal. In addition, spe-
the phase. While this understanding is not yet complete, sigeific solutes may be chosen to highlight the effects of a spe-
nificant progress has been achieved through a combination affic intermolecular interaction on orientational ordering. By
experimental, theoretical and, more recently, computer simueontrast, when studying the behavior of the nematogens
lation techniques. alone, it is difficult to gauge the relative importance and
Nuclear magnetic resonan@dMR) has long been recog- effects of the various intermolecular forces. Below, we

nized as an excellent experimental technique for studyindpriefly review some of the important studies employing

probe solutes to study intermolecular forces in nematic liquid

crystals.

*Present address: FOM Institute for Atomic and Molecular Phys- Direct evidence of a specific intermolecular interaction as
ics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands. Elecan orientational ordering mechanism was obtained in several
tronic address: polson@amolf.nl studies employing deuterated molecular hydrogen as a solute
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that the interaction of the molecular quadrupole moment otheory and its assumptions are difficult to test directly by an
both D, and HD with an average electric-field gradient analysis of available experimental data. Nevertheless, a study
(EFG), which was measured directly from the analysis of theof the solvent dependence of the orientational behavior of
2H NMR spectrum, provided a very accurate prediction ofanthracene and anthraquinone, molecules with similar shapes
orientational ordering for these particular solufé€]. It is  and polarizabilities but significantly different quadrupole
not unreasonable to hypothesize that all probe solutes expeioments, was undertaken and analyzed using this theory
rience a similar interaction between their quadrupole mo{19]. It was concluded that the distribution of solvent-solute
ments and an average EFG. However, to apply this result tmntermolecular displacement vectors, and consequently the
the analysis of order parameters of other solutes, it is nece&FG, was strongly dependent on both solvent and solute mo-
sary to assume that the EFG is a property of the nematitecular properties, in contrast to the conclusions of Burnell
solvent alone, and not influenced significantly by soluteand co-workers.
properties. This approximation is required because the EFG The description of the contribution to orientational order-
can only be measured directly for the deuterated hydrogen#ng from electrostatic interactions by means of a solute-
where the internal EFG contribution to the NMR quadrupo-independent average EFG has also been criticized by Photi-
lar coupling constant can be calculated accurately. Unfortunos and co-worker$20—22. They provided experimental
nately, it is difficult to test this hypothesis directly due to the evidence that the interaction between local dipole moments
presence of additional ordering mechanisms, most notablgn solute and solvent molecules, in conjunction with short-
anisotropic short-range repulsive forces, which are nonrange repulsive forces, provide an additional ordering
negligible for larger molecules. Consequently, predictions ofmechanisni20,21. In the context of the picture of an elec-
order parameters for a variety of solutes using known valuetrostatic mean-field introduced by Burnell and co-workers
of quadrupole moments and values of the EFG measureand developed theoretically by Emsley and co-workers, sol-
with molecular hydrogen tend to be pddrl,12. However, ute dipole moments interact with an average electric field,
some experimental evidence of the validity of this modelwhich is necessarily zero for an apolar nematic phase; thus
has been observed in the orientational behavior of specifithe contribution to the mean-field potential should vanish.
solutes. For example, acetylene, like,,Dorients with a  Further, Terzis and Photinos constructed a theory to account
negative order parameter in the nematic solvenffor the contributions from both short-range repulsive forces
N-4-ethoxybenzylidene‘4n-butylaniline (EBBA) [12-14], and arbitrary electrostatic interactiof@2]. An interesting
a solvent which was determined to have a negative EFGesult of this study was that electrostatic interactions were
While it is difficult to rationalize this behavior by invoking found to provide a contribution to orientational ordering
the presence of other orienting mechanisms, it is the prewhich was roughly equal to that from the anisotropic repul-
dicted result for a molecule with a positive quadrupole mo-sive forces. In addition, it was shown that the electrostatic
ment which interacts with a negative EFG. Similarly, the mean-field model of a solute molecular quadrupole moment
behavior of the order parameters for benzene and hexafluinteracting with a solute-independent mean EFG was incon-
robenzene, molecules with very similar shapes, but withsistent with their theoretical calculations.
guadrupole moments of opposite signs, follows the pattern The studies of Emsley and co-workers and Photinos and
predicted by the quadrupole-moment—EFG mechanism usingp-workers represent the only attempts to date to provide a
values of the EFG obtained from ,Dfor various nematic rigorously theoretical understanding of the orientational be-
solvents[12]. Finally, the presence of nonvanishing dipolar havior of molecules in nematic liquid crystals. The goal of
and quadrupolar coupling constants for deuterated methan#isese theories is to derive a mean-field orientational potential
in a nematic solvent can be understood as arising from @hich incorporates the molecular properties, such as shape
vibration-rotation coupling that results from a second-rankanisotropy and electric multipole moments, that give rise to
tensorial interaction between the solute and a solvent meathe intermolecular interactions responsible for the alignment
field [15]. A study of the quadrupolar coupling constants of molecules. An alternative approach is the use of empirical
gives consistent results for theoretically solvent-independennean-field orientational potentials. In a series of several pa-
guantities in different solvents only when an external EFGpers, Burnell and co-workef23—28 studied the effects of
with values determined in the studies of,2and HD was anisotropic short-range repulsive interactions by measuring
incorporated into the analysj46]. orientational order parameters for a wide collection of sol-
Emsley and co-workers have discussed the significance aftes in a nematic solvent mixture characterized by a zero
the EFG and its effects on the ordering of solutes in nemati€FG for D, and HD. It was shown that the ordering of the
solvents using a theory for orientational ordering which issolutes generally were very well predicted by various model
closely related to the Maier-Saupe theory of nemdtics-  potentials that incorporate the details of the molecular size
19]. In the context of this theory, it was shown that the nem-and shape anisotropy. Further, it was found that the more
atogen quadrupole moment is the lowest order electrostatigccurate models accounted for the molecular shape in the
multipole moment that provides a nonvanishing contributionmost detailed manner. In addition, the models could be used
to the EFG. Further, it is possible to derive an expression foas an effective tool in the analysis of the conformational
both the EFG and the contribution to a potential of meanequilibrium of partially oriented flexible molecul¢29-32.
torque arising from the presence of the EFG. However, thérom these studies, it was concluded that the presence of
expressions for these quantities are complicated by their deshort-range repulsive interactions, which are expected to be
pendence on the orientational distribution of solute-solvenstrongly dependent on molecular shape, was the principal
intermolecular displacement vectors, a property which is nofactor responsible for solute orientational ordering. More re-
readily determinable by experimental methods. Thus theently, a computer simulation studyd3], undertaken to
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complement this experimental work, confirmed the connecsolute. Thus we study a collection of ellipsoidal solutes with
tion between these model potentials and the short-range variety of sizes and dimension ratios.
forces, and provided further evidence that these forces domi- The use of point quadrupoles to describe the electrostatic
nate the orientational behavior of molecules in nematic solproperties of the solvent and solute molecules is likely a far
vents. more drastic approximation. At short intermolecular dis-
The empirical potentials used to model short-range repultances, the quadrupole-quadrupole interaction may yield an
sive forces in the studies described above differ considerablynrealistic estimate of the electrostatic interactions between
from the theoretical potentials of the kind presented bymolecular charge distributions. This limitation may be par-
Terzis and Photinos, and Emsley and co-workers, in that thécularly problematic at the high densities typical of a con-
latter are derived from some chosen form of the intermolecudensed phase. Nevertheless, there are important reasons why
lar pair potential. In the derivation of these rigorous theoretthis model deserves to be investigated. It is important to
ical models there are two types of approximations employedietermine the simplest model which can reproduce the main
whose validity determines the accuracy of the the@tythe  qualitative behavior observed experimentally in real nematic
modeling of the molecules and the pair potential, é)dhe  systems. Further, the molecular models used in the theories
mathematical approximations required to integrate over thef orientational ordering described above also employ point
pair potential to obtain the mean-field potential. Unfortu-electrostatic multipole moments. Thus the simulations can
nately, .it is .diﬁicult to test the theo_ry and the validity of the_ provide a test of the mathematical approximations employed
approximations using the experimental data alone. Thig, the derivation of the theoretical mean-field potentials. We

problem ig due_to the fact. that there_ are multiple contribu+ycus on the effects of quadrupole moments alone, since a
tions to orientational ordering. Experiment provides at most,jqina| goal of this study is to investigate the interaction of
only a few orientational order parameters per solute, and n

