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Oscillations and spatiotemporal chaos of one-dimensional fluid fronts
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The bifurcations to time-dependent and chaotic one-dimensional fluid fronts are investigated in the flow of
a fluid inside a partially filled rotating horizontal cylinder. A primary cellular pattern undergoes a variety of
secondary transitions, depending on the filling fraction. We document three types of transitions to time depen-
dence which are shown to be qualitatively distinct by space-time Fourier analysis. We focus particularly on a
highly symmetric transition to spatially subharmonic oscillations that is well represented by model equations.
A subsequent transition of the oscillatory state to spatiotemporal chaos is explored quantitatively through the
use of spectral analysis and complex demodulation to extract slowly varying amplitudes and phases. Many
features of this chaotic state are at least qualitatively described by the model, including propagating compres-
sions that are related to a locally depressed amplitude of oscillation. We are able to measure some of the
parameters of the model directly. We also attempt to determine all of them by a least squares fitting method in
the chaotic regime. Though this method is shown to work well for numerically generated data, experimental
noise limits its use with experimental daf{&1063-651X97)09104-9

PACS numbdis): 47.20.Lz, 47.52t), 47.54+r

[. INTRODUCTION utilize the full hydrodynamic equations to describe it. Two
theoretical models have been proposed that are consistent
Transitions to spatiotemporal chaos, which often occumith the basic symmetries of the problem. The first and more
beyond a secondary threshold, are challenging to describgeneral of these mode[3,8] considers the dynamics near a
and understand. Many examples of spatiotemporal chaasodimension-two point of a Turingcellulan mode and a
(STO in one dimension have been studied both experimenHopf (oscillatory) mode. A number of interactions between
tally and numerically1]. When the transition to STC occurs these two modes are described, including a spatially subhar-
from a state that has a considerable degree of symmetry, raonic oscillation that grows supercritically as a secondary
generic description may be possible by using model equanstability above the onset of the cellular state. This “sub-
tions whose form is determined largely by symmetry consid-T” model is described by three complex amplitudes: that of
erations[2]. In a few cases, a close correspondence betweethe cellular state, and two amplitudes to characterize the op-
model equations and experiments has been found, e.g., fposite parity traveling waves, which together form the Hopf
convection in binary mixtureg3] and in electroconvection mode. A reduced model is applicable in cases where the
[4]. However, in many cases even a qualitative understandsecondary bifurcation is to atationary Hopf mode and is
ing of the spatiotemporal dynamics is missing. observed at finite amplitude of the cellular state. In this case,
Pattern-forming instabilities of cellular fronts are an at-the required variables are the phageof the base cellular
tractive context for exploring the modeling of STC, becausestate, and the complex amplitude of oscillatian We will
the full space-time behavior of the dynamical variables carcall this the “A-¢ model.” This reduced form describes one
be measured. The evolution of a one-dimensional fluid fronbf the generic symmetry-breaking bifurcations proposed by
inside a horizontal rotating cylinder is investigated in thisCoullet and loos$2] and has been investigated in detail in
study, which extends preliminary work published eaffigf  the context of one-dimensional RayleighsBed convection
Investigations in this system have shown it to be a rich9]. In a previous Brief Report, we have shown that some
pattern-forming system with a variety of transition se-features of the transition to STC are captured by this model,
qguences, depending on experimental paramé¢éraNe fo- and we present an extension and fuller discussion of this
cus especially on the transition to STC via spatially subharwork here.
monic oscillations(SSO of cellular fronts, because it has A main point of this investigation is to address the fol-
well-defined space-time symmetries, and is amenable twing question: How can one empirically test the adequacy
modeling. We also describe an additional transition via arof a model for the onset of STC? Several different methods
oscillatory state whose wavelength is apparently irrationallyare utilized, including methods of obtaining individual model
related to that of the base pattern; this phenomenon is olzoefficients. One novel approach is to attempt to fit the ex-
served near the SSO state in parameter space, but has diff@erimental chaotic data to the modgk., to determine the
ent symmetry. We have fully characterized these transitionbest fitting coefficients in a least squares sgnae has been
using a variety of methods, using space-time spectral antecently demonstrated for temporal chaos by Baker, Gollub,
correlation analysis, and complex demodulatieee, e.g., and Blackburn[10]. Such an approach has not yet been
[3]) tested for STC. We show here that this can be done for
Because the flow has a free surface whose shape is comeise-free data obtained from simulations, but that the noise
plicated and time dependent, it is not realistically possible tgresent in experimental data, at least in the present case, is a
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length scales may be defined, including the mean film thick-
ness based on fluid volum@ function of bothR, and V).
Becauseh may not be the only relevant scale, we leave the
wave numbers characterizing flow structures as dimensional
quantities.
We consider variations i and Re primarily. In the limit
of low driving rates most of the fluid forms a pool in the
bottom of the cylinder, leaving a thin film of fluid that wets
the inside of the cylinder everywhere. As the driving rate is
increased, fluid is carried up the rising side of the cylinder
where it subsequently falls, cascading back down to the pool.
At still higher Re, the pool is dragged up the rising side to
a new equilibrium position, the state depicted in Figa)l
The lower edge of this pool curves sharply into the fluid
layer beneath it, and forms a linear front whose azimuthal
positiond, can be measured as a function of space and time.
For a wide range of fluid volume®, is homogeneous in the
axial direction for a finite interval of driving rates. This ho-
FIG. 1. (a) Diagram of the experimental geometry. The relevantmogeneous fronttermed a flat frontmay become unstable
dimensions are the cylinder radiRg and lengthL. The experimen-  to traveling pulses or may give way to a cellular pattern. The
tal parameters are the fluid volume fractign rotation rate), and  traveling pulse state was investigated by Melo and Douady
viscosityv. See Sec. Il for details. The angular positidg(x,t) of  [11], who found that the density of traveling pulses increases
the falling front exhibits highly symmetric stationary and time- a5 g function of Re, until eventually a stationary cellular
dependent patternéb) Cellular, time-independent patter®) spa-  pattern is formed. For largev the flat front bifurcates in-
tially subharmonic oscillatory state; arid) spatiotemporally cha-  stead directly to a uniform cellular pattern through a second
otic state. order transition. This pattern is shown in Figbll As Re is
. o increased, the cellular pattern bifurcates to an oscillating
daunting obstacle. Therefore other more indirect methodsiate with twice the original wavelengtbubbed a spatially
have to be used. We are able to establish that many qualitaybharmonic oscillation This regime is shown in Fig.(#);
tive features of the transition to STC are represented ady preliminary study of this regime was reported in R&f.
equately by the reduced two-field model. _ Further increase in Re leads to a regime of spatiotemporal
~ The paper is organized as follows. In Sec. Il the rotatingchaos[Fig. 1(d)] that we explore in greater depth in this
rimming flow and earlier related experiments are describedyaper. There are actually several distinct types of spatiotem-
The experimental and analysis methods are described in dgpral chaos, and we describe the differences between them in
tail in Sec. 1ll, including the process of complex demodula-ggc. |v.
tion. The phase diagram showing stability of time- A number of investigators have explored some features of
independent and time-dependent patterns is presented {Ris system theoretically. The earliest report describing these
detail in Sec. 1V, together with general stability measure-instapilities was by Karweit and CorrsjiZ], who reported a
ments and statistical studies of the chaotic state. In Sec. V @e|lular instability. No attempt was made at that time to ex-
detailed description of the reducéd¢ model is provided, plain the phenomena, although a series of analytical and nu-
together with experimental measurements of several of thgerical studies of the high rotation rate limit were given by
model coefficients. The results of a least squares fittingRyschak and Scrivef13] and by Orr and Scrivefil4]. At-
method applied directly to the chaotic state are detailed iRempts to find solutions to the hydrodynamic equations as the
the Appendix. The discussion and conclusion follow in Secgriving rate is reduced have revealed singular points in pa-
VI. rameter space where numerical results fail to converge.
These singularities may be the result of multiple solutions as
Il. BACKGROUND would be expected for a recirculating flojt5]. Johnson
[16,17) carried out an analysis for both Newtonian and non-
The system under investigation is fluid partially filling a Newtonian fluids, starting from the lubrication approxima-
horizontal rotating cylindefFig. 1(a)]. The relevant param- tion of the hydrodynamic equations. He was able to demon-
eters are the filling fraction of flui¥, the fluid viscosityv, strate the presence of a recirculating zone and several
the radius of the cylindeR,, and the driving raté) (rate of  possible flow configurations, but could not provide predic-
rotation of the cylinder about its ajiswe consider only the tions for the transitions to these solutions. Other viscoelastic
case of smalV. Over a broad range of parameters, the ob-studies of the coating flow both inside and outside of a ro-
served behavior is characterized by dynamics on lengthating cylinder were conducted by Preziosi and Joddsh
scales much smaller thaRy, but larger than the mean film and by Sanders, Joseph, and Beay&83. Melo [20] inves-
thickness. A characteristic length scaldor the flow can be tigated experimentally the applicability of the lubrication ap-
found by identifying the film thickness at which gravitational proximation to the flow in the low fluid volume limit.
and viscous forces would balance. This occurs when An alternative to lubrication theory is a stream function
vQR/h?=g, so thath=vQR/g. The Reynolds number approach to the two-dimensional steady-state problem. Chi-
based on this scale is R€R,(2h)/v. In addition toh other  charro and Peralta-Faf21] have solved the flow at low and
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high rotation rate limits folM=0.5 using stream functions, 192

