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Fundamental-measure free-energy density functional for hard spheres:
Dimensional crossover and freezing

Y. Rosenfeld* M. Schmidt? H. Lowen,>" and P. Tarazona
'H.H. Wills Physics Laboratory, Bristol University, Royal Fort, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
2Institut fir Theoretische Physik I, Heinrich-Heine Univerdiaissseldorf, Universitatrasse 1, 40225 [asseldorf, Germany
3Departamento de Fisica de la Materia Condensada (C-XII), Universidadrfama de Madrid, E-28049 Madrid, Spain
(Received 5 August 1996

A geometrically based fundamental-measure free-energy density functional unified the scaled-particle and
Percus-Yevick theories for the hard-sphere fluid mixture. It has been successfully applied to the description of
simple (“atomic” ) three-dimensional3D) fluids in the bulk and in slitlike pores, and has been extended to
molecular fluids. However, this functional was unsuitable for fluids in narrow cylindrical pores, and was
inadequate for describing the solid. In this work we analyze the reason for these deficiencies, and show that, in
fact, the fundamental-measure geometrically based theory provides a free-energy functional for 3D hard
spheres with the correct properties of dimensional crossover and freezing. After a simple modification of the
functional, as we propose, it retains all the favorable 3 properties of the original functional, yet gives
reliable results even for situations of extreme confinements that reduce the effective dimensibruixisti-
cally. The modified functional is accurate for hard spheres between narrow fdlate8)( and inside narrow
cylindrical pores D=1), and it gives the exact excess free energy indke0 limit (a cavity that cannot hold
more than one particlelt predicts thg(vanishingly small vacancy concentration of the solid, provides the fcc
hard-sphere solid equation of state from closest packing to melting, and predicts the hard-sphere fluid-solid
transition, all in excellent agreement with the simulatidi&l063-651X97)07404-1

PACS numbeis): 61.20.Gy, 64.16th

I. INTRODUCTION ity of the fluid from three to zero.
These spatial confinements drastically affect structural

The applications of the density functional formalism areand dynamical quantities as well as the location of phase
wide ranging: from quantum mechanical electronic calculafransitions. The density profile exhibits sharp peaks corre-
tions in metals, semiconductors, and insulafdrsto phase sponding to microscopic layers of the liquid, the viscosity is
transitions and interfacial problemi2,3] of classical liquids. Observed to increase drasticall§], and the location of the
In particular, the density functional theory provides a micro-freezing transitior{7,8], the glass transitiofd], the critical
scopic theory for adsorption and wetting phenomena for bott0!nt [10], and the triple poinf11] significantly shift with
charged and neutral fluid systems. Most of the classical ded€SPeCt to their bulk values. While it is difficult to prepare
sity functionals start from the bulk fluid state where the SMooth well-defined walls for molecular liquids, it is rela-

equation of state and pair correlation functions are knpdyn t:,\\//ggneal?slsto Ig(t)ensﬂgﬁ d’?ﬁscl’;ggp'tzgggolgﬁ; ?ﬁr?ﬁsng)\?asnfae-e
and investigate then the inhomogeneous fluid subject to ah 9 P glassy ) 9

external potential, e.g., a gravitational field or walls confin-o-c gains in dealing with mesoscopic dispersions is that one
ing the sSstem ar'1d igaucigg a layering in the homogeneoucan directly watch their positions and correlations in real

: ) : ) _ ) ace by using videomicroscopy. Suspensions confined be-
bulk fluid. Different kinds of confinement are conceivable; in P y g by P

. X , i tween two glass plates were intensely investigated in recent
particular, three of them are important which effectively re'years[lZ—la and there are also some recent investigations

duce the dimensionality of the three-dimensional bulk fluid.to; colloids in slit poreg19].
First let us consider two parallel walls with a spacing of | principle, the exact three-dimensior@D) free energy
several intermolecular distances. By varying the plate disfynctional (if it was available should be able to provide a
tance one can continuously interpolate between two angnifying description of all such confined situations within
three dimensions. Second, an even more dramatic confingensity functional theory. The main aim of this paper is to
ment is given by a cylindrical poié]: By shrinking the pore present an approximate free-energy functional that features
size towards molecular spacing one can effectively reduceeliable crossover properties between effective dimensionali-
the dimensionality of the fluid from three to one. Third, by ties. Basically the idea is as follows: Suppose we are starting
shrinking the size of a spherical cavity until it can hold atwith the exact density functional in three dimensions and we
most one particle, one can reduce the effective dimensionathen reduce the dimensionality of the system by applying
confining external potentials as walls and cylindrical pores.
Then the exact three-dimensional functional reduces to the
*On leave from the Nuclear Research Center Negev, Beer-Shevaxact two-dimensional and one-dimensional functiorieds

Israel. spectively. Upon freezing, in the surface or in the bulk, the
TAlso at Institut fu Festkgerforschung, Forschungszentrum Ju density profile has “zero-dimensional” characteristics, when
lich, D-52425 Jlich, Germany. every particle is practically confined to a ca@g® a cavity
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defined by it neighbopswvhich cannot contain more than one [31] proved successful for 3D fluids in the bulk or in slitlike

particle. In practice, however, the exact functional is notpores, but it was unsuitable for narrow cylindrical pores and
known. Hence the requirement to get a realistic lower-unable to describe the solid. Yet, since it is built upon a
dimensional functional by shrinking the dimensionality of well-defined set of geometric basis functions, it is possible to
the system is an important consistency check of any approx@nalyze it, term by term, to reveal its crossover properties,
mate functional. This consistency is of particular importanceand then to improve its form so that it yields accurately even
if the 3D functional is invoked to describe situations of ex-the freezing transition. We reemphasize that it is relatively
tremely confined fluid§20,5]. easy to construct functionals specifically for 2D and 1D sys-

A relatively simple and the almost canonical starting point!€Ms[see, €.9., Eqs14) and(15) below], but having a func-
for classical fluids is the system of hard spheres. A hardyonal for 3D that works in arbitrary situations ranging from

sphere fluid exhibits a freezing transition into a fcc solid for OP t© 3D is much more demanding.

high enough packing fraction. The bulk structure factors are In this work we show that, in fact, the fundamental—
well known in the fluid for arbitrary densitieig!]. Density =~ M€asure geometrically based thef89-39 provides a free-

profiles of inhomogeneous situations involving a single p|a_energy functional for 3D hard spheres with the correct prop-

nar hard wal[21], two parallel hard wall$22,23,20,3 or a erties of dimensional crossover and freezing. A particular
gravitational field[24] are well known. Therefore the inho- SIMPIe modification of the original functional is proposed

mogeneous hard-sphere fluid is considered to be an impoY‘-’hiCh retains all the favorablB =3 properties of the origi-

tant situation to test the validity of density functional ap- nal functional, but gives reliable results even for situations of
proximations. In two dimensions, the hard-disk fluid is also€Xtreme confinements that reduce the effective dimensional-

well studied and for the one-dimensional hard rods even thdY D drastically. It is aCCl'Jra.te for hard sphergs between
exact free-energy functional is knoW25], which provides a Narrow plates D =2), and inside narrow cylindrical pores

very important paradigni26] for developing model free- (P=1), and gives the exact excess free energy in the
energy functionals. Hence the hard-sphere fluid represents@=0 limit (a cavity that cannot hold more than one par-
convenient reference fluid where the crossover between dificle)- It predicts the(vanishingly small vacancy concentra-

ferent dimensionalities starting from the 3D functional tion of the solid, provides the fcc hard-sphere solid equation
should be tested explicitly. of state in excellent agreement with the simulations from

When the free energy is expressed as a functional of thel0Sest packing to melting, and predicts the hard-sphere

average one-body densitiés;(r)}, of the various species fluid-solid transition in excellent agreement with the simula-
{i} of particles, all the relevant thermodynamic functions cant!onS- _ _ _
In Sec. Il we briefly review the geometrically based

be calculated. The central quantity is the excess free ener%ndamental—measure free-energy functionals. The quasi-2D

(over the exactly known “ideal-gas” contributiops k o ) ; o
Fol{pi(r)}], which originates in interparticle interactions. and qu'aS|—1[.) limits are cor?3|der'ed'|n Sec. lll, wh|le.|n Sec.
IV we investigate the quasi-OD limit of the 3D functionals.