) . . .the solute quadrupole moment with the EFG generated by
gflttlir:r?te of the relative magnitude and effect of each contrig, o solvent, and because the quadrupole moment is the low-

est order electrostatic multipole moment that the Emsley-

Computer simulations of solutes in nematic solvents ca . . o
provide an effective bridge between experiment and theorJTUCkh“rSt theory predicts to contribute to a nonvanishing

The molecular models employed in the various theories cafr ) , P e
easily be incorporated into the simulations. A comparison ofN00sing this model. More realistic descriptions of the mo-
the simulation results with theory and experiment can therécular _charge_d|strlbutlons, su<_:h_as the distribution of sev-
provide valuable insight into the validity of the models for €ral point multipole moments within the volume of the mol-
the pair potential and the mathematical approximations useficule, would involve considerably more computational effort
in the theory. In addition, this approach provides a simplelo calculate the pair potential in the Monte CaléC) simu-
method for examining the importance of each component ofations. Also, quadrupole-quadrupole interactions decay as
the intermolecular pair potential as an orienting mechanisny, >, which is sufficiently rapid to neglect very long-range
and how the complex interplay between the different contri-contributions to the total energy. This also has a major influ-
butions varies with the properties of the solute. ence on determining the speed with which the calculations
In this paper, we employ the Monte Carlo computer simu-can be performed. Dipole-dipole interactions, by compari-
lation method to study the combined effects of shape anisoison, decay as™ 2, and require the inclusion of much longer-
ropy and electrostatic interactions on orientational orderingange contributions to the total energy, as well as the use of
of solutes in a nematic phase. In addition, we use the SlmLEwa|d sums to induce the convergence of the total energy

lation results to test the accuracy of the theories of Terzis angith increasing system si288]. The result is a much more
Photinos, and Emsley and co-workers for solute orientationafme.consuming calculation.

ordering in nematic solvents. We employ a minimal model
for the intermolecular pair potential in order not to obscure

the interpretation of the results. Specifically, we model bot imple model with the following attributes) it is compu-

the sol\(ent 'and §0Iutg molecules as cylindrically S.ymmem(‘tationally convenient(2) it can be used to test the math-
hard ellipsoids with point quadrupoles placed at their centers. . L . .

. A , ematical approximations in current theories of solute order-
The hard-core component of this potential is designed t(?n @3 it tartin int to determine the basic molecular
approximate the repulsive forces at short intermolecular dis- g (9) 1S a starting point to determine the basic molecuia
tances. Note that a variety of computer simulation studie?mpert'_eS req“'r_ed to exp_laln the orlentatlo_nal bghawor of
over the past decade have demonstrated that systems of haQutes in nematics; an@) it can be used to investigate the
convex bodies such as ellipsoids can form a stable orientdndividual effects of the contributions to orientational order-
tionally ordered nematic phase at sufficiently high densitied"d from shape anisotropy and electrostatic interactions, in-
[34-37. The additional electrostatic interactions used herdormation which is not readily obtained by experiment.
are expected to have an additional perturbative effect on the In Sec. I, we outline the basic ideas of the theoretical
structure of the solvent. The simplified modeling of the sol-models developed by Terzis and Photiriag] and Emsley
ute molecular shape is designed to provide a computationallgnd co-workerg17,18,39. Section Il describes the techni-
convenient method for investigating the effects of solutecal details of the Monte Carlo simulations. In Sec. IV we
shape anisotropy on orientational ordering. We emphasizpresent the results of the simulations and discuss their sig-
that this study is concerned with determining the generahificance in terms of both theoretical predictions and previ-
effects of molecular properties on ordering without attempt-ous experimental results. Section V summarizes the key re-
ing to simulate the precise behavior of any particular reakults of this study.

To summarize, the description of a solvent or solute mol-
ecule as a hard ellipsoid with a point quadrupole represents a
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Il. THEORY Note thatk =1 for overlapping particles and decays to zero
A. Terzis-Photinos (TP) theory with increasingr, though it has aﬂgp.remable values for a
small localized volume,, wherev;"” is of the order of a

Terzis and Photinos have developed a theory for the defew molecular diameters. The solute distribution function
scription of orientational order of solutes in a nematic sol-may pe written

vent which can incorporate dispersion, induction, short-range

repulsive, and electrostatic interactions between the solute f(w)~exp(N In(1—(K}))). 8

and solvent moleculd®2]. We repeat the brief derivation of

the mean-field orientational potential presented in the origiExpanding the logarithm and neglecting terms of order

nal paper in order to highlight the approximations discussedva/V)? and higher, it is trivial to show that

later on. Note that we include the effects of the short-range

and electrostatic interactions only, since the effects of induc- f(w)~exd —N(K(w))]. ©

tion and dlspe'rsmn forces were found to be ne_gllglble. ._This corresponds to the following terms for the mean-field
The theoretical approach involves the reduction of the sin- otential

glet distribution function of the solute, which is given by the P '

following exact expression: U(w)=Upe(w)+Ued o), (10)
P(X):z—lf dX,d Xy - dXNPr(X1, X2, - -+ Xn) where
oS T o Unclo)lksT=p | 0F doT(w)[1- gl 0,01
O T g kT (11

whereX=(F, ), Pn(X1,Xs, . . . Xy) is the N-particle sol-  and
vent distribution function in the absence of the solute, _
u(X,X;) is the pair potential between the solute and ittie UES(w)/kBszJ dr do'f(w')
solvent molecule, and is a normalizing factor. The princi-
pal approximation of the theory is to neglect the correlations X[1—exp(—u s(F w,0")kgT)]
between solvent molecules, ES B

- X Oue(r,o,0'). (12

Pn(X1, X2, -+ Xn)=P(X)P(X3) - P(Xn), 2
, L ) o As a final remark on the mean-field potential, we note that
wh|ch simplifies the_expressmn of the solute distributionipe contribution from the hard-core component of the pair
function to the following: potential can be written as

. N
fdX’P(X’)exp(—u(X,X’)/kBT). (3) UHc(w)/kBT=pfdw'vex(w,w’)?(w'), (13

Short-range repulsive forces are approximated by a hard-Cotgherev, (w,w') is the orientation-dependent solute-solvent
(HC) interaction between molecules, which can take the valgycjuded volume. This is the same form of the potential that
ues of zero or infinity depending on whether the molecules,nhears in the self-consistent expression for the orientational
overlap. Anisotropic long-range interactions are restricted inyistribution function in the Onsager theory of the nematic-
this'treatment to 'electrostat(ES) forces. Thus the pair po- isotropic phase transition for a system of long hard f@idE.
tential can be written as This is not surprising, since both theories consider the effects
of interactions of pairs of molecules while neglecting corre-
lations due to three and more particles. Onsager’s theory is
Further, for  spatially homogeneous systems,V‘?"d in the limit of very long rods, where the effects of these
P(X)=f(w)IV andE(X) :7(w)/V. Thus the solute orienta- higher order correlations are negligible. While the typical

tional distribution function can be written as the following: nematogen and solutg molecules do not Sat'SfY this condi-
tion, Terzis and Photinos argued that neglecting solvent-

P(X)~

U(X, X;) = Upc(X, Xi) + Ue(X, X)). (4)

— . N solvent interactions should have minor effects if the system
flw)~ V_1J do'drf(o {1-K(r,0,0")} is sufficiently far removed from the phase transition. This
assumption can be tested by comparing the results of com-
=[1—(K)]N, (5) puter simulations and the theoretical predictions for solutes
in nematic systems.
where
N B. Emsley-Luckhurst (EL) theory
K(r,w,w,):1_chqu_uEs/kBT), (6)

A theoretical model for describing the orientational order-

and where ing of solutes in a uniaxial nematic solvent has been devel-
oped by Emsley, Hashim and Luckhuf88]. The approach

Onc=exp— Uuc/kgT). (7)  of this theory is closely related to that used in the Maier-
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Saupe theory of nematic liquid crystals. A mean-field orien-In the case of axial symmetry considered here, @@) re-
tational potential is derived using some simplified model forduces to
the pair potential between solvent and solute molecules, and

averaging over the magnitude and direction of the intermo- (Yo )= i 1/2Hnem)5 (19
lecular displacement, and over the orientation of the solvent 2my/ =\ Ay 2 Omy0
molecules. The relationship between the mean-field and pair _
potentials is given by where P(Z”em) is the second-rank nematic order parameter,
while Eqg. (18) reduces to
U(wl):pf dr doyu(r,e;,0)f(wy)g(r), (14 vi P_:{(r)g(r)
r—5 :6\/;5m,0 r—gdr, (20)

where w,=(601,¢1) and w,=(6,,¢,) are the polar angles

describing the orientation of the nematic director in the sol- TN -
i . whereP, (r) is a fourth-rank order parameter describing the
ute and solvent molecular frames, respectively. Aiss,the g ientation of the solvent-solute intermolecular displacement

intermolecular displacemen, is the number density of the 4 3 distance. Finally, substitution of Eq419) and(20) into
solvent, u(r,w;,w;) is the solvent-solute pair potential, Eq.(16) yields
f(w,) is the solvent orientational distribution function, and

g(F) is the pair correlation function. The crucial approxima-
tion of this theory involves neglecting the orientational cor-

relations between molecules, i.g(r,w;,w,)~g(r).

