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Oscillations and spatiotemporal chaos of one-dimensional fluid fronts
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and Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104
~Received 11 September 1996!

The bifurcations to time-dependent and chaotic one-dimensional fluid fronts are investigated in the flow of
a fluid inside a partially filled rotating horizontal cylinder. A primary cellular pattern undergoes a variety of
secondary transitions, depending on the filling fraction. We document three types of transitions to time depen-
dence which are shown to be qualitatively distinct by space-time Fourier analysis. We focus particularly on a
highly symmetric transition to spatially subharmonic oscillations that is well represented by model equations.
A subsequent transition of the oscillatory state to spatiotemporal chaos is explored quantitatively through the
use of spectral analysis and complex demodulation to extract slowly varying amplitudes and phases. Many
features of this chaotic state are at least qualitatively described by the model, including propagating compres-
sions that are related to a locally depressed amplitude of oscillation. We are able to measure some of the
parameters of the model directly. We also attempt to determine all of them by a least squares fitting method in
the chaotic regime. Though this method is shown to work well for numerically generated data, experimental
noise limits its use with experimental data.@S1063-651X~97!09104-6#

PACS number~s!: 47.20.Lz, 47.52.1j, 47.54.1r
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I. INTRODUCTION

Transitions to spatiotemporal chaos, which often oc
beyond a secondary threshold, are challenging to desc
and understand. Many examples of spatiotemporal ch
~STC! in one dimension have been studied both experim
tally and numerically@1#. When the transition to STC occur
from a state that has a considerable degree of symmet
generic description may be possible by using model eq
tions whose form is determined largely by symmetry cons
erations@2#. In a few cases, a close correspondence betw
model equations and experiments has been found, e.g.
convection in binary mixtures@3# and in electroconvection
@4#. However, in many cases even a qualitative understa
ing of the spatiotemporal dynamics is missing.

Pattern-forming instabilities of cellular fronts are an a
tractive context for exploring the modeling of STC, becau
the full space-time behavior of the dynamical variables c
be measured. The evolution of a one-dimensional fluid fr
inside a horizontal rotating cylinder is investigated in th
study, which extends preliminary work published earlier@5#.
Investigations in this system have shown it to be a r
pattern-forming system with a variety of transition s
quences, depending on experimental parameters@6#. We fo-
cus especially on the transition to STC via spatially subh
monic oscillations~SSO! of cellular fronts, because it ha
well-defined space-time symmetries, and is amenable
modeling. We also describe an additional transition via
oscillatory state whose wavelength is apparently irrationa
related to that of the base pattern; this phenomenon is
served near the SSO state in parameter space, but has d
ent symmetry. We have fully characterized these transiti
using a variety of methods, using space-time spectral
correlation analysis, and complex demodulation~see, e.g.,
@3#.!

Because the flow has a free surface whose shape is c
plicated and time dependent, it is not realistically possible
551063-651X/97/55~4!/4274~14!/$10.00
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utilize the full hydrodynamic equations to describe it. Tw
theoretical models have been proposed that are consi
with the basic symmetries of the problem. The first and m
general of these models@7,8# considers the dynamics near
codimension-two point of a Turing~cellular! mode and a
Hopf ~oscillatory! mode. A number of interactions betwee
these two modes are described, including a spatially sub
monic oscillation that grows supercritically as a second
instability above the onset of the cellular state. This ‘‘su
T’’ model is described by three complex amplitudes: that
the cellular state, and two amplitudes to characterize the
posite parity traveling waves, which together form the Ho
mode. A reduced model is applicable in cases where
secondary bifurcation is to astationaryHopf mode and is
observed at finite amplitude of the cellular state. In this ca
the required variables are the phasef of the base cellular
state, and the complex amplitude of oscillationA. We will
call this the ‘‘A-f model.’’ This reduced form describes on
of the generic symmetry-breaking bifurcations proposed
Coullet and Iooss@2# and has been investigated in detail
the context of one-dimensional Rayleigh-Be´nard convection
@9#. In a previous Brief Report, we have shown that so
features of the transition to STC are captured by this mo
and we present an extension and fuller discussion of
work here.

A main point of this investigation is to address the fo
lowing question: How can one empirically test the adequa
of a model for the onset of STC? Several different metho
are utilized, including methods of obtaining individual mod
coefficients. One novel approach is to attempt to fit the
perimental chaotic data to the model~i.e., to determine the
best fitting coefficients in a least squares sense!, as has been
recently demonstrated for temporal chaos by Baker, Gol
and Blackburn@10#. Such an approach has not yet be
tested for STC. We show here that this can be done
noise-free data obtained from simulations, but that the no
present in experimental data, at least in the present case
4274 © 1997 The American Physical Society
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55 4275OSCILLATIONS AND SPATIOTEMPORAL CHAOS OF . . .
daunting obstacle. Therefore other more indirect metho
have to be used. We are able to establish that many qual
tive features of the transition to STC are represented a
equately by the reduced two-field model.

The paper is organized as follows. In Sec. II the rotatin
rimming flow and earlier related experiments are describe
The experimental and analysis methods are described in
tail in Sec. III, including the process of complex demodula
tion. The phase diagram showing stability of time
independent and time-dependent patterns is presented
detail in Sec. IV, together with general stability measure
ments and statistical studies of the chaotic state. In Sec. V
detailed description of the reducedA-f model is provided,
together with experimental measurements of several of t
model coefficients. The results of a least squares fittin
method applied directly to the chaotic state are detailed
the Appendix. The discussion and conclusion follow in Se
VI.

II. BACKGROUND

The system under investigation is fluid partially filling a
horizontal rotating cylinder@Fig. 1~a!#. The relevant param-
eters are the filling fraction of fluidV, the fluid viscosityn,
the radius of the cylinderR0 , and the driving rateV ~rate of
rotation of the cylinder about its axis!. We consider only the
case of smallV. Over a broad range of parameters, the o
served behavior is characterized by dynamics on leng
scales much smaller thanR0 , but larger than the mean film
thickness. A characteristic length scaleh for the flow can be
found by identifying the film thickness at which gravitationa
and viscous forces would balance. This occurs whe
nVR/h25g, so thath5AnVR/g. The Reynolds number
based on this scale is Re5(R0Vh)/n. In addition toh other

FIG. 1. ~a! Diagram of the experimental geometry. The relevan
dimensions are the cylinder radiusR0 and lengthL. The experimen-
tal parameters are the fluid volume fractionV, rotation rateV, and
viscosityn. See Sec. III for details. The angular positionF0(x,t) of
the falling front exhibits highly symmetric stationary and time
dependent patterns.~b! Cellular, time-independent pattern;~c! spa-
tially subharmonic oscillatory state; and~d! spatiotemporally cha-
otic state.
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length scales may be defined, including the mean film thi
ness based on fluid volume~a function of bothR0 andV!.
Becauseh may not be the only relevant scale, we leave t
wave numbers characterizing flow structures as dimensio
quantities.

