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Departure from Navier-Stokes hydrodynamics in confined liquids

Karl P. Travis, B. D. Todd,* and Denis J. Evans
Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia

~Received 18 November 1996!

In this work we use nonequilibrium molecular dynamics~NEMD! to simulate an atomic liquid undergoing
gravity-fed flow down a narrow channel. We compare the simulation results against the predictions of classical
Navier-Stokes theory for two different channel widths. For a channel width of 5.1 molecular diameters, we find
that the velocity profile deviates significantly from the hydrodynamic prediction. The shape of this velocity
profile is found to be independent of the applied field~pressure gradient!. We find that the heat flux profile does
not agree with the cubic profile predicted by Navier-Stokes hydrodynamics, but shows significant oscillations
located about one molecular diameter from the walls. This result differs from the earlier work of Todd and
Evans@B. D. Todd and D. J. Evans, J. Chem. Phys.103, 9804 ~1995!#, in which an assumption of a purely
quadratic velocity profile resulted in very weak oscillations in the heat flux. We find that in narrow channels the
viscosity cannot be described by a linear, local constitutive relation. However, classical Navier-Stokes behavior
is approached for a channel width of.;10 molecular diameters.@S1063-651X~97!09504-4#

PACS number~s!: 03.40.Gc, 66.20.1d, 47.55.Mh, 05.70.Ln
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I. INTRODUCTION

Classical Navier-Stokes hydrodynamics is known to
scribe macroscopic flows of simple fluids. In situatio
where the state variables of temperature and density
appreciably on a scale comparable to the molecular m
free path, these equations break down@1#. We therefore can-
not expect the Navier-Stokes equations to accurately
scribe flow through very narrow channels or pores. Furt
complications arise when the fluid contains molecules t
can rotate about their respective centers of mass.

In this paper we examine the limitations of the Navie
Stokes hydrodynamic solutions for a fluid undergoi
gravity-fed flow down a square channel~Poiseuille flow!.
We examine in detail the streaming velocity profiles, h
flux, stress profile, and density profiles for a model flu
confined to channels with widths of 5.1 and 10.2 molecu
diameters. We concern ourselves only with a simple fl
~i.e., one composed of structureless molecules!. The case of
molecular flow has been examined by us in another publ
tion @2#.

Recently, Todd and Evans@3# carried out simulations of a
simple fluid undergoing planar Poiseuille flow in narro
channels. While they observed significant oscillations in
density and stress profiles, the heat flux and velocity profi
were essentially classical. This latter observation of a cla
cal velocity profile for a channel only 5.1 molecular diam
eters wide does not agree with the theoretical prediction
Bitsaniset al. @1#. In the present paper we carry out mu
longer simulations which yield much better statistics and
use a recently developed technique@4# that allows the calcu-
lation of thermodynamic quantities to an extremely high s
tial resolution.

*Present address: Cooperative Research Centre for Polym
CSIRO Division of Chemicals and Polymers, Private Bag 10, Ro
bank MDC, Clayton, Victoria 3169, Australia.
551063-651X/97/55~4!/4288~8!/$10.00
-

ry
an

e-
r
t

t

r
d

a-

e
s
i-

of

e

-

Navier-Stokes hydrodynamics for gravity-fed flow

Consider a gravity-driven flow between closely spac
parallel plates whose normals are perpendicular to the di
tion in which gravity acts. In this case the equation of moti
is

r
du

dt
52“•P1nFe , ~1!

where the magnitude of the external field,Fe, is simply the
molecular mass of the fluid particles,m, multiplied by the
acceleration due to gravity,g. The number density isn, u is
the streaming velocity, andP is the pressure tensor. In writ
ing Eq. ~1! we have assumed that the vertical height of t
plates is sufficiently small that the difference in hydrosta
pressure between the top and bottom of the plates ma
ignored. For an isotropic fluid the pressure tensorP can be
decomposed into a viscous part and an equilibrium p
P5P1p1, whereP is the viscous pressure tensor,1 is the
isotropic second rank tensor, andp is the scalar hydrostatic
pressure.