Most applications of the Emsley-Luckhurst theory to the
analysis of experimental data have employed long-range arqoting that the form of the interaction between a quadrupole
isotropic dispersion forces, though the incorporation of annoment and an EFG is given by
electrostatic interaction between quadrupoles to the pair po-

QY QY | < e [ Pa (NY(T)
U(H)—GOWP(T60 P2 fr—3dr

X P,(cosh). (21)

tential has been discuss¢d7,18. Below, we derive the U(8)=—3F,,Q,,P,(cosd), (22
mean-field potential between quadrupoles for the case of axi-
ally symmetric molecules. Eg. (21) can be used to define an average EFG:
The energy of two interacting axially symmetric quadru- P_+( ()
. _ — r)g(r
pole moments may be written §41] Foym —1207TPQ(ZUZ)P(2nem)f 4 r39 dr. (23

" - 3/2
UQQ(r!wlawZ)_(47T) 45 47T€0r5

[ Q565
5 It is convenient to rewrite the expressions for the mean-
field potential and the average EFG in terms of dimension-
less quantities. We define a reduced mean-field potential
X C(224;m;,m,,m _ i
mlzmz,m (224;my,mz,m) U*(6)=U(6)/KkgT:
XY 2y (©1) Yo, (@2) Y3m(®), (15 d®) [ P, (r*)g(r*)
e U*(6)=60mQ} Q% p*| — f ——r —dr
where C(224;m;,m,,m) are Clebsch-Gordon coefficients, 0
w=(6,¢) describe the orientation of the intermolecular vec- X P,(cod), (24
tor in the frame of the nematic director, and @ _
Q4= \5/4mQY, where Q! is the principal cartesian Where Q7 =Q;7/J4mekgTd, p* =pvo, r*=r/d, v is
component of the quadrupole moment tensor for the solutéhe solvent ellipsoid volume, and whede the diameter of
(a=u) and solvent &= ). Substitution of Eq(15) into Eq.  the solvent ellipsoid, is used to fix the length scale in the

(14) yields system. Further, we define a dimensionless EFG:
7 sk o Fad ‘) [ o
u(e)= C(224m;,m,,m =—5=—120mp* | — || =7
0= "3 ey |2 C224M, M M) 2= Q] vo) | 1QW]
% [ Pi(r*)g(r)
XYZ,ml((’)l)<Y2,m2><$> , (16) X P(znem)f ‘l(Tdr*_ (25)
where Finally, comparing Eqs(24) and(25), we can write
(Vam)= [ dosf(w) Vo0 a7 U (0)=—3FZlQuIQiPacosh). (29
Mz my !

In the context of the theory presented above, an essential
and where requirement for the observation of a nonvanishing average
. . EFG is a nonspherical distribution of solute-solvent intermo-
Yam _J Yim(@) . 2dr d 18 lecular vectors. If this distribution had spherical symmetry,
5 ;5 9(n)ridr do (18 then the factor defined in E18) would vanish for all val-

r5
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ues ofm, along with the magnitude of the EFG. This point the range of 40—60 % in order to achieve equilibrium as
was first noted by Emsley, Palke, and Shilstone who incorfapidly as possible.

porated this factor into the derivation of the contribution to  The solvent-solvent quadrupolar pair potential was calcu-
the mean-field orientational potential from quadrupole-lated using the following relation for the interaction between
guadrupole interactiongl8]. However, this derivation had two axially symmetric quadrupold€1]:

implicitly assumed the separability of averaging the pair po-

tential over the magnitude and direction of the intermolecu- 3 ( QYQy

zz
lar vectorr: Uoo™3

m)[l—S cog6,—5 cog6,+2 cogh,
0

+35 c06,c08 0,— 20 co,c09,c080,],  (28)

<&>~<Y* 1%~ P Omlr %) 27
r° am 4 7m0 ' whered, and 6, are the angles between the quadrupole sym-

metry axis and the displacement vector between the point
However, the computer simulations of Emerson, Hashimguadrupoles, and, is the angle between the two quadru-
and Luckhurs{42] indicate that the fourth-rank order param- pole symmetry axes. The contribution to the EFG at the site
eter P}, which describes the nonsphericity of the Of the solute due to a solvent point quadrupole moment
intermolecular-vector distribution, is strongly dependent onQ'/) was calculated using the following expression:
the molecular separatian and therefore that the separability

of the averaging in Eq(27) is invalid. The mean-field po- F.,=V,.,E,=-V,V, ¢
tential derived above for the quadrupole-quadrupole pair po- 1
tential differs from that derived originally by Emsley, Palke, =[-2QW+ 10Q(aUV)FaFM+ 10QWr.r,
and Shilstone by the use of E@O) rather than Eq(27) for r . .
[ the i i . ~n Anaa
averaging over the intermolecular coordinates +5Qﬁfgrarﬁﬁw—35Q2”[§rarﬁrury], 29
. MC SIMULATIONS wherer is a unit vector describing the orientation of the

The methods employed in the simulation of solutes in iﬂisplacement between the quadrupole pair, and where we

nematic solvent are standard. The calculations were pe 1ave used the Einstein summation convention for repeated

formed at constant volume for a fixed number of particles'”dices' The solute-solvent pair potential is a function of the

confined to a rectangular box subject to the usual periodiEFC due to the solvent:
boundary conditions. The calculations used a system of 239 ) 1 ~(P)
solvent particles plus one solute particle. Nematogens were  Uoq= — 3 QuuF 4= = 5 Q,5€08,,C095,F .., (30)
modeled as cylindrically symmetric hard ellipsoids with an
axis ratio of 5:1. Solutes were also modeled as cylindricallywhereQ,,, and QELP,,) are the solute quadrupole moments in
symmetric hard ellipsoids, though with a variety of sizes andhe laboratory and principal axis systefrAS) frames, re-
axis ratios. The solute lengths along the symmetry dxis, spectively, and ca,, is the angle between the PABaxis
and diameterw, are expressed in units of solvent width, and the laboratory. axis.
d. An equilibration period of(1-2x 10° trial moves per The total energy is obtained by summing the pair poten-
particle was used, starting from an initial configurationtials over all of the particles in the system, and averaging
where all of the molecules were orientationally aligned andover the sequence of configurations which are generated by
positioned on a stretched fcc lattice. the Metropolis algorithm. In certain cases for long-range in-
The sequence of system configurations was generated ukeractions it is necessary to include contributions to the total
ing the Metropolis algorithnj43]. In some of the simula- energy from particles that are very widely spaced in order to
tions, only a hard-core pair interaction between moleculesninimize truncation effects. For a finite-sized simulation
was considered. In this case, trial orientational and translasystem, this often requires a summation over molecules in
tional moves for each randomly chosen particle were rejectetepeated images of the system. However, this greatly in-
if it resulted in overlap with any of the other particles, andcreases the time required to perform a simulation. In the
accepted if there was no overlap. However, most of the calpresent case, the quadrupole-quadrupole pair potential de-
culations involved systems of particles with an additionalcays asr ~°, which was found to be sufficiently rapid to
interaction between point quadrupoles positioned at the cereliminate the need to perform such a lattice summation. The
ters of the ellipsoids. For such systems, the Metropolis algoenergy of a single molecule was calculated by summing over
rithm is applied as follows. Trial configurations are first the pair potentials between it and all other molecules within
tested for overlap. If particles overlap, then the configuratiora radius given by half the smallest dimension of the sample
is rejected. If the particles do not overlap, the quadrupolecell. For a density op* =0.42, this corresponds to a distance
guadrupole energy of the total system is calculated and conof r=4.96d, whered is the width of a solvent ellipsoid.
pared to that of the previous configuration.AE<O, then  When this maximum distance was doubled, the calculated
the move is accepted; AE>0, then the configuration is energy of the system and of each of the molecules, and the
accepted with a probability given by 2E/*sT. The maxi- EFG sampled by the solute, was found to change<ti6
mum displacements and rotations were chosen to contributer each of several different system configurations. In addi-
approximately equally to the likelihood that a particle movetion ensemble averages of various quantities of interest were
would be rejected, and to yield an overall acceptance ratio imot affected by increasing the sampling range.
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Most of the simulations for the quadrupolar systems were p'=0.388 p*=0.44
performed aQ* = — /2.5 andp* =0.42. The choice 0Q* AT AT
falls at the lower end of a range of valud®Qf |~ 0.75-4.0
suitable forT=300 K andd~5 A using the results of a 3
study which employed a simple atom-dipole method for ap-
proximating the quadrupole moment for rigid conformers of <2
various real nematogerjd9]. The use of higher values of -
QX was found to promote the formation of a smectic phase
in the model system and was therefore avoided. Note that we
neglect the axial asymmetry of tl@‘a”,} tensor present in real
molecules.

