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Departure from Navier-Stokes hydrodynamics in confined liquids
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In this work we use nonequilibrium molecular dynam{&¥EMD) to simulate an atomic liquid undergoing
gravity-fed flow down a narrow channel. We compare the simulation results against the predictions of classical
Navier-Stokes theory for two different channel widths. For a channel width of 5.1 molecular diameters, we find
that the velocity profile deviates significantly from the hydrodynamic prediction. The shape of this velocity
profile is found to be independent of the applied figlcessure gradientWe find that the heat flux profile does
not agree with the cubic profile predicted by Navier-Stokes hydrodynamics, but shows significant oscillations
located about one molecular diameter from the walls. This result differs from the earlier work of Todd and
Evans[B. D. Todd and D. J. Evans, J. Chem. Phy83 9804 (1995], in which an assumption of a purely
guadratic velocity profile resulted in very weak oscillations in the heat flux. We find that in narrow channels the
viscosity cannot be described by a linear, local constitutive relation. However, classical Navier-Stokes behavior
is approached for a channel width of~10 molecular diameter§S1063-651X97)09504-4

PACS numbegs): 03.40.Gc, 66.26:d, 47.55.Mh, 05.70.Ln

I. INTRODUCTION Navier-Stokes hydrodynamics for gravity-fed flow

] ) o Consider a gravity-driven flow between closely spaced
Classical Navier-Stokes hydrodynamics is known to deparallel plates whose normals are perpendicular to the direc-

scribe macroscopic flows of simple fluids. In situationstion in which gravity acts. In this case the equation of motion
where the state variables of temperature and density vanyg

appreciably on a scale comparable to the molecular mean
free path, these equations break ddiwh We therefore can- du
not expect the Navier-Stokes equations to accurately de- Pat
scribe flow through very narrow channels or pores. Further
complications arise when the fluid contains molecules thafvhere the magnitude of the external fieky, is simply the
can rotate about their respective centers of mass. molecular mass of the fluid particles), multiplied by the

In this paper we examine the limitations of the Navier- acceleration due to gravitg. The number density is, u is
Stokes hydrodynamic solutions for a fluid undergoingthe streaming velocity, and is the pressure tensor. In writ-
gravity-fed flow down a square chann@®oiseuille flow. ing Eq. (1) we have assumed that the vertical height of the
We examine in detail the streaming velocity profiles, heatplates is sufficiently small that the difference in hydrostatic
flux, stress profile, and density profiles for a model fluidpressure between the top and bottom of the plates may be
confined to channels with widths of 5.1 and 10.2 moleculargnored. For an isotropic fluid the pressure tenBaran be
diameters. We concern ourselves only with a simple fluigde@composed into a viscous part and an equilibrium part,
(i.e., one composed of structureless moleculgbe case of P=II+pl, wherell is the viscous pressure tensaris the
molecular flow has been examined by us in another publicalSOtropic second rank tensor, apds the scalar hydrostatic
tion [2]. pressure. . . .

Recently, Todd and Evarj8] carried out simulations of a In this special case of gravity-driven flow, at a steady
simple fluid undergoing planar Poiseuille flow in narrow state we have
channels. While they observed significant oscillations in the
density and stress profiles, the heat flux and velocity profiles dily(y) _ - ©

=—V.P+nF,, 1)

were essentially classical. This latter observation of a classi- dy
cal velocity profile for a channel only 5.1 molecular diam-
eters wide does not agree with the theoretical predictions ovhere we have chosen our x axis to be parallel to the exter-
Bitsaniset al. [1]. In the present paper we carry out much nal force and they axis to be parallel to the normal of the
longer simulations which yield much better statistics and weplates. For a fluid with no spatial variations in the density,
use a recently developed techniddg that allows the calcu- the shear stress profile will be linear. In reality, the presence
lation of thermodynamic quantities to an extremely high spaof solid walls and a nonuniform temperature profile results in
tial resolution. variations in the density across the channel, yielding a non-
linear stress profile.
The linear constitutive equation relating the shear stress to
*Present address: Cooperative Research Centre for Polymef$le shear viscosity is