In this special case of gravity-driven flow, at a stea
state we have

dPyx~y!

dy
5nFe , ~2!

where we have chosen our x axis to be parallel to the ex
nal force and they axis to be parallel to the normal of th
plates. For a fluid with no spatial variations in the densi
the shear stress profile will be linear. In reality, the prese
of solid walls and a nonuniform temperature profile results
variations in the density across the channel, yielding a n
linear stress profile.

The linear constitutive equation relating the shear stres
the shear viscosity is

Pos522h~“u!os, ~3!

rs,
-
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55 4289DEPARTURE FROM NAVIER-STOKES HYDRODYNAMICS . . .
whereh is the shear viscosity,“u is the strain rate tenso
and the superscript os denotes the traceless symmetric p
the tensor. Combining Eqs.~2! and ~3! with the assumption
that the flow velocity takes the formu5@ux(y),0,0#, we have

h
d2ux~y!

dy2
52nFe , ~4!

which is a Navier-Stokes equation for the special case
steady planar gravity-fed flow. Equation~4! contains the as-
sumption that the shear viscosity does not vary in spac
time. Solving Eq.~4! for the flow velocity with stick bound-
ary conditions gives the classical quadratic profile for P
seuille flow

ux52
h2nFe
2h

~ ȳ221!, ~5!

whereh is the half width of the channel andȳ is y/h. This
expression is expected to break down for channels which
only a few molecular diameters wide.

The equation of change for the specific internal ene
~energy continuity equation! is

r
dU

dt
52“•Jq2PT:“u, ~6!

whereU is the specific internal energy,Jq is the heat flux
vector, andPT is the transpose of the pressure tensor.
gravity-fed flow in a square channel, at a steady state
have

dJqy~y!

dy
52Pyx~y!g~y!, ~7!

whereg5dux(y)/dy is the strain rate. Equation~7! demon-
strates that in the classical case the heat flux across the c
nel should be a cubic polynomial.

II. METHOD

A. Simulation details

We have previously described in detail the NEMD tec
niques used to simulate planar Poiseuille flow@3,5,6# and
here only briefly outline the way in which the simulation
were carried out. In our simulations we apply a const
force in thex direction to each particle, which has the sam
effect as allowing gravity to initiate the flow of fluid dow
the channel. The geometry of the system is shown in Fig
Both the fluid and wall particles interact via the WCA inte
atomic potential functionf(r ):f(r )54(r2122r26)11, for
r,21/6; f(r )50, for r.21/6 ~we have defined the WCA po
tential constantss and« to be unity for simplicity; we also
define the fluid and wall particle masses to be unity!. Hence-
forth, all quantities will be quoted in reduced units.

The system is surrounded by periodic images of itself
each of the three Cartesian dimensions. We note here tha
simulation geometry is such that the external field is in thx
direction and the heat flow is in they direction. We examine
two channel widths,W55.1 and 10.2. HereW is defined as
the separation in they direction between the centers of th
first layer of wall atoms adjacent to the fluid. Both syste
t of

f
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consisted of 360 fluid atoms bound by 216 wall atoms wh
were three atomic layers thick~72 atoms per layer!.

The wall atoms were fixed in an fcc lattice structure by
combination of harmonic restoring forces@7# ~with a spring
constant set to 150.15! and a constraint mechanism that fixe
the center of mass of each layer of wall particles while
lowing individual wall atoms the freedom to vibrate abo
their lattice sites. There is only one three-atom-thick wall p
simulation cell. The second wall was simply the period
image of the first wall. This periodicity also ensures that t
total density of the system remains constant. For details
the governing equations of motion and the integrat
scheme used to solve them, the reader is referred to R
@5,6#.

The average number density of both systems isn5N/V
50.715, whereN is the number of liquid atoms andV is the
volume accessible to the liquid. The unit cell dimensio
Lx ,Ly ,Lz for the W55.1 channel are 10.8200, 7.270
10.8200, respectively, while for theW510.2 channel they
are 7.1905, 12.3844, 7.1905. It is important to note thatLy
includes the fluid and wall particles~see Fig. 1!. We observe
that there is no unique average density of the fluid beca
there is no unambiguous definition of the total volume wh
is ‘‘accessible’’ to the fluid, and we again refer the reader
Refs. @5,6# for a discussion of this point. We simply not
here that an effective channel width was found to be 4.3
theW55.1 system and 9.5 for theW510.2 system.