I=2.0
w=0.5
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calculating the largest eigenvalue of the following matrix: 5 c i | o 1
N a = » 1 _
1 - oF 1=0.65 . 2 7
<Q>:N;l <%uiui—%|>' (31) 3 w=1.0 ] ]

whereN is the number of solvent molecules, amds a unit

il IR
[=}

vector describing the orientation of tih solvent molecule. ok

The bracketg) denote an ensemble averaging over the se- Ll L b1l ST TN SR

guence of configurations generated by the MC Markov pro- 0 02 04 (og.;s 08 1 0 02 04 (oe.? 08 1
cos cOos

cess. The nematic director is given by the eigenvector corre-
sponding to this eigenvalue. In addition to the nematic order
parameter, the following functions were also calculated:
(i) The solvent orientational distribution functidiG).
(i) The solvent-solvent pair correlation function

FIG. 1. Calculated and theoretical solute orientational distribu-
tion functions for hard-core systen{f). MC data (squares and
predictions from TP theory using E¢13) (dashed ling and Eg.
(33) (solid line).

9uu(r™).
(i) The second-rank solvent-solvent orientational corretational order parameters and EFG tensor components were
lation functionP{"?)(r*) defined as follows: calculated in 80—-90 block averages of*16weeps through
the system. The fluctuations of these averages were used to
N ; ; > >
—ov)r 1 provide an estimate of the uncertainties of these quantities.
P2 (r )Zm; <P2(C089ij)>, (32)

IV. RESULTS AND DISCUSSION
where ¢;; is the angle between solvent ellipsoidand .

(iv) The solute orientational order paramekgy. . . . . .
(v) The solute orientational distribution functidif6). Orientational distribution functions for four different sol-

(vi) The average EFG tensor at the center of the solutdtes were calculated for two different densities for a system
F .z i the frame of the nematic director. employing only hard-core interactions. The MC distributions

(viil) The solute-solvent radial distribution function are show_n In Elgs. 1 and 2. The corresponcjmg s_econd—rank
) solute orientational order parameters are listed in Table I.
uv . iati ictri i i -
(viii) The solute-solvent orientational correlation function The variation of the distributions with solute shape and sol

PU (%) defined | | 0 that f vent density is similar to that observed in our previous MC
P37 (r*), defined in a manner analogous to tha Of simulation study[33]. Increasing the length of the solute

P{?)(r*) above. results in an increase in the degree of orientational ordering.
(ix) The fourth-rank orientational order parameter for theThis is evident in Fig. 2, which shows distributions for sol-
distribution of solute-solvent intermolecular displacements,tes with dimensions df=5.0 andw=1.0, andl =2.0 and
Py(r*). w=1.0. Further, increasing the solvent density, and therefore
All of the measured quantities described above were calthe degree of solvent orientational order, leads to a corre-
culated by averaging over typical§8—9x 10° configura-  sponding increase in solute orientational order. Note that the
tions. In order to calculate properly all quantities that areoblate solute with dimensions 6%£0.65 andw=1.0 prefers
measured with respect to the nematic director, which underto orient with its symmetry axis perpendicular to the nematic
goes orientational fluctuations over the course of a simulaelirector, resulting in a distribution maximum @+90° and a
tion, the director was recalculated after every!2@0% at-  negative order parameter.
tempted moves per particle. All calculated quantities which We use the results of these simulations to test the predic-
are functions of orientation with respect to the director weretions of the TP theory, assuming that the mean-field potential
calculated for cogin the range 0 — 1 in increments of 0.01. is due to hard body interactions given by Efj1) or equiva-
Further, the quantities which depend on the intermoleculalently by Eq.(13). The orientation-dependent excluded vol-
separatiorr were calculated to a distance of half the mini- umeV(w,®"), which for axially symmetric ellipsoids is a
mum dimension of the sample cele.g., 4.9@ for function of only the angle between the symmetry axes, was
p*=0.42 in increments of 0.0%. Solute and solvent orien- calculated through a numerical integration over the magni-

A. Hard-core system



4328 JAMES M. POLSON AND E. ELLIOTT BURNELL 55

0*=0.388 p*=0.44 parameters to be consistent with experimentally measured
order parameters for several molecules. Clearly, the MC

technique provides a superior method to test the approxima-
tions of the theory.

| L L BN AL LB U | DL AL LR L

fop =80 p or The calculated theoretical distribution functions are
s [ w10 1 [ 1 shown as the dashed curves overlaid on the plots of the MC
- sk J = 5L 1 distributions in Figs. 1 and 2 for the four different solutes at
L ] r 1 densities ofp* =0.388 and 0.44. In all cases the TP theory
i 1 i 4 1 drastically underestimates the degree of orientational order
0 L EE— | ||| H] o ,, | observed in these hard-core systems. This contrast is further
0 02 Ofos(oéf 08 1 0 o2 0-;‘05(%)6 08 1 illustrated by comparing the theoretical and calculated sec-
6 e S ond rank order parameteB, in Table I. A notable case is

that of the solute which is identical to the solvent particles

aF 4E (I=5, andw=1). In this case, the MC orientational distribu-

3_ I=2.0 3_ tion function of the solute is identical to the solvent distribu-
o [ w10 ok tion which was used in the calculation of the theoretical sol-
=ap Hop ute distribution function; thus the very poor agreement

between theory and simulation highlights the lack of internal
self-consistency of the theory. Clearly, the hard-core compo-
el Ll nent of the TP mean-field potential given by Efl) gives
02 04 06 08 02 04 06 08 an inadequate description of orientational ordering for hard-
cos(8) cos(8) core systems.
The flaw in the TP theory must be due to the approxima-
FIG. 2. Calculated and theoretical solute orientational distribu+tjon of neglecting solvent-solvent correlations, which is ex-
tion fur_mtions for hard-core sy_stenﬁﬂ). MC data(s_quare}; and pressed in Eq(2). This is not a surprising finding given the
predictions from TP theory using Eq13) (dashed lineand Eq.  high gensity of the nematic phase, coupled with the short-
(33) (solid ling). range nature of the interaction. It is analogous to the poor
quantitative predictions of Onsager theory, which accounts
tude and direction of the solute-solvent intermolecular VeCfor On|y tWO_partic|e Corre|ationsy when app“ed to hard par-
tor. The results for the case of identical 5:1 ellipsoids werg;jcles of realistic length-width ratios. In the study by Tjipto-
consistent with those reported by Tjipto-Margo and Evansyjargo and Evang44], an additional term involving the third
[44]. Note that the potential of Eqsl1) and (13) is eX- gl coefficient (which accounts for three-body correla-
pressed in terms of the solvent orientational d|str|but|onti0ns) in the expression for the free energy for a system of
function f(w). Thus, in order to calculate the solute distri- hard ellipsoids with a dimension ratio of 5:1 was included:;
bution, we use the solvent distribution calculated in the MCthIS approach y|e|ded an adequate quantitative description of
simulation. Also note that in the StUdy of Terzis and PhOti-nematogen ordering_ S|m||ar|y, the TP theory requires a
nos, the mean-field potentials were rewritten in terms of thenore careful treatment of many-particle correlations, beyond
solvent order parameteRy™™ and P{"™™, with higher or-  the consideration of solute-solvent effects alone, in order to
der contributions neglected. The values of these quantitiegrovide a reasonable description of solute orientational be-
had not been reported previously, and thus had to be estihavior. Such a modification, however, may be difficult to
mated; values were chosen in order to yield calculated orddancorporate into the framework of the theory.

