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Casimir energy for a spherical cavity in a dielectric: Applications to sonoluminescence
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In a series of papers, Schwinger@Proc. Natl. Acad. Sci. U.S.A.90, 958 ~1993!; 90, 2105~1993!; 90, 4505
~1993!; 90, 7285 ~1993!; 91, 6473 ~1994!# proposed that the ‘‘dynamical Casimir effect’’ might provide the
driving force behind the puzzling phenomenon of sonoluminescence. Motivated by that exciting suggestion,
we have computed the static Casimir energy of a spherical cavity in an otherwise uniform material. As
expected, the result is divergent; yet a plausible finite answer is extracted, in the leading uniform asymptotic
approximation. This result agrees with that found usingz-function regularization. Numerically, we find far too
small an energy to account for the large burst of photons seen in sonoluminescence. If the divergent result is
retained, it is of the wrong sign to drive the effect. Dispersion does not resolve this contradiction. In the static
approximation, the Fresnel drag term is zero; on the other hand, the electrostriction could be comparable to the
Casimir term. It is argued that this adiabatic approximation to the dynamical Casimir effect should be quite
accurate.@S1063-651X~97!03304-7#

PACS number~s!: 78.60.Mq, 42.50.Lc, 12.20.Ds, 03.70.1k
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I. INTRODUCTION

In a series of papers, Schwinger proposed@1# that the
dynamical Casimir effect could provide the energy th
drives the copious production of photons in the puzzling p
nomenon of sonoluminescence@2–4#. In fact, however, he
guessed an approximate~static! formula for the Casimir en-
ergy of a spherical bubble in water, based on a general,
incomplete, analysis@5#. He apparently was unaware that o
of us had, in the late 1970s, completed the analysis of
Casimir force for a dielectric ball@6#. It is our purpose here
to carry out the very straightforward calculation for th
complementary situation, for a cavity in an infinite dielect
medium. ~A preliminary version of this paper appeared
@7#.! In fact, we will consider the general case of spheri
region, of radiusa, having permittivitye8 and permeability
m8, surrounded by an infinite medium of permittivitye and
permeabilitym.

Of course, this calculation is not directly relevant
sonoluminescence, which is anything but static. It is offe
as only a preliminary step, but it should give an idea of
orders of magnitude of the energies involved. It is a sign
cant improvement over the crude estimation used in@1#. At-
tempts at dynamical calculations exist@8–10#, but they are
subject to possibly serious methodological objections, so
of which will be discussed below.~Other theoretical models
to explain sonoluminescence are given in@11#.! In fact, we
anticipate that because the relevant scale of the electrom
netic Casimir effect is in the optical region, with characte
istic time scalet;10215 s, and the scale of the bubble co
lapse is of ordert;1026 s ~more relevant may be th
duration of each flash, which is&10211 s!, the adiabatic
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approximation of treating the bubble as static for calculat
the Casimir energy should be very accurate. Sonolumin
cence aside, this calculation is of interest for its own sake
one of a relatively few nontrivial Casimir calculations wit
nonplanar boundaries@12–19#. It represents a significan
generalization of the calculation of Brevik and Kolbenstve
@20#, who considered the same geometry w
me5m8e851, a special case, possibly relevant to hadro
physics, in which the result is unambiguously finite. It is,
noted above, a straightforward generalization of the resu
@6#; the most significant technical improvement is that he
the energy is calculated directly. We also examine Fres
drag and electrostriction; the latter may be numerically s
nificant.

In Sec. II we review the Green’s dyadic formalism w
shall employ, and compute the Green’s functions in this c
for the TE and TM modes. Then, in Sec. III, we compute t
force on the cavity from the discontinuity of the stress tens
The energy is computed similarly in Sec. IV, and the e
pected relation between stress and energy is found. Fre
drag, in the static approximation, is considered in Sec.
and electrostriction in Sec. VI. Estimates in Sec. VII sho
that the Casimir energy so constructed, even with physic
required subtractions, and including both interior and ex
rior contributions, is divergent, but that if one supplies
plausible contact term, a finite result~at least in leading ap-
proximation! follows. This finite result agrees with tha
found usingz-function regularization.~Physically, we expect
that the divergence is regulated by including dispersion.! Nu-
merical estimates of both the divergent and finite terms
given in the conclusion, and comparison is made with
calculations of Schwinger and others. A simple estimate
given which suggests that any macroscopic electromagn
phenomenon such as the Casimir effect cannot possibly
ply the energy required for sonoluminescence. There, an
the Appendix, where we discuss the form of the force on
4207 © 1997 The American Physical Society
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4208 55KIMBALL A. MILTON AND Y. JACK NG
surface due to the fluctuating electric and magnetic field
comparison with@9# is made.