The performance of a 3D functional in quasi-2D and _ : ;
quasi-1D situations can be inferred from its ability to provideIn Se_c_. Vwe d'SCL.’SS the hard-spher_e solid and the freezing
transition as predicted by the functionals. The results are

accurate description of the corresponding unifdbualk) 2D : ; . ) ,
P P g dhulk discussed in Sec. VI. In order not to interrupt the discussions

and 1D fluids, respectively. The ability of the functional to =" ; !
stabilize a solid, and to predict a freezing transition, can bdVith too much algebra, the essential details of our calcula-
inferred from its result for the quasi-OD limit. The minimal 1ONS are given in Appendixes A—E. A short account of the

prerequisite from the 3D functional, to have at least gros®resent work was published elsewh¢s].
similarity to the exact values in lower effective dimensional-

ity situations, was achievel®7,5] by the smoothed density Il. GEOMETRICALLY BASED
approximation27]. Many functionals of comparable, some- I.:UNDAMENTAL-MEASURE
times better, accuracy were subsequently develo3d FREE-ENERGY FUNCTIONALS

which could provide qualitative, sometimes quantitative,
agreement with simulated density profiles of confined fluids. The fundamental-measure free-energy density functional,
Most of these functionals were also able to exhibit a freezingvhich is being developed in recent ye§89—-35, keeps the
transition for the hard spheres, which essentially requiregeometric features to the forefront. It can be formulated
only that the functional is finite in the OD limit described priori for mixtures of nonspherical molecules, and can derive
below. They gave melting and freezing densities in reasonthe uniform fluid properties as a special case, rather than
able, sometimes excellent, agreemg2B,29 with simula- employ them as input. The basic idea is to interpolate be-
tions, but they had to assunzepriori no vacancies in the tween the “ideal-liquid”[37], high density, limit where the
solid. The correct Lindemann parameter of the solid neapair direct correlation function is dominated by convolutions
melting was sometimes obtaind@9], but with incorrect of single-particle geometries, i.e., overlap volume and over-
density profiles. None of these functionals could feature théap surface area, and the limit of low density where it is
exact 0D limit, or the exact bulk-1[25] limit. Functionals  given by the pair exclusion volume. The key for the realiza-
built upon the bulk-3D data as essentially numerical input ddion of this idea is the convolution decomposition of the
not contain the building blocks for achieving these limits. excluded volume for a pair of convex hard bodies in terms of
The fundamental-measure free-energy m¢8635, on  characteristic functions for the geometry of the two indi-
the other hand, is an approximation that enables derivation ofidual bodies. On the basis of a unique convolution decom-
the uniform (bulk) fluid properties as a special case, ratherposition for spheres it was possible to deriy8l] a
than employing them as input. The simplest such functionafundamental-measure free-energy functional for hard sphere
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mixtures, in which the weight functions represent the geomfor the special case of spheres witlt@volution decompo-
etry of the individual particles. Starting with the excess free-sition involving a minimal number of different weight func-
energy functional for hard-spheres it was shown that theions[31]:

fundamental-measuréridge functional, which is derived

from the free-energy functional, can then be successfully uti- _fij(rij):Wi(O)®WJ(3)+W](0)®Wi(3)+wi(l)®wj(2)

lized for arbitrary pair interaction$34,30. “Universality of
the bridge functions”[38], which initiated a successful
theory of the bulk fluid, is thus replaced by “universality of (5)

the bridge functional[34,30, as a working hypothesis for _ _ o

both uniform and nonuniform classical fluids. The direct ex-where the Mayer function for a pair of spheres is minus the
tension of the functional to molecul&tcomplex”) fluids is ~ Heaviside step function,

made possible by the relation of the convolution decomposi-
tion for spheres and the Gauss-Bonnet theorem for convex fiy(rij) == ORi+R;=r), )

bodies. _and where the convolution product,
The fundamental-measure excess free-energy functional

D oW -V VD — w2

for hard-sphere mixtures of dimensionaliywas postulated (@) e () (@) -
[31] to have the form wi“ew;” :f Wi ¥ (x=rp)-w; ' (x—r;)dx, (7)
Fel{pi(r)}] also implies the scalar product between vectors. The weight-

KeT :J dx @[{n,(x)}], () function space foD=1 contains at least three functions,
two scalar functions representing the characteristic functions

where it is assumed that tiexcess free-energy densibyis for the volume and the surface of a particle and a surface
a function of only the system averaged fundamental geomet/€ctor function,
ric measures of the particles, wi(D)(r)=(Ri—r),
we-3(r)=|VwP(r)|=8(R—r),
Na(X)=2 f pi(X )W (x=x")dx’. 2) | | |
' (D-1)py— (D)(py— "
W (r)=—Vw; (r)—F(S(Ri—r). (8)

Theweight functions W) are characteristic functions for the
geometry of the particles, and are obtained from the convoln 3D, the other weight functions are just proportional to
lution decomposition of the excluded volume for a pair ofthese three, and are given by

particles in terms of characteristic functions for the geometry

2 2
of the individual particles. This form implies that the Wgo)(r):Wi( () _(1)(r):Wi( )(r)
n-particle direct correlation functions{":™; , which are ' 47RZ T 47R;
functional derivatives oF ../ {p;(r)}], are given by convolu- " w(r) 9)
tions of the geometric characteristic functions. In particular, wV(r)= IR
h . 7TRi
the two-particle functions have the form
The weighted densities,(X) are dimensionalquantities
(2FD) _ (@)y_ with dimensiong n,] = (volume (PP where 0<a<D,
Cii, (y,r2) f C,E,ﬁ \Paﬁ[{nV(X)}]W'l SEY and provide a functional basis sgp;} for expanding the
function
xwi(f)(x—rz)dx, (3)
®=2 A(Np)e;, (10
where '
22D of dimension(volume ~1. The coefficientsA;(np), as func-
V== — (4) tions of the dimensionlessy, are determined from the

“ INyINg scaled-particle differential equation,

as required by the scaled-field-partif89] geometric analy- P P

sis, and incorporating the basic ideaimberpolate between —q’+§a: namntno:E, 11

the “ideal-liquid” [37] (high density and ideal-gas limits. “

The ideal-liquid pair direct correlation function is dominated and the constants of integration can be fixed by known limits
by convolutions of single-particle geometries, i.e., overlapg; desjrable properties. By including only the following posi-

volume and overlap surface area, and the low density diregfye power combinations of the weighted densities:
correlation function is given by the pair exclusion volume.

This interpolation is realized through the convolution decom- {@j}=ng,n1Ny,Ny;. Ny2,N3,N5(Nyz.Nyy), (12
position of the excluded volume for a pair of convex hard

bodies in terms of characteristic functions for the geometnthe following simplest3D excess free-energy density was
of the two individual bodies. Aunique solution was found derived[31,34:
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PC=I{n =0+ 5+ o5, 1

NiN>—Ny1.Ny2
o= —ngln(1-ny), OF=—"— =
3
1.3
3)_3 Nz —Na(Nyz.Ny2) 05} %

3 877(1—n3)2 (13)

The notationn,, was chosen in order to emphasize that in
general|ny,(X)| # n,(x). This free-energy model provides a Ote *

unified derivation of the Percus-Yeviclkt0] and scaled- 0 1 p 2 3
particle [41] theories for hard spheres. The Percus-Yevick
and_ scaled-pam_cle theo_rle_s provide the most comprehensive FIG. 1. Variation of the prefactok with the effective dimen-
available gnalytlc description of the bulk hard-sphere tr!er'sionality of the fluid. The error bar fdD =2 indicates a range of
modynamics and structure, and serve as the standard in

Pissible val the text
for weighted density models. Indeed, the ability to describebI ssible valuessee the tey

the Percus-Yevick direct correlations geometrici9], ina  which, with minor adjustments as required for an even di-
form that relates to the scaled-particle thermodynamics, wagensionality D=2= even, also provides accurate analytic
essential for the derivation of the fundamental-measure funcstructure factors for hard disk83]. It should be emphasized
tional. For the uniform 3D fluid, the resulting®™(r) is  that in both these 1D and 2D functionals, the weighted den-

identical to the analytic solution of the Percus-Yevick equa-sities involve the characteristic functions for “spheres” of
tion as interpreted geometricalfd9] by the scaled-field- the corresponding dimensionality, namely, rods and disks,
particle diagrammatic description. It was subsequently foundespectively.