[ I N B

Levedwv e v unsdany

]
1 0

[=]
I

o T
-

TABLE I. MC and theoretical solute order parameters for a hard-core system.

p* 12 w®  P,(MC)  P,(Th.h®  P,(Th.m°  q° pem

0.388 065 10  —0.051) ~0.03 ~0.05 18 0.62@)
2.0 1.0 0.241) 0.08 0.24 28 0628
2.0 0.5 0.281) 0.08 0.24 26  0.629)
5.0 1.0 0.681) 0.31 0.61 21 0628

0.44 065 10  —0.131) ~0.04 ~0.12 32 081
2.0 1.0 0.501) 0.12 0.48 39 081
2.0 0.5 0.341) 0.12 0.34 25  0.81@)
5.0 1.0 0.811) 0.46 0.80 23 081

@Units of solvent ellipsoid widthd.
bCalculated using Eq(11).
Calculated using Eq33).
dFactor appearing in Eq33).
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A simple alternative approach to improving the TP theorynot exceed 10%. This may be due to the fact that the solute
was provided in a recent study by Terasal. [45]. In this  shapes used in the MC simulations of this study were chosen
study, the TP theory was used to analyze the orientationdb be significantly different, while those used in the study of
ordering of a series of cyclic aliphatic solutes in a nematicTerziset al. were (necessarily structurally similar. It is also
solvent. The principal advantage of using these particulapossible that molecular flexibility of both the solvent and
solutes is that they have essentially vanishing electrostatisolute molecules of the experimental system may improve
multipole moments, and thus the principal ordering mechathe consistency of the fits among the solutes. In any case, the
nism should be the short-range anisotropic component of thmagnitude of the variations in the effective packing fractions
solute-solvent pair potential. Thus EG1) [or, equivalently, observed in the present study suggest that the predictive
Eqg. (13)] was used as the theoretical solute mean-field popower of the hard-core component of the TP mean-field po-
tential. Note that the solvent orientational distribution cannotential may be limited.
be determined from the NMR experiments, and thus the po-
tential was rewritten in terms of a spherical harmonic expan-
sion, with solvent order parameters constituting the expan- = .
sion coefficients, which was truncated to second rank. In the Table Il lists theP, and F3, calculated for simulations
analysis, the parametpe= pv P(Z“em), wherev is the volume employing a wide variety of solute shapes and quadrupole
of the nematogen, was treated as an adustable parameteriPments. The nematic solvent was characterized by a re-
order to fit the solute order parameters. As expected, it waduced density 0p* =0.42, and by quadrupole moments with
found thatp was independent of the properties of the solutevalues of Q) = — J2.5. The nematic order parameter was
(to within 10%. In addition, it was found thap actually  found to beP{"®™=0.76+0.01, with some minor variations
exceeded unity over a significant temperature range, a resufetween systems with different solutes; specific values are
that is clearly forbidden by the definition of this parameter.listed in Table Il. Further, the table shows the theoretical
This result is clearly a consequence of neglecting the=%  calculated using Eq25) and theoretical predictions of

solvent-solvent correlations in the derivation of the theoren—l32 for spherical solutes using the reduced mean-field poten-
cal potential. Further, it was suggested that the effect of ne: —%

" .
glecting the solvent-solvent correlations in the theory can b lal of Eq.(26) .Of the.EL theory. Note thaﬁ:Z? calculatgd N
compensated for by consideringto be an effective nemato- ?g‘ the MC simulations and by EL thepry |s%ro.portlonal o
gen volume, which is clearly larger than the true volume Qzz [See Eqs(25) and(29)]. Thus the sign of7; is deter-
The usefulness of the theory for predicting the orientationamined by the sign 0Q%), which in the present calculations
behavior of solutes was supported by the observation that theas taken to beQ{?)<0. Using a positive value 0!’
value of p was roughly solute independent at a fixed tem-simply reverses the sign &5, but otherwise has no effect
perature for a particular nematic solvent. Thus the theoryn the calculated quantities.

should predict the orientational behavior of an arbitrary sol- The most striking result is the strong dependencé bf

ute, if the order parameters of any one solute are knowngp, the shape and quadrupole moment of the solute. This is in
under the assumption that short-range repulsive forces agntrast to the solute-independent model put forward by Bur-

the dominant orienting mechanism. :
nell and co-workers. For the case of spherical soluts,
We have analyzed further our results for the hard-core . P

. ) - o
system by employing a modified form of the potential of Eq.mrg;eﬁsaetzlmsm:q?:gtl: idcev::ic;;] 'rn;;eziht%“ L’h:]:uigh ;th:assailp;] of
(13) given by the following equation: P y sy — P ging 9

Qy, since the sign of3; is consistently positive. This is

- clearly not the case for the nonspherical solutes where the
UHC("’)/kBT:qpf do'Ve(w,0)f(0), (33 shape anisotropy breaks the symmetry &g undergoes
concomitant change in sign wit®; . Thus, for the oblate

whereq is a factor introduced to compensate for the neglecsolute, F5,<0 for Q; Q; <0, andF3,>0 for Q} Q) >0.

of solvent-solvent correlations, related to the parameter The trend is the reverse for the various prolate solutes.
described above. Specifically, it can be considered to be the The dependence d¥3, on Q} is qualitatively consistent
ratio of an effective solvent packing fraction to the true pack-with the behavior of the measured orientational order param-
ing fraction. The new fits of the MC solute distribution func- etersP, in the context of a mean-field EFG-quadrupole mo-
tions are shown as the solid curves in Figs. 1 and 2. Changnent interaction given by Eq&22) or (26). In the case of the
ing the packing fraction through the optimizationdtlearly  ghpercq solutes, the consistently positig, is predicted

results in a dramatically improved prediction of the distribu- . .
tion functions. This is also clear from the values of the Ordels_uccessfully by Eq(26) to give P,>0 for Q;>0 and

parameters which correspond to these fits, which are listed iR2<0 for Qf <0 (for the present case whe@@ <0). This
Table I. The fitted values af are also shown in the table. In is also consistent with the expected behavioPgfbased on

all cases, it was found that the effective packing fraction wag consideration of the quadrupole-quadrupole pair potential
significantly greater than the true packing fractide., >  alone. For axially symmetric quadrupole moments of the
1), a result which is consistent with the results of the experi-same sign, the minimum energy orientational configuration
mental study by Terziet al. [45]. We note, however, that is a perpendicular arrangement of the symmetry axes; thus a
the range of values of the effective packing fraction for eacthegative order parameter is expected. For quadrupole mo-
density for the four solutes varies more widely than wasments of opposite signs, a parallel configuration corresponds
found in that study where the deviations among solutes dido the lowest energy, and thus a positRg is predicted.

B. Quadrupolar systems
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TABLE Il. EFG and order parameters for several solutep*at0.42 and Q:)2=2.5.