The walls of both systems were kept at a constant te
perature of 0.722 and density of 0.85. The wall temperat
was held constant by application of a Gaussian thermos
which ensured that the average temperature of all the w
atoms was constant.

For the channel width of 5.1 we studied the system at f
different values of the magnitude of the external fie
Fe50.05, 0.10, 0.15, 0.20. For theW510.2 system we chose
a value of the field which yielded the same mean tempera
that theFe50.1 simulation for theW55.1 system did. This
enabled us to make a direct comparison between the
different channel width simulations. The appropriate value

FIG. 1. Simulation geometry for planar Poiseuille flow. Thez
axis is normal to the page.
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4290 55KARL P. TRAVIS, B. D. TODD, AND DENIS J. EVANS
the field was determined by Todd and Evans@3# to be
Fe50.02471. Once steady state was achieved with the ex
nal field switched on, production runs consisting of betwe
2 and 20 million steps were carried out with a reduced ti
step,t50.001.

B. Calculation of the profiles

The streaming velocity can be obtained from the mom
tum current densityJ~r ,t!. The momentum current densit
for a system of identical particles is given microscopically
@8#

J~r ,t ![ru~r ,t !5(
i
mvid„r2r i~ t !…, ~8!

where the mass densityr~r ,t! is given by

r~r ,t !5(
i
md„r2r i~ t !…[mn~r ,t !, ~9!

wheren~r ,t! is the number density at positionr and timet.
The streaming velocity is then simply

u~r ,t !5
( imvi~ t !d„r2r i~ t !…

( imd„r2r i~ t !…
. ~10!

In practice, one replaces the Dirac delta function with
narrow step function that is nonzero only for a small range
separations. For a system such as ours we could divide
simulation cell into a number of slabs of thicknessDy and
compute the streaming velocity as an average evaluate
the midpoint of each slab. This is the simple histogra
method. While it is convenient to use and simple to imp
ment, it suffers from the drawback that the slabwidth must
sufficiently large to contain enough particles to allow a go
estimate of the average streaming velocity in a slab@9#. Thus
there is a trade-off between lower statistical uncertainty
spatial resolution in the histogram method.

Recently, Daivis, Travis, and Todd@4# have proposed an
alternative method of calculating microscopic quantities a
function of position, which is exact. In this method, one d
vides up the simulation cell into a number of equally spac
planes across the channel. One can then write for thex com-
ponent of momentum current.

Jx~y,t !5
1

A (
i
mẋi~ t !d„y2yi~ t !…, ~11!

where A5LxLz is the area of anxz plane. Since
d„y2yi(ta( i ))…5d(t2ta( i ))/u ẏi(ta( i ))u we can obviously
write

d„y2yi~ t !…5(
ta~ i !

gd~ t2ta~ i !!

u ẏi~ ta~ i !!u
, ~12!

where $ta( i )% are the timesa at which they coordinate of
particlei is equal toy. Substituting Eq.~12! into Eq.~11! we
find that

Jx~y,t !5
1

A (
i

(
ta~ i !

mẋi~ t !d~ t2ta~ i !!

u ẏi~ ta~ i !!u
. ~13!
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Assuming the system properties are stationary in time,
integrate Eq.~13! from time zero tot and perform a time
average:

J̄x~y!5 lim
t→`

1

tA (
i

(
0,ta~ i !,t

mẋi~ ta~ i !!

u ẏi~ ta~ i !!u
. ~14!

The y component of the velocity of particlei at the precise
time of the plane crossing is evaluated by first solving
ta( i ) , the time at which planea is crossed, by using a
Newton-Raphson scheme and then predicting the velocit
the atom at this time. It is straightforward to calculate t
density and kinetic-energy profiles using this method a
hence the streaming velocity and kinetic-temperature p
files. We shall henceforth refer to this method of calculati
the densities of hydrodynamic quantities as the planes ca
lation of kinetic properties~PKP!. The statistical uncertain
ties in the PKP method are independent of the plane spac
Using this method we are able to use a fine resolution
calculating the profiles.