[42,43 that in the special case of 3D spheres the functional Earlier discussion of the crossover behavior of the
(13) is unique in the sense that a completely equivalési ~ fundamental-measure functiontq. (13)] can now be re-
functional can be derived, so that it contains only scalacalled. The 2D limit of the 3D functional tightly bounds the
weight functions(requiring, however, the inclusion of de- €xact hard-disk excess free energy from abpl&34. The
rivatives of the Diracs function). This equivalence is also 1D limit of the 3D functional yields a nonintegrable singu-
important for checking numerical calculations: The calcula-arity in the ®$® contribution[43,34). It was observed, how-
tions using this so-called “simplified” version are com- ever[34], that without thed)?’ term, the 1D limit of the 3D
pletely equivalent to using the original functiondd). The  functional yields theexactexcess free energy of the bulk
bulk three-particle direct correlation function was calculatednard-rod system. MoreovgB4], without the<I>(33> term the

in k space31,42,44 with good agreement with simulations. 2D limit of the 3D functional tightly bounds the exact hard-
The solution of the density profile equatiofi®., the Euler-  disk excess free energy from below. In addition, it was found
Lagrange equations for minimizing the grand poteptied-  [34] that the 1D limit of the 2D functional provides an ex-
ing the functional(13), in the special case when the external cellent approximation to the exact 1D bulk excess free en-
potential is generated bytast particleat the origin of coor-  ergy. Thus the 3D functiondlEq. (13)] without the ®§
dinates, yield$34,39 bulk pair correlation functions, which term and the 2D functiondIEq. (15)] give comparable re-
almost satisfy the Ornstein-Zernike relation with the Percussyts for the 2D(hard disk$ and 1D (hard rod$ uniform
Yevick direct correlation functions obtained from functional parg-sphere fluids. It was cleg84] from all these results that
differentiation, yet are in even better agreement with theys the effective dimensionality of the system is smaller than
S|mula_t|ons. The fqncuona{l@) yields the Ffer_cus—Yewck D=2, then the contributions of th@(ss) term should gradu-
bulk direct correlation functions, thus predicting that bulk ally diminish. The crossover behavior of the fundamental-

hard-sphere fluid binary mixtures never phase separate. Y&t- 1 functionals requires “switch off” of nonintegrable

in the test-particle bulk limit it predicts phase separation forg;, g |arities as the dimensionality decreases, clearly seen by
large size ratios between the sphef85]. The functional

. X - comparing the forms Eq$13)—(15) of the free-energy den-
(13) yields density profiles of hard spheres and hard-sphergiy, nctions. This mechanism should eventually be built

binary mixtureq 34,43 in slitlike pores, in very good agree- into the theory by modifying the form of th@(33) term in Eq.

ment with the simulations even for narrow slits. . . .
The same procedure that led to the above 3D result, Whegls)’ l.e., by enlarging the s&tp;} of basis forms. At present

: . . . Y we still do not have a guiding principle that willniquely
applied[31] to one-dimensional “spheres,” leads to the ex- . . X _ g
act result for hard rods as obtained earlier by Pef@5s, determine the optimal basis sgp;}. We hope that byle

and rewritten as tailed ana_1Iy5|s qf the behavior o_f the different components in
the functional, in extreme confinements, we shall be able to

(D=1) —a_ _ _ systematically improve the simplest functionél3), and
NG =P = ~ngin(1=ny). (%9 eventually find the optimal form. In order to facilitate the
In two dimensions it leads t{83] discussion we introduce the prefactor(see Fig. 1 multi-
plying the third term in Eq(13), as a function of the effec-
®PC=2[{n =02+ >, tive dimensionality, i.e., N(De), and consider the

N-dependent excess free-energy density:
NNy —Nyi.Nyp

@_ _ _ (2) =
ot Noin(1—ny), @5 4m(1-n,)

(9 PP n]=0P+dP a0, (1)
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FIG. 2. (a) Excess free energy for hard disk§2”, as a func-
tion of the packing fraction. (b) Compressibility factor

Z@D =1+ 0t2P/95. (c) Second derivative“compressibility”)
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FIG. 3. Nonadditivity coefficient for hard disksee Appendix
C). Comparison ob%D), () as approximated by EqB14) (dia-
monds, with a,(\, ) for different values ofx (lines, from top to

bottom\ =1,0.5,0) forn=0.6.

presented in Figs.(B) and Zc). Similar reasoning applies
also to functional derivatives, and the choicenxohould be
sharpened by considering the pair direct correlatices be-
low).

B. Excess free energy for nonadditive hard disks

Following an idea in Ref[43], consider a binary mixture
of hard spheres with radiuR in the 2D limit with densities
p1(2)=pP8(z+ w); pa(2)=p*8(z—w) wherepP)
=N/A is the 2D density, andr(2p®?)R?= 7 is the 2D
packing fraction(Appendix B. This system is equivalent to
an equimolar mixture of nonadditive hard disks with
R,=[R%?— w?]¥?, with a negativenonadditivity parameter
which, for small values obv, is given by

A=2(R;,/R—1)=—(w/R)2. (17

The function (N, 7,0)=F[{p(r)};\1/ksTA can be
calculated analytically(see Appendix @ and has the
following expansion in powers ofw: fCO(\,7,0)
= (N, ) + N7%(w/R) + a;(\,n)[— («/R)?] +- -,

K= 720*2P/97%. The lines from top to bottom correspond to Where a;(A=0,7)#0. Given the nonadditivity parameter
A=1,0.6,0.4,0 in Eq(A14). The points represent the scaled-particle A, the exact excess free energy for the 2D hard-disk fluid is

equation of state, which is highly accurdtt].

Ill. QUASI-2D AND QUASI-1D LIMITS
OF THE 3D FUNCTIONAL

A. Excess free energy for additive hard disks
Consider the 3D hard-sphere functionélq. (13)] for a

expected to have the following expansip#6]; f22(7,A)
=2 () +al2D) (p)A+- -, and we find(see Fig. 3that

exac 2,exac!
alll (m)=nat G n)ldn is comparable withay(\,7).
However, the correct expansion typge., without the
A7%w term) is achieved only with\=0. Otherwise, for

A>0 we havef @O\, 7,w)>f@P)(\, ) for small values of

one-component hard-sphere system in slab geometry, in the, Which is unphysical. Yet we find that, in terms of mag-

“2D limit” of the density profiles, p(r)=p(2)=p©?>8(z2),
wherep®P)=N/A is the 2D density, angy= p?®7R? is the
2D packing fraction. In this limitf @®=F [{p(r)}]/NkgT

can be reduced to a single integral that can be performedompared with

analytically[43,34] [see Eq(Al4) in Appendix A]. We see
from Fig. 1 in[34], as well as from our Fig. @), that the
exact 2D excess free energy is tightly boundf&? with or

nitude, f?®)(\=0.5,7,0) still agrees welksee Fig. 4 with
the expansion off 227 A), for —A<~0.1. Moreover,
fCO(N, p,0=—R)=fCP)(\, 5/2,0=0), which should be
the exact relationf0)(5 A=—1)
= foen/2,4=0).

Regarding this last result, we can make the general obser-
vation that the fundamental-measure picture guarantees that

without the contribution ofp$®, and that we can estimate the above construction of nonadditive hard disks or hard

(see Fig. L N(D¢=2)=0.4—0.6. Any initial small differ-

rods, by considering two planes or two lines, respectively,

ence between two functions is generally enhanced when talshould always give the resul{ »,A=—1)=f(%/2,A=0),
ing the derivatives. Because of the wemkdependence of where f(#7,A=0) is the result of the same theory for the
£(2D) this choice is better appreciated by taking the first andone-component system of additive disks or rods, respec-

second density derivatives of the free energies in Ri@, 2s

tively. In particular, since withh =0 we obtain(Appendix Q
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FIG. 4. Excess free energy for nonadditive hard digkee Ap- FIG. 6. Structure factoB(k) =1[1— pc ?FP(k)], for the hard
pendix Q. Comparison off (X, 5,w) for different values ofx disks at=0.6. The lines from top to bottom near the first peak
(from top A=1,0.7,0) with the expansion §2?(7,A)  correspond to\=1,0.5,0.24,0. The points give the results of the
=@ ()+alSh{n)A (diamonds for »=0.6. On the scale of the analytic fundamental measure description developed in[Z8).
figure all lines and the continuation of the sequence of diamonds alCompare with Fig. 5 if33].
meet at about the same point for=1.

(1D) numerical solution47] of the Percus-Yevick equation for
the exactf*™(#,4=0)=~In(1~7), we thus also get the parq gjsks, for botte(r) andS(k). In either Fig. 6(see also
exactf(*P)(,A=1), and we interpolate accurately between Fig. 7) or Fig. 8, the corresponding(k)'s for A=1 and
A=0 andA=1. A =0 are significantly worse than those for0.4— 0.6, and

the prefactor\(D=2)=0.4—0.6 is similar to that ob-
C. Direct correlation functions for additive hard disks tained above from considering the equation of sta&e Fig.

The 2D limit of the pair direct correlation functions can D).
also be reduced to a one-dimensional integration of explicitly

given functions, but the final integral is evaluated numeri-  D. Excess free energy and direct correlation functions
cally (see Appendix A The contributions toc(®>FPX(r), of hard rods
which are associated with the convolutions of t@dunc- The 1D limit for the one-component system is obtained

tions, contain a /singularity. This singularity is canceled, \yith the following density profilep(x,y)=pA8(x) 8(y),
however, in the terms that contribute to the pair direct Cor'wherep(lD)= N/L is the number of spheres divided by the
relation function of the uniform 3D fluid. The convolution length of the line(i.e., the 1D density and the 1D packing

_ _ _ 2
terms related t0W,y, =Wy, o= —NNvo/4m(1—N3)" (SE€  fantion is defined byy=2pP)R. In this limit the contribu-
Appendix A have a singularityf46] which is not canceled tion from the third term diverges

out. But the vector weighted densities, and thus alsg,,

and W, ,, vanish in the uniform 3D limit, so that the sin- (10) (B3

gularity disappears anyway. Ther 1¢ingularity, which re- f3 :f P57d%r — — o0, (18)
mains, however, for the 2M‘hard-disk™) limit of the 3D

functional, has a marked effect on the direct correlation func-

tion c(r) (see Fig. 5. Yet, it is integrable, and we can get yet (see Appendix  the limit for the excess free energy
quite accurate structure facto(see Fig. 6 S(k), for the o haricle without the contribution of the$) term in Eq.

hard-disk fluid if we takex =0.3. If we discard the singular (13) is the exact 1D result for the excess free energy
term, then withA =0.4 we obtain good agreement with the fUD=F_ /NKsT:
ex .