We consider variations inV and Re primarily. In the limit
of low driving rates most of the fluid forms a pool in th
bottom of the cylinder, leaving a thin film of fluid that wet
the inside of the cylinder everywhere. As the driving rate
increased, fluid is carried up the rising side of the cylind
where it subsequently falls, cascading back down to the p

At still higher Re, the pool is dragged up the rising side
a new equilibrium position, the state depicted in Fig. 1~a!.
The lower edge of this pool curves sharply into the flu
layer beneath it, and forms a linear front whose azimut
positionF0 can be measured as a function of space and ti
For a wide range of fluid volumesF0 is homogeneous in the
axial direction for a finite interval of driving rates. This ho
mogeneous front~termed a flat front! may become unstable
to traveling pulses or may give way to a cellular pattern. T
traveling pulse state was investigated by Melo and Dou
@11#, who found that the density of traveling pulses increa
as a function of Re, until eventually a stationary cellu
pattern is formed. For largerV the flat front bifurcates in-
stead directly to a uniform cellular pattern through a seco
order transition. This pattern is shown in Fig. 1~b!. As Re is
increased, the cellular pattern bifurcates to an oscillat
state with twice the original wavelength~dubbed a spatially
subharmonic oscillation!. This regime is shown in Fig. 1~c!;
a preliminary study of this regime was reported in Ref.@5#.
Further increase in Re leads to a regime of spatiotemp
chaos@Fig. 1~d!# that we explore in greater depth in th
paper. There are actually several distinct types of spatiot
poral chaos, and we describe the differences between the
Sec. IV.

A number of investigators have explored some feature
this system theoretically. The earliest report describing th
instabilities was by Karweit and Corrsin@12#, who reported a
cellular instability. No attempt was made at that time to e
plain the phenomena, although a series of analytical and
merical studies of the high rotation rate limit were given
Ruschak and Scriven@13# and by Orr and Scriven@14#. At-
tempts to find solutions to the hydrodynamic equations as
driving rate is reduced have revealed singular points in
rameter space where numerical results fail to conver
These singularities may be the result of multiple solutions
would be expected for a recirculating flow@15#. Johnson
@16,17# carried out an analysis for both Newtonian and no
Newtonian fluids, starting from the lubrication approxim
tion of the hydrodynamic equations. He was able to dem
strate the presence of a recirculating zone and sev
possible flow configurations, but could not provide pred
tions for the transitions to these solutions. Other viscoela
studies of the coating flow both inside and outside of a
tating cylinder were conducted by Preziosi and Joseph@18#,
and by Sanders, Joseph, and Beavers@19#. Melo @20# inves-
tigated experimentally the applicability of the lubrication a
proximation to the flow in the low fluid volume limit.

An alternative to lubrication theory is a stream functio
approach to the two-dimensional steady-state problem. C
charro and Peralta-Fabi@21# have solved the flow at low and

t
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4276 55D. P. VALLETTE, G. JACOBS, AND J. P. GOLLUB
high rotation rate limits forV50.5 using stream functions
but note that numerical integration is necessary to solve
more specific flow configurations. In any case, current an
sis does not provide a prediction for the primary instability
a cellular state which has been well documented experim
tally over a broad range of fluid volumes and viscosities.

In addition to the states described in this article, there
a large number of dynamic and stationary states which h
been documented. A systematic description of the param
space was conducted recently by Thoroddsen and Mah
van @6# for a wide range of fluid volumes and viscositie
Many of these phenomena appear to be the result of
surface instabilities, and warrant more detailed investigat

III. EXPERIMENTAL AND ANALYSIS METHODS

The apparatus used for this experiment is illustrated
Fig. 1~a!. A glass cylinder of radiusR055 cm and length
L550 cm is partially filled with silicone oil of viscosityn
510 cS. Typical filling fractions are in the range 0.01–0.0
The typical mean thickness of the wetting film is about 0.
cm. In order to obtain spatially uniform patterns, the cylind
must have a uniform radius. The radius of the cylinder w
fixed by the manufacturer by shrinking the glass~thickness
1/4 in.! onto a custom ground mandrill, and the exterior w
ground and polished concentrically, to within 0.005 cm. E
caps were machined from Delrin, and contain a dou
O-ring seal. One end cap is coupled directly to a microst
ping motor~4000 microsteps per revolution!. The other end
cap provides access to the fluid through an opening. Som
the critical values of Re for transitions vary substantia
with temperature. In order to ensure repeatability, the cy
der is contained within a well-insulated box maintained
fixed temperature (T525.060.2 °C).

Control of the rotation rate is provided by a GPIB co
nection to a signal generator driving the stepping motor
this way, incremental sweeps of Re with arbitrary step s
~in Re! can be performed to automate the data collect
process. Transitions are determined with step sizes of 0
near the transitions, followed by wait times of 300 s to allo
a steady state to be achieved.

The fluid front has sharp curvature@Fig. 1~a!# so that a
uniform lighted background produces a strong contrast;
makes the determination of the front position possible. Fr
finding is performed in real time using a Data Raptor ima
capture board@22#. Pixel values can be read from the boa
as the image is being written to the board. A Cohu char
coupled device~CCD! camera is used to obtain digitize
images with resolution of 6403480 pixels. The full length of
the horizontally oriented cylinder is captured. Typically, th
corresponds to 30–40 cellular wavelengths. The height of
cellular front patternU(x,t) is typically 30 pixels vertically.
Since angular displacementsF0 of the front actually follow
a circular path, one must take care that the circumferenc
the cylinder is tangential to the plane that is imaged, at
location of the mean front.

One may take advantage of available processing tim
improve the vertical resolution of the position of the front.
vertical line of intensity values is read for each horizon
point in the frame buffer. The first spatial derivative of the
data shows a large negative peak at the point of grea
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contrast. The centroid of this peak is defined as the posi
of the front, and is insensitive to the range of integration.
this way, the position of the front at each timet, U(x,t) can
be obtained reliably to within 0.2 pixels of vertical resol
tion. Data are captured at 30 Hz and are written to d
continuously to allow the capturing of data records of ar
trary length.

A typical example of the digitized front heightU(x,t) at
an arbitrary time is shown in Fig. 2~a!. For clarity, only a
portion of the cell is shown. This state is typical of th
weakly chaotic spatially subharmonic state~SSO! shown in
Figs. 1~c! and 1~d!. The spatially subharmonic structure
clearly evident from the alternate high and low amplitu
peaks in the left part of the figure. The right side of the c
does not show the subharmonic structure in this instant,
cause the oscillations at this time are out of phase with th
of the left side of the cell. The time dependence of the p
tern is shown in Fig. 2~b!, where the spatially subharmoni
oscillations are evident from the checkerboard pattern of

FIG. 2. ~a! Enlargement of the front positionU(x,t0) ~a projec-
tion of F0 onto the imaging plane! for the weakly chaotic state, in
arbitrary units. The spatially subharmonic structure is evident in
left half of the image.~b! Gray scale space-time plot of the weak
chaotic state; dark regions correspond to largeU. Both the ampli-
tude of the oscillation and the wavelength of the cellular struct
fluctuate slowly in space and time (V50.032, Re595.13).
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55 4277OSCILLATIONS AND SPATIOTEMPORAL CHAOS OF . . .
dark peaks.~Alternate peaks in the pattern are oscillati
with opposite phase.! Dark regions correspond to largeU.