II. GREEN’S DYADIC FORMULATION

We follow closely the formulation given in@14,6#. We
start with Maxwell’s equations in rationalized units, with
polarizationsourceP ~in the following we setc5\51):

“3H5
]

]t
D1

]

]t
P, “•D52“•P,

~2.1!

2“3E5
]

]t
B, “•B50,

where, for an homogeneous, isotropic, nondispersive
dium,

D5eE, B5mH. ~2.2!

We define a Green’s dyadicG by

E„r ,t)5E ~dr 8!dt8G~r ,t;r 8,t8!•P~r 8,t8! ~2.3!

and introduce a Fourier transform in time,

G~r ,t;r 8,t8!5E
2`

` dv

2p
e2 iv~ t2t8!G~r ,r 8;v!, ~2.4!

where in the following thev argument will be suppressed
Maxwell’s equations then become~which defineF!

“3G5 ivF, “•F50,
~2.5!

1

m
“3F52 iveG8, “•G850,

in whichG85G11/e, where1 includes a spatiald function.
The two solenoidal Green’s dyadics given here satisfy
following second-order equations:

~¹21v2em!G852
1

e
“3~“31!, ~2.6a!

~¹21v2em!F5 ivm“31. ~2.6b!

They can be expanded in vector spherical harmonics@21,22#
defined by

X lm5
1

Al ~ l11!
LYlm ~2.7!

as follows:

G8~r,r 8!5(
lm

S f l~r ,r 8!X lm~V!

1
i

vem
“gl~r ,r 8!X lm~V! D , ~2.8a!
a

e-

e

F~r,r 8!5(
lm

S g̃l~r ,r 8!X lm~V!2
i

v
“3 f̃ l~r ,r 8!X lm~V! D .

~2.8b!

When these are substituted in Maxwell’s equations~2.5! we
obtain, first,

gl5g̃l , f l5 f̃ l1
1

e

1

r 2
d~r2r 8!X lm* ~V8!, ~2.9!

and then the second-order equations

~Dl1v2me!gl~r ,r 8!5 ivmE dV9X lm* ~V9!•“931,

~2.10a!

~Dl1v2me! f l~r ,r 8!52
1

eE dV9X lm* ~V9!•“93~“931!

5
1

e
Dl

1

r 2
d~r2r 8!X lm* ~V8!, ~2.10b!

where

Dl5
]2

]r 2
1
2

r

]

]r
2
l ~ l11!

r 2
. ~2.11!

These equations can be solved in terms of Green’s fu
tions satisfying

~Dl1v2em!Fl~r ,r 8!52
1

r 2
d~r2r 8!, ~2.12!

which have the form

Fl~r ,r 8!5H ik8 j l~k8r,!@hl~k8r.!2A jl~k8r.!#, r ,r 8,a

ikhl~kr.!@ j l~kr,!2Bhl~kr,!#, r ,r 8.a,

~2.13!

where

k5uvuAme, k85uvuAm8e8, ~2.14!

and hl5hl
(1) is the spherical Hankel function of the firs

kind. Specifically, we have

f̃ l~r ,r 8!5v2mFl~r ,r 8!X lm* ~V8!, ~2.15a!

gl~r ,r 8!52 ivm“83Gl~r ,r 8!X lm* ~V8!, ~2.15b!

whereFl andGl are Green’s functions of the form~2.13!,
with the constantsA andB determined by the boundary con
ditions given below. GivenFl , Gl , the fundamental Green’s
dyadic is given by
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55 4209CASIMIR ENERGY FOR A SPHERICAL CAVITY IN A . . .
G8~r,r 8!5(
lm

H v2mFl~r ,r 8!X lm~V!X lm* ~V8!