III. RESULTS AND DISCUSSION

A. Number density and stress

The number density profilen(y) is plotted in Fig. 2. We
observe that the density is zero aty562.25 so we regard the
data outside the range22.25,y,12.25 as being the wal
density. We reject all data outside this range in our la
analysis. We find that the data can be represented by a
rier cosine series requiring only nine terms,

n~y!5a01 (
n51

8

an cos
2pn

1y
y. ~15!

Figure 2 shows the number density calculated at planes
gether with the least-squares fit to Eq.~15!.

The stress profilePyx(y) can be calculated by at least tw
different methods. One can use the method of planes~MoP!
@5#, which involves evaluating an exact statistical mechani
expression for the stress at a plane, or by integrating
momentum continuity equation~IMC! @5#. Using the IMC
method, Eq.~2! shows that the stress profile is given by

FIG. 2. Symmetrized number density profile for the 5.1 chan
width system~solid line! and the least-squares fit of Eq.~15! to the
data~broken line!. The external field magnitudeFe50.1. Statistical
uncertainties are smaller than the plot symbols.
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55 4291DEPARTURE FROM NAVIER-STOKES HYDRODYNAMICS . . .
Pyx~y!5FeE
0

y

n~y8!dy81C ~16!

whereC is an integration constant whose value is determin
by the fact that the stress is zero at the center of the chan
Assuming a density profile as in Eq.~15!, we can evaluate
the integral in Eq.~16! analytically to obtain

Pyx~y!5FeFa0y1
1y
2p (

n51

8
an
n
sin

2pn

1y
yG , ~17!

Figure 3 shows the stress calculated using Eq.~17! and that
evaluated directly using the MoP. We see that within
statistical uncertainties, both methods yield identical str
profiles.

B. Velocity and strain rate profiles

The velocity profile is obtained by taking the ratio of th
momentum densityJx(y) and the mass densityr(y), both of
which have been calculated using the PKP method. Figu
shows the symmetrized velocity profile obtained from t
Fe50.1 simulation. The crosses are the least-squares fi
the data to a quadratic equation of the formufit5ay22b @we

FIG. 3. Pyx(y) profile ~obtained from integrating the numbe
density profile! for the 5.1 channel width system~solid line! and the
stress calculated via the method of planes~broken line!. The exter-
nal field magnitudeFe50.1. Statistical uncertainties are small
than the plot symbols.

FIG. 4. Symmetrized streaming velocity profile for the 5.1 cha
nel width system withFe50.1 ~full circles! together with the least-
squares fit of a quadratic equation to these data~crosses!.
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note that true classical behavior would sugg
ufit5a(y221) but the use of rough walls in our simulatio
modifies the boundary conditions such that two parame
are required#. It is clear from Fig. 4 that the velocity profile
deviates significantly from the hydrodynamic prediction. T
general shape of the velocity profile agrees with the profi
obtained by Bitsaniset al. @1# at a roughly similar channe
width. Figure 5 shows a plot of four symmetrized, norm
ized velocity profiles obtained from simulations at four d
ferent values of the external field. The profiles are norm
ized by dividing the result at each data point by the integ
of the whole profile. Within the statistical uncertainties,
four profiles collapse into a single universal profile. Th
suggests that the shape of the profile is independent of
external field, at least within the linear regime. The norm
izing factors are displayed in Table I. For the first three v
ues ofFe , the areas under each profile are independent of
field magnitude, but at the highest field, there is a small
significant difference. Figure 6 shows the velocity profi
obtained from the 10.2-channel-width simulation. Here
see that the data can be fit quite well with a quadratic cur
The oscillations in the profile are still present but they a
extremely weak in comparison to the ones in the 5
channel-width profiles. The oscillations in the velocity pr
file are therefore a function of the channel width, at lo
fields.

To calculate the strain-rate profileg(y), we differentiate
the velocity profile with respect to they coordinate. Differ-
entiating Eq.~5! gives the classical Navier-Stokes strain ra
as

-

FIG. 5. Normalized streaming velocity profiles for the 5.1 cha
nel width system at different external field magnitudes:Fe50.05,
0.1, 0.15, 0.20. The profiles have been normalized by their integ
~see Table I!.