0 0.5 1 1.5 2 -
r’'R
0 0.5 1 g 15 2

FIG. 5. Direct correlation functios® 2 (r), for the hard disks
at »=0.6. The lines from bottom to top correspond to  FIG. 7. Same as Fig. 5 but without tkgngula) last term in Eq.
A=1,0.5,0.24,0, in Eq(A24). The points give the solution of the (A26). The lines from bottom to top correspond to
Percus-Yevick equatiof¥7]. Compare with Fig. 3 if33]. A=1,0.5,0.24,0.
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where(), is the surface area of the unit sphere, we make the

31 ] important observation that when evaluating the OD limit for
'3 hard spheres of any dimensionality, @éD) term yields the
2 Ee same result,
] A
S B A Fol{p(n}]
AU (op)_ Zet Pl f _ _
a H ;% J 1\« .A 22y f kaT dr[ —ngIn(1—np)]
[ 53
\‘9«3’ | -
0 bl :—f QprP~idr pwo(r)In[1— ywo)(r)]
0

=n+(1—7n)In(1-7), (23

FIG. 8. Same as Fig. 6 but without tteingula) last term in Eq.  \yhjch s theexactOD limit (see Appendix I This provides
(A26). The lines from top to bottom near the first peak correspondadditionaI justification for the validity of the geometric
t02=10.50.350. building blocks entering the fundamental-measure generali-

L zation,®P), of the exact 1D functionap(®=1),
F10) Fel{p(r)};A=0] :j [+ 0P Note that in the strict 0D limitp(r) = p®® §(r), the terms
i NkgT No-1Np-1) andnyp_1)- Ny(p-1) become equal, and they
— —In(1-7). (19 diverge atr =R. However,

. . . . . Np—1Nio—1)— Nvio—1) N'vip—1,=0, 24
Extending this calculation to evaluate the direct correlation (O-DFO-1 TWD-1)"TV(D-1) (24

function (see Appendix ¢ without the contribution of the

: i.e., the “antisymmetric” form of both®$?) and ®$ can-
@ term, we find the remarkable result that y 2 2

cels out exactly these diverging terms, and thus bb@ﬂ)
1 and ®$ vanish. However®$? does not possess such an
1=, anti-symmetry, and gives a strong negative divergence,
77(20) SO d3 — —o0. From the point of view of Eq(16) then the
prefactor should ba (D.4=0)=0 (see Fig. 1
which is againexactfor hard rods. Considering the required A deeper insight into the functional may be obtained by
contribution of thed{® term in Eq.(13), relative to the full ~ considering the quasi-OD case, wig{r) restricted to the
term, as a function of the effective dimensionality, i.e.,NSide of & ?grle)rlca_\l cavity of radius, (gvSereA_=5/R<l
)\(Deff) in Eq. (16), we thus find thaV\(DeﬁZl):o elimi- The exaptd) StILvl g.IVGS the exacf , but in 3D the
nates the nonintegrable singularity of the free energy to yielolume integral ofb{™differs from the exact(® by a term

r
2R

-7
c®F(r=|r;—ryl;x=0)= a=n2

the theexact 12 andc2FP)(r) (see Fig. 1 of order A. At the same time, the cancellation by anti-
symmetry of<I>(23) becomes incomplete. Remarkably, its vol-
IV. QUASI-OD LIMIT OF THE 3D FUNCTIONAL ume integral is exactly such thdf’®)= [dr[®{3+d )]

differs from the exact(°® only by a term of orden?. This

The quasi-0D situation for hard spheres of any dimensionmakes clear that the first two terms in Eg3) fit properly in
ality is achieved by an external potential such that there is @ hierarchical expansion, and the fundamental-measure
cavity which cannot hold more than one particle. Consideforms, which were originally proposed for describing the
first the strict 0D limit, p(r)=p®s(r), where fluid, provide the correct basis functions also in quasi-0D
p®=N= =1 is also the OD packing fraction. This is an situations. Moreover, we attempted to find the exact third
asymptotic limit of the solidsee belowwhen considered as term in quasi-OD. We considered several radial fori#p-
a superposition ob functions. We now try to recover that pendix B of p(r)=p(r) (step, parabolic, and Gaussig#8])
limit as the ultimate crossover for any density functional.to find numerically(see Table)lthat the difference from the
The exact®®~Y is directly integrated to give the exact exact OD result was alway&°®)—f{°0)=fdr[®) . od.
fO® by a change of variables,r=1—n;(x) and where '
d7= —ny(x)dx. It is important to note that the same applies
to the first term of the fundamental-measure functional, in
any dimension,(b(lD)=—nOIn(l—nD), and in particular to <D(3?gxact_0D=
®{? and®{¥, which have the same structure as the exact

®®=1: Since for anyD we have and £(r)=|nya(r)/ny(r)]. With ny~A~1 1—¢~A2, and
the integral being extended over a shell width of order
this gives a total contribution of ordér®. However, the third
term, d>(33), diverges as—A 2, and produces unbounded
negative free energy for strongly localized density distribu-
tions. This explains why earlier studi€31,42,43 found the
- SR—1), (22 :‘rL]JSctional Eq.(13) to be unsuited for applications to freez-

%(nz)s
8m(1—ng)?

}35(1—5)2, (29

wP(r)=0(R-r) (22)
and

dw®)(r)
QpwO(r)=wi?(r)=—
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TABLE |. Contributions of the different terms in the free-energy functional, to the excess free energy in the quasi-OD limit, for a

Gaussian density distributign(r) = 7(a/ w)¥%e~ ar? 35 a function of the occupanaey, for =50, as compared with the exact 0D excess free
energyf® = 5+ (1- )In(1-7). We definedf{’® =P d%, 0= fdPd3, Af=FOD— (£ + {0 00— (p® d%. The
numbers in brackets represent powers of 10.

7 £(0D) £(oP) £0P) Af N
0.999980— 1] 0.517538-2] 0.398896— 2] 0.118424-2] 0.212686— 5] 0.100472-9]
0.199996+ 0] 0.214848—1] 0.164745—1] 0.499071-2] 0.190490— 4] 0.168709—9]
0.299994+ 0] 0.503254—1] 0.383674—1] 0.11885p—1] 0.727571— 4] 0.206725—9]
0.399992+ 0] 0.935005— 1] 0.708121—1] 0.224906— 1] 0.197812-3] 0.236631—9]
0.499990+ 0] 0.153419+0] 0.115294+0] 0.376746—1] 0.450856— 3] 0.413538—9]
0.599988+ 0] 0.233478+0] 0.173828+0] 0.587140—1] 0.930517-3] 0.669544—9]
0.699986+ 0] 0.338791+0] 0.249326+ 0] 0.876409—1] 0.182472-2] 0.948285—9]
0.799984+ 0] 0.478087+0] 0.346427+0] 0.128112+0] 0.354769— 2] 0.148648— 8]
0.899982+ 0] 0.669700+ 0] 0.474002+0] 0.188392+0] 0.730608— 2] 0.251677—8]
0.999980+ 0] 0.999764+ 0] 0.662866+ 0] 0.311892+0] 0.250050—1] 0.229100- 5]

V. THE HARD-SPHERE fcc SOLID
AND THE FLUID-SOLID TRANSITION

order A2. The significance of the cagg=3 with the form
(1—¢%)% is that it recoversd$® by the first two terms,
1—3¢&2, in its £% expansion, and thus yields also the same
Percus-Yevick pair direct correlations for the bulk fluid.
Since the differencg®$) a5 @S] is of order¢* then
the functional Witl“d)(fgsym@)also yields the same bulk three-
particle direct correlation functions as with$®). In turn, it
contributes to the quasi-OD limit the incorrect orderAf.

the solution of the density profile equations, by minimizationO?g)the other ha_”d’ the followmg '|nterpolat|o(ns)form glves
of the grand potential, gives the optimal parametefor a 3 in the bulk limit and is almost identical ® 3¢ aci-opin
given total average density of the system. We found that théhe quasi-OD limit:

contribution of [®{¥+ ®{>], which was so dominant in
quasi-0D, is also dominant for the excess free energy of the 6
solid (Fig. 9). Yet, due to the contributions of neighboring
particles, the effects of the remaining relatively small contri-
butions obtained from different trial formsee below for a
corrected®$?) are not always as expected by the quasi-0D
analysis. In particularp$?), .. opdoes not describe the solid
more accurately than some other forms considered below.
On our way towards improving the density functional theory
of the hard-sphere fluid-solid transition, we still need to un-
derstand the systematics in these final steps towards the cor-
rect third term, and it is still uncertain at what level of so-
phistication, of the improved functional, anisotropic
deviations from the Gaussian profilgz9] come in.