but note that numerical integration is necessary to solve for . (a)
more specific flow configurations. In any case, current analy- wf 1284
sis does not provide a prediction for the primary instability to B

a cellular state which has been well documented experimen- D 647
tally over a broad range of fluid volumes and viscosities. 0

In addition to the states described in this article, there are
a large number of dynamic and stationary states which have
been documented. A systematic description of the parameter
space was conducted recently by Thoroddsen and Mahade-
van [6] for a wide range of fluid volumes and viscosities.
Many of these phenomena appear to be the result of free
surface instabilities, and warrant more detailed investigation.

IIl. EXPERIMENTAL AND ANALYSIS METHODS

The apparatus used for this experiment is illustrated in
Fig. 1(@. A glass cylinder of radiu®R,=5 cm and length —_
L=50cm is partially filled with silicone oil of viscosity ~—
=10 cS. Typical filling fractions are in the range 0.01-0.04.
The typical mean thickness of the wetting film is about 0.06
cm. In order to obtain spatially uniform patterns, the cylinder
must have a uniform radius. The radius of the cylinder was
fixed by the manufacturer by shrinking the gldsisickness
1/4 in) onto a custom ground mandrill, and the exterior was
ground and polished concentrically, to within 0.005 cm. End
caps were machined from Delrin, and contain a double
O-ring seal. One end cap is coupled directly to a microstep-
ping motor(4000 microsteps per revolutiprThe other end
cap provides access to the fluid through an opening. Some of
the critical values of Re for transitions vary substantially
with temperature. In order to ensure repeatability, the cylin-
der is contained within a well-insulated box maintained at

ﬂxeg timfe;attﬁre-l(t: %S.O_F()t.Z. C). ided b GPIB FIG. 2. (a) Enlargement of the front positiod (x,to) (a projec-
ontrol-ot the rotalion rate IS provided Dy a CON- 4ion of ®, onto the imaging plandor the weakly chaotic state, in

nection to a signal generator driving the stepping motor. 1N, iyar units. The spatially subharmonic structure is evident in the
this way, incremental sweeps of Re with arbitrary step Sizgf; haf of the image(b) Gray scale space-time plot of the weakly
(in Re) can be performed to automate the data collectionpaotic state; dark regions correspond to latgeBoth the ampli-

process. Transitions are determined with step sizes of 0.00gde of the oscillation and the wavelength of the cellular structure
near the transitions, followed by wait times of 300 s to allowfjyctuate slowly in space and tim&/€0.032, Re=95.13).

a steady state to be achieved.

The fluid front has sharp curvatuf€ig. 1(a)] so that a . . . . .
uniform lighted background produces a strong contrast; thi€ontrast. The centroid of this peak is defined as the position
makes the determination of the front position possible. Fronff the front, and is insensitive to the range of integration. In
finding is performed in real time using a Data Raptor imagelhis way, the position of the front at each tirheU(x,t) can
capture board22]. Pixel values can be read from the board be obtained reliably to within 0.2 pixels of vertical resolu-
as the image is being written to the board. A Cohu Chargetion. Data are Captured at 30 Hz and are written to disk
coupled device(CCD) camera is used to obtain digitized continuously to allow the capturing of data records of arbi-
images with resolution of 640480 pixels. The full length of trary length.
the horizontally oriented cylinder is captured. Typically, this A typical example of the digitized front height(x,t) at
corresponds to 30—-40 cellular wavelengths. The height of than arbitrary time is shown in Fig.(@. For clarity, only a
cellular front patterrJ(x,t) is typically 30 pixels vertically. portion of the cell is shown. This state is typical of the
Since angular displacements, of the front actually follow weakly chaotic spatially subharmonic st&a&SQ shown in
a circular path, one must take care that the circumference dfigs. 1c) and 1d). The spatially subharmonic structure is
the cylinder is tangential to the plane that is imaged, at thelearly evident from the alternate high and low amplitude
location of the mean front. peaks in the left part of the figure. The right side of the cell

One may take advantage of available processing time tdoes not show the subharmonic structure in this instant, be-
improve the vertical resolution of the position of the front. A cause the oscillations at this time are out of phase with those
vertical line of intensity values is read for each horizontalof the left side of the cell. The time dependence of the pat-
point in the frame buffer. The first spatial derivative of thesetern is shown in Fig. @), where the spatially subharmonic
data shows a large negative peak at the point of greatesiscillations are evident from the checkerboard pattern of the
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FIG. 3. Power spectrunP(k,») of the data in Fig. 2. The 20 Front
sharply defined peaks are well separated in Fourier space. Boxes r )
surrounding the primary peakk€ko=*5.5 cm !, »=0rad/s) R LS
fine the demodulation window for the slowly varying amplitudes 1%

Uy, andA, respectively.