CSIRO Division of Chemicals and Polymers, Private Bag 10, Rose-
bank MDC, Clayton, Victoria 3169, Australia. %= -27(Vu), ©)]
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where 7 is the shear viscosityyu is the strain rate tensor

and the superscript os denotes the traceless symmetric part of © O O
the tensor. Combining Eq$2) and (3) with the assumption = L om
that the flow velocity takes the form=[u,(y),0,0], we have [ O [
d2 X(y) 4' wall atoms
7] dy - nFea (4) y LK
! plane of closest approach

which is a Navier-Stokes equation for the special case of L :
steady planar gravity-fed flow. Equati¢4) contains the as- N -~ y=0 plane
sumption that the shear viscosity does not vary in space or : O O 0O
time. Solving Eq.(4) for the flow velocity with stick bound- | Qfudatoms |
ary conditions gives the classical quadratic profile for Poi- ! O o |/
seuille flow | JTerereroren -

periodic image of wall

hnF,
U=~ (y*—1), (5
whereh is the half width of the channel andis y/h. This O O
expression is expected to break down for channels which are
only a few molecular diameters wide. FIG. 1. Simulation geometry for planar Poiseuille flow. The

The equation of change for the specific internal energyaxis is normal to the page.
(energy continuity equations
consisted of 360 fluid atoms bound by 216 wall atoms which
, du V. VL, © were three atomic Iayers_thic(RZ atoms per layer
dt — The wall atoms were fixed in an fcc lattice structure by a
combination of harmonic restoring forcgg| (with a spring
whereU is the specific internal energy, is the heat flux  constant set to 150.1&nd a constraint mechanism that fixed
vector, andP" is the transpose of the pressure tensor. Fothe center of mass of each layer of wall particles while al-
gravity-fed flow in a square channel, at a steady state wéowing individual wall atoms the freedom to vibrate about
have their lattice sites. There is only one three-atom-thick wall per
simulation cell. The second wall was simply the periodic
dJqy(y) image of the first wall. This periodicity also ensures that the
dy total density of the system remains constant. For details of
the governing equations of motion and the integrating
where y=du,(y)/dy is the strain rate. EquatiofY) demon-  scheme used to solve them, the reader is referred to Refs.
strates that in the classical case the heat flux across the chgs;g].

= _ny(y) YY), (7)

nel should be a cubic polynomial. The average number density of both systema=sN/V
=0.715, whereN is the number of liquid atoms and is the
Il. METHOD volume accessible to the liquid. The unit cell dimensions,

Ly,Ly,L, for the W=5.1 channel are 10.8200, 7.2706,
10.8200, respectively, while for th&/=10.2 channel they

We have previously described in detail the NEMD tech-are 7.1905, 12.3844, 7.1905. It is important to note that
niques used to simulate planar Poiseuille flf8y5,6) and includes the fluid and wall particlésee Fig. 1L We observe
here only briefly outline the way in which the simulations that there is no unique average density of the fluid because
were carried out. In our simulations we apply a constanthere is no unambiguous definition of the total volume which
force in thex direction to each particle, which has the sameis “accessible” to the fluid, and we again refer the reader to
effect as allowing gravity to initiate the flow of fluid down Refs.[5,6] for a discussion of this point. We simply note
the channel. The geometry of the system is shown in Fig. lhere that an effective channel width was found to be 4.3 for
Both the fluid and wall particles interact via the WCA inter- the W=5.1 system and 9.5 for th&/=10.2 system.
atomic potential functiomp(r): ¢(r)=4(r  2—r =8 +1, for The walls of both systems were kept at a constant tem-
r <28 ¢(r)=0, for r>2' (we have defined the WCA po- perature of 0.722 and density of 0.85. The wall temperature
tential constantsr and e to be unity for simplicity; we also was held constant by application of a Gaussian thermostat,
define the fluid and wall particle masses to be Unijence-  which ensured that the average temperature of all the wall
forth, all quantities will be quoted in reduced units. atoms was constant.