TABLE I. Integral of the velocity profile tabulated for differen
values of the external field.

Fe
E

22.25

2.25

uz~y!dy E
22.25

2.25

uz~y!dy/Fe

0.05 0.1900 3.8
0.10 0.38 3.8
0.15 0.59 3.9
0.20 0.82 4.1
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g~y!5
2nFey

h
, ~18!

which is linear iny. Since our calculated velocity profiles a
not quadratic iny it is clear that we will not obtain a linea
strain-rate profile.

To obtain a smooth strain-rate profile, we have fitted
velocity profile from theFe50.1 simulation to a function
which consists of a term quadratic iny and a cosine series

ux~y!5b11b2y
21 (

n51
an cos

2pn

1y
y, ~19!

where thea’s andb’s represent the least-squares-fit coe
cients. We find that eight cosine terms are sufficient to r
resent the data. Figure 7 shows the velocity profile obtai
from theFe50.1 simulation together with the quadratic fit
this velocity profile~QVP! and the fit defined in Eq.~19! @we
shall denote this as the quadratic-plus-cosine-series
~QCVP!#. The data has been symmetrized prior to the lea
squares-fit procedure. Again we find a reasonably good fi
the data.

Differentiating Eq.~19!, we have an analytic expressio
for the strain rate:

FIG. 6. Symmetrized streaming velocity profile for the 10
channel width system withFe50.02471~crosses! together with the
least-squares fit of a quadratic equation to the data~solid line!.

FIG. 7. Comparison of two fitting functions with the streamin
velocity data for the 5.1 channel width system at an external fi
Fe50.1. The fitting functions are a quadratic form~solid line! and a
function composed of a quadratic part and a Fourier cosine se
@Eq. ~19!, open triangles in figure#.
e

-
d

fit
t-
to

g~y!52b2y2
2p

1y
(
n51

8

n an sin
2pn

1y
y. ~20!

Figure 8 shows the resulting curve fit to the strain rate d
and a strain-rate profile calculated by assuming that
streaming velocity can be fitted to a simple quadratic form
predicted by Navier-Stokes hydrodynamics. The curve r
resenting Eq.~20! shows oscillations across the channel a
is significantly different from the Navier-Stokes predictio
The wavelength of these variations in the strain rate is of
order of a particle diameter.

C. Streaming kinetic energy

The peculiar kinetic-energy density at a plane can be w
ten as

Kpec~y!5
1

2A (
i
mi„vi2u~r i !…

2d„y2yi~ t !…, ~21!

where the streaming velocity,u~r i! must be known in order
to calculate this kinetic energy. This can be determined
assuming a form foru, minimizing the total instantaneou
peculiar kinetic energy, Eq.~21!, with respect to the coeffi-
cients used to fitu @8,10# and using these instantaneous v
ues to calculate an instantaneous peculiar kinetic ene
~hardwired method!. In the case of the Poiseuille flow simu
lations, previous work@3,5,6# had assumed thatux(y) was of
the formux(y)5a1by2, which, in the case of large chann
widths, is a justified choice. Alternatively, we may calcula
the kinetic-energy density in the laboratory frame,

K lab~y!5
1

2A (
i
mivi

2d„y2yi~ t !…, ~22!

and then subtract the streaming component afterwards.
streaming kinetic-energy density is given macroscopically
1
2ru•u. The advantage of this second method is that it ma
no assumptions about the form of the streaming veloc
Figure 9 shows a plot of the peculiar kinetic energy calc
lated directly via Eq.~21! and calculated by subtracting th
streaming kinetic-energy density from the laboratory kinet

d

es

FIG. 8. Strain-rate profileg(y) derived by assuming a quadrat
velocity profile ~open triangles! and by assuming a velocity profile
that can be represented by a function composed of a quadratic
plus a Fourier cosine series~full circles!. The channel width is 5.1
and the external fieldFe50.1.



i

pe
.