FIG. 4. Phase diagram of stable states of the front. At low Re, a
dark peaks.(Alternate peaks in the pattern are oscillating pool of fluid forms in bottom of the cylinder. As Re increases,
with opposite phasgDark regions correspond to largé perturbations of the pool form as fingers of thickened fluid, and lead

Spatial variations in the phase and amplitude of the oscilto @ cascade of fronts. At still higher Re, transitions occur to a flat
lations and in the wavelength of the cells generally occur orP" undulating front(below regionA), or to a cellular state. Four
a length scale larger than that of the wavelength of the pat@1_dd|t|onal dyna_mlcal regimes are qbserved |n_th|s phase space: Re-
tern, and may therefore be defined as slow perturbations On A @ traveling pulse state; regid a chaotic state marked by
the basic state. The separation of scales is evident in thﬁvyave-nl_meer_fluc_:tuatlons in the cellular_pattern and uns_table sub-

) armonic oscillations; regiorC, the spatially subharmonic state

power _SpeCtrum_P(k"") (the mz_ignlt_ude Squa_red _Of the (SSO, together with transitions to spatiotemporal chaos; and region
space-time Fourier transfopmwhich is shown in Fig. 3. D, a state in which oscillations are incommensurate with the cellu-
This spectrum was performed over 512 points in spd@ |ar pattern.

cm) and 2048 points in timé68 §. The size of the data
record limits the resolution to approximately 0.16 €nin IV. PHASE DIAGRAM. WAVE-NUMBER DEPENDENCE
wave number and 0.092 rad/s in angular frequency. The most’ AND S:rAT|STICAL STUDIES '
prominent peaks occur ak€ +5.5 cmi %, w=0rad/s) and
at (k=2.7 cm', w=11.9 rad/s). These peaks are sharp and A. Phase diagram in ReV space
well separated ino-k space. These features alldw to be A phase diagram of the various pattern-forming states is
expressed as a sum of low order modeskimnd o With  ghown in Fig. 4 for 10 ¢S silicone oil as a function of Rey-
slowly varying amplitudes. The first modg, (taken to be o145 number and volume fraction. Stability boundaries were
real) corresponds to the stationary ceIIuIa_r part of the pattern, aasured by slowly increasing Re at fixed For Re near
of wave numberko _and the subha_rmo_mc mod corre- zero, a pool of fluid forms a uniform front with no discern-
Eponds tofthe amplitude r?f the oscillations of wave numbe{ble surface perturbations. A transition to cascading from this
o/2, and frequencyv,. That is, state is independent of fluid volume over most of the param-
eter space explored. It is a weakly hysteretic transition, with
a hysteresis of no more than 2% of the critical Re. The cas-
cading state disappears at much higher viscosities, and the
transition then occurs directly from the uniform front to the
cellular state21]. Thus the systentand especially the cel-
lular instability) may be easier to model in the high viscosity

U(x,t)= eri(k0x+ ¢)+Aei wotei(koxl2+ ) 4 C.CH -+, (1)

where U, and ¢ are slow real functions ok, t, andA is
slowly varying but complex. The slowly varying amplitudes =~ ©

Uo, A, and ¢ are obtained by complex demodulation, in IMit _ . _ ,

order to compare the dynamics with the predictions of mode| Beyond the cascading regidne., at higher Reeither a
equations(see Sec. Y. This process consists of applying a flat front ora Cellglar state emerges, depending on the-f|II|ng
rectangular window irk- space, followed by a back trans- fractionV. ForV in the range 0.15V=0.23 the cascading
form to x-t space. Demodulation windows are chosen so a§tate is replaced by a flat front. For smdlin this range, the

to retain the largest possible bandwidth, as shown by théat front may appear to undulate slowly. Traveling pulses,
boxes around the primary and secondary peaks in Fig. 3. Thigported previously11], occur in regionA.

boxes shown are of size @K)=2.7 cm!, by 2(dw) For V=0.025 the cascading region is replaced by a small
=11.9 rad/s. amplitude cellular state. There is an overlap in stability be-
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FIG. 5. The chaotic state observed in regBrof Fig. 4. (a) FIG. 6. The space and time periodic SSO statgionC of Fig.

Front positionU(x) at an arbitrary time an¢b) gray scale space- 4 (& Front positionU(x) at an arbitrary time ancb) gray scale

time diagram. A localized spatially period doubled oscillation of the SPace-time diagram\(=0.032, Re-92.43).

pattern is observed when the pattern is briefly compressed. Cell

nucleation and annihilation events are indicated by the arrdivs (

=0.028, Re=60.03). ciently small, a localized spatially subharmonic oscillation of
the peaks is observed, similar to those in Figc)lThe

tween the flat front and the cascading state near the boundastrong wavelength dependence of the oscillation amplitude is

L 2Dso observed in regiof of Fig. 4, as we discuss in Sec
of the cellular state, and the flat front region is not shown in o '
the stability diagram. To find the flat front it is usually nec- IVB. _ i .
essary to begin from the cellular state and lower the driving !N r€gionC, the SSO state is stable and the oscillations
rate. The cellular state is stable over a broad range of Re. I%Q' the length of the cell(see Fig. 6. As the driving rate is
stability has been reported in a number of investigationé”creased: the behavior of the oscillatory state becomes cha-
[5,6,17,21, although a satisfactory explanation for this pri- Otic in space and time, with distinct “weak” and “strong”
mary instability is still lacking. chaotic stategdepending on whether cell nucleation events

At the upper stability limit of the cellular state, various occup as reported by Vallette, Edwards, and GollL8).

transitions to increasing disorder in space and time are obFhese states are analyzed more fully in the present paper. A
served. Three distinct dynamical regimes are examined ispace-time diagram for the strongly chaotic state is shown in
this study, labeled8, C, andD. In regionB, fluctuations in  Fig. 7. When the wavelength is sufficiently large, the oscil-
the wave number of the pattern are observed, together wittations cease.
cell nucleation and annihilation events. An example of a At still higher fluid volumes an oscillatory instability of
space-time diagram for this region is shown in Fig. 5. Figurethe cellular state is observed whose wavelengtioisa sub-
5(a) shows a typical snapshot of this state at a fixedharmonic of the basic patterfnegionD of Fig. 4). An ex-
time. Structures of different length scales and amplitudes coample of this state is shown in Fig. 8. The dynamics of the
exist, and evolve in time as seen in Figbp Cells may be two amplitudesA and U, may not be as strongly coupled
compressed or stretched, a process that leads to cell nucleere as they are in the case of the SSO dfig 2).
ation or annihilation events. When the wavelength is suffi- The distinction between the three dynamical regions is
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FIG. 7. The strongly chaotic SSO statepper part of region FIG. 8. The disordered oscillatory stgtegionD of Fig. 4). (a)