Spatial variations in the phase and amplitude of the os
lations and in the wavelength of the cells generally occur
a length scale larger than that of the wavelength of the
tern, and may therefore be defined as slow perturbation
the basic state. The separation of scales is evident in
power spectrumP(k,v) ~the magnitude squared of th
space-time Fourier transform!, which is shown in Fig. 3.
This spectrum was performed over 512 points in space~40
cm! and 2048 points in time~68 s!. The size of the data
record limits the resolution to approximately 0.16 cm21 in
wave number and 0.092 rad/s in angular frequency. The m
prominent peaks occur at (k565.5 cm21, v50 rad/s) and
at (k52.7 cm21, v511.9 rad/s). These peaks are sharp a
well separated inv-k space. These features allowU to be
expressed as a sum of low order modes ink and v with
slowly varying amplitudes. The first modeU0 ~taken to be
real! corresponds to the stationary cellular part of the patt
of wave numberk0 and the subharmonic modeA corre-
sponds to the amplitude of the oscillations of wave num
k0/2, and frequencyv0 . That is,

U~x,t !5U0e
i ~k0x1f!1Aeiv0tei ~k0x/21f!1c.c.1 •••, ~1!

whereU0 andf are slow real functions ofx, t, andA is
slowly varying but complex. The slowly varying amplitude
U0 , A, and f are obtained by complex demodulation,
order to compare the dynamics with the predictions of mo
equations~see Sec. V!. This process consists of applying
rectangular window ink-v space, followed by a back trans
form to x-t space. Demodulation windows are chosen so
to retain the largest possible bandwidth, as shown by
boxes around the primary and secondary peaks in Fig. 3.
boxes shown are of size 2(dk)52.7 cm21, by 2(dv)
511.9 rad/s.

FIG. 3. Power spectrumP(k,v) of the data in Fig. 2. The
sharply defined peaks are well separated in Fourier space. B
surrounding the primary peak (k5k0565.5 cm21, v50 rad/s)
and the subharmonic peak (k52.7, cm21, v5v0511.9 rad/s) de-
fine the demodulation window for the slowly varying amplitud
U0 , andA, respectively.
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IV. PHASE DIAGRAM, WAVE-NUMBER DEPENDENCE,
AND STATISTICAL STUDIES

A. Phase diagram in Re-V space

A phase diagram of the various pattern-forming states
shown in Fig. 4 for 10 cS silicone oil as a function of Re
nolds number and volume fraction. Stability boundaries w
measured by slowly increasing Re at fixedV. For Re near
zero, a pool of fluid forms a uniform front with no discern
ible surface perturbations. A transition to cascading from t
state is independent of fluid volume over most of the para
eter space explored. It is a weakly hysteretic transition, w
a hysteresis of no more than 2% of the critical Re. The c
cading state disappears at much higher viscosities, and
transition then occurs directly from the uniform front to th
cellular state@21#. Thus the system~and especially the cel
lular instability! may be easier to model in the high viscosi
limit.

Beyond the cascading region~i.e., at higher Re! either a
flat front or a cellular state emerges, depending on the fill
fractionV. ForV in the range 0.15&V&0.23 the cascading
state is replaced by a flat front. For smallV in this range, the
flat front may appear to undulate slowly. Traveling puls
reported previously@11#, occur in regionA.

ForV*0.025 the cascading region is replaced by a sm
amplitude cellular state. There is an overlap in stability b

FIG. 4. Phase diagram of stable states of the front. At low R
pool of fluid forms in bottom of the cylinder. As Re increase
perturbations of the pool form as fingers of thickened fluid, and le
to a cascade of fronts. At still higher Re, transitions occur to a
or undulating front~below regionA!, or to a cellular state. Fou
additional dynamical regimes are observed in this phase space
gionA, a traveling pulse state; regionB, a chaotic state marked b
wave-number fluctuations in the cellular pattern and unstable s
harmonic oscillations; regionC, the spatially subharmonic stat
~SSO!, together with transitions to spatiotemporal chaos; and reg
D, a state in which oscillations are incommensurate with the ce
lar pattern.

es
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tween the flat front and the cascading state near the boun
of the cellular state, and the flat front region is not shown
the stability diagram. To find the flat front it is usually ne
essary to begin from the cellular state and lower the driv
rate. The cellular state is stable over a broad range of Re
stability has been reported in a number of investigatio
@5,6,17,21#, although a satisfactory explanation for this p
mary instability is still lacking.

At the upper stability limit of the cellular state, variou
transitions to increasing disorder in space and time are
served. Three distinct dynamical regimes are examined
this study, labeledB, C, andD. In regionB, fluctuations in
the wave number of the pattern are observed, together
cell nucleation and annihilation events. An example o
space-time diagram for this region is shown in Fig. 5. Fig
5~a! shows a typical snapshot of this state at a fix
time. Structures of different length scales and amplitudes
exist, and evolve in time as seen in Fig. 5~b!. Cells may be
compressed or stretched, a process that leads to cell n
ation or annihilation events. When the wavelength is su

FIG. 5. The chaotic state observed in regionB of Fig. 4. ~a!
Front positionU(x) at an arbitrary time and~b! gray scale space
time diagram. A localized spatially period doubled oscillation of t
pattern is observed when the pattern is briefly compressed.
nucleation and annihilation events are indicated by the arrowsV
50.028, Re560.03).
ary
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ciently small, a localized spatially subharmonic oscillation
the peaks is observed, similar to those in Fig. 1~c!. The
strong wavelength dependence of the oscillation amplitud
also observed in regionC of Fig. 4, as we discuss in Sec
IV B.

In regionC, the SSO state is stable and the oscillatio
fill the length of the cell~see Fig. 6!. As the driving rate is
increased, the behavior of the oscillatory state becomes
otic in space and time, with distinct ‘‘weak’’ and ‘‘strong’
chaotic states~depending on whether cell nucleation even
occur! as reported by Vallette, Edwards, and Gollub@5#.
These states are analyzed more fully in the present pape
space-time diagram for the strongly chaotic state is show
Fig. 7. When the wavelength is sufficiently large, the osc
lations cease.

At still higher fluid volumes an oscillatory instability o
the cellular state is observed whose wavelength isnot a sub-
harmonic of the basic pattern~regionD of Fig. 4!. An ex-
ample of this state is shown in Fig. 8. The dynamics of
two amplitudesA andU0 may not be as strongly couple
here as they are in the case of the SSO state~Fig. 2!.