The system is surrounded by periodic images of itself in  For the channel width of 5.1 we studied the system at four
each of the three Cartesian dimensions. We note here that tléfferent values of the magnitude of the external field,
simulation geometry is such that the external field is inxhe F.=0.05, 0.10, 0.15, 0.20. For ti§=10.2 system we chose
direction and the heat flow is in thedirection. We examine a value of the field which yielded the same mean temperature
two channel widthsW=5.1 and 10.2. Her&V is defined as that theF,=0.1 simulation for thaV=>5.1 system did. This
the separation in thg direction between the centers of the enabled us to make a direct comparison between the two
first layer of wall atoms adjacent to the fluid. Both systemsdifferent channel width simulations. The appropriate value of

A. Simulation details
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the field was determined by Todd and Evai to be 12

F.=0.02471. Once steady state was achieved with the exter-

nal field switched on, production runs consisting of between 1.0 -

2 and 20 million steps were carried out with a reduced time

step, 7=0.001. 0.8 ¢
n(y) o6t

B. Calculation of the profiles

The streaming velocity can be obtained from the momen- 04 g - - 1
tum current densityd(r,t). The momentum current density 021 _”‘fga‘;‘f;‘éfa‘;edsaﬁft curve ]
for a system of identical particles is given microscopically by
[8] 0'92.5 20 s 10 05 00

y
J(r,t)Epu(r,t)=2i mv; 5(r —r;(t)), (8)

FIG. 2. Symmetrized number density profile for the 5.1 channel
. L width system(solid line) and the least-squares fit of Ed.5) to the
where the mass densip(r.t) is given by data(broken ling. The external field magnitude,=0.1. Statistical
uncertainties are smaller than the plot symbols.
p(r,t)=2 ma(r—ri(t))=mn(r,t), ©) , _ , o
[ Assuming the system properties are stationary in time, we

) ) . ) integrate Eq.(13) from time zero tor and perform a time
wheren(r,t) is the number density at positianand timet. average:

The streaming velocity is then simply

Ly)=lim 3 M Car)

Ei i 1)6(r— i t - i
_ Zimy;(t) o(r —ri(t)) 10 M 2R % o Tt

TR Gr0)

In practice, one replaces the Dirac delta function with alhey component of the velocity of particleat the precise
narrow step function that is nonzero only for a small range ofime of the plane crossing is evaluated by first solving for
separations. For a system such as ours we could divide tHeq). the time at which planex is crossed, by using a
simulation cell into a number of slabs of thicknesg and ~ Newton-Raphson scheme and then predicting the velocity of
compute the streaming velocity as an average evaluated Hte atom at this time. It is straightforward to calculate the
the midpoint of each slab. This is the simple histogramdensity and kinetic-energy profiles using this method and
method. While it is convenient to use and simple to imple-nence the streaming velocity and kinetic-temperature pro-
ment, it suffers from the drawback that the slabwidth must béiles. We shall henceforth refer to this method of calculating
sufficiently large to contain enough particles to allow a goodthe densities of hydrodynamic quantities as the planes calcu-
estimate of the average streaming velocity in a §8bThus Igtlo_n of kinetic properneiP_KP). The statistical uncertain-
there is a trade-off between lower statistical uncertainty andi€s in the PKP method are independent of the plane spacing.
spatial resolution in the histogram method. Using this method we are able to use a fine resolution in

Recently, Daivis, Travis, and Todd] have proposed an calculating the profiles.
alternative method of calculating microscopic quantities as a
function of position, which is exact. In this method, one di- . RESULTS AND DISCUSSION
vides up the simulation cell into a number of equally spaced
planes across the channel. One can then write fox them-
ponent of momentum current. The number density profila(y) is plotted in Fig. 2. We