C, Fig. 4). (a) Front positionU(x) at an arbitrary time an¢b) gray Front positionU(x) at an arbitrary time andb) gray scale space-

scale space-time diagram. Nucleation and annihilation events atéme diagram. The wavelength of the oscillatory mode is not well

evident as for regiol8 (V=0.032, Re=98.26). defined, and is clearly not a subharmonic of the cellular stdte (
=0.040, Re=149.00).

even more apparent when one considers their power spectra

in the two-dimensional frequency-wave-number domain as B. The wave-number dependence

shown in Fig. 9(and Fig. 3. Figure 9a) corresponds to the of the cellular and oscillatory states

first of the chaotic stategregion B), and shows a power

spectrum for which no primary peak at=0 is distinguish- In order to address the transition to spatiotemporal chaos

able. This is reflected in the dynamics of Fig. 5, where theof Fig. 2, it is first necessary to consider the stability of the
wavelengths of individual cells vary continuously. At higher steady cellulafSC) state. The wave-number range of the SC
V (Fig. 3 the cellular state is more stable, and the primarystate is shown via the stability diagram in Fig. 10. The mean
peak corresponding to it ai=0 is clearly evident, as is the wave numberk) is calculated over the middle 50% of the
subharmonic peald, which is sharply defined and has a image. The wave number of a given pattern is not easily
wavelength clearly commensurate with thathf. However, controlled in this system; thus a systematic search okRe-
the oscillations in regio [Fig. 9b)] fill out lines (rather  space is difficult. A wave number different from the most
than isolated poinjsat finite w in the w-k plane; these os- rapidly growing modek, at the onset otJ, can be obtained
cillations are generally not commensurate with. Quasip- by taking finite size steps across a stability boundary from
eriodic incommensurate states have been discussed by Colielow or above, to enter the regime of the steady cellular
let and loosg2]. pattern. Steps from the flat front tend to give patterns with a
In each of the cases examined, there is an upper (imit high wave number, whereas steps from the time-dependent
Re) to the stability of any front at aleven time dependent regime, and especially from the strongly chaotic state, may
this limit is represented by the dark solid line in Fig. 4. result in wave numbers smaller thig. In the strongly cha-
Above this line the fluid in the front region is pulled over the otic state fluctuations in the number of cells are large, and
top of the cylinder and the front is no longer identifiable. hence a wide range gk) can be achieved by quenching.
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FIG. 9. Power spectra of the data representing states in regions (k) (Cm—l)

B,D of Fig. 4. (a) The unstable oscillations seen in Fig. 5 form a
broad peak at finite frequency. The fluctuations in wavelength and

. FIG. 10. ility diagram for th llular an harmonic os-
in the number of cells cause the peakaat0 to be extremely G. 10. Stability diagram for the cellular and subharmoni

. ) : . cillatory (SSO states(region C of Fig. 4) as a function of mean
broad.(b) The oscillatory state corresponding to Fig. 8 and region e numberk). The stationary cellular stat6C) emerges super-

D of Fig. 4 does not have a well-resolved peak at finite frequencytritically from a flat front (FF) at Re=31.18, k,=4.4 e (V
=31.18, k.= 4.

and its wavelength is apﬂarently not a harmonic of that of the ceI-:0.032)_ Near this point, a broad range of wave numbers are
lular pattern ak=4.5 cm ~.

stable. An Eckhaus instability is approximated by the parabola
shown. A wavelength-changing instabiligW/Cl) is observed at the
upper limit of the cellular state. A ramp of Re across this boundary
Once a particular wave number is selected in the SC stat@yives a cellular pattern to a state with strongly compressed wave
the system will remain at that wavelength, provided it liesnumber(k) in the spatiotemporally chaotic region. A second insta-
well within the stability boundaries for that state. Through b!lity of the SC state is to spatially subharmonic.o.scillations for
these and similar techniques, a profile for the stable wavdligher wave numbers. The SSO state also exhibits wavelength-

anging behavior and may cross the line to a chaotic state continu-
gﬁcr)nv\ll)r?rinririlgelgf the SC state may be constructed, as f)%suy as indicated by the arow/0.032).

An estimate for the parabolic curve corresponding to the
Eckhaus boundary of the cellular state is plotted at the bot- End effects also affect the wavelength of the pattern and
tom of Fig. 10. Because strong control over the wave numbethe stability of the SC state. If the wavelength of the pattern
is unavailable, a precise determination of the Eckhaugs sufficiently large (or sufficiently small, cells may be
boundary is not possible. The curve shown corresponds to mucleatedor removed at the bounding end caps of the cyl-
parabola accommodating the lowest values of Re observed inder. These result in a local gradient in the phaséJgf
many runs. The cellular front undergoes a long wavelengthvhich slowly diffuses through the system. The time scale for
instability characteristic of the Eckhaus transition if Re isthis process is roughly 1-30 min, depending on how far the
reduced below this curve. state is fronk. . As the driving rate is increased, the SC state

A second wavelength-changing instabilit/Cl) is ob-  becomes increasingly stable against wavelength perturba-
served at large Re and bounds the SC state from above. Thisns and these events are less frequent.
transition leads to a discontinuous increase in the wave num- The WCI transition led us initially to suspect that the
ber of the system. This sudden shiftkntakes SC states of transition to time dependence was invariably subcritical,
the system into the weakly chaotiSTC) range[23]. An  with a coexistence of the SC and chaotic states. However, a
example of this transition is shown in Fig. 11. &t 0 s the  broader search of the Replane shows that the transition to
system is in the SC state with an initial wave numier oscillations is continuous at highék). The transition be-
=432 cm . At t=17s, Re is stepped from 92.42 by an tween the SC state and the SSO state is represented in Fig.
upward step oARe=0.20. After a brief timegwhose dura- 10 by the steep downward sloping curve separating the SSO
tion depends o\Re) the widths of the cells begin to fluc- and SC states. Due to the steepness of the curve, it is difficult
tuate; these fluctuations travel through the system and growo find wave numbek for which the transition will be con-
until they become large enough to cause cell nucleatiotinuous as Re is increased. Instead, one may cross the stabil-
events. Along with these fluctuations one begins to see thi#dy boundary horizontally by taking advantage of the slow
emergence of oscillations. Eventually the system stabilizes atecrease itk of the cellular pattern for a range in Re where
a new higher wave number afichaotig oscillations perme- the SSO state is homogeneous and the oscillations are
ate the system. steady.
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frequencyw as a function of decreasing) near the SC to SSO
FIG. 11. Gray scale space-time plotldfx,t) showing the WCI transition of Fig. 10. The transition exhibits the behavior character-
transition in Fig. 10. The system undergoes a transition from aristic of a second order transition. The slope of thé curve gives
initial (k)=4.32 cm* to (k)=5.56 cm'%, following an imposed an estimate for parameters in a model equation motivated by sym-
step increase oA Re=0.20 from Re=92.42 att=14s. Fluctua- metry (Re=74.57).
tions in the wavelength of the cellular pattern grow and travel

through the system, compressing the pattern, and causing the ongghe scalest and 7 from the shapes of these peaks than it is
of weakly chaotic oscillations. to fit their correlation lengths. In this paper, we therefore