JAMES M. POLSON AND E. ELLIOTT BURNELL

Shape Dimensions Q}Qy * F3,(MC)? Fi,(Th)® P,(MC) P,(Th® piem
Spherical 1=1.0 -25 1.82) 15 0.262) 050  0.7493)
w=1.0 -2.0 1.q1) 0.9 0.1%2) 0.19 0.7503)
-15 0.51) 0.5 0.071) 0.08 0.7612)
0.0 0.0%3) 0.15 0.011) 0.0 0.7513)
15 0.51) 0.4 —0.032) —0.05 0.7562)
2.0 1.41) 1.4 -0.102)  -022  0.7562)
2.5 2.2(2) 2.4 -0.162) -032  0.758)
Spherical  1=0.75 -15 3.82) 3.9 0.292) 059  0.7572)
w=0.75 -1.0 1.11) 1.1 0.091) 0.12 0.7542)
0.0 0.043) 0.07 0.011) 0.0 0.7612)
1.0 1.81) 1.7 —0.061) —0.14 0.7572)
15 5.43) 4.9 -0.192) —0.36 0.7572)
Oblate =0.65 —-15 -0.8 (1) -0.9 -0.11(1) 0.7592)
w=1.0 —0.75 —0.324) —0.39 -0.121) 0.7512)
0.0 —0.01(3) —0.05 —0.091) 0.7562)
0.75 2.11) 2.0 -0.141) 0.7612)
1.5 11.84) 15.5 -0.3712) 0.7522)
Prolate 1=2.0 —-25 2.7(1) 3.0 0.562) 0.7622)
w=1.0 —-15 1.0 1.0 0.393) 0.7582)
0.0 —0.013) —0.02 0.302) 0.7532)
15 —0.393) —0.39 0.372) 0.7682)
2.5 ~0.664) -0.70 0.402) 0.7612)
Prolate 1=3.0 -25 2.91) 3.0 0.672) 0.7612)
w=1.0 0.0 0.003) 0.08 0.5%2) 0.7563)
25 -1.034) —1.36 0.662) 0.7632)
Prolate 1=4.0 -25 3.32) 4.0 0.742) 0.76Q2)
w=1.0 0.0 0.013) 0.01 0.662) 0.7612)
25 -1.1(1) -1.2 0.732) 0.7623)
Prolate 1=5.0 —25 3.5(1) 46 0.811) 0.7682)
w=1.0 0.0 —0.043) -0.14 0.801) 0.7722)
25 -1.165) —1.50 0.782) 0.7632)

Calculated usinQ{y = — \/2.5<0; usingQ!)= + 2.5>0 simply reverses the sign &%, .
®Calculated using Eq25).
Calculated using Eq26).

The asymmetry 0F—§z for the nonspherical solutes is also along the nematic director, the nature of the shape anisotropy
consistent with the behavior of the calculated orientationafor the oblate solute appears to frustrate that outcome.

order parameter®,, referenced with respect to the systems The analogous situation is present for the various prolate_
with Q* =0. For the case of the oblate solute, the negativesolutes. In this case, the expected enhancement of the posi-

. . *

P, is enhanced by the positiie;,, which is present for t|v*e Xalue_ of P, relative to the case ofQ,=0, for
Q}Qy>0. Again, this is consistent with the expectation QuQ,<0is obs*er\ied, as W?" as a.n unexpgcted enharlce—
based on the orientation dependence of the quadrupol&?€nt ofP; for Q;Q;>0. Again, the increase in solute ori-
quadrupole pair potential. However, a somewhat surprisingntational ordering withQF Q7 |, regardless of the sign of
result is the(minor) enhancement of the negati® for the ~ QuQ; . is consistent with the change in signfe}; .

case of opposite signs of solvent and solute quadrupole mo- In the case of the large prolate solute, with dimensions
ments, where the lowest pair potential energy configuratioqual to those of the solvent ellipsoids=(5.0, w=1.0),
corresponds to a parallel arrangement of the quadrupolE’, has a similar dependence Qf Q; relative to the case
symmetry axes. While the corresponding case for sphericalf the smaller prolate ellipsoid. Note, however, that the ori-
solutes gave rise to an alignment of the solute symmetry axientational ordering is not significantly affected by the details
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FIG. 4. Solute-solvent orientational correlation functions for
FIG. 3. Solute orientational distribution functions af¥)? (Q¥)2=2.5 andp* =0.42.

=2.5 andp* =0.42.

of the electrostatic interactions. Thus orientational orderingign lead to a slight enhancement of long-range parallel con-
of highly elongated particles in a dense nematic phase agstgurfitlons, but a significant reduction of short-range parallel
pears to be dominated by entropic considerations, in keepingPnfigurations. The latter feature is more in keeping with
with the belief that molecular shape anisotropy, in conjunc-eXpectations based on the orientation-dependence of the
tion with short-range repulsive forces, is the dominant orderduadrupole-quadrupole pair potential. In the case of the ob-
ing mechanism for nematogens. late solute, there is no noticeable effect of the quadrupole-
The full orientational distribution functions for three sol- quadrupole pair potential on the short-range orientational

utes are plotted fo* Q* =0,+2.5 or 0;+1.5 in Fig. 3. The ~ Correlations.

v ; ) : .
trends present in the behavior of tRe for each of the sol- Figure 5 illustrates the effect of increasing solute length

utes is mirrored by the behavior of the distributions. Only inOn the order parametdt, for three different values of the
the case of the spherical solute is the orientational orderingolute quadrupole momen@, Q, =0, =2.5. The width of
consistent with an interaction between the solute quadrupol@!l of the solutes is fixed to that of the solvemt=1. The
moment and &%, of a constant sign. The behavior of the 'Ncréase in the degree of orientational ordering with increas-

solute-solvent orientational correlation functioR§")(r*) ing length, regardiess of the value of the guadrupole mo-

for th m lut hown in Fig. 4. provid m ddlment, is clear. The unexpected enhancement of orientational
or ;e same Soltes, sho g. &, Provides some a ordering described above for prolate solutes with

tional insight m_to_the per_turbmg influence Qf the quadrupole- *Q* = +2.5 relative to the case whef@* Q* =0 is also
quadrupole pair interactions on the ordering of the solutes*" ~v urv
Note that in the limit ofr * —oo, P{)(r*)=pP,P{"®™ . Thus
the long-range limit of these functions provides a measure of
the degree of solute orientational order. For all cases, except
that of the spherical solute wi®; =0, there are both short-
and long-range orientational correlations. In the case of the
spherical solute, both long- and short-range correlations have L05
the same pattern: enhancement of parallel configurations for =
solute and solvent quadrupole moments of the opposite sign,
and enhancement of perpendicular configurations for quad-
rupole moments of the same sign. Note that the short-range,
correlations are indeed very short range, as they vanish H

e . . . . ||||||||II|IIII||III|
within approximately one solvent ellipsoid widthfrom the 1 2 3 4 5
nearest approach distance. 1

The case of the prolate solute is more interesting. While
oppositely signed solute and solvent quadrupole moments FIG. 5. Solute orientational order parameter vs solute length
correspond to an enhancement of both short- and long-rangeith w=1.0. Q¥ Q% =—2.5 (triangles, 0.0 (square} and 2.5(pen-
parallel configurations, quadrupole moments of the sameéagons.
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TABLE lll. Experimental order parameters for three solutes.

Solute Q,,? P,P

EBBA 5504 1132¢
dideuterium 0.649 —0.009 65 —0.000 82 0.007 31
benzene —7.8(2.2)f —0.1157 —0.1756 —0.2519
hexafluorobenzene g5 —0.3144 —0.2280 —0.2144
acetylene 58.5" —0.0585 0.1123 0.1912

@Units of 10728 esu cnf.

PFrom Ref.[12].

°F,,=—6.42x< 10" esu for D,.

9F,,=0.0 esu for DB.

°F,,=6.07x 10" esu for D,.

fAaverage value of those reported in Reff$7] and[48].
9From Ref.[49].