L observe that the density is zeroyat +2.25 so we regard the
. data outside the range2.25<y<+2.25 as being the wall
‘]X(y’t):K Z mx (1) 8y —yi(t), 11 density. We reject all data outside this range in our later
analysis. We find that the data can be represented by a Fou-
where A=L,L, is the area of anxz plane. Since rier cosine series requiring only nine terms,

Y —Yi(taq))=8(t—t,i)/|Yi(tsi)| we can obviously

(14)

A. Number density and stress

4 8
write n(y)=ap+ 2, a, cos2in y. (15)
gd(t—t,q)) =t Ly
Py t%) |Yi(ta(i))| ' (12 Figure 2 shows the number density calculated at planes to-
gether with the least-squares fit to Ed5).
where{t,} are the timesx at which they coordinate of The stress profilél,,(y) can be calculated by at least two
particlei is equal toy. Substituting Eq(12) into Eq.(11) we  different methods. One can use the method of pldesP)
find that [5], which involves evaluating an exact statistical mechanical
: expression for the stress at a plane, or by integrating the
Iyt = 1 S m)‘i(f‘)&t_ta(i)). (13 ~ Momentum continuity equatioiMC) [5]. Using the IMC
AT Yi(taci)l method, Eq(2) shows that the stress profile is given by
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0.00 - 0.80 ———
-0.02 | based on least squares fit to n(y) - 0.70 — * Fe =005
----- method of planes data £ x F =0.15
004 F . 0.60 & e
o~ | o F =020
I -0.06 | ] ~% 050 o F =010
x(}’)008 = e
T 008 ¢ ] 9 0.40 | ]
-0.10 | . B § 0.30 | E
0.12 | p 1 2 o00f ]
-0.14 - . b 0.10 [ ]
-0.16 ‘ : Lo
2.5 -2.0 -L5 -1.0 -0.5 0.0 0.00 oW .
y -2.5 -2.0 -1.5 -1.0 -0.5 0.0

FIG. 3. I1,,(y) profile (obtained from integrating the number ) ] ] )
density profile for the 5.1 channel width systefsolid line) and the FIG. 5. Normalized streaming velocity profiles for the 5.1 chan-
stress calculated via the method of plafizken line. The exter- Nl width system at different external field magnitudég=0.05,
nal field magnitudeF,=0.1. Statistical uncertainties are smaller 9-1, 0-15, 0.20. The profiles have been normalized by their integrals

than the plot symbols. (see Table)l

y o note that true classical behavior would suggest
Iy (y)=Fe o n(y")dy'+C (16 y,—a(y?—1) but the use of rough walls in our simulation
modifies the boundary conditions such that two parameters

whereC is an integration constant whose value is determined® requiredl It is clear from Fig. 4 that the velocity profile
by the fact that the stress is zero at the center of the channé]@viates significantly from the hydrodynamic prediction. The

Assuming a density profile as in E4L5), we can evaluate gengral shape_ of the velocity profile agrees with the profiles
the integral in Eq(16) analytically to obtain ot_)talned_ by Bitsanit al. [1] at a roughly 5|m|_lar channel
width. Figure 5 shows a plot of four symmetrized, normal-
ized velocity profiles obtained from simulations at four dif-
, (17  ferent values of the external field. The profiles are normal-
ized by dividing the result at each data point by the integral
i ) of the whole profile. Within the statistical uncertainties, all
Figure 3 shows the stress calculated using @ and that  four profiles collapse into a single universal profile. This
evaluated directly using the MoP. We see that within theg,ggests that the shape of the profile is independent of the
stat|_st|cal uncertainties, both methods yield identical stresgyternal field, at least within the linear regime. The normal-
profiles. izing factors are displayed in Table I. For the first three val-
ues ofF ., the areas under each profile are independent of the
B. Velocity and strain rate profiles field magnitude, but at the highest field, there is a small but
significant difference. Figure 6 shows the velocity profile
obtained from the 10.2-channel-width simulation. Here we
ee that the data can be fit quite well with a quadratic curve.