The distinction between the three dynamical regions

ell

FIG. 6. The space and time periodic SSO state~regionC of Fig.
4.! ~a! Front positionU(x) at an arbitrary time and~b! gray scale
space-time diagram (V50.032, Re592.43).
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55 4279OSCILLATIONS AND SPATIOTEMPORAL CHAOS OF . . .
even more apparent when one considers their power sp
in the two-dimensional frequency-wave-number domain
shown in Fig. 9~and Fig. 3!. Figure 9~a! corresponds to the
first of the chaotic states~region B!, and shows a powe
spectrum for which no primary peak atv50 is distinguish-
able. This is reflected in the dynamics of Fig. 5, where
wavelengths of individual cells vary continuously. At high
V ~Fig. 3! the cellular state is more stable, and the prima
peak corresponding to it atv50 is clearly evident, as is the
subharmonic peakA, which is sharply defined and has
wavelength clearly commensurate with that ofU0 . However,
the oscillations in regionD @Fig. 9~b!# fill out lines ~rather
than isolated points! at finite v in the v-k plane; these os
cillations are generally not commensurate withU0 . Quasip-
eriodic incommensurate states have been discussed by C
let and Iooss@2#.

In each of the cases examined, there is an upper limit~in
Re! to the stability of any front at all~even time dependent!;
this limit is represented by the dark solid line in Fig.
Above this line the fluid in the front region is pulled over th
top of the cylinder and the front is no longer identifiable.

FIG. 7. The strongly chaotic SSO state~upper part of region
C, Fig. 4!. ~a! Front positionU(x) at an arbitrary time and~b! gray
scale space-time diagram. Nucleation and annihilation events
evident as for regionB (V50.032, Re598.26).
tra
s

e

y

ul-

B. The wave-number dependence
of the cellular and oscillatory states

In order to address the transition to spatiotemporal ch
of Fig. 2, it is first necessary to consider the stability of t
steady cellular~SC! state. The wave-number range of the S
state is shown via the stability diagram in Fig. 10. The me
wave number̂ k& is calculated over the middle 50% of th
image. The wave number of a given pattern is not ea
controlled in this system; thus a systematic search of Rk
space is difficult. A wave number different from the mo
rapidly growing modekc at the onset ofU0 can be obtained
by taking finite size steps across a stability boundary fr
below or above, to enter the regime of the steady cellu
pattern. Steps from the flat front tend to give patterns wit
high wave number, whereas steps from the time-depen
regime, and especially from the strongly chaotic state, m
result in wave numbers smaller thank0 . In the strongly cha-
otic state fluctuations in the number of cells are large, a
hence a wide range of̂k& can be achieved by quenching

re

FIG. 8. The disordered oscillatory state~regionD of Fig. 4!. ~a!
Front positionU(x) at an arbitrary time and~b! gray scale space
time diagram. The wavelength of the oscillatory mode is not w
defined, and is clearly not a subharmonic of the cellular stateV
50.040, Re5149.00).



ta
es
gh
v
s

th
o
b
au
to
d
g
is

T
um
f

n

-
ro
tio
th
s

nd
rn

l-

for
the
te
rba-

e
al,
r, a
o

Fig.
SO
cult

tabil-
w
re
are

io
a
an

ion
c
ce

s-

are
ola

ary
ave
ta-
for
gth-
tinu-

4280 55D. P. VALLETTE, G. JACOBS, AND J. P. GOLLUB
Once a particular wave number is selected in the SC s
the system will remain at that wavelength, provided it li
well within the stability boundaries for that state. Throu
these and similar techniques, a profile for the stable wa
number range of the SC state may be constructed, a
shown in Fig. 10.

An estimate for the parabolic curve corresponding to
Eckhaus boundary of the cellular state is plotted at the b
tom of Fig. 10. Because strong control over the wave num
is unavailable, a precise determination of the Eckh
boundary is not possible. The curve shown corresponds
parabola accommodating the lowest values of Re observe
many runs. The cellular front undergoes a long wavelen
instability characteristic of the Eckhaus transition if Re
reduced below this curve.

A second wavelength-changing instability~WCI! is ob-
served at large Re and bounds the SC state from above.
transition leads to a discontinuous increase in the wave n
ber of the system. This sudden shift ink takes SC states o
the system into the weakly chaotic~STC! range @23#. An
example of this transition is shown in Fig. 11. Att50 s the
system is in the SC state with an initial wave numberk
54.32 cm21. At t517 s, Re is stepped from 92.42 by a
upward step ofDRe50.20. After a brief time~whose dura-
tion depends onDRe! the widths of the cells begin to fluc
tuate; these fluctuations travel through the system and g
until they become large enough to cause cell nuclea
events. Along with these fluctuations one begins to see
emergence of oscillations. Eventually the system stabilize
a new higher wave number and~chaotic! oscillations perme-
ate the system.

FIG. 9. Power spectra of the data representing states in reg
B,D of Fig. 4. ~a! The unstable oscillations seen in Fig. 5 form
broad peak at finite frequency. The fluctuations in wavelength
in the number of cells cause the peak atv50 to be extremely
broad.~b! The oscillatory state corresponding to Fig. 8 and reg
D of Fig. 4 does not have a well-resolved peak at finite frequen
and its wavelength is apparently not a harmonic of that of the
lular pattern atk54.5 cm21.
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End effects also affect the wavelength of the pattern a
the stability of the SC state. If the wavelength of the patte
is sufficiently large ~or sufficiently small!, cells may be
nucleated~or removed! at the bounding end caps of the cy
inder. These result in a local gradient in the phase ofU0
which slowly diffuses through the system. The time scale
this process is roughly 1–30 min, depending on how far
state is fromkc . As the driving rate is increased, the SC sta
becomes increasingly stable against wavelength pertu
tions and these events are less frequent.

The WCI transition led us initially to suspect that th
transition to time dependence was invariably subcritic
with a coexistence of the SC and chaotic states. Howeve
broader search of the Re-k plane shows that the transition t
oscillations is continuous at higher^k&. The transition be-
tween the SC state and the SSO state is represented in
10 by the steep downward sloping curve separating the S
and SC states. Due to the steepness of the curve, it is diffi
to find wave numberk for which the transition will be con-
tinuous as Re is increased. Instead, one may cross the s
ity boundary horizontally by taking advantage of the slo
decrease ink of the cellular pattern for a range in Re whe
the SSO state is homogeneous and the oscillations
steady.

ns

d

y,
l-

FIG. 10. Stability diagram for the cellular and subharmonic o
cillatory ~SSO! states~regionC of Fig. 4! as a function of mean
wave number̂k&. The stationary cellular state~SC! emerges super-
critically from a flat front ~FF! at Rec531.18, kc54.4 cm21 (V
50.032). Near this point, a broad range of wave numbers
stable. An Eckhaus instability is approximated by the parab
shown. A wavelength-changing instability~WCI! is observed at the
upper limit of the cellular state. A ramp of Re across this bound
drives a cellular pattern to a state with strongly compressed w
number^k& in the spatiotemporally chaotic region. A second ins
bility of the SC state is to spatially subharmonic oscillations
higher wave numbers. The SSO state also exhibits wavelen
changing behavior and may cross the line to a chaotic state con
ously as indicated by the arrow (V50.032).
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Evidence that this transition to subharmonic oscillations
continuous is shown in Fig. 12~a!. In Fig. 12~a! the square of
the amplitude is plotted as a function of wave number, av
aged over the center 50% of the cell. The amplitude dec
continuously to zero during this transition. The suppress
of A for the points neark54.80 cm21 is the result of inho-
mogeneity in the oscillatory pattern. This sensitivity to sm
inhomogeneities in the system near the transition is cha
teristic of second order transitions. The Hopf frequency
shown in Fig. 12~b!; it also varies smoothly near the trans
tion. A further increase in Re may cause the SSO stat
undergo a continuous transition to STC in which the wa
number increases reversibly. This transition is indicated
the arrow in Fig. 10.