v

on

s

th
ts
th
u

d

re
al-
In
e
e-
-
he
res-
n

m-

ne.
se
cal
hat
ifi-
mp-

pan-
eat-
p-
en
eat

e
hat

of
s.
a
nt
cal-

e
th
es
at

ity

sed

55 4293DEPARTURE FROM NAVIER-STOKES HYDRODYNAMICS . . .
energy density. For comparison, we also show the stream
kinetic-energy density~right axis!. The two versions of the
peculiar kinetic energy are virtually identical~statistical un-
certainties are too small to display!. Note the small magni-
tude of the streaming~convective! kinetic-energy density.
This convective component is of the order 1022. We there-
fore expect that at higher fields the two versions of the
culiar kinetic-energy density will differ more substantially

D. The heat flux vector

The heat-flux vector, like the stress, may be obtained
two different methods, the method-of-planes route@6# and a
mesoscopic route which involves integrating the energy c
tinuity equation IEC method! @3,6#. With the IEC method,
integrating Eq.~7! gives the expression for the heat flux a

Jqy~y!52E
0

y

dy8Pyx~y8!g~y8!1C8, ~23!

where the constant of integration,C8, is determined by the
requirement that the heat flux be zero in the center of
channel. Weak-flow Navier-Stokes hydrodynamics predic
purely cubic dependence of the heat-flux vector across
channel. Figure 10 shows the heat-flux vector calculated

FIG. 9. Comparison of the laboratory and peculiar~assuming a
quadratic velocity profile! kinetic energy profiles~left-hand axis!
and the streaming kinetic energy,12ru

2 ~right-hand axis!. The chan-
nel width is 5.1 and the external fieldFe50.1.

FIG. 10. The heat fluxJqy(y) obtained by the IEC method. Th
broken line is the heat flux calculated on the assumption that
velocity profile is classical, i.e., quadratic, while the filled circl
are the heat flux calculated from a strain rate based on the deriv
of Eq. ~19!. The channel width is 5.1 and the external fieldFe50.1.
ng

-

ia

-

e
a
e
s-

ing Eq.~23! with two different strain-rate profiles, one base
on a quadratic fit to the velocity profile~QVP!, the second
based on Eq.~19! ~QCVP!. From the figure, we see that the
are significant oscillations in the heat-flux vector when c
culated using a strain rate derived from the QCVP fit.
order to verify this functional form for the heat flux, we hav
calculated the heat flux directly from an exact statistical m
chanical expression~MoP! @6#. However, the MoP calcula
tion of the heat flux suffers from an obvious drawback. T
streaming velocity evaluated at planes appears in the exp
sion for the heat-flux vector in both the kinetic contributio
and the potential contribution@6#. Direct calculation there-
fore requiresa priori knowledge of the instantaneous strea
ing velocity. Todd, Daivis, and Evans@6# used a quadratic
estimate for the instantaneous streaming velocity at a pla
This choice for the streaming velocity was justified becau
they simulated a wide channel which yielded classi
Navier-Stokes behavior. However, this work has shown t
in narrow channels the streaming velocity deviates sign
cantly from quadratic behavior. We have made the assu
tion that the streaming velocity can be estimated by Eq.~19!
and used the least-squares method to determine the ex
sion coefficients instantaneously. Figure 11 shows the h
flux vector obtained using MoP where two different assum
tions for the form ofux(y) have been used. We see that wh
ux(y) is assumed to be quadratic, an essentially cubic h
flux results, whereas whenux(y) is assumed to be of the
form of Eq. ~19! the oscillations are recovered. Within th
statistical uncertainties, the MoP heat flux agrees with t
calculated via the IEC method~Fig. 12!.