8
a, . 2mn

1
y

+_ _ —_—

Y+, 2y g S 1,

ny(Y):Fe

The velocity profile is obtained by taking the ratio of the
momentum density,(y) and the mass densip(y), both of
which have been calculated using the PKP method. Figure h S . ) X
shows the symmetrized velocity profile obtained from the e oscillations in the profile are still present but they are

F.=0.1 simulation. The crosses are the least-squares fit gX"€Mely weak in comparison to the ones in the 5.1-

; ; : 2_ channel-width profiles. The oscillations in the velocity pro-
the data to a quadratic equation of the fasg=ay”—b [we file are therefore a function of the channel width, at low

fields.
0.15 w T ' . To calculate the strain-rate profilgy), we differentiate
+  symmetrized data the velocity profile with respect to the coordinate. Differ-
+ quadratic fit to u,(y) «gﬁpﬂd entiating Eq.(5) gives the classical Navier-Stokes strain rate
0.10 | o as
u (y) ?ﬁﬁ}gﬂ : . .
X S TABLE I. Integral of the velocity profile tabulated for different
0.05 [ 2 ] values of the external field.
F =01
A 25 25
A f uAy)dy f uLy)dy/Fe
0.00 bl e —— Fe -2.25 -2.25
25 2.0 -1.5 -1.0 0.5 0.0
y 0.05 0.1900 3.8
0.10 0.38 3.8
FIG. 4. Symmetrized streaming velocity profile for the 5.1 chan-0.15 0.59 3.9
nel width system withF,=0.1 (full circles) together with the least- (.20 0.82 4.1

squares fit of a quadratic equation to these detasses
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0.20 ‘ 0.20 - :
L +  Quadratic fit to symmetrized data A based on ten tem.l fittou (y)
0.15 . & based on quadratic fit to u (y) |1
0.15 |
0.10
u(y) o.10 | YY)
: 0.05
0.05 0.00 L
000 £ 0050
-5.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

FIG. 8. Strain-rate profile(y) derived by assuming a quadratic
velocity profile (open trianglesand by assuming a velocity profile
that can be represented by a function composed of a quadratic part
plus a Fourier cosine serighull circles). The channel width is 5.1
and the external fieléF,=0.1.

FIG. 6. Symmetrized streaming velocity profile for the 10.2
channel width system witk ,=0.02471(crossestogether with the
least-squares fit of a quadratic equation to the dséid line).

_ —nky
ny)= — (18

27 & ~27n
Wy)=2by—7— 2 n aysin——y. (20

which is linear iny. Since our calculated velocity profiles are 1, & y

not quadratic iry it is clear that we will not obtain a linear
strain-rate profile. Figure 8 shows the resulting curve fit to the strain rate data
To obtain a smooth strain-rate profile, we have fitted theand a strain-rate profile calculated by assuming that the
velocity profile from theF,=0.1 simulation to a function streaming velocity can be fitted to a simple quadratic form as
which consists of a term quadratic ynand a cosine series. predicted by Navier-Stokes hydrodynamics. The curve rep-
resenting Eq(20) shows oscillations across the channel and

v, (19) is significantly different from the Navier-Stokes prediction.
y The wavelength of these variations in the strain rate is of the

] _order of a particle diameter.
where thea’s andb’s represent the least-squares-fit coeffi-

cients. We find that eight cosine terms are sufficient to rep-
resent the data. Figure 7 shows the velocity profile obtained o ) )
from theF,=0.1 simulation together with the quadratic fitto ~ The peculiar kinetic-energy density at a plane can be writ-
this velocity profile(QVP) and the fit defined in Eq19) [we  té€n as
shall denote this as the quadratic-plus-cosine-series fit
(QCVP)]. The data has been symmetrized prior to the least-
squares-fit procedure. Again we find a reasonably good fit to

the data. . . .
Differentiating Eq.(19), we have an analytic expression Where the streaming velocity(r;) must be known in order
for the strain rate: to calculate this kinetic energy. This can be determined by

assuming a form fou, minimizing the total instantaneous
peculiar kinetic energy, Eq21), with respect to the coeffi-