Evidence that this transition to subharmonic oscillations is define£ and 7 somewhat differently, as follows:

continuous is shown in Fig. 18. In Fig. 13a) the square of 172

the amplitude is plotted as a function of wave number, aver- > KU(k,w)|?

aged over the center 50% of the cell. The amplitude decays £ 1= ok= wotAw , (2a)
continuously to zero during this transition. The suppression 2 U(K, )|2

of A for the points neak=4.80 cm! is the result of inho- ogThw @

mogeneity in the oscillatory pattern. This sensitivity to small

inhomogeneities in the system near the transition is charac-

teristic of second order transitions. The Hopf frequency is 2 21Uk o)|2 12

shown in Fig. 12v); it also varies smoothly near the transi- ko= Ak W Ulkw)l

tion. A further increase in Re may cause the SSO state to 7 l=6w= , (2b)
undergo a continuous transition to STC in which the wave E |U(k,w)

number increases reversibly. This transition is indicated by
the arrow in Fig. 10.
, , where the ranges of the sumss, Ak are the demodulation
C. Space and time scales for spatiotemporal chaos windows shown in Fig. 3.

A reversible transition from the SSO state to the chaotic As an example, consider the power spectiatk) of the
regime via long wavelength perturbations, which occursprimary peakU, in Fig. 13a), for two values of Re. This
along the line indicated by the arrow in Fig. 10, leads tospectral distribution was obtained by integratitdk, )
spatiotemporal chaos. In the preliminary red&; the tran-  over a window of size\ w=6.0 rad/s centered ai=0. Data
sitions observed in regio€ of Fig. 4 were quantified by were collected by sequentially increasing Re from a point
measuring the decay of the correlation function of the frontnear the oscillatory bifurcation to the loss of the front over
height U. In that investigation it was determined that the the top of the cylinder. The solid squares correspond to Re
correlation timer decayed more quickly with increasing Re =95.91 and the open squares to=F88.26. The wave num-
than did the correlation length However, when one con- ber is nondimensionalized by the wave number of the pattern
siders the sharp separation between peaks in the spectrumiofthe time-independent state. In addition to a broadening of
U, it is apparent that two lengths and two time scales can bthe peak of the cellular pattern, there is a slight increase in
defined for the system, corresponding to the principal speche wave number of the pattern with increasing Re. In order
tral peaks ofU, andA. It is more direct to obtain length and to find the width of the primary peak, both windowing and a
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EIE ‘ . ‘ 1 FIG. 14. (a) Characteristic inverse length scalgs!/k® defined
0.25 0.50 0.75 by the widths of the spectral peaks of Fig. 13 as a function of Re.
k/k, The primary peak nearkf,0) and the subharmonic peak near

(ko/2,w¢), represented by circles and squares, respectively, broaden
in a similar manner(b) Inverse time scales™ Y/ w, for the primary

and subharmonic peaks. The temporal correlations begin to decay at
a lower value of Re than do the spatial correlations.

FIG. 13. (a) Spatial power spectrR(k) of the weakly chaotic
state of Fig. 2, and strongly chaotic state of Fig. 7 integrated ever
aboutw=0. The primary peak neakg,0) in Fig. 3 of the weakly
chaotic state (Re95.91—solid squares) is narrower than that of
the strongly chaotic state (R®8.26—open squares). The width of
the peak defines the inverse of a correlation length that decreases D. Demodulated fields
with increasing Re. The growth of the subsidiary peakkét,
=0.5 is the result of annihilations resulting in a local Wavelength The Strong correlation between base pattern and oscilla-
doubling. (b) Power spectrunP (k) for the finite subharmonic 0s- tjon can be seen in the examples shown in Fig. 15. Figure
cillatory peak nearkKo/2,o) in Fig. 3. 15(a) is a gray scale plot of the phase gradiegt/ 9x of the

front plotted in Fig. 2. Dark regions correspond to regions of
thresholding routine were used to exclude data below a nois@creased wave numbélocal compression of the pattern
threshold. This method is effective when the peak is at leasind light regions to reduced wave numigpattern stretch-
two orders of magnitude greater than subsidiary peaks angg). These localized perturbations travel at constant speed
background noise, as for the data at=Ff86.91. However, as  (2.5+0.3 cm/3. Fluctuations in both the magnitude and the
Re is increased, cell annihilation events become common. Ighase of the oscillation amplituda=pe'” are correlated
that case, the peaks are not adequately resolved, so that\ah these regions of stretching and compression of the cells.
precisely defined width is hard to measure at the largest va\]},e present the magnitude(x,t) and the frequency varia-
uhes Obeie' In the hlgsze range, the Ien?thb?nd time scaI(Ias %ons gyl at in Figs. 18b) and 1%c). The oscillation ampli-
the subharmonic peak may be more reliable. An example tude at this value of Re is fairly smooth, as fluctuations are

of P(k) for the subh.armonlc_ peak is shown in Fig.(s relatively small, about 25% of the mean amplitude. The cor-
Here the subharmonic peak is resolved even for large values,_ . : .
of Re. relation between base pattern phase gradient and the oscilla-

The dependencies on driving rate $f! and =~ * for the tion amplitude is also observed in modgl equations_ by Le_ga
two spectral peaks are shown in Fig. 14. For this run, thénd co-workerg9,24], and also occurs in the Nozaki-Bekki

initial wave number and Hopf frequency near the transition©/es found in solutions to the complex Ginzburg-Landau
are ko=5.34 cm !, wo,=11.8 rad/s. Circles correspond to €auation25]. o _

the widths of the primary peald, and squares to the widths  BY contrast, variations in the phase f are large in

of the spatially subharmonic peak. This figure demon- this example. Thes_e large variations are seen in F|gc)_15
strates that the transitions to disorderlbf, A are strongly @S @ transient slowing down and subsequent acceleration of
correlated, and that the loss of spatial order begins at a som#€e oscillations. These changes are correlated with a
what larger value of Re than does the loss of temporal ordefeduction and then an increase in the wave number. Recall
An explanation of this transition which depends on the couthat this sensitivity of the oscillation frequency to wave
pling betweenU,, A is warranted, and is the subject of the number was observed in the laminar state as well
next section. (Fig. 12)
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FIG. 15. Space-time plots of the demodulated fields corresponding to Ri@).jgthase gradient¢/9x, (b) oscillation amplitudgA|, and
(¢) fluctuations in oscillation frequencyy/dt. The demodulation window used to define these amplitudes is shown in Fig. 3. The close
coupling between the phases and the oscillation amplitude, and the traveling pulses in the phases, are qualitatively similar to features found
in model equations.