PAverage value of those reported in Re50] and[51].

evident. Finally, it is interesting to note that the effects of therobenzene in the 55% mixtu(whereF_ZZ: 0), compared to

quadrupolar interactions on solute ordering gradually diminthat of benzene, is probably due to the fact that hexafluo-
ish as the dimensions of the solute approach those of thgyhenzene is slightly more oblate than benzene. To summa-
nematogen. Clearly, the effects of the hard-core interactiongze, certain key experimental results strongly suggest that
increasingly dominate the ordering with increasing shape anyglecules of very different shapes and quadrupole moments

isotropy. In the case where the solvent and solute dimensionge a with an averagk,, which, at the very least, has the
are identical, the quadrupolar interactions have a negl|g|bl<=§(,:“,ne sign

mfluenc_e. S . o Clearly, the experimental results conflict with the results
At this point, tIs Instructive to cqmpare'quahtatwe.ly the of the present MC simulations, which employ the simple
results of the simulations with certain previous eXpe”mentaguadrupole-quadrupole potential to approximate the electro-
results. Table Il lists the values d?, for D,, benzene, giatic interaction between molecules. As stated earlier, for
hexafluorobenzene, and acetylene measured in three d|ffere@)§am%, the oblate solute in the simulations samples an av-

liquid crystals. The EFG has been measured forabd HD o oqer \whose sign was directly proportional to the sign of

in these nematics and was found to be positive for Merc * i ; ; )
ZLI 1132, zero for the 55 wt % ZLI 1132—EBBA mixture fhe soluteQ; which was further manifested in an enhance
ment of |P,| for increasing|Q;; Q| relative to the case of

and negative for EBBAS8,46]. Further, benzene is known to . . < . o
have a large negative quadrupole moment, while hexafluoRu =0 independent of the sign &, Q, . At this time, we

robenzene has a large positive value; approximate values af@nnot pinpoint precisely the origin of this sharply contradic-
listed in the table. The magnitude of the negative value ofOry behavior, but it is very likely a result of using such a
P, for benzene was found to increase with increasing, highly simplified form for the electrostatic pair potential. At

while the opposite trend was observed for hexafluorobenSnOrt range, the convergence of the mu!tipole gxpansion Is
zene. This behavior can be explained by the interaction of®Y slow. Thus, in dense systems, an interaction between

the molecular quadrupole moments interacting with an exterPONt quadrupoles may be a very poor approximation, "’!”.d
nal F+o which has a sign that isonsistentith that mea produce the kind of artifacts observed here with very specific
zZ 3

. molecular shapes and forms of electrostatic interactions. A
sured by molecular hydrogen for the three nematics. Th P

. . . %igniﬁcantly improved model of electrostatic interactions
values of orientational order parameters of acetylene are IIkerhay be required to reproduce the qualitative trends observed
wise conS|ster_1t with this soIute—|nd_ependent_mean-ﬂeld P experimental studies. This consideration is important with
diction. In particular, note the negative valueRf for acety-  yegard to any theory of solute orientational order which uses
lene in EBBA, a feature which is not easily rationalized g,cy 4 simplified model for the pair potential.
except by an interaction between its positi, with a The EL theory has been applied to analyze the present
negativeF ;. Furth'er, note that benzene and hexa}fluorobenresﬂtsl Equation&25) and(26) were used to calculate values
zene have approximately the same shape, despite the larger* angp,. However, note that the calculation of these
difference in quadrupole moments. Thus the differences '%verages requireBT™™ g, (r*), and P} (r*), quantities

P, for the two molecules in the same liquid crystal likely icn"a150 must be calculated in the MC simulations. Thus
arise principally from the difference in quadrupole moments.,, “theory” simply provides a prediction of the relationship
Again, the trend is consistent with a mean-field i”teraCtionoetween various quantities that may be measured for the sys-
between a quadrupole moment ané g with a sign which  tem, rather than a theory which requires exclusively external
is independent of the solu,,: the magnitude of the nega- system parameters. Thus, it is not of a form which may be
tive P, is enhanced forQ,F,,<0, and reduced for used to study real nematic systems using NMR spectroscopy,
Q.Fzz>0, where, again, we use values Bf; measured for example, since,,(r*) andP, (r*) are not measurable
using D,. The slightly larger magnitude d?, of hexafluo-  with this technique.
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may gain some insight into the dependenc§_§>{ on solute

FIG. 6. Solute-solvent distribution functions for solute with di- properties by investigating more closely the results in the
mensions ol =2.0 andw=1.0 atp* =0.42 and Q*)?=2.5. context of the theory.

— — In Figs. 6 and 7 we show the three solvent-solute pair
The results of the predictions &%, and P, are summa-  (jstribution functions gy, (r*), P, (r%), and

rized in Table I along_with the values measured in the MCP_Zr(r*)g(r*)(r*)—Z%_ Note that both the mean-field potential

simulations. Note thalP, can only be calculated for spheri- U*(6) [Eq. (24)] and F%, [Eq. (25)] are directly propor-

c_a! solutes, si_nce the non_spherical solutes experien(_:e an f5nal to the latter function. Figure 6 shows the distribution
ditional orienting mechanism due to the shape anisotropy . wions  for a prolate solute 1€2, w=1) for

coluple(jj.m_th thefli_zort-range rgpuIS|;/e forcdesf. Thﬁ th(ToreuQ: Q) =0,£2.5. For a zero quadrupole moment, there is
cal predictions ofr7, are consistently good for all solute only a vague shell structure visible @, (r*), while there is

shapes and quadrupole_moments. This is true for both thg very strong enhancement in minimum-distance positional
signs and magnitudes df7,. Considering this point, we corelation forQ* Q*=-2.5 and a smaller enhancement at
Q; Qr=2.5. The strong peak f@}; Q> = — 2.5 is consistent
QQ; = ~25 Q.Q, =00 QQ, =25 with a strong minimum in the quadrupole-quadrupole pair
ialaunatian st uat B AL wa s wads B UL ua A T T potential for parallel configurations between axially symmet-
r ric quadrupoles of opposite signs. TRg (r*) distribution
also undergoes noticeable changes with var@id; : in-
creasing Q; Q; results in a decrease in the minimum-

+W/\/v—~ distance positive peak and a deepening of the negative
woli o Beed it it cobibin b “well” to the right of this peak. These effects result in sig-
it iei ntiay i ot TG it ks L) g nificantly  different P, (r*)g,,(r*)(r*)~% _functions.

Clearly, integration of the functions results inFg,>0 for
QiQ;=-25, F;,<0 for Q;Q;=25, and a near-

LI e e e
T
LI e

LARRNLARAN LRRLN RRRRN RANS

=

)

+
4

L

g

e vanishingF3, for Q) Q) =0.0. The results for the longer
- g 1 prolate ellipsoid (=5, w=1), shown in Fig. 7, are virtually
sbibintinbind - Sudiliadibd - oo identical. Thus changes in tli&, arise from changes in the

. grrrTTTTTTTy gy g structure of the solvent in the vicinity of the solute as a result

T 05 4 F - x10 of changes in the solute properties.

i 0 E 3 The theoretical predictions d¢f, for the spherical solutes

= F 1r 1 listed in Table Il are generally poor, and deviate from the

05 1 F E measured values typically by a factor of 2. This result is
Roobndonlnbind Bl bind Bowdbnbin b b somewhat surprising given the accuracy of the calculated
01234501 234501273435

¥ r r F%,, whose theoretical expressi¢gqg. (25)] is defined by
the mean-field potentidEq. (26)] which is used to calculate
FIG. 7. Solute-solvent distribution functions for solute with di- P,. At the very least, however, the signs of the order param-
mensions of =5.0 andw=1.0 atp* =0.42 and Q¥)?=2.5. eters are accurately predicted. A comparison of the calcu-



4334

JAMES M. POLSON AND E. ELLIOTT BURNELL

TABLE IV. EFG and order parameters for several solutep*at0.39 and Qj)2:2.5.

Shape Dimensions QfQ} *  F3,(MC)2 Fi,Th)® P, (MC) P, (Th)¢  p{em
Spherical I=1.0 -25 1.81) 1.2 0.262) 0.34 0.6374)
w=1.0 -15 0.295) 0.29 0.042) 0.04 0.64%4)
0.0 0.043) 0.05 0.011) 0.0 0.6416)
15 0.436) 0.35 —0.011) —0.05 0.6227)
25 1.52) 15 -0.092) —0.18 0.6364)
Prolate 1=2.0 -25 2.41) 1.1 0.442) 0.6384)
w=1.0 -15 0.635) 0.45 0.302) 0.6364)
0.0 0.012) 0.06 0.232) 0.6394)
1.5 -0.333) -0.21 0.2%2) 0.65715)
25 —0.484) —0.30 0.292) 0.6352)

Calculated usinQ{y = — /2.5<0; usingQ!Y)= + 2.5>0 simply reverses the sign &%,.
®Calculated using Eq25).
Calculated using Eq26).

lated and theoretical solute orientational distribution functionFZ*Z andP_2 rapidly become very large relative to their aver-
for one spherical solutd £w=1) is shown in Fig. 8. Note age values, a feature that greatly increases the statistical un-
that the accuracy of the predicted curves appears to bgertainties of these averaged quantities.