C. Space and time scales for spatiotemporal chaos

A reversible transition from the SSO state to the chao
regime via long wavelength perturbations, which occ
along the line indicated by the arrow in Fig. 10, leads
spatiotemporal chaos. In the preliminary report@5#, the tran-
sitions observed in regionC of Fig. 4 were quantified by
measuring the decay of the correlation function of the fr
height U. In that investigation it was determined that th
correlation timet decayed more quickly with increasing R
than did the correlation lengthj. However, when one con
siders the sharp separation between peaks in the spectru
U, it is apparent that two lengths and two time scales can
defined for the system, corresponding to the principal sp
tral peaks ofU0 andA. It is more direct to obtain length an

FIG. 11. Gray scale space-time plot ofU(x,t) showing the WCI
transition in Fig. 10. The system undergoes a transition from
initial ^k&54.32 cm21 to ^k&55.56 cm21, following an imposed
step increase ofD Re50.20 from Re592.42 att514 s. Fluctua-
tions in the wavelength of the cellular pattern grow and tra
through the system, compressing the pattern, and causing the
of weakly chaotic oscillations.
s

r-
ys
n

l
c-
s

to
e
y

c
s

t

of
e
c-

time scalesj andt from the shapes of these peaks than it
to fit their correlation lengths. In this paper, we therefo
definej andt somewhat differently, as follows:

j21[dk5S (
v06Dv

k2uU~k,v!u2

(
v06Dv

uU~k,v!u2
D 1/2

, ~2a!

t21[dv5S (
k06Dk

v2uU~k,v!u2

(
k06Dk

uU~k,v!u2
D 1/2

, ~2b!

where the ranges of the sumsDv, Dk are the demodulation
windows shown in Fig. 3.

As an example, consider the power spectrumP(k) of the
primary peakU0 in Fig. 13~a!, for two values of Re. This
spectral distribution was obtained by integratingU(k,v)
over a window of sizeDv56.0 rad/s centered atv50. Data
were collected by sequentially increasing Re from a po
near the oscillatory bifurcation to the loss of the front ov
the top of the cylinder. The solid squares correspond to
595.91 and the open squares to Re598.26. The wave num-
ber is nondimensionalized by the wave number of the pat
in the time-independent state. In addition to a broadening
the peak of the cellular pattern, there is a slight increase
the wave number of the pattern with increasing Re. In or
to find the width of the primary peak, both windowing and

n

l
set

FIG. 12. Plots of the square of the oscillation amplitudeuAu2 and
frequencyv as a function of decreasinĝk& near the SC to SSO
transition of Fig. 10. The transition exhibits the behavior charac
istic of a second order transition. The slope of thev-k curve gives
an estimate for parameters in a model equation motivated by s
metry (Re574.57).
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thresholding routine were used to exclude data below a n
threshold. This method is effective when the peak is at le
two orders of magnitude greater than subsidiary peaks
background noise, as for the data at Re595.91. However, as
Re is increased, cell annihilation events become common
that case, the peaks are not adequately resolved, so t
precisely defined width is hard to measure at the largest
ues of Re. In the high Re range, the length and time scale
the subharmonic peakA may be more reliable. An exampl
of P(k) for the subharmonic peak is shown in Fig. 13~b!.
Here the subharmonic peak is resolved even for large va
of Re.

The dependencies on driving rate ofj21 andt21 for the
two spectral peaks are shown in Fig. 14. For this run,
initial wave number and Hopf frequency near the transit
are k055.34 cm21, v0511.8 rad/s. Circles correspond
the widths of the primary peakU0 and squares to the width
of the spatially subharmonic peakA. This figure demon-
strates that the transitions to disorder ofU0 , A are strongly
correlated, and that the loss of spatial order begins at a so
what larger value of Re than does the loss of temporal or
An explanation of this transition which depends on the c
pling betweenU0 , A is warranted, and is the subject of th
next section.

FIG. 13. ~a! Spatial power spectraP(k) of the weakly chaotic
state of Fig. 2, and strongly chaotic state of Fig. 7 integrated ovev
aboutv50. The primary peak near (k0,0) in Fig. 3 of the weakly
chaotic state (Re595.91—solid squares) is narrower than that
the strongly chaotic state (Re598.26—open squares). The width o
the peak defines the inverse of a correlation length that decre
with increasing Re. The growth of the subsidiary peak atk/k0
50.5 is the result of annihilations resulting in a local waveleng
doubling. ~b! Power spectrumP(k) for the finite subharmonic os
cillatory peak near (k0/2,v0) in Fig. 3.
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D. Demodulated fields

The strong correlation between base pattern and osc
tion can be seen in the examples shown in Fig. 15. Fig
15~a! is a gray scale plot of the phase gradient]f/]x of the
front plotted in Fig. 2. Dark regions correspond to regions
increased wave number~local compression of the pattern!
and light regions to reduced wave number~pattern stretch-
ing!. These localized perturbations travel at constant sp
~2.560.3 cm/s!. Fluctuations in both the magnitude and th
phase of the oscillation amplitudeA5reic are correlated
with these regions of stretching and compression of the ce
We present the magnituder(x,t) and the frequency varia
tions ]c/]t in Figs. 15~b! and 15~c!. The oscillation ampli-
tude at this value of Re is fairly smooth, as fluctuations
relatively small, about 25% of the mean amplitude. The c
relation between base pattern phase gradient and the os
tion amplitude is also observed in model equations by Le
and co-workers@9,24#, and also occurs in the Nozaki-Bekk
holes found in solutions to the complex Ginzburg-Land
equation@25#.