V. COMPARISON TO A TWO-FIELD MODEL otic data via an instability in the phageof A (the Benjamin-
Feir instability[26].) As in the usual CGL equation, a lami-

A. Description of the model L . -
nar nontrivial solution exists fou>0,

The following features of the SSO transition may be ad-
equately described by the two-fieldA= ¢ model proposed
by Lega[24], and by Daviaudet al. [9]'. The critical driving A1) =Ag= Jue "BtV p(x )=y, (4)
rate Rg and the frequency of oscillatios@ both vary signifi-
cantly with wave number. A spatiotemporally chaotic state
grows from the oscillatory state in which fluctuationsdn
and A are strongly correlated. These strong fluctuations B. Experimental determination of parameters

travel at constant speed through the cylinder. Finally, the Several properties of the laminar solution can be used to
strength of the fluctuations increases with the control paramgptain numerical values of certain coefficients. The coeffi-
eter, until eventually one observes nucleation and annihilagjent of the coupling termy+i & can be determined by mea-
tion events, similar to intermittent bursting events observe@uring the wavelength dependencewoéind the critical driv-
in the model. . ing rate for the transition RE(. Note that Eq.(3b) is
This two-field model supposes that the dynamics of thanyariant under an overall compression of the pattern
bifurcating state may be captured by an equatipn Whic%o—>¢o+qx, whereq=k—k,. Under this transformation,
couples the complex field to the phasep of the stationary  the oscillation frequency is offset by an amount proportional
cellular amplitudeU,: to q, w— w+(By— 8)q. The effect of varyingy on ampli-
JA A 9 tqde and frequency of the laminar state was ;hovv_n allreac'iy in
— = pA+(1+ia) —— (1+iB)|APA—(y+i8) — A, Fig. 12 of Sec. IV B. The slope of the best fitting line in Fig.
ot X X 12(b) givesBy— 6=3.73+0.13 cm/s. Estimates fg8 andy
(3a) allow a determination of independentlysee below Physi-
cal units are used for all measured coefficients because the

d¢ 5 . [IA— 7y P diffusion coefficienta, for A is not known.
t Xoax Al +i7 OX A= ox Atk Xz (3D) The bifurcation parametes is also offset by an amount

proportional toq when the pattern is compressed:— u
Time, space, and amplitude scales are chosen so as to setyq, and thereforéAg|?=u— yq. One may assume Re to
three of the coefficients to unity. Except for the last term, Eqbe linearly proportional tq. for fixed k. Under this assump-
(33 is of the form of a complex Ginzburg-Landd@GL) tion, the line of marginal stability for the oscillations is de-
equation, which is known to produce spatiotemporally chafined by
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TABLE I. Coefficients of the model obtained by independent  The dynamics of theb, fields in the phase unstable re-

measurements on the laminar oscillatory state. gion of the parameter space can then be expressed by the
following dynamical equations, valid for small fluctuations
Coefficient Measured value in the phases:
Bi —7.2+* 1.6 rad/s 2 2
Iy d Y P
1.03*+ 0.21 cm T —5) — _ _ _
g C11- 16 ema ot~ (By=90) —+(I+aB+pyy) 7+ (f-a) | .
a,=By— o 3.73+ 0.13 cmis (6a)
a5 was calculated from measured values Bt v,a; . 0 J 52 dp d
a—(f=—2w ox Tk=vx) (?—:;HW/ a—fa—f- (6b)
_Re(g)—Re
()= Re =0, Notice that the first coefficient in E¢6a) is the coupling
term for the wave-number dependenceawfa result that can
where Rg is defined for an arbitrary choice &. Then, be verified by settingp= ¢+ gx and ¢= i+ wt. How-
ever, not all of the coefficients in E¢s) are known for the
ou* 1 JRe experiment. If a phase instability is the mechanism for the
v=— W =— @ K observed dynamics, then it would be preferable to be able to

show that the fitted coefficients of a model satisfy E5).
Equations(6) depend on six coefficients, a reduction from
the original eight coefficients of E¢3), and may be a better
choice of model equations to fit to the data gathered in the
SSO state than the full model equations.

That is, it is proportional to the slope of the marginal stabil-
ity curve for oscillations in th&-Re plane. A natural choice
of kg, Re, is the point of intersection of the WCI boundary
and the SSO boundary &4.82 cmi'!, 88.30. With this
choice, we find thay=1.04+0.08 cm. Here the boundary is . ]
defined by the points in the SC state with the highest wave D. Least squares fit to model equations
number at a given Re beyond which oscillations are ob- Since in the weakly chaotic state one expects the system
served. to probe a large portion of the phase space of the flow, it may
The oscillation frequency is also predicted to vary with be possible to extract estimates for the coefficients of the
by Eq.(4). That is,w is expected to vary a®s=wo— Bu, for  model equations. This experiment may be a good candidate

fixed k, or for such an approach, which inevitably requires a large set of
data for statistical analysis. Under the assumption that the

dw dw model defined by Eq(3) is appropriate, one may attempt a
- Em k: R T Rel least squares fitting method to arrive at measured values for

the coefficients. We report the results of such an analysis,
including tests on numerical simulations, in the Appendix.
Although some useful information can be obtained from this
approach, experimental noise currently prevents a conclusive
answer to the critical question: is the spatiotemporal chaos

To obtain B, the frequency of oscillation of the SSO state
was measured as a function of increasing-rom this mea-
surement, we fing3=—7.2+0.8 rad/s. Given these values
of v ands we obta|_n§= - 11'1t.1‘4 cm{s. ESF"_“ateS of thg adequately described by the ¢ model and its associated
other model coefficients require an imposition of spaual(g)hase instability?

variations on the pattern, and such experiments have not The method consists in determining each term in the

been performed directly. The coefficients so far determineqnodel equations independently at each point in space and

are summarized in Table I In the Appendix, we dlscuss Aime from measured data, then using this information to fit
alternate approach to obtaining parameters that relies on tr{

. > He coefficients of the model to the data. The model equa-
properties of the weakly chaotic state.

tions are linear in the coefficients, and fitting them is there-
fore straightforward. Tests on synthetic data generated by
C. Phase equations numerical integration recover the coefficients to better than
A linear stability analysis of the laminar soluti¢Bg. (4)] 1%. The r(_asults are sensitive to noise,_ hoyvever, adgitiqn of
to Egs.(3), was carried out by Daviauet al.[9]. They found 1% Gaussian noise to the data results in discrepancies in the
that amplitude perturbations of the laminar state are dampe@stimates as large as 10% for some coefficients. This sensi-
but that two phase unstable modes are observed for smdiVity to noise is carried over to the experimental data as

wave-number perturbations. The condition for instability of Well, where demodulation to obtain the slowly varying fields
these equations is given by introduces a comparable amount of noise. In this case, only

rough estimates can be made for the coefficients.
D=1+aB+k+y(Bn—x)<O. (5)
VI. DISCUSSION AND CONCLUSION
It is interesting to note that the first two terms in EH§)
correspond to the Benjamin-Feir conditih+ aB<0); thus
the coupling to the second phase equation has the effect of The rimming flow of a fluid inside a rotating cylinder
modifying the onset of the phase instability. demonstrates a number of interesting pattern-forming states