2
1

e
“3Gl~r ,r 8!X lm~V!X lm* ~V8!3“

Q 8

1
1

e

1

r 2
d~r2r 8!X lm~V!X lm* ~V8!J . ~2.16!

Now we consider a sphere of radiusa centered at the
origin, with propertiese8, m8 in the interior ande, m outside.
Because of the boundary conditions that

E' , eEr , Br ,
1

m
B' ~2.17!

be continuous atr5a, for the constantsA andB in the two
Green’s functions in Eq.~2.16! we find

AF5
Aem8ẽl~x8!ẽl8~x!2Ae8mẽl~x!ẽl8~x8!

D l
, ~2.18a!

BF5
Aem8s̃l~x8!s̃l8~x!2Ae8m s̃l~x!s̃l8~x8!

D l
, ~2.18b!

AG5
Ae8mẽl~x8!ẽl8~x!2Aem8ẽl~x!ẽl8~x8!

D̃l

,

~2.18c!

BG5
Ae8m s̃l~x8!s̃l8~x!2Aem8s̃l~x!s̃l8~x8!

D̃l

. ~2.18d!

Here we have introducedx5ka, x85k8a, the Riccati-Besse
functions
ẽl~x!5xhl~x!, s̃l~x!5x j l~x!, ~2.19!

and the denominators

D l5Aem8s̃l~x8!ẽl8~x!2Ae8m s̃l8~x8!ẽl~x!,

D̃l5Ae8m s̃l~x8!ẽl8~x!2Aem8s̃l8~x8!ẽl~x!, ~2.20!

and have denoted differentiation with respect to the ar
ment by a prime.

III. STRESS ON THE SPHERE

We can calculate the stress~force per unit area! on the
sphere by computing the discontinuity of the radial-rad
component of the stress tensor~see the Appendix!

F5Trr ~a2 !2Trr ~a1 !, ~3.1!

where

Trr5
1
2 ^@e~E'

22Er
2!1m~H'

22Hr
2!#&. ~3.2!

The vacuum expectation values of the product of fie
strengths are given directly by the Green’s dyadics compu
in Sec. II:

i ^E~r !E~r 8!&5G~r ,r 8!, ~3.3a!

i ^B~r !B~r 8!&52
1

v2“3G~r ,r 8!3“

Q 8 ~3.3b!

where here and in the following we ignored functions be-
cause we are interested in thelimit asr 8˜r . It is then rather
immediate to find, for the stress on the sphere~the limit
t8→t is assumed!,
F5
1

2ia2E2`

` dv

2p
e2 iv~ t2t8!(

l51

` 2l11

4p H ~e82e!Fk2e a2Fl~a1,a1 !1S l ~ l11!

e8
1
1

e

]

]r
r

]

]r 8
r 8DGl~r ,r 8!U

r5r 85a1

G
1~m82m!Fk2m a2Gl~a1,a1 !1S l ~ l11!

m8
1
1

m

]

]r
r

]

]r 8
r 8DFl~r ,r 8!U

r5r 85a1

G J ~3.4a!

5
i

2a4E2`

` dy

2p
e2 iyd(

l51

` 2l11

4p
x
d

dx
lnD lD̃l , ~3.4b!
rm
wherey5va, d5(t2t8)/a, and

lnD lD̃l5 ln@~ s̃l~x8!ẽ l8~x!2 s̃ l8~x8!ẽl~x!!22j2~ s̃l~x8!ẽ l8~x!

1 s̃ l8~x8!ẽl~x!!2#1 const. ~3.5!

Here the parameterj is
j5

S e8

e

m

m8D
1/2

21

S e8

e

m

m8D
1/2

11

. ~3.6!

This is not yet the answer. We must remove the te
which would be present if either medium filled all space~the
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same was done in the case of parallel dielectrics@23#!. The
corresponding Green’s function is

Fl
~0!5H ik8 j l~k8r,!hl~k8r.!, r ,r 8,a,

ik j l~kr,!hl~kr.!, r ,r 8.a.
~3.7!