By contrast, variations in the phase ofA are large in
this example. These large variations are seen in Fig. 1~c!
as a transient slowing down and subsequent acceleratio
the oscillations. These changes are correlated with
reduction and then an increase in the wave number. Re
that this sensitivity of the oscillation frequency to wav
number was observed in the laminar state as w
~Fig. 12.!

es

FIG. 14. ~a! Characteristic inverse length scalesj21/k0 defined
by the widths of the spectral peaks of Fig. 13 as a function of
The primary peak near (k0,0) and the subharmonic peak ne
(k0/2,v0), represented by circles and squares, respectively, broa
in a similar manner.~b! Inverse time scalest21/v0 for the primary
and subharmonic peaks. The temporal correlations begin to dec
a lower value of Re than do the spatial correlations.
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FIG. 15. Space-time plots of the demodulated fields corresponding to Fig. 2:~a! phase gradient]f/]x, ~b! oscillation amplitudeuAu, and
~c! fluctuations in oscillation frequency]c/]t. The demodulation window used to define these amplitudes is shown in Fig. 3. The
coupling between the phases and the oscillation amplitude, and the traveling pulses in the phases, are qualitatively similar to feat
in model equations.
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V. COMPARISON TO A TWO-FIELD MODEL

A. Description of the model

The following features of the SSO transition may be a
equately described by the two-field ‘‘A-f ’’ model proposed
by Lega@24#, and by Daviaudet al. @9#. The critical driving
rate Re0 and the frequency of oscillationv both vary signifi-
cantly with wave number. A spatiotemporally chaotic sta
grows from the oscillatory state in which fluctuations inf
and A are strongly correlated. These strong fluctuatio
travel at constant speed through the cylinder. Finally,
strength of the fluctuations increases with the control par
eter, until eventually one observes nucleation and annih
tion events, similar to intermittent bursting events observ
in the model.

This two-field model supposes that the dynamics of
bifurcating state may be captured by an equation wh
couples the complex fieldA to the phasef of the stationary
cellular amplitudeU0 :

]A

]t
5mA1~11 ia!

]2A

]x2
2~11 ib!uAu2A2~g1 id!

]f

]x
A,

~3a!

]f

]t
5x

]

]x
uAu21 ihS ]A

]x
Ā2

]Ā

]x
AD 1k

]2f

]x2
. ~3b!

Time, space, and amplitude scales are chosen so as t
three of the coefficients to unity. Except for the last term, E
~3a! is of the form of a complex Ginzburg-Landau~CGL!
equation, which is known to produce spatiotemporally c
-

e

s
e
-
a-
d

e
h

set
.

-

otic data via an instability in the phasec of A ~the Benjamin-
Feir instability @26#.! As in the usual CGL equation, a lam
nar nontrivial solution exists form.0,

A~x,t !5A05Ame~2 ibmt1 ic0!, f~x,t !5f0 . ~4!

B. Experimental determination of parameters

Several properties of the laminar solution can be used
obtain numerical values of certain coefficients. The coe
cient of the coupling termg1 id can be determined by mea
suring the wavelength dependence ofv and the critical driv-
ing rate for the transition Re(k). Note that Eq.~3b! is
invariant under an overall compression of the patte
f0→f01qx, whereq5k2k0 . Under this transformation
the oscillation frequency is offset by an amount proportio
to q, v→v1(bg2d)q. The effect of varyingq on ampli-
tude and frequency of the laminar state was shown alread
Fig. 12 of Sec. IV B. The slope of the best fitting line in Fi
12~b! givesbg2d53.7360.13 cm/s. Estimates forb andg
allow a determination ofd independently~see below!. Physi-
cal units are used for all measured coefficients because
diffusion coefficienta r for A is not known.

The bifurcation parameterm is also offset by an amoun
proportional toq when the pattern is compressed:m→m
2gq, and thereforeuA0u25m2gq. One may assume Re t
be linearly proportional tom for fixed k. Under this assump-
tion, the line of marginal stability for the oscillations is de
fined by
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m~q!5
Re~q!2Re0

Re0
50,

where Re0 is defined for an arbitrary choice ofk0 . Then,

g52
]m*

]q
52

1

Re0

] Re

]k
.

That is, it is proportional to the slope of the marginal stab
ity curve for oscillations in thek-Re plane. A natural choice
of k0 , Re0 is the point of intersection of the WCI bounda
and the SSO boundary at~4.82 cm21, 88.30!. With this
choice, we find thatg51.0460.08 cm. Here the boundary i
defined by the points in the SC state with the highest w
number at a given Re beyond which oscillations are
served.

The oscillation frequency is also predicted to vary withm
by Eq.~4!. That is,v is expected to vary asv5v02bm, for
fixed k, or

b52S ]v

]m D
k

52Re0S ]v

] ReD .
To obtainb, the frequency of oscillation of the SSO sta
was measured as a function of increasingm. From this mea-
surement, we findb527.260.8 rad/s. Given these value
of g andb we obtaind5211.161.4 cm/s. Estimates of th
other model coefficients require an imposition of spa
variations on the pattern, and such experiments have
been performed directly. The coefficients so far determin
are summarized in Table I. In the Appendix, we discuss
alternate approach to obtaining parameters that relies on
properties of the weakly chaotic state.

C. Phase equations

A linear stability analysis of the laminar solution@Eq. ~4!#
to Eqs.~3!, was carried out by Daviaudet al. @9#. They found
that amplitude perturbations of the laminar state are dam
but that two phase unstable modes are observed for s
wave-number perturbations. The condition for instability
these equations is given by

D511ab1k1g~bh2x!,0. ~5!

It is interesting to note that the first two terms in Eq.~5!
correspond to the Benjamin-Feir condition~11ab,0!; thus
the coupling to the second phase equation has the effe
modifying the onset of the phase instability.

TABLE I. Coefficients of the model obtained by independe
measurements on the laminar oscillatory state.

Coefficient Measured value

b i 27.26 1.6 rad/s
g 1.036 0.21 cm
d 211.16 1.6 cm/sa

a15b ig2d 3.736 0.13 cm/s

ad was calculated from measured values forb i ,g,a1 .
-

e
-
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The dynamics of thef,c fields in the phase unstable re
gion of the parameter space can then be expressed by
following dynamical equations, valid for small fluctuation
in the phases:

]c

]t
5~bg2d!

]f

]x
1~11ab1bhg!

]2c

]x2
1~b2a!S ]c

]x D 2,
~6a!

]f

]t
522hm

]c

]x
1~k2gx!

]2f

]x2
12gh

]f

]x

]c

]x
. ~6b!

Notice that the first coefficient in Eq.~6a! is the coupling
term for the wave-number dependence ofv, a result that can
be verified by settingf5f01qx and c5c01vt. How-
ever, not all of the coefficients in Eq.~5! are known for the
experiment. If a phase instability is the mechanism for
observed dynamics, then it would be preferable to be abl
show that the fitted coefficients of a model satisfy Eq.~5!.
Equations~6! depend on six coefficients, a reduction fro
the original eight coefficients of Eq.~3!, and may be a bette
choice of model equations to fit to the data gathered in
SSO state than the full model equations.

D. Least squares fit to model equations

Since in the weakly chaotic state one expects the sys
to probe a large portion of the phase space of the flow, it m
be possible to extract estimates for the coefficients of
model equations. This experiment may be a good candid
for such an approach, which inevitably requires a large se
data for statistical analysis. Under the assumption that
model defined by Eq.~3! is appropriate, one may attempt
least squares fitting method to arrive at measured values
the coefficients. We report the results of such an analy
including tests on numerical simulations, in the Append
Although some useful information can be obtained from t
approach, experimental noise currently prevents a conclu
answer to the critical question: is the spatiotemporal ch
adequately described by theA-f model and its associate
phase instability?