poorer, as the magnitude of the solute quadrupole moment T jnyestigate further the details of solute orientational
increases. This discrepancy between the degree of orientggnayior in a nematic solvent, we have conducted simula-
tional ordering calculated in theory and simulation suggestgions for solutes in a nematic solvent at a lower density, and
that the mathematical approxmqﬂons employed in the EI'therefore, with a lower degree of orientational order. Table
theory may be too severe 1o yield a useful and accurat presents results for the EFG and order parameters of

theory _for §0Iute orl_entatlonal order. It is becaus_e of t.hes%pherical and prolate solutes with a variety of quadrupole
approximations, which also affect the solvent orientational . ; .
oments oriented in a solvent at a reduced density

order, that the solvent field gradient becomes the leadin . i —Them)
electrostatic contribution. Changing the approximations will?” =0.39, and with an order parameter 6°"=0.64
change the form of the mean field. Given that the theoretical- 0.01. As expected, there is a significant reduction in both
predictions are slightly better for weaker solute-solvent couf3, and P, as a result of the decrease of the degree of
plings for the systems studied here, it could be argued thaiematic ordering; otherwise, there is no qualitative differ-
the theory is more accurate in the limit of small solute quad-ence with the results for the systemspét=0.42.

rupole moments. It is interesting to note that in the case of D Finally, we consider the effects of solvent-solvent corre-
» and HD, the only solutes for which the average EFG andations on the behavior of solute average properties. Earlier,
order parameter can be simultaneously measured experimeifi-was shown that the TP theory drastically underestimates
tally, the mean-field model gives excellent predictions of thethe degree of solute orientational order in hard-core systems.
measured®,. Perhaps it is significant that the solute quadru-The cause of this problem was the severity of the approxi-
pole moments for these molecules are very small, in keepinghation neglecting solvent-solvent correlations induced by
with this argument. Unfortunately, it is very difficult to test the solvent-solvent hard-body interaction. A consideration
this hypothesis using MC simulations for solutes with verywhich is related to that result concerns the importance of the
weak quadrupoles: the statistical fluctuations of the measuresblvent-solvent correlations on the solute properties which

TABLE V. Comparison of MC results with and without quadrupole-quadrupole interactions between
solvent ellipsoids.

Qy-Qy off 2 Q}-Q} on®
Dimensions ~ QXQ*° F3, P, ppen FZ, P, pnem
I=1,w=1 25 262  -0.162  0.7642) 222) 0162 0.7582)
=2, w=1 2.5 ~1.035) 0.492) 0.7662) —0.664) 0.402) 0.7612)
=2, w=1 0.0 0.073) 0.322) 07652  —0.013) 0.292) 0.7632)

aSolvent-solvent quadrupole interactions turned off.
bSolvent-solvent quadrupole interactions turned Qfi=—v2.5.
‘Q}Q; gives the solute-solvent interaction strength.
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R RRRAN L Ana s A NN soids of rotation to describe the molecular shapes. Electro-

static effects were studied by incorporating an interaction
between point quadrupoles embedded in the centers of the
_________ (@)=2.5 hard ellipsoids. We analyzed the results of the simulations
using two current theories of orientational ordering of solutes
in nematic liquid crystals.
; In a purely hard-core system, solute orientational order
s PAPER TATRR IV OOE varies in a predictable manner: increases in solute shape an-
o 1 2.3 4 isotropy and solvent density enhance the degree of ordering.
The orientational distribution functions were analyzed using
AR AR LA LN R a theory due to Terzis and Photir@&?], which was found to
7] underestimate the solute ordering drastically. This discrep-
] ancy is due to the complete neglect of solvent-solvent corre-
\““\\: lations in the derivation of the solute mean-field orientational
potential. The severity of this approximation calls into ques-
tion the results of the study which employed the theory to
analyze orientational order parameters of solutes measured in
b b previous NMR experiments. Further, the distribution func-
o 1 2.8 458 tions were refit by optimizing the effective solvent packing
fraction. The distributions calculated in the fits were signifi-
FIG. 9. Comparison of solvent-solvent pair distribution and ori- cantly better than the original calculated distributions; in ad-
entational correlation functions foq*)2=0 and 2.5 ap*=0.42.  dition, the effective packing fractions were found to be con-
sistently greater than their true values, in agreement with an

result from the solvent-solvent electrostatic interactions. Weexperimental study by Terzist al. [45]. However, unlike
have investigated this point by performing simulations inthat study, it was found that the effective packing fractions
which solvent and solute interact both via hard-core and/aried significantly among solutes of different shapes, a re-
quadrupole-quadrupole interactions, but where solvent pasult that calls into question the predictive power of the hard-
ticles interact only with a hard-core pair potential. A com- core component of the TP mean-field potential.

parison of the results of average solute properties with the In the quadrupolar systems, the relationship between the
corresponding results, where all interactions have been pro@ard-core and electrostatic contributions to solute orienta-
erly included, may provide some insight into this matter. tional ordering was investigated in detail. The behavior of

In Table V, we present the calculated values Fd, and the properties for a large collection of solutes of varying

P_2 for three solutes with and without the solvent quadrupole-s'hapes and quadrupole moments was examined. In addition,

. . -~ we were particularly interested in testing the accuracy of a
quadrupole |n.teract|on tur'ned on. In the case of the Sph,er'c#ean-field model proposed by Burnell and co-workers in
solute, there is a small difference K}, and no change in

which the interaction between the molecular quadrupole mo-
P,. However, for the prolate solute witQ} #0, there is @ ment and a solute-independent average EFG sampled by the
significant variation in bottF3, and P,. The difference is solute constitutes an important orientational ordering mecha-
reduced by settin@; =0 for a solute with the same shape. nism. To this end, the relationship between the measured
Thus it appears that solvent-solvent correlations induced bgverage EFG and orientational order parameters was exam-
solvent-solvent electrostatic interactions can indirectly affecined in detail. Further, a theoretical mean-field potential and
solute properties, though in a way that clearly depends on thaverage EFG can be derived using a method due to Emsley
properties of the solute. Note that these differences do n@nd co-workers. The theory provides a simple relationship
arise from a change in the nematic order parameter: as shovgtween the solute order and various solute-solvent functions
in Table V, P{™™ is not significantly affected by the pres- in the vicinity of the solute. This approach was found to give
ence of solvent quadrupole-quadrupole interactions of th€°mMe insight into the solute orientational behavior. _
magnitude considered here. Nevertheless, there is a signifi- A Significant result of the simulations employing the point
cant difference in the structure of the solvent between théluadrupole electrostatic model was that the measured EFG
hard-core and the hard-core plus quadrupole systems. Thi&mpled by the solute was found to be highly sensitive to the
difference is manifest in the solvent-solvent pair distributiondetails of the properties of the solute, in contrast to the model

and orientational correlation functions shown in Fig. 9. put forward by Burnell and co-workers. In the case of non-
spherical solutes, the EFG was found to experience a con-

comitant change in sign with the solute quadrupole moment.
This result is in sharp contradiction with certain key experi-
In this paper, we have presented a MC simulation study ofmental NMR results, for which it was found that the order
the combined effects of shape anisotropy and one specifigarameters of several molecules conform to the mean-field
electrostatic interaction on the orientational order of solutesnodel where the solutes interact with an EFG which, at the
in a nematic solvent. Solute and solvent molecules were conrery least has the same sign. The origin of this discrepancy is
structed using a minimal model to describe pair interactionsvery likely the inadequacy of using point quadrupoles for
Anisotropic short-range repulsive forces were approximatediense systems for which the convergence of the multipole
by using a hard-core potential, with axially symmetric ellip- expansion at short distances becomes an important consider-
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ation. Thus an improved description of molecular electro-field potential. However, as we described above, the interac-

static interactions will likely be essential in order to generatetion between point moments to represent electrostatic inter-

solute orientational behavior consistent with that observedctions was found to be inadequate for dense systems. Thus,

experimentally. given the combined inadequacy of both the basic electro-
Despite the problems with the molecular model outlinedstatic pair potential and the mathematical approximations of

above, the observed orientational ordering was qualitativelghe theory, an accurate theoretical description of the electro-

consistent with the predictions of the mean-field model, usstatic contributions to the orientational ordering of solutes in

ing the measured values of the EFG for each solute individua nematic liquid crystal is not yet available.

ally. In addition, the EL theoretical prediction of the solute

EF_G, which is related to th_e _Iocal solven_t structure, was ACKNOWLEDGMENTS

quite accurate. The EL prediction of the orientational order
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