The result obtained from the quasi-OD analysis, namely,
D) crop IS Obviously unsuitable to describe the bulk-3D
fluid, but it provides a guideline as to the appropriate modi-
fications of the originatb$®) which, in turn, is accurate for
quasi-3D fluids. The simplest modification ®f§3) which is
suggested by the need to get the exact OD limit is the “an-
tisymmetrization.” In particular, we considered the follow-
ing simple “antisymmetrized” versions ab{>):

Modeling the 3D solid by Gaussians, of widthyt/, at
fcc sitesR, [27,28,

o 3/2 )

I 1
0 50 100 150 200 250 300

2
Ao
FIG. 9. Contributions of the different terms in the free-energy

functional to the free-energy densi®y/VKkgT of the fcc hard-sphere
solid as a function of the Gaussian parameter’ at the melting

%(n2)3 densitypo®=67/7=1.0409. The dotted linédenoted®,y) repre-

(3) — __¢2\q “ ” . B .
<I)3’asqu) 8m(1—ny) (1-£&99, 27 sents t_he ideal _pa_rt of the f_unctlonal_, the long-dashed line
3 (Ad,) is the contribution of the first term in the excess part of the

functional, the dot-dashed lineA(,,,) is that of the first and
which give the same bulk-3D excess free energyllé@, second terms, the short-dashed lided(; . ,. 3) is the total excess
and whereq=2 in order that the contribution of the term be contribution using the symmetrized temg;ws). The solid line is
of orderA? or smaller. Withq=2 the term is of the correct the sum of the total excess and ideal contributions.
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0.9 0.95 1.0 1.05 1.1 1.15 1.2 10
po’
FIG. 10. Free-energy densify/VksT of the fcc hard-sphere 200
solid as a function of the densipo?, as obtained with each one of
the following “third” terms: ®$) o (solid line), ®F) )
(dashed ling @), .. op(dotted ling, as a function of the reduced
density po®=677, compared with the corresponding fluid free- 1507
energy densitydash-dotted ling -
X
1 ( )3 <
5 (Nny 100
PR =————5(1-3£2+2&%). 28 "
3,int 877_(1_”3)2( g f ) ( ) b
a
The termé&® affects, however, the bulk-3D three-particle di- 50
rect correlations.
As far as the properties of the solid are concerned, the
four forms, @), .. opand ) o) With =2 andq=3,

and®$),, all give comparable equations of stdteg., ex- 0.9
cess free energy and pressuie excellent agreement with

the simulations from closest packing to the melting density

(Figs. 10 and 111 The results fromb$¥), are always between

those fr0m®(3?;squ) with g=3 andq=2, and are not dis- FIG. 11. (a) Pressurd®o/kgT of the fcc hard-sphere solid, as a
played in the figures in order to make them more readablgfunction of the densityo®, as obtained with one of the following
These four forms also give comparable values for the Lindethird” terms: ®$) ¢, (solid line), ®$,,) (dashed ling
mann parameter, i.e., comparable values for the Gaussidhsac.on (dotted ling, as a function of the reduced density
parameter (Fig. 12. We wish to emphasize that after ob- P =67/, compared with the simulatiorispen circlegS5]). (b)
taining the results for our initial choic36] ‘I)(fa)lsqu) with Same asa) but for a larger density rangeote thatpa®= |2 is the

q=3, we investigated the other forms mainly in order to closest packing densityOn this scale the dashed and dotted lines

have a better clue to what is required for improving the vaI—WOUId be almost indistinguishable from the full fine.

ges of 'the Gal(Jss)sian withs. The fact that all these forms, angl g i_nterest_ing to obseryéFig. 13 that with '(D_g,ggxact—ODthe
in particular®37¢,.c.0p give about the sam@nd much too  functional yields the solid only as a local minimu(the glo-

narrow Gaussians is very significant. It may indicate that inbal minimum being a liquid, i.e., for very broad Gaussians
order to obtain the correct Gaussian widths the correct thirdnd that the local minimundii.e., the solid as described
term of the functional must contain tensorial foriis€e the above disappears at about the correct melting density
discussion in the next sectipnSimilarly much too narrow (5~0.54). With &), or with @é?a)lsqu) (with q=2 or

3,int?
Gaussians were obtained by most previous weighted density=3) we obtain better solid-fluid transition parameters than
functionals in the literatur¢27—29, but these functionals almost all previous functionals in the literature when com-
did not offer any way to improve the results. It should bepared with simulations. In particular, fa;=3 we get(the
noted that due to the dominant contribution of simulation results are given in parenthed@8,29): the
[®)+ D), the total excess free energy as a function ofpacking fraction of the fluidye=0.491(0.494, and the solid
« for a given density remains a very slowly varying function, 7s=0.540 (0.545, the melting pressure?o®/kgT=12.3
so that the rather incorrect values for the Lindemann param1.7), Lindemann ratid.=0.101(0.129, and vacancy con-
eter(i.e., @) do not affect the quality of the equation of state. centratione™ 1" (~0).
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6.0
5000
(a)
4000
3000
~
b
3
2000
1000 40,
0 3.5 T T T T !
0.9 0 50 100 150 200 250
ao?
0.2 FIG. 13. The free-energy densi®y/VkgT of the fcc hard-sphere
(b) solid, as obtained with ®F) o (solid line and
CIJ(fgxact_OD (dashed ling as function of the Gaussian parameter
0,15 ac? at the melting densitp o= 67/ = 1.0409.
and in practice, for numerical purposes, we have performed
L our calculations usingyo=1. If one approximates the solid
0.1+ by a superposition ofiormalizednarrow Gaussians, then it
y perp
can be stabilized by any functional that is able to achieve
gross similarity with the exact result fop=1 in the 0D
0.05-] limit. Due to its correct OD properties, the fundamental-
’ measure theory is the first that can yield the solid under
completely free minimization, and the correct vacancy con-
centration(i.e., the normalization of the Gaussiaris ob-
0.0 tained from the free minimization of the functional. In the
0.9 application of previous functionals to freezing, it was either

assumedh priori that 7,=1 [an inconsistent assumption for
functionals that could not satisfy EQ30)], or the vacancy
concentration would come out to be of order 10% or more.
FIG. 12. (a) Gaussian parameterg? of the fcc hard-sphere None of the previous weighted density functionals in the
solid, as a function of the densip3, as obtained with one of the literature featured the correct divergence of the equation of
following “third” terms: ®$) o (solid line), ), ) (dashed state at closest packing for the fcc lattice. Some of them
line), . op (dotted ling, as a function of the reduced density showed a very steefbut finite) rise in the region of closest
po®=67lm, compared with the simulatioriepen circleg55)). (b)  fcc packing: When the nearest neighbor Gaussians enter into
Same as (@ but for the Lindemann parameter the excluded volume sphere they have to pay a very large
L=13(pco®) 42?3, with triangles and circles representing (but finite) free-energy price. For the bcc lattice, however,
[55,29, respectively. which has fewer neighbors, the rise of the pressure is much
47 _  less steep49] for these functionals, which shows that these
The vacancy concentratiog *~ is obtained as follows: approximations could not keep track of the individual ex-
Let no<1be the average occupan@yhich corresponds to cjyded volumes. On the other hand, due to their particular

the normalization of the Gaussign3hen we have building blocks, involving the geometry of the particles, the
ot ot fundamental-measure  functionals, e.g., witb$),,
——=p=_-=171 (at melting 29 PLhymg)» OF PEaciop diverge at closest packir@P) for

7o P any structure. Our numerical results for fcc seem to follow

rather well the free-volume result, PV/NkgT
=[1—(y/ ncp)1’3]‘l. More recent investigatiof50] reveals

of d quite generally that fundamental-measure function@s
T g_%fexact-OE( 70) =~ In(1=10). (30 have the mechanism to locate situations of hard-sphere clos-
est packing(b) they can feature “symmetry breaking” that
This result, + 7,= e 17’=3.75x 108, could be estimated separates the solidlike and liquidlike solutions for the density
from the known chemical potential of the hard-sphere solidprofiles, andc) they contain the free-volume cell theory as a

but, in turn, for our functionals we have
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special limit case. Specifically, the fundamental-measure

functionals that feature the exact OD limit for&gx) distri- 25}
bution obey the the free-volume equation of state near clos-
est packing for any lattice structure. 2
§D)
15
VI. DISCUSSION
The fact thatb ), ) With q=2 yields an almost iden- 11
tical solid to that obtained with=3 should be considered in
view of the fact that the corresponding bulk two-particle di- 0.5 0 02 04 06
. . (Z’FD) . .pe . » » O 8 1
rect correlation functiong (r) are significantly differ- (0]
ent. In particular, forgq=3 c¢(®>)(r) is the Percus-Yevick
result, while forq=2 it contains a 1¢ singularity at the FIG. 14. Same as Fig. 4 but using the new third term

origin. This shows that the relative importance of the detailsbg?gsym), for several values of (from topA=1,0.5,0).