The method consists in determining each term in
model equations independently at each point in space
time from measured data, then using this information to
the coefficients of the model to the data. The model eq
tions are linear in the coefficients, and fitting them is the
fore straightforward. Tests on synthetic data generated
numerical integration recover the coefficients to better th
1%. The results are sensitive to noise, however, addition
1% Gaussian noise to the data results in discrepancies in
estimates as large as 10% for some coefficients. This se
tivity to noise is carried over to the experimental data
well, where demodulation to obtain the slowly varying fiel
introduces a comparable amount of noise. In this case, o
rough estimates can be made for the coefficients.

VI. DISCUSSION AND CONCLUSION

A. Oscillatory states

The rimming flow of a fluid inside a rotating cylinde
demonstrates a number of interesting pattern-forming st

t
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and transitions to spatiotemporal chaos. Instabilities of
mogeneous, one-dimensional fronts include traveling pul
long wavelength undulations, and spatially periodic sta
Since the spatially periodic state is the most symmetric~and
most common! of these bifurcations, we have explored t
stability boundaries of this state in detail. Several of the p
nomena observed are generic, while others are clearly
cific to this system.

The most highly symmetric of the secondary instabilit
of the cellular state is the transition to spatially subharmo
oscillations~Fig. 6!. This transition breaks both space a
time translation invariance, and is one of ten generic ins
bilities of a cellular state considered by Coullet and Iooss@2#.
It is observed over a small range of volume fractions~region
C of Fig. 4!; the conditions for its stability are not known.

At higher volumes one observes a modified instability
which the oscillations are inherently broad and generally
commensurate with the periodic pattern@Figs. 8 and 9~b!#.
This may be an example of another of the generic instab
ties @2#. The existence of this state near that of the SSC s
raises the important question of how the two oscillato
states~commensurate and incommensurate! and their bifur-
cations are related. Is there a ‘‘codimension-two’’ point
parameter space where these two states coincide with
cellular state?

The various transitions involving oscillatory states a
strongly wave-number dependent. The cellular pattern
stable over a large range in Re-k space~Fig. 5!. It is unstable
with respect to both a wavelength-changing instability a
the oscillatory instability just described. The wavelength d
pendence of the transition to oscillations is adequately
scribed by theA-f model~complex amplitude of oscillation
coupled to a base pattern with spatially varying phase!.

A solution to the full hydrodynamic equations may b
needed for a better understanding of the oscillatory insta
ity. However, one possible explanation arises from the
lowing observations about the flow in the cellular state.
tracer particles are inserted into the flow, pairs of coun
rotating vortices are observed in the fingers of the cellu
front, with axes of rotation oriented normal to the surface
the cylinder~see, e.g., Ref.@6#!. As the cells are compresse
these vortices may be forced to interact with a character
frequency that depends on their vorticity. Increasing co
pression of the cells leads to higher vorticity, and to a cor
sponding increase in the frequency of oscillation. Such

TABLE II. Coefficients determined by least squares fitting
numerical data. The parameters were chosen so as to produ
chaotic state,D521.05 (k5g5d50.25).

Coefficient Value
Fitted value—
numerical data

Fitted with 1%
rms noise

t 1 1 1
m 1 0.9956 0.002 0.876 0.06
a r 1 0.9886 0.002 0.866 0.06
a i 1 0.9946 0.002 0.856 0.06
br 1 1.0036 0.002 0.886 0.06
b i 21.2 21.20586 0.003 21.196 0.01
g 2 1.9946 0.004 1.86 0.1
d 1.2 1.1846 0.003 1.146 0.07
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mechanism would be consistent with the results presente
Fig. 12. In addition, if the oscillatory interaction betwee
vortices decays with increasing separation, then at lo
wave number the oscillations should cease. This is gener
consistent with our observations.

B. Onset of spatiotemporal chaos

Three distinct types of spatiotemporal chaos are do
mented via their space-time Fourier spectra~Figs. 3 and 9!.
We focus on the transition from the homogeneous spati
subharmonic state to STC, where the transition is continu
and reversible. Near its onset, the STC state involves s
modulations of the cellular pattern, as indicated by the w
separated spectral peaks in Fig. 3. This clear separatio
space and time scales justifies the use of slowly varying
plitude models. However, the spectral peaks broaden s
stantially as the rotation rate increases, and the fluctua
nucleation of additional cells limits the range of applicabili
of these models.

The model which was compared to the oscillatory st
@Eq. ~3!# is expected to be valid only very near the bifurc
tion from the cellular state, and it assumes that the secon
bifurcation to oscillations occurs far from the emergence
the cellular pattern. The more general sub-T model studied
by De Wit and co-workers@7,8# drops the assumption of
saturated cellular state; in addition, the left- and right-go
parts of the oscillatory amplitude are not assumed to
coupled. Near the codimension-two point for the bifurcatio
of the cellular and oscillatory modes~Turing and Hopf bifur-
cations!, both pure cellular and oscillatory modes and su
harmonic instabilities of these modes occur. Although m
of these modes have not been observed in rimming flow,
broader approach of the sub-T model may eventually be use
ful, because it includes the primary cellular bifurcation.

Still, the A-f model for the Hopf bifurcation@9# is sim-
pler than the sub-T model, and yet shows the phenome
exhibited by the physical system near the onset of ST
These include a supercritical transition to oscillations;
wavelength dependence of the amplitude and frequency,
of the onset driving rate of the oscillatory instability; and
transition to spatiotemporal chaos with propagating comp
sions of the cellular pattern that are related to a locally

e a
TABLE III. Fit of Eqs. ~6! to simulated experimental data afte

demodulation of numerical data and 8 bit truncation. The simulat
was done using the coefficients chosen for Table II. Slow len
scaleL537.5, slow time scalet51, fast time scalet/30, demodu-
lation parameters:k0568, dk534,v05256,dv5128, in units of
the Fourier transform box size (51232048).

Coefficient Value
Fitted value—
numerical data

t 1 1
a1 23.6 27.416 0.04
a2 20.8 0.0206 0.006
a3 22.2 21.426 0.02
a4 0.5 0.6916 0.003
a5 20.25 20.226 0.01
a6 1.0 1.406 0.01
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TABLE IV. Fit of Eqs. ~6! to experimental data. One hundred files of size 51232048 are included in the fit. Demodulation paramete
k0534, dk516, v05128,dv564.

t a1 (cm/s) a2 (cm
2/s) a3 (cm

2/s) a4 (cm/s) a5 (cm
2/s) a6 (cm

2/s)

1 6.9160.07 0.00260.003 99.061.3 9.360.4 0.2560.14 210.160.4
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pressed amplitude of oscillation.
In order to demonstrate conclusively that the phase in

bility of the model is actually the cause of the STC observ
experimentally, we attempted a quantitative comparison
the least squares fitting process of the Appendix. Howe
the results are not decisive. Identification of a phase insta
ity requires knowledge of several of the coefficients@Eq.
~5!#. The combinationa21a5 of Table IV would have to be
negative for phase instability, but appears to be weakly p
tive. We determined via numerical simulations that ev
modest amounts of experimental noise cause the fitting
cess to be rapidly degraded, and this situation makes a
clusive experimental test impossible.