2mn

u(y)=b;+boy2+ >, a, cos
n=1 1

C. Streaming kinetic energy

1
KPRy = 55 20 mivi—u(r))?aly-yi(1), (2D

0.15 e ' cients used to fit1 [8,10] and using these instantaneous val-
+ symmetrized data . . L
s 10 term least squares fit ues to calculate an instantaneous peculiar kinetic energy
quadratic fit (hardwired method In the case of the Poiseuille flow simu-
0.10 [ ] lations, previous work3,5,6] had assumed that(y) was of
the formu,(y)=a-+by?, which, in the case of large channel
u (y) ) oY)~ 2 ; :
X F=01 widths, is a justified choice. Alternatively, we may calculate
005 L e 1 the kinetic-energy density in the laboratory frame,
lab, 1 2
: KPy) =51 2 my2a(y—yi(t), (22
000 L. o /&, . !
2.5 2.0 -1.5 -1.0 0.0

and then subtract the streaming component afterwards. The
streaming kinetic-energy density is given macroscopically by

FIG. 7. Comparison of two fitting functions with the streaming zPU-U. The advantage of this second method is that it makes
velocity data for the 5.1 channel width system at an external fieldl0 assumptions about the form of the streaming velocity.

F.=0.1. The fitting functions are a quadratic fofsolid line) and a

Figure 9 shows a plot of the peculiar kinetic energy calcu-

function composed of a quadratic part and a Fourier cosine seridgted directly via Eq(21) and calculated by subtracting the

[Eg. (19), open triangles in figure

streaming kinetic-energy density from the laboratory kinetic-
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35 . . ﬁ e 0.014 0.002 . ey
0 »
30 «x 4 0.012 .000 | _
= . 0.000 L F -0 ‘%5 &H%W
25| x 1001 o 0.002 | %QYH% ]
» x = onlaaScolete
= 200 x 10008 2 -0.004 | .};%oo 1
] - ' = = J (¥)-0.006 %3‘”
Moast 1Y :_ g sy ay 0~008 - %ogf
05 X Klty) - 1/2pu * 1 0.002 -0.010 ¥ ..] + 10 term MoP | A
o g % -0.012 [~ ]
oo bl w1 \N% {
2 -1 0 1 2 -0.014 P BT I NP T
y -2.0 -1.5 -1.0 -0.5 0.0
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FIG. 9. Comparison of the laboratory and peculiassuming a . . .
quadratic velocity profile kinetic energy profileqleft-hand axi hFlf (1jlt MO.P Zest flux callculated léS":.g %strea;;nngdvelocny
and the streaming kinetic enerépu2 (right-hand axig The chan- xh:ch Iis elerrlnltnz b y assmrl]ngi?hqua rfa ;]C . ?N:? rrﬁn (r)nne q
nel width is 5.1 and the external fiele,=0.1. ch s calculated by assuming It has a functional form compose

of a quadratic part plus a Fourier cosine sefidked circles. The

energy density. For comparison, we also show the streamin‘“@P‘"‘mnel width is 5.1 and the external figig=0.1.
kinetic-energy densityright axig. The two versions of the
peculiar kinetic energy are virtually identic@tatistical un-
certainties are too small to displayNote the small magni-