of the bulk fluid properties, for the correct description of the

solid, may depend strongly on the way these are impletomatically all the required “mechanisms” to make it obey
mented in the theory. The bulk Percus-Yevick direct correthe 2D, 1D, and 0D limits. Our task was to identify these
lations are just one example for a convolution form obtainednechanisms within the class of functionals which are con-
by the fundamental-measure functional. Different forms forstructed through the fundamental geometric measures of the
the functional can be obtained with the same bulk excess fregarticles. These functionals feature the exact 1D functional
energy, different bulk direct correlations, yet with similar when applied directly to hard rods, and yield a unified
predictions for the solid. This “freedom” is one of the rea- scaled-particle Percus-Yevick theory when applied to 3D
sons so many different weighted density approximations irspheres. We have demonstrated that the 3D functional, when
the past[28], all essentially based on the Percus-Yevicktaken in the OD, 1D, and 2D limits, can reproduce basic
numerical input, could give reasonable solids. Theproperties of the 0D, 1D, and 2D functionals, respectively.
fundamental-measure functionals, however, provide the bulkve have found that by enlarging a little the simplest basis set
fluid properties as a special case, and thus enable a systefip,,} we can significantly improve the crossover properties of
atic search of the optimal functional form by imposing thethe simplest functional Eq13).

correct dimensional cross-over and freezing properties as As part of the subtle interplay of the dimensional cross-
physical costraints on the functional form of the excess fre@ver, the antisymmetrized form, which is suggested by the

energy. _ o o _ _ need to get the exact OD limit, also affects thrédge func-
The 1f singularity in the pair direct correlation obtained tional near the bulk-3D limif51]. With q;%?;sym(s)the initial

from the functional Eq(13), as we noticed in the 2D limit, gjope of the nonadditive hard-disk limit of the functional is
exists for arbitrarily small nonuniformity of the 3D density negative as it should physically f&ppendix B and Fig. 14
profile, Ap(r) =p(r) = po, for which the vector densities are The contribution of the newb$, s does not strictly van-
nonzero. This singularity does not contribute to the pair di4gp, in the bulk quasi-1D limit, as required to give the exact
rect correlations in the bulk-3D limit, where the vector .oq it butit is generally very small, except negs 1 where
weighted densities, vanish. Since the nonuniform pair di- dominates(Appendix C and Fig. 16 In the quasi-2D limit
rect correlation function can be expanded around its; performs about as well 28> (Appendix A and Fig. 1§
p(r) = po uniform fluid limit, in powers ofAp(r), then the oo 1y singularity is ofaopposite sigriFig. 17). Our

3D bulk three-particle direct correlation function must alsofunctional provided very accurate density profiles when com-

contain singular term¢Appendix B. Recall, however, that pared with simulations for hard spheres confined between
the 3D bulk three-particle direct correlation function, as ob-

tained from the same 3D functional, was calculatedkin
spacd 31,42,43 and was found to agree well with the simu- 3
lation data, so that the singularity apparently does not affect

much the resulting Fourier transforms. In general, the con- {0
volution of two § functions inD=3 leads to a X‘type 27
singularity, which is thus inherent to the geometric discrip- I
tion. In turn we found out that the geometric weight func-
tions are essential for obtaining the correct 0D limit. Thus all 1

singularities must eventually be canceled out by a correct

functional form for®®)[{n_(x)}]. Even though the cancel- _— ‘

lation is incomplete for Eq(13), it does not affect the high 0 02 04 06 08

accuracy of the density profil¢80—-35, 42—4#4as obtained

from it for a large variety of confinement situations. More-

over, in most situations we can just ignore the singular terms  F|G. 15. Excess free energy for hard roS?, as a function of

in the pair direct correlations of the inhomogeneous fluidithe packing fractiony, as obtained from the first two terms of the

corresponding to minor ChangeS(In(D:” for a small free-  functional, Eq.(C9), i.e., the exact 1D resulidashed ling com-

energy price. pared with that obtained by adding the contributiond®f)
The exact 3D functional for hard spheres will contain au-[see Eq(C18], solid line.
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tion of the solid. Its understanding may lead to a better un-

4l derstanding of the density functional theory of freezing.
/] Pending further progress along these lines, the new third
3 term ®$) 5 [which in the notations of Eq(16) corre-
§(20) Vau sponds to the prefactox=(1— £2)%/1—3¢2] already pro-
2 ; vides a free-energy functional for 3D hard-sphere fluids with
- adequate properties of dimensional crossover.
] y
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1D and 0D limits, the first two term& (> and®{>), seem to
be correct. More insight is needed in order to reach the op-

: . 3) , 3) i APPENDIX A: EXCESS FREE ENERGY
timal third term®3™. The desirableb;> should ultimately

AND PAIR DIRECT CORRELATION FUNCTIONS

have also the following propertiesi) cancel out the 1/ IN THE 2D LIMIT OF THE 3D FUNCTIONAL
singularity, (i) should not contribute in the 1D limitiii) .
behave ”keq)(S?e)xact-ODin the quasi-0D limit,(iv) behave like For a one-component hard-sphere system in slab geom-

~10®), of Eq.(13), in the 2D limit, and(v) give the correct &Y

Lindemann parameter of the solid. These desirable properties p(r)=p(2) (A1)

are probably interrelated, and we have indications that some

of them, if not all, can be achieved by replacing the factorthe fundamental-measure excess free-energy functional takes
(1— &Y% in Eq. (27) with slightly more complicated forms, the form

including tensorial terms lik&M ;i £;€; €, involving the el-

ements of the dimensionless vec#eny,/n,= (&,,&,,&,). BFel{p(r)};N] B
The analysis of the fundamental-measure theory as applied A = | dz®(zM)= | dzP[{na(2)}.A],
to parallel hard cubef53] may prove useful. We demon- (A2)

strated the special role played by the fundamental-measure _ - .
functional, as derived from “liquid” considerations and ad- Where the weighted densitias,(x)=n,(z) are given by
justed to the exact OD limit, for obtaining the correct descrip-[34,43

z+R
o @ =w | o R =27z, a9
': . z—R
-0 f >
'; z+R
20 4 n2(2)=27TRJ p(z')dz, (A4)
c e z—R
2
-30
z+R -~ ~
-40 nvz(Z):( —27Tf p(Z’)(Z’—Z)dZ’)ZEnvz(z)z,
z—-R
0 o5 1418 (A9
. . 2
"R ny(2) ny(2) Ny2(2)
No(2)= 7 gz: M@=7—=. @)=
FIG. 17. Direct correlation function® P)(r), for the hard disks (A6)

at =0.6. The diamonds give the solution of the Percus-Yevick

equation[47). The dashed line obtained by usidgt® (compare In the 2D limit
with Fig. 5), and the solid line by usin@{) . Note the oppo-

site sign of the ¥/ behavior near the origin. p(2)=p?P 5(z), (A7)
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where p®®P)=N/A=number of spheres divided by the area No 2n3n,— 2Ny; - Nys
of the slab, i.e., the 2D density, these weighted densities take W33= (1—ny)?2 (1-ny)°
the form 3 3
3
N3 —3N2Ny2- Ny
n3(z)=mp?(R?~2z%)0(R—|z)), (A8) “Znl-n)® (A20)
ny(2)=2mp*®RO(R~|z]), (A9) Nya
. W3yv1=Wyi3 (1—ny?’ (A21)
nv2(2)=(2mp*?'2)0(R-|2))z, (A10) :
where ®(x)=1 for x=0 and ®(x)=0 for x<0. The 2D W =W, o= — Mva - N2Nva A22
packing fraction is defined byy=p?P7R?. Measuring $V2T VRS (1-ng)? T 2m(1-ny)®, (A22)
length in unitsR, and lettingR=1, then the weighted den-
sities are given b Ny2
g y Wovo=Wyp=— A An(1—ng)?" (A23)

ns(2)=7(1-2°)0(1-|2)), (A11)

ny(2)=270(1-|2), n(2)=5-O(1-|2)),

The two-particle direct correlation function for a pair at

distancer in the planez=0, parallel to the slab wallg is in

units ofR=1, and recall that(r>2R) =0 ] is written in the

7 form
Mo(2)= 57 012D, (12 Ser M=t erh), (A24)
Nya(2)=(272)0(1-2))z, where
n ~ Zmax(T)
Nny.(2)= 52 0(1-|z)z (A13) —cy(r,\)= Was(z,N)fy(z,r)dz
~Zmax(T)
The excess free energy per particle can be obtained ana- f Zmar)
; . + Woi(z,N)fg(z,r)dz
lytically [34,43; I~ 23(z,M)fs(z,r)
(IkeT)Fed{p(}] (1 Zma ") fs(zr
FEP(N, )= :Jfldzd»(z)/p(zm +j {wlg ) Si )
~Zmax(") ™
2 7
:)\7]‘{‘3(1—_77)4— 2—\+ 3(1_77)) +[q’22(2,)\)+ G(r)\lf\,z’vz(z,)\)]Zg(Z,r) dz
7 n Zmax(") fg(z,r)
X \/ - 77arctar( \/E) (A14) + szaxm W os(2) p=

and this result agrees with the previous res{®4,43 for
A=1.