Finally, one cannot rule out other possible explanatio
for the chaotic dynamics. For example, the transition
chaos could be the result of an instability of the cellular st
that is coincident with but independent of the onset of os
lations. Perhaps the onset of STC is the result of phase
stabilities in the base pattern~as seen, for example, in th
WCI line of Fig. 5! extended to the oscillatory state at high
wave numbers. In such a case the analysis of the m
equations@Eq. ~3!# would not be valid. Though many lines o
evidence indicate that the amplitude equation models
describe the onset of STC in this system, measuremen
higher spatial resolution would be required to determ
whether this is indeed the case, or whether, on the o
hand, more elaborate models are required.
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APPENDIX

1. Fitting methods

In this appendix we address the question of whether
model parameters can be determined directly from the s
tiotemporally chaotic SSO data by a least squares metho
Baker, Gollub, and Blackburn@10# did for temporalchaos
given by coupled ordinary differential equations. Models
the type given in Eq.~3! may be expressed as a sum of ter

y~F!5 (
k51

K

akXk~F!, ~A1!

whereXk and y are nonlinear functions ofF, and ak are
coefficients to be determined from a set ofN measurements
Fi . The model is linear in the fitting coefficientsak @27#. For
example,y could be]A(x,t)/]t andX could beuAu2A.
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For each measurementFi there is an associated residu
Ri so that

R25(
t51

N F yi2 (
k51

K

akXk~Fi !

s i

G 2

.

The weightings i is a measure of the uncertainty in thei th
measurement ofF. In this analysis the data points are usua
weighted equally, and thes i ’s are set to unity. The bes
fitting set~or vector! of parametersa5$ak% is that for which
the derivative ofR2 with respect to allak vanishes. We use a
standard normal equation implementation of this minimiz
tion process. Finally, we note that the functiony can be
selected in various ways by rearranging the model equa
to place a different term on the left hand side with coefficie
unity.

In the following section, we show the results of applyin
the fitting method both to numerical data@obtained by inte-
grating the model of Eq.~3!# and to experimental data. In th
numerical case, excellent convergence is achieved and
parameters are obtained to a precision of 1% or better. If
rms of Gaussian noise is added to the signal, the parame
can still be determined, but less precisely~about 10–15 %!.
Applying the method to experimental data suffers from t
difficulty that the slowly varying fields must first be obtaine
by demodulation. In this case, the results are disappointi

2. Results of fitting

The least squares fitting approach was applied to synth
chaotic data generated by direct numerical integration of
~3!. The coefficients were chosen to satisfy the stability co
dition D,0, and are given in Table II~in addition k5g
5d50.25!. Here, the real coefficientsa i , b r ~set to unity in
the model! are allowed to vary in the fit, and the coefficien
a i andb i correspond toa, b of Eq. ~3!, respectively. The
size of the space-time array was 10320483512. Three hun-
dred fast time steps were computed per slow time unitt, and
every tenth time step was placed into the array. The s
spatial scale used was set toL537.5 units~out of 512 total!.
The results of the fitting process applied to these numer
data are given in the third column of Table II, and are ge
erally in excellent agreement with the actual values, be
than 1%.

To perform a test of the method more closely analogo
to dealing with experimental data, we added 1% rms
Gaussian random noise to the slowly varying fields. The
sults show that the method is sensitive to noise: errors of
order of 10% are found for the parameters. This sensitiv
suggests that this direct method of extracting the coefficie
of model equations for space-time data will be difficult
implement for noisy experimental data.

Finally, we simulate the effects of the demodulation pr
cess that must be applied to the experimental data. Th
accomplished by using Eq.~1! to define the rapidly varying
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field U(x,t) given the slowly varying fieldsA(x,t) and
f(x,t) obtained from the numerical integration. We th
truncate the resulting data to 8 bit precision and appl
window in Fourier space to recover the fieldsA, f in a
manner similar to what is done for the experimental data
so doing, we recover the original fields to within approx
mately 1%. However, the results of fitting these~modulated
and! demodulated data are not satisfactory. The result of
fit is sensitive to choice of demodulation parameter as w
as to the separation between the slow and fast time sca

Some improvement can be made by reducing the num
of parameters to be fitted. Note that Eq.~6! is obtained from
the stability analysis of the laminar states. A knowledge
the six coefficients of the phase equations in Eq.~6! is suf-
ficient to test the hypothesis that the observed chaotic sta
a result of a generic phase instability. In terms of the mo
coefficients in Eq.~3!, the fitting coefficients are defined a
follows: for Eq. ~6a!, a15bg2d, a2511ab1bhg, a3
5b2a and for Eq.~6b!, a4522hm, a55k2gx, anda6
52gh. The condition for phase instability of these equ
tions is equivalent to the requirement thata21a5,0. Since
Eq. ~6! are each independently of the form of Eq.~A1!, they
constitute twoindependentminimization problems, each o
which has only three parameters.

When applied todemodulatednumerical data, this re
duced model gives more reliable results for several~but not
all! of the coefficients than does the original model. T
results of the fit are shown in Table III. Many of the coef
cients are found with an accuracy of 10–100 %. Most tro
bling is the observation that the phase diffusion coeffici
a2 is found to be essentially zero, even though its act
value in creating the numerical data is negative. This di
culty probably reflects a need to improve the spatial reso
tion of the input data to improve the method, as discus
below.
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A similar analysis applied to theexperimentaldata is
shown in Table IV, over 100 records of size 51232048. The
method converges quickly to the values shown~after about
ten records!. The coefficienta1 , which has been obtaine
independently~see Table I!, differs from the measured valu
by a factor of 2. As we found for the demodulated numeri
data, the phase diffusion coefficient is again essentially z
which we presume to be an artifact of the demodulation.

A final consideration is whether higher order terms in E
~3! than those considered might be important. We ha
found that inclusion of higher order powers and derivativ
in the model equations@Eq. ~6!# for the phases did not resu
in statistically significant amplitudes for these new term
Their inclusion also did not result in significant changes
the values of the coefficients in Table IV. It may be desira
to include the amplitudes of bothA andU0 explicitly in a
model for the flow, as in the model proposed by De Wit a
co-workers@7,8#. Tests comparing the experimental data
this more general model have not been performed, in p
because of its greater complexity.

We conclude that the fitting process is at present suita
to the analysis of numerical data but cannot determ
whether theA-f model is adequate for describing the ons
of STC in this experiment. Numerical tests suggest that
fitting process could possibly be improved if spatial da
were available with higher resolution~say 2048 instead o
512 points!. It also might be better to use the method
situations where the spatial variations are slower so that
derivatives can be computed more accurately. Best of
experimental situations in which the fields described by
model equations are directly manifested~so that demodula-
tion is unnecessary! would be more suitable candidates f
this method.
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