ing Eq.(23) with two different strain-rate profiles, one based
on a quadratic fit to the velocity profil@QVP), the second
. > Note . based on Eq19) (QCVP). From the figure, we see that there
tude of the streamingconvectivé kinetic-energy density. gare significant oscillations in the heat-flux vector when cal-
This convective component is of the order f0We there-  culated using a strain rate derived from the QCVP fit. In
fore expect that at higher fields the two versions of the peprder to verify this functional form for the heat flux, we have
culiar kinetic-energy density will differ more substantially. calculated the heat flux directly from an exact statistical me-
chanical expressiofMoP) [6]. However, the MoP calcula-
D. The heat flux vector tion of the heat flux suffers from an obvious drawback. The
The heat-flux vector, like the stress, may be obtained vigl'¢aming velocity evaluated at planes appears in the expres-
two different methods, the method-of-planes roikand a sion for the hez_it-flux ve_zcto_r in both the kinetic f:ontrlbutlon
mesoscopic route which involves integrating the energy condnd the POte”t"’?" gontnbutlofﬁ]. Dlregt calculation there-
tinuity equation IEC method[3,6]. With the IEC method, fore requiresa priori knquledge of the instantaneous stream—
integrating Eq(7) gives the expression for the heat flux as IN9 velocity. Todd, Daivis, and Evarl$] used a quadratic
estimate for the instantaneous streaming velocity at a plane.
y This choice for the streaming velocity was justified because
Jgy(Y) = —f dy' Iy (y") y(y") +C’, (23)  they simulated a wide channel which yielded classical
0 Navier-Stokes behavior. However, this work has shown that
where the constant of integratiof, is determined by the in narrow channels.the stre_aming velocity deviates signifi-
requirement that the heat flux be zero in the center of th&2ntly from quadratic behavior. We have made the assump-
channel. Weak-flow Navier-Stokes hydrodynamics predicts 40N that the streaming velocity can be estimated by (E8)
purely cubic dependence of the heat-flux vector across th@nd used the least-squares method to determine the expan-
channel. Figure 10 shows the heat-flux vector calculated u$!on coefficients instantaneously. Figure 11 shows the heat-
flux vector obtained using MoP where two different assump-
0.005 | o | tions for the form ofu,(y) have been used. We see that when

u,(y) is assumed to be quadratic, an essentially cubic heat
0.000 flux results, whereas when,(y) is assumed to be of the
I (y) ' form of Eqg. (19) the oscillations are recovered. Within the
Y7 005 & statistical uncertainties, the MoP heat flux agrees with that
' calculated via the IEC methaddrig. 12).
0.010 [ gf ] o -
7 ® o based on 10 term fit to u (y) E. Viscosity profile
-0.015 |- T hedonqudmie Mo n O The shear viscosity; is assumed to be independent of
position in the weak-flow Navier-Stokes theory of liquids.
B e . T N LY Todd and co-workerE3,5] found that the shear viscosity of a

y simple fluid undergoing planar Poiseuille flow is not constant
across the channel, but exhibits strong oscillations. They cal-
FIG. 10. The heat flud,,(y) obtained by the IEC method. The culated the shear viscosity profile from tleeal linear con-
broken line is the heat flux calculated on the assumption that thé&titutive relation,
velocity profile is classical, i.e., quadratic, while the filled circles
are the heat flux calculated from a strain rate based on the derivative n(y)= —yy) (24)
of Eq. (19). The channel width is 5.1 and the external fiElg=0.1. v(y)
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0.002 R ‘ that we have used higher resolution and longer simulations to
enable the calculation of the density, velocity, heat-flux, and
0000 7F =01 %o%:’?-"%”“’%‘”" ¥ % %° ' strain-rate profiles with high statistical precision. For a chan-
-0.002 %g?%?"‘ ] nel width of 5.1 molecular diameters we find that the veloc-
-0.004 - ,%’M ] ity profile deviates significantly from the Navier-Stokes hy-
qu(Y)-o.006 . k] 1 drodynamic prediction. Except for the highest field strength,
-0.008 | ,’% ] the shape of this velocity profile is found to be independent
o010k %f ° Iln()e;ggrgoﬁgf’ ] of the applied fieldsee Table)l At a channel width of 10.2
K o molecular diameters, classical Navier-Stokes behavior is ap-
-0.012 %‘3" 1 proached.
-0-01{2'0' — 5o o5 oo We have fitted our velocity profiles using a function that

y consists of a classicdfjuadrati¢ part plus a Fourier cosine
series. Using this fit, we then derived a strain-rate profile that