The direct correlation function coefficiefits, =7,
= 3?®/dn an, for the functional(13), i.e., usingd$, are
given by

1
Wo3=V3p=V1p=Vp = 1n,’ (A15)

1
Wyive=Vyvoy1=— Tny’ (A16)
W)=V pyp= N2 A17
—Wy= vzvz——)\m, (A17)
W W= 2 (A18)

13— 31_(1_n3)21

ny ng_nvz‘”vz

‘1’23:‘1’32:(1_”3)2+ An(1-ng)3’ (A19)

9(zr)
+[Wiz,N)+ a(r)‘l’vaz(Z,?\)]T dz

(A25)

contains the terms that contribute to the unifofioulk) 3D
fluid result, and

Hf (z,r)dz
4o S\

ZmaxT)
_CN("J\):J {v1d2)
~Zmax")

Zmad )
+f Lordz\) |2l ts(z.r)dz
7Zma>(r)

ZmaxX(")
+ [ fodzaalzlotznaz
~Zmax{")

(A26)

contains the remaining termgvhich may contribute in the
general nonuniform fluid cageWe defined

Wy15= §v1,32: Wyo 3= §v2,32: Wov2= é’z,vzi (A27)
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r\? r? Zmax") fs(Z,r) 1
Zmad F) = \/1—(5) . Y=41-2, 0(r):1—5, jzma%(") p + ﬁ[l—a(r)]g(z,r) dz=AR(r),
(A28) (A34)
{r-2]i-(5) |15 [ S50 2 angtan [dz=2-1)
— _ B — —[1—6(r z,r)|dz= -r),
fV(Z,I’) Yy 7—2 1 oYy N 2D A T g
(A35)
r
—ZafCSIf€ W) ] : (A29)  and thus also
r AR 2 L 1 AS(r) A36
<2)=-—
fs(z,r)=4arccoéﬁ), (r<2) 2 47 |’ (A36)
1 The function associated with the convolutions of t@o
g(zr)=————. (A30) functions, g(z,r), contains a X/ singularity which is can-
rvi—(r/2)°-2° celed by the factof1— 6(r)] in the terms that contribute to

pair direct correlation functions of the uniform 3D fluid,

In order to check the geomet”c factors in these eXpreSC , |e the S|ngu|ar|ty as appears in the convolution of
sions, we considered also the uniform fluid limitvith scalar-surface characteristic functions cancels out by that
A=1) where by comparison witf81,39 we verified that.  from the vector functions. This cancellation does not work in
cy. The reason this singularity does not show up in the
uniform 3D limit is because the vector weighted densities
vanish in that limit, i.e., the function®21)—(A23) vanish in

(A31)  that limit, makingcy=0 .
i) b‘l_'he .IsinguIaITity four};j abpve fforr] thde 2D_ limit fﬁXiStsh'f?’]r
ma — — _ arbitrarily small nonuniformity of the density profile whic
f— fs(z.r)dz=AS(r)=4n{1-(r/2)], will make the vector densities nonzero, and as a result, the
(A32) noncanceled singularity from the convolution of surface
characteristic functions will contribute. The nonuniform pair
direct correlation function can be expanded around its uni-
form fluid limit, p;(r)=p{?, in powers of the deviations of
(A33) the density profiles from umformltyAp,(r) pi(r)—p{9,

Zmax(r) 477 3 1
J fv(z,r)dz=AV(r)=? 1—§(r/2)+§(r/2)3

~Zmax")

ZmaxT)

dz= ! 2
Z_E(r )1

fzmax(r) 1 1
51— 0(n)g(zr)

~Zmax(T)

112 I1:12:13

c2(ry,rp) = C(fliFf)'(o)(r:“l_rzD"‘z IC(E'FD O(|ry—ral,[rp—r3)Ap; S(ra)dra+ (A37)
13
which, for the functional13), takes the form
ci20(ry,rp) =~ f de W oL, 00 W (x=r )W (x—1)
—f deB \Ifaﬁ[{ng‘))}]w;f)(x—rl)wff)(x—rz)—iﬁ U dx %7 W g, L {PH W (x= 1)
«a, 3 a,p,

X W (x=r)W(? (x=13) |Ap; (rg)dra+- - (A38)

Thus if c(2 FD)(rl r,) contains a singularity then and W,y the singularity cancels out. The singularity

the 3D bulk three- particle direct correlation function does remain, however, in the terms associated with

c> T O(|ry—rg|,[r,—r5]) must contain singular terms. In ‘I’aﬁﬁ_q;]ZVZVZ anckJ‘\vaz I2kV2 i of th f
particular, in the pairs of terms associated with the coeffi- The change in the bulk-2D limit 0(35 € excess lree energy
cientsW .5, =W, ,,andWy,y,,, as well as in those asso- esultlng from replacing the origingby™ with the new third

ciated With W 5, =W, 3 and Wyyyo5 and ¥, 5,=V, 4 term, ®F) 1y is given by

aBy aBy



1
Af<20>(77):f_ldz[q>g?;sym3)(z)—<I>(33>(z)]/p(2D>
1 z*-253
gar

A—pa-pt 9

The ratioAf?P)()/1?P)(1,5) is an increasing function of

FUNDAMENTAL-MEASURE FREE-ENERGY DENSITY ...

4259

N2(2)=2mp RO (R~ |2+ o)

+277p(2D)R2®(R2_|Z_(U|), (B3)

Nva(2)=[27p{*)(z+ )10 (R~ |2+ w|)Z

+[2mpP(z— 0)]1O(Ry—|z— w|)2, (B4)

7 which is very small and reaches a value of only about 0.06

at n=0.8 (see Fig. 1&

When we replaced$® by the new symmetrized form
(I)3sym(3), the direct correlation function coefficients

V5=, s Which change are the followingsee the texjt

_ N2 4 6
‘PZZ—)\m(1+§ —2¢ ), (A40)
_ N2 2 4
‘I’vzvz—_)\m(l_ef +5¢&%), (A4l
n
\IIZ’VZZ)\W\Z?’)Z(l—i—ZgZ—Sf“), (A42)
n n,n
Yave= " Tong? M amao g1
(A43)
Ny n% 212 2
\I’23:\P32 (1_n )2 4 (1 n )3(1_5 ) (1+§ )1
(A44)
no annz_zn\/l'nvz
N A FRNE
3
7(1-¢%)3. (A45)

4(1 ns)

APPENDIX B: EXCESS FREE ENERGY
OF NONADDITIVE HARD DISKS
AS A 2D LIMIT OF THE 3D FUNCTIONAL

Following Ref.[43], consider a binary mixture of hard
spheres with radiR; andR, in the 2D limit with densities

p1(2)=pPP8(z+ w), pa(2)=pSP8(z—w), (BI)

where p{®P=N, /A, pi?P)=

N,/A are the numbers of

where® (x) =1for x=0 and &) =0 for x<0. The integral

(UkgT)Fef {p(N)}] _ f Y Gze (@9

A —Ri—w

can be calculated analytically, but the expressions are
lengthy. In order to demonstrate our point we focus attention
on the simplest case wheé®,=R,=R=1, p{®?=pP) so
that 27Tp(2D)_ 2’7Tp(2D)_ 7, p(ZD)— p(ZD)-i-p(ZD)— nl 7, and

A= — w?. We noticed that by defining

W, 7, 02,22 = — %In(l— 7+ nwl+ nz?)