A. Oscillatory states
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TABLE II. Coefficients determined by least squares fitting to  TABLE lll. Fit of Egs. (6) to simulated experimental data after
numerical data. The parameters were chosen so as to producedamodulation of numerical data and 8 bit truncation. The simulation

chaotic stateD=—1.05 (k= y=6=0.25). was done using the coefficients chosen for Table II. Slow length
scaleL=37.5, slow time scale=1, fast time scale/30, demodu-
Fitted value— Fitted with 1% lation parametersky= 68, dk=34, wy=256,dw=128, in units of
Coefficient Value numerical data rms noise the Fourier transform box size (5%2048).
T 1 1 1 Fitted value—
“ 1 0.995+ 0.002 0.87% 0.06 Coefficient Value numerical data
a, 1 0.988+ 0.002 0.86* 0.06
a; 1 0.994+ 0.002 0.85+ 0.06 T 1 1
b, 1 1.003+ 0.002 0.88+ 0.06 a —-36 —7.41+0.04
Bi -1.2  —1.2058+ 0.003 —1.19+ 0.01 a -0.8 0.020+ 0.006
y 2 1.994+ 0.004 1.8+ 0.1 ag 22 —1.42+0.02
s 1.2 1.184+ 0.003 1.14+ 0.07 % 0.5 0.691* 0.003
ag —-0.25 —-0.22* 0.01
ag 1.0 1.40% 0.01

and transitions to spatiotemporal chaos. Instabilities of hos=
mogeneous, one-dimensional fronts include traveling pulses,

Ig_ng Wﬁveleng_tr}l undu_la(;i_ons, and shpatially periodic stateSmechanism would be consistent with the results presented in
ince the spatially periodic state is the most symme&it o 15 |y addition, if the oscillatory interaction between

most common of these bifurcations, we have explored the,qicas decays with increasing separation, then at lower

stability boundaries of this state in c_ietail. Several of the pheY/vave number the oscillations should cease. This is generally
nomena observed are generic, while others are clearly SP&ynsistent with our observations

cific to this system.

The most highly symmetric of the secondary instabilities
of the cellular state is the transition to spatially subharmonic
oscillations (Fig. 6). This transition breaks both space and Three distinct types of spatiotemporal chaos are docu-
time translation invariance, and is one of ten generic instamented via their space-time Fourier spedffas. 3 and 9
bilities of a cellular state considered by Coullet and Id&js  We focus on the transition from the homogeneous spatially
It is observed over a small range of volume fractidregion  subharmonic state to STC, where the transition is continuous
C of Fig. 4); the conditions for its stability are not known. and reversible. Near its onset, the STC state involves slow

At higher volumes one observes a modified instability inmodulations of the cellular pattern, as indicated by the well-
which the oscillations are inherently broad and generally inseparated spectral peaks in Fig. 3. This clear separation of
commensurate with the periodic pattdiffigs. 8 and &)].  space and time scales justifies the use of slowly varying am-
This may be an example of another of the generic instabiliplitude models. However, the spectral peaks broaden sub-
ties[2]. The existence of this state near that of the SSC statstantially as the rotation rate increases, and the fluctuating
raises the important question of how the two oscillatorynucleation of additional cells limits the range of applicability
states(commensurate and incommensuyadad their bifur-  of these models.
cations are related. Is there a “codimension-two” point in  The model which was compared to the oscillatory state
parameter space where these two states coincide with tH&q. (3)] is expected to be valid only very near the bifurca-
cellular state? tion from the cellular state, and it assumes that the secondary

The various transitions involving oscillatory states arebifurcation to oscillations occurs far from the emergence of
strongly wave-number dependent. The cellular pattern ishe cellular pattern. The more general Sulmodel studied
stable over a large range in Respace(Fig. 5). It is unstable by De Wit and co-worker$7,8] drops the assumption of a
with respect to both a wavelength-changing instability andsaturated cellular state; in addition, the left- and right-going
the oscillatory instability just described. The wavelength departs of the oscillatory amplitude are not assumed to be
pendence of the transition to oscillations is adequately desoupled. Near the codimension-two point for the bifurcations
scribed by theA- ¢ model(complex amplitude of oscillation  of the cellular and oscillatory modé¢$uring and Hopf bifur-
coupled to a base pattern with spatially varying phase cationg, both pure cellular and oscillatory modes and sub-

A solution to the full hydrodynamic equations may be harmonic instabilities of these modes occur. Although most
needed for a better understanding of the oscillatory instabilof these modes have not been observed in rimming flow, the
ity. However, one possible explanation arises from the fol-broader approach of the sibmodel may eventually be use-
lowing observations about the flow in the cellular state. Ifful, because it includes the primary cellular bifurcation.
tracer particles are inserted into the flow, pairs of counter Still, the A-¢ model for the Hopf bifurcatio9] is sim-
rotating vortices are observed in the fingers of the cellulapler than the sull- model, and yet shows the phenomena
front, with axes of rotation oriented normal to the surface ofexhibited by the physical system near the onset of STC.
the cylinder(see, e.g., Ref6]). As the cells are compressed, These include a supercritical transition to oscillations; a
these vortices may be forced to interact with a characteristivavelength dependence of the amplitude and frequency, and
frequency that depends on their vorticity. Increasing com-of the onset driving rate of the oscillatory instability; and a
pression of the cells leads to higher vorticity, and to a corretransition to spatiotemporal chaos with propagating compres-
sponding increase in the frequency of oscillation. Such asions of the cellular pattern that are related to a locally de-

B. Onset of spatiotemporal chaos
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TABLE IV. Fit of Egs. (6) to experimental data. One hundred files of size$2048 are included in the fit. Demodulation parameters:
ko=34, dk=16, wg=128,dw=64.