E. Viscosity profile

The shear viscosityh is assumed to be independent
position in the weak-flow Navier-Stokes theory of liquid
Todd and co-workers@3,5# found that the shear viscosity of
simple fluid undergoing planar Poiseuille flow is not consta
across the channel, but exhibits strong oscillations. They
culated the shear viscosity profile from thelocal linear con-
stitutive relation,

h~y!5
2Pyx~y!

g~y!
, ~24!

e

ive

FIG. 11. MoP heat flux calculated using a streaming veloc
which is determined by assuming a quadratic form~QMoP! and one
which is calculated by assuming it has a functional form compo
of a quadratic part plus a Fourier cosine series~filled circles!. The
channel width is 5.1 and the external fieldFe50.1.
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but assumed a strain rate based on a quadratic fit to
velocity profiles. However, for a channel width of 5.1, w
have shown that this assumption is no longer valid. We h
calculated a shear viscosity profile from Eq.~24! using our
derived strain-rate profile. We find that the viscosity diverg
due to the fact that the strain rate goes to zero aty;21.3,
~see Fig. 8! but the shear stress remains nonzero~see Fig. 3!.
This shows that a local linear constitutive relation can
give an adequate relation between the stress and strain
fields in these narrow channels. If viscosity is a nonlo
function of y, a nonlocal generalization of the linear cons
tutive relation relating the stress to the strain rate is requi
Such a relation is

Pyx~y!52E
0

y

h~y;y2y8!g~y8!dy8. ~25!

However, we do not have sufficient data to calculate
viscosity kernel.

IV. CONCLUSIONS

We have used nonequilibrium molecular dynamics
simulate an atomic liquid undergoing gravity-fed flow dow
a narrow channel. Our model fluid is spatially inhomog
neous and it is expected that for such a system, the Nav
Stokes equations will break down. Todd and Evans@3# have
recently carried out similar calculations for a fluid confin
to channels widths of 5.1 and 10.2 molecular diameters. S
prisingly, they found general agreement with the Navi
Stokes theory despite the strong oscillations in the den
profile. Our work differs from that of Todd and Evans@3# in

FIG. 12. Comparison of the heat fluxJqy(y) obtained using the
direct Method of Planes route, and that obtained indirectly using
IEC method@both methods assume either directly or indirectly th
the streaming velocity can be approximated by Eq.~19!#. The chan-
nel width is 5.1 and the external fieldFe50.1.
.
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that we have used higher resolution and longer simulation
enable the calculation of the density, velocity, heat-flux, a
strain-rate profiles with high statistical precision. For a cha
nel width of 5.1 molecular diameters we find that the velo
ity profile deviates significantly from the Navier-Stokes h
drodynamic prediction. Except for the highest field streng
the shape of this velocity profile is found to be independ
of the applied field~see Table I!. At a channel width of 10.2
molecular diameters, classical Navier-Stokes behavior is
proached.

We have fitted our velocity profiles using a function th
consists of a classical~quadratic! part plus a Fourier cosine
series. Using this fit, we then derived a strain-rate profile t
is found to deviate significantly from the classical line
form. Similarly, we use a Fourier cosine series to fit t
number density profile. With this fit we derive a stress profi
by integrating the momentum continuity expression. T
stress profile so derived agrees well with the exact statist
mechanical route to the stress calculated using the MoP
vised by Todd and co-workers@3,5,6#. By integrating the
energy continuity expression we derive a heat flux which
narrow channels deviates from the classical cubic beha
predicted by Navier-Stokes theory and the earlier results
Todd and co-workers@3,6#. We find that the heat flux ha
oscillations located at roughly the same points as those in
velocity profiles. We use the method-of-planes technique
calculate an ‘‘exact’’ expression for the heat flux. The Mo
heat flux is found to agree with the mesoscopically deriv
heat flux. We must stress here that the statistical mechan
definition of the heat flux requires a knowledge of t
streaming velocity evaluated at a plane. The analytic fo
for this streaming velocity is not knowna priori. The best
one can do is to try to find a set of appropriate expans
functions and fit the coefficients by a least-squares pro
dure. Our results suggest that our choice of expansion fu
tions is reasonable, within the degree of the statistical ac
racy of our data.

In their earlier work, Todd and co-workers@3,5# calcu-
lated the viscosity of a fluid undergoing planar Poiseu
flow in a narrow channel. They found that this transport c
efficient was not constant across the channel as require
the Navier-Stokes theory, but instead exhibited strong os
lations. We find that the use of the local constitutive relati
for shear viscosity gives an absurd viscosity profile. Our
sults, therefore, suggest that for this narrow channel wid
the viscosity is a nonlocal function of position across t
channel.
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