7?12
m (1— 9+ no’+ 5z
L : (B6)

m (1— 9+ go’+ pz%)?
we can calculate the free energy in the following form:

(1/kBT)Fex[{p(f 1

f(zD)(k,r],w)

f1+w
dz ®(z
(gl

2

1-w
:(77/—77_)(J‘0 W()\,?],wz,Zz)dZ

+f1 W()\,n/Z,O,ZZ)dZ>. (B7)
1-2w

We checked thatf ®®)(\,7,0)=f?P)(\,7) as defined in
Appendix C  below. We also check that
fCO(\, 9,0=1)=FCP)(\, 7/2,0=0), which is a general
result that follows by construction and from the weight func-

spheres divided by the area of the slab, i.e., the 2D densitie§ons having the range of the particles. This relation should
This system is equivalent to a mixture of nonadditive hardse compared with the exact resuts fC0)(p A=—1)

disks with Ry,=3[(R;+ Ry)?— (2w)?]¥2 For small values

of ® the negative nonadditivity parameter

A=[2R;,— (R +Ry)/(Ri+Ry)=—w?/3(R;+Ry)%  The

weighted densities take the form

na(z)=mp” (RE— (z+ 0))O (R~ |(z+ w)])

+mpP(RE— (2 0)H)O Ry~ (2~ w)]),

(B2

2D exac!
= f(xa():( 7/2,A=0).
The functionf @®)(\, 5, ) has the following expansion in
powers ofw:
f(ZD)()\, 7]1‘0) = f(ZD)()\’ 77) + al()\! 77)(1)

+ap(\, [~ w?]+- -, (B8)

where
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&f(zD)()\,r],a))
a;(\,p)= T 9w
w=0
_ 2 0,)+2 /12,0,)]=\7?
—(7]/—77)[—W(?\,7]. Q) +2w(N, 7/12,0,D)]=\7
(B9)
vanishes fol =0, and where
1] 9?f@O(N=0,7,w)
ay(A= 077)__2 P .
arctarr\/ ) ] (B10)

Given the nonadditivity parametéy, the exact excess free
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small values ofv, which is unphysical. Yet, foA <~0.1 we
find numerically thatf ®P)(\, 7,w), especially withx=0.5,
agrees well with the expansion off(22(7,A) as
approximated by the scaled-particle theory, and with

2D) _

xac( W'A_ 1)

For the new third term® ) o, the same analysis as
above can be repeated using

W\, 7,02,2%)=— %In(l— 7+ nw’+ nz%)

7 (-
7 (1— p+ ngo’+ nz°)
3 1(1_22)3
a2

7 (1—-n+ nw2+ 7722)2'
(B16)

The results using this term are numerically similar to those
using the original®$®, except that the unphysical linear

energy for the 2D hard-disk fluid is expected to have theterm now vanishesa;(\,#)=0.

expansior45]
fiml 7.8)=foD m)+alond mA+- -+ (B1I)
where
I G )
afead M= (B12)

The exact 2D result is well approximatfs¥] by the scaled-
particle result

7
foae M=t = 7= ~In(1=7)  (B13
and
9f(2D)
SPT(77) 2—7
B14
"oy a2 14
compares wellespecially with\ =0.5) with
af2O(\, 9, w=0)
Ui s
1 1 27;(7, 1)”
=———1yg1-p+\ A
( —M { TN T3
L |/ 7 [ n
+ 1—77+)\ —E j| 1_n(arcta 1T7] .
(B15)

Moreover, it compares reasonably also vaf{\ =0,7). Re-
call, however, tha\ = — »?, and thus the correct expansion
typeli.e., without thea; (N, 7) w term], is achieved only with
A=0. For A\>0 we have f@P)(\,7,0)>fE)(\,5) for

APPENDIX C: EXCESS FREE ENERGY
AND PAIR DIRECT CORRELATION FUNCTIONS
IN THE 1D LIMIT OF THE 3D FUNCTIONAL

In the 1D limit
p(x,y)=pP 8(x)8(y), (CY
wherep(®=NelL is the number of spheres divided by the

length of the line, i.e., the 1D density, we letdenote the
radial coordinate in the plane perpendicular to the line,

XX+ Yy
and the weighted densities take the form
=2pPR?-t?0(R-1),

R
JR—©
(2p1Pt)
Ny ()= ——
JRZ—12

where ®(x)=1 for x=0 and ®(x)=0 for x<<0. The 1D
packing fraction is defined by=2p®’R. Measuring length
in units R, and lettingR= 1, then the weighted densities are
given by (in the cylinderit<1)

t=\x+y?,  t=

(C2

(C3)

ny(t)=2ptP O(R-1), (C4)

O(R-1)t, (C5)

na(t)=7V1—t20(1-1), (C6)
— — 7] —
Ny(t) = ——— 6 (1-1), (C7)

477'\/l—t2
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As for the 2D limit above,cy(r) contains the terms that

contribute to the uniformbulk) 3D fluid result, andcy(r)

contains the remaining ternfehich may contribute for the

general nonuniform 3D fluid The integrations can be per-
(C8) formed analytically, and the result is

Nyo(t) =17 O(1-1)t,

t
J1—t2
nVl(t) 4 \/_2®(1

r 1
As a check of the weighted densities we rederived the —C(r)=—Cexactl = %)2(1— IR
limit for the excess free energy per partidi@ith A =0) (1=7 Y (Cc17)
[34,43:
wherecq, () is the exact 1D result. Notice the mM(singu-
1kgT)F exac
f(llfgz( BT) lflx[{P(r)}] larity atr=0 in the contribution of'5,,(t) and of the first

two terms of\If3 At) which, however, cancels out.
11 . 3 The contribution of the new third ternd;>3asym(3) to the
= ;fo At dif O (1) + D7 (1) ]=—In(1— 1), 1D limit excess free energy is given by

(C9
f(slggynna) 47Tt dt DLy (1)

which is the exact 1D excess free energy. With the substitu-

tion u=1—t2, t dt=—udu, this and subsequent integrals 1 [10 1
can be calculated analytically. “5.2l3 71~ [ —4In(1—7)
: - - .~ 7
The direct correlation function coefficients

\IfaB:@;;B:aZCD/anaanﬁ are given in Appendix A. The
two-particle direct correlation function for a pair at distance

1
+6<1—n)—2<1—n>2+§<1—n)3”.
r on the line k=0, y=0) [r is in units ofR=1, and recall

thatc(r>2R)=0] is written in the form

—c(r)=—cy(r)—cn(r), (C10
where
—cu(r)=4wf— rlzdzfrm(Z)W33(t)t dt
0 0
+47-rf17 rl2$32(t=rm(z))dz
0
Fn(2=0)W 1(F (2=0))
, C1
" r\/l—(r/2)z (13
and
1-r/2__
~on=dr [ Wout=ra2)rm(0z
(C12
and where we defined
rm(z)=\/1- %+z) , (C13
— 31('[) Wa(t)
Wao(t) =W (t)+ yp e (C19
_ ') t
Faa(H) = Wgyalt) + 20 (C15)

A7

W 1o(f n(2=0)) =W 1(r (2=0))
+Wy1va(rm(z=0))(1— r2/2).
(C16

(C18

The ratiof ), o f'23 is small for most values of: it is
about 1/10 aty=0.7, and reaches 1 only g=0.97 (see Fig.
15

APPENDIX D: EXCESS FREE ENERGY
OF THE OD LIMIT

Consider hard spheres in any number of dimensions in-
side a cavity that cannot hold more than one particle. The
exact OD limit can be obtained as follows. The canonical
partition function isZ; for N=1 andZy-,=0. The grand
partition is

4
=> —Neﬁ“Nzl-l-ZleB“, (D1)
N=o0 N!

I

where 8= 1/kgT, from which we get

N= ——InZ = 21 D2
IBp T 1+ Z,ePn (02)
so that
=| —N D3
The “pressure” is
BP=InE=—-In(1—N), (D4)
so that the free energy is
F=-p8P N=In(1—N)-+NI N
BF=—p +,6’,u—n(—)+ nm.
(D5)
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For ideal particles with no restriction on occupation of theThe vector function obtained from,,(r)=—Vn;(r). For a

cavity, andZy=(Z,)", so that

E=expZ,ef"), (D6)
N=2Z,ef#, (D7)
Bu'= In( E) : (D8)
Z;
BPU=N, (D9)
and
BF9= —N+NIn E). (D10)
Z;
Thus the excess free energy is
B(F—F%=N+(1-N)In(1-N), (D12)

which, as the pressure, is independenZgfi.e., they corre-
spond to the equation of state of a well-defirie- 0 limit,

which does not depend on the details of the confining poten-

tial.

APPENDIX E: FUNDAMENTAL-MEASURE WEIGHTED
DENSITIES FOR A SPHERICALLY SYMMETRIC
DENSITY DISTRIBUTION

Considering a spherically symmetric density distribution

centered at the origin,

p(r)=p(r), (ED)

we would like to calculate the corresponding weighted den

sities
na(r)=f p(r )W (r—r")dr’, (E2)

For the scalar weights this is easily done using

2 ([ (@) 1Nt qpr r+r’
na(r)=TJOW“(r Jridr fl”,lp(y)y dy. (B3

Gaussian density distribution centered at the origin

3/2
e* ar

a

(E9

P(r):770<

T
then forw®(r')=0(R-r") we use either Eq(E3) or

na(r)=27rf w @ (r)r'dr’
0

r’ (24 312 2, .12 ’
Xf 1770 ; e—a(r +r'c=2rz )dZ’ (E5)
=r
to get
na(r)= 2| e Va(Ret )]+ erfl Va(R—r)]
e~ a(R+N?_ g—a(R-1)?
+ R i , (E6)
aTT
which for «R?>>1 takes the form
7o \/_ —a(R-1)?
ns(r)= —|1+erfVa(R—r)]— —— E
(M= fiva( )] o (E7)
Forw®(r')=68(R—r') we get
R o _ 2 _ 2
n2<r>=nor\/;<e “RET—eme®IY) (B9
and foraR?>1 it takes the form
R a 2
nz(l’):ﬂor\/;e “R=07, (E9

The vector function, obtained fromy,(r)=—Vns(r), is
given by

1+e R 1
1-e %R 2arR

Ny2(r) _
ny(r)

r
) - (E10
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