FIG. 12. Comparison of the heat flu,(y) obtained using the is founq tp deviate significantly from 'the clqssical I!near
direct Method of Planes route, and that obtained indirectly using thdorm. Similarly, we use a Fourier cosine series to fit the
IEC method[both methods assume either directly or indirectly that "umber density profile. With this fit we derive a stress profile
the streaming velocity can be approximated by @§)]. The chan- by integrating the momentum continuity expression. The
nel width is 5.1 and the external fief,=0.1. stress profile so derived agrees well with the exact statistical

mechanical route to the stress calculated using the MoP de-
vised by Todd and co-workers3,5,6]. By integrating the
but assumed a strain rate based on a quadratic fit to the@nergy continuity expression we derive a heat flux which for
velocity profiles. However, for a channel width of 5.1, we narrow channels deviates from the classical cubic behavior
have shown that this assumption is no longer valid. We haveredicted by Navier-Stokes theory and the earlier results of
calculated a shear viscosity profile from HG4) using our Todd and co-worker$3,6]. We find that the heat flux has
derived strain-rate profile. We find that the viscosity divergesscillations located at roughly the same points as those in the
due to the fact that the strain rate goes to zerg-at-1.3,  velocity profiles. We use the method-of-planes technique to
(see Fig. 8 but the shear stress remains nonzeee Fig. 3. calculate an “exact” expression for the heat flux. The MoP
This shows that a local linear constitutive relation cannotheat flux is found to agree with the mesoscopically derived
give an adequate relation between the stress and strain-réteat flux. We must stress here that the statistical mechanical
fields in these narrow channels. If viscosity is a nonlocaldefinition of the heat flux requires a knowledge of the
function ofy, a nonlocal generalization of the linear consti- streaming velocity evaluated at a plane. The analytic form
tutive relation relating the stress to the strain rate is requiredor this streaming velocity is not knowa priori. The best
Such a relation is one can do is to try to find a set of appropriate expansion
functions and fit the coefficients by a least-squares proce-
dure. Our results suggest that our choice of expansion func-
Ty(y)= - fyn(y;y—y’)y(y’)dy’. (25) tions is reasonable, within the degree of the statistical accu-
0 racy of our data.
In their earlier work, Todd and co-workef8,5] calcu-
However, we do not have sufficient data to calculate th@ated the viscosity of a fluid undergoing planar Poiseuille
viscosity kernel. flow in a narrow channel. They found that this transport co-
efficient was not constant across the channel as required by
IV. CONCLUSIONS the Navier-Stokes theory, but instead exhibited strong oscil-
lations. We find that the use of the local constitutive relation

_We have used nonequilibrium molecular dynamics t0g,. shear viscosity gives an absurd viscosity profile. Our re-
simulate an atomic liquid undergoing gravity-fed flow down g, i " therefore, suggest that for this narrow channel width,

a narrow c_hqnnel. Our model fluid is spatially Inhomogg-the viscosity is a nonlocal function of position across the
neous and it is expected that for such a system, the Navieg annel

Stokes equations will break down. Todd and EvEgishave
recently carried out similar calculations for a fluid confined
to channels widths of 5.1 and 10.2 molecular diameters. Sur-
prisingly, they found general agreement with the Navier- We wish to thank the Australian National University Su-
Stokes theory despite the strong oscillations in the densitpercomputer Facility for a generous grant of computer time
profile. Our work differs from that of Todd and Evaj® in on the University’sFUJITSU supercomputers.
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