T a, (cm/s) a, (cni/s) az (cnifs) a, (cm/s) as (cn/s) ag (cnls)
1 6.91+0.07 0.002-0.003 99.@¢1.3 9.3-0.4 0.25-0.14 —10.1£0.4
pressed amplitude of oscillation. For each measuremerf there is an associated residual
In order to demonstrate conclusively that the phase instaR; so that
bility of the model is actually the cause of the STC observed K 2
experimentally, we attempted a quantitative comparison by yi— z a X (F)
the least squares fitting process of the Appendix. However, , M AT
the results are not decisive. ldentification of a phase instabil- R :t 1 o
= I

ity requires knowledge of several of the coefficiehEy.
(5)]. The combinatiora,+ a5 of Table IV would have to be The weightingo; is a measure of the uncertainty in thi
negative for phase instability, but appears to be weakly posimeasurement of. In this analysis the data points are usually
tive. We determined via numerical simulations that evenweighted equally, and the;'s are set to unity. The best
modest amounts of experimental noise cause the fitting prditting set(or vecto) of parametera={a,} is that for which
cess to be rapidly degraded, and this situation makes a cothe derivative 0R? with respect to all, vanishes. We use a
clusive experimental test impossible. standard normal equation implementation of this minimiza-
Finally, one cannot rule out other possible explanationgion process. Finally, we note that the functigncan be
for the chaotic dynamics. For example, the transition tos€lected in various ways by rearranging the model equation
chaos could be the result of an instability of the cellular statd© place a different term on the left hand side with coefficient
that is coincident with but independent of the onset of oscil UNIty-

lations. Perhaps the onset of STC is the result of phase in- !N the following section, we show the results of applying
stabilities in the base patteifs seen, for example, in the the fitting method both to numerical ddtbtained by inte-

WCI line of Fig. 5 extended to the oscillatory state at higher 9rating the model of E¢:3)] and to experimental data. In the
wave numbers. In such a case the analysis of the modglumencal case, excellent convergence is achieved and the

, . : ters are obtained to a precision of 1% or better. If 1%
equationgEq. (3)] would not be valid. Though many lines of P2rame : o :
e\(jidence{in?jig:z;t]e that the amplitude eqt?ation n)fnodels calns of Gaussian noise is added to the signal, the parameters

. . . fan still be determined, but less precisépout 10—-15 %
describe the onset of STC in this system, measurements o\ plying the method to experimental data suffers from the

higher spatial resolution would be required to determin€yigticity that the slowly varying fields must first be obtained

whether this is indeed the case, or whether, on the othgy jemodulation. In this case, the results are disappointing.
hand, more elaborate models are required.

2. Results of fitting

ACKNOWLEDGMENTS The least squares fitting approach was applied to synthetic
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sions and software related to the fitting method presented iflition D<0, and are given in Table Kin addition x=y

; : =6=0.25. Here, the real coefficients;, B, (set to unity in
S?Aps_ngd;igg'ghls work was supported by NSF Grant No. the mode) are allowed to vary in the fit, and the coefficients

a; and B; correspond taw, B8 of Eq. (3), respectively. The
size of the space-time array wasXR048<512. Three hun-

APPENDIX dred fast time steps were computed per slow time gréind
. every tenth time step was placed into the array. The slow
1. Fitting methods spatial scale used was setlte-37.5 units(out of 512 total.

In this appendix we address the question of whether thé he results of the fitting process applied to these numerical
model parameters can be determined directly from the spdlata are given in the third column of Table I, and are gen-
tiotemporally chaotic SSO data by a least squares method, &sgally in excellent agreement with the actual values, better
Baker, Gollub, and BlackburfiL0] did for temporalchaos than 1%.
given by coupled ordinary differential equations. Models of 10 Perform a test of the method more closely analogous

the type given in Eq(3) may be expressed as a sum of terms© dealing with experimental data, we added 1% rms of
Gaussian random noise to the slowly varying fields. The re-

K sults show that the method is sensitive to noise: errors of the
y(F)= E a X (A, (AL) order of 10% are found for the parameters. This sensitivity
k=1 suggests that this direct method of extracting the coefficients
of model equations for space-time data will be difficult to
where X, andy are nonlinear functions ofr, anda, are  implement for noisy experimental data.
coefficients to be determined from a sethvfmeasurements Finally, we simulate the effects of the demodulation pro-
Fi . The model is linear in the fitting coefficiendg [27]. For  cess that must be applied to the experimental data. This is
example,y could bedA(x,t)/dt andX could be|A|?A. accomplished by using Eql) to define the rapidly varying
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field U(x,t) given the slowly varying fieldsA(x,t) and A similar analysis applied to thexperimentaldata is
#(x,t) obtained from the numerical integration. We thenshown in Table IV, over 100 records of size 512048. The
truncate the resulting data to 8 bit precision and apply @anethod converges quickly to the values shotafter about
window in Fourier space to recover the fields ¢ in a  ten records The coefficienta;, which has been obtained
manner similar to what is done for the experimental data. Iindependentlysee Table)l differs from the measured value
so doing, we recover the original fields to within approxi- by a factor of 2. As we found for the demodulated numerical

mately 1%. However, the results of fitting theseodulated 515 the phase diffusion coefficient is again essentially zero,

and demodulated data are not satisfactory. The result of the , . : :
fit is sensitive to choice of demodulation parameter as wel?\’hICh we presume to be an artifact of the demodulation.

as to the separation between the slow and fast time scales. A final consideration is whether higher order terms in Eq.
Some improvement can be made by reducing the numbdB) than those considered might be important. We have
of parameters to be fitted. Note that E6) is obtained from found that inclusion of higher order powers and derivatives
the stability analysis of the laminar states. A knowledge ofin the model equationi€Eq. (6)] for the phases did not result
the six coefficients of the phase equations in &).is suf-  in statistically significant amplitudes for these new terms.
ficient to test the hypothesis that the observed chaotic state heir inclusion also did not result in significant changes in
a result of a generic phase instability. In terms of the modethe values of the coefficients in Table IV. It may be desirable
coefficients in Eq(3), the fitting coefficients are defined as to include the amplitudes of both and U, explicitly in a
follows: for Eq. (68), a;=By— 8, a=1+aB+B7y, 8  model for the flow, as in the model proposed by De Wit and
=B~ a and for Eq.(6D), a=—27u, as=«—yx, andas  co-workers[7,8]. Tests comparing the experimental data to
—2y7. The condition for phase instability of these equa-this more general model have not been performed, in part
tions is equwalent to the requirement tiegtt as<0. Since  pacause of its greater complexity.
Eq. (6) are each independently of the form of EAl), they We conclude that the fitting process is at present suitable
constitute twoindependenminimization problems, each of to the analysis of numerical data but cannot determine

which has only three parameters. ) : o
When applied todemodulatednumerical data, this re- ghgrgri;hﬁst;m;?ii;f dﬁg;‘?ﬁcgrtngscgglngeg:ethozgstite
duced model gives more reliable results for sevépat not " P " . Lggest
fitting process could possibly be improved if spatial data

all) of the coefficients than does the original model. The : : ! . _
results of the fit are shown in Table IIl. Many of the coeffi- "Were available with higher resolutiosay 2048 instead of
512 points. It also might be better to use the method in

cients are found with an accuracy of 10—100 %. Most trou-"-< F : o
bling is the observation that the phase diffusion coefficiensituations where the spatial variations are slower so that the

a, is found to be essentially zero, even though its actuaflérivatives can be computed more accurately. Best of all,
value in creating the numerical data is negative. This diffi-€xperimental situations in which the fields described by the
culty probably reflects a need to improve the spatial resolumodel equations are directly manifestesth that demodula-

tion of the input data to improve the method, as discussedion is unnecessajywould be more suitable candidates for
below. this method.
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