The resulting stress is

F~0!5
1

a3E2`

` dv

2p
e2 ivt(

l51

` 2l11

4p

3$x8@ s̃ l8~x8!ẽ l8~x8!2ẽl~x8!s̃l9~x8!#

2x@ s̃ l8~x!ẽ l8~x!2ẽl~x!s̃ l
9~x!#%. ~3.8!

The final formula for the stress is obtained by subtracting
~3.8! from Eq. ~3.4b!:

F52
1

2a4E2`

` dy

2p
eiyd(

l51

`
2l11

4p

3H x d

dx
lnD lD̃l12x8@sl8~x8!el8~x8!2el~x8!sl9~x8!#

22x@sl8~x!el8~x!2el~x!sl9~x!#J , ~3.9!

where we have now performed a Euclidean rotation
te

ic
e.
.

y→ iy , x→ ix,

t5t2t8→ i ~x42x48! @d5~x42x48!/a#,

s̃l~x!→sl~x!5S px

2 D 1/2I l11/2~x!,

ẽl~x!→el~x!5
2

p S px

2 D 1/2Kl11/2~x!. ~3.10!

IV. TOTAL ENERGY

In a similar way, we can directly calculate the Casim
energy of the configuration, starting from the energy dens

U5
eE21mH2

2
. ~4.1!

In terms of the Green’s dyadic, the total energy is
E5E ~dr !U

5
1

2i E r 2dr dVFe TrG~r ,r !2
1

v2m
Tr“3G~r ,r !3“

Q 8G ~4.2a!

5
1

2i E2`

` dv

2p
e2 iv~ t2t8!(

l51

`

~2l11!E
0

`

r 2drH 2k2@Fl~r ,r !1Gl~r ,r !#1
1

r 2
]

]r
r

]

]r 8
r 8@Fl1Gl #~r ,r 8!U

r 85r
J , ~4.2b!
w-

the
where there is no explicit appearance ofe or m. ~However,
the value ofk depends on which medium we are in.! As in
@14#, we can easily show that the total derivative term in
grates to zero. We are left with

E5
1

2i E2`

` dv

2p
e2 ivt(

l51

`

~2l11!E
0

`

r 2dr 2k2

3@Fl~r ,r !1Gl~r ,r !#. ~4.3!

However, again we should subtract that contribution wh
the formalism would give if either medium filled all spac
That means we should replaceFl andGl by

F̃ l ,G̃l5H 2 ik8AF,Gj l~k8r ! j l~k8r 8!, r ,r 8,a,

2 ikBF,Ghl~kr !hl~kr8!, r ,r 8.a,
~4.4!

so then Eq.~4.3! states that
-

h

E52(
l51

`

~2l11!E
2`

` dv

2p
e2 ivt

3H E
0

a

r 2drk83~AF1AG! j l
2~k8r !

1E
a

`

r 2drk3~BF1BG!hl
2~kr !J . ~4.5!

The radial integrals may be performed by using the follo
ing indefinite integral for any spherical Bessel functionj l ,

E dxx2 j l
2~x!5

x

2
@„~x j l !8…

22 j l~x j l !82x j l~x j l !9#.

~4.6!

However, we must remember to add the contribution of
total derivative term in Eq.~4.2b! which no longer vanishes
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55 4211CASIMIR ENERGY FOR A SPHERICAL CAVITY IN A . . .
when the replacement~4.4! is made. The result is precisel
that expected from the stress~3.9!,

E54pa3F, F5
1

4pa2S 2
]

]aDE, ~4.7!

where the derivative is the naive one, that is, the cutoffd has
no effect on the derivative.

It is useful here to make contact with the formalism intr
duced by Schwinger@5#. In terms of an imaginary frequenc
z and a parameterw, he derived the following simple for
mula for the energy from the proper-time formalism:

E52
1

2pE0
`

dzE
0

`

dw TrsG, ~4.8!

where the trace refers to space, the Green’s function is

G5
1

w1H
, ~4.9!

and the Hamiltonian appropriate to the two modes is~for a
nonmagnetic material!

H5H TE: ]0e]02¹2

TM: ]0
22“•~1/e!“.

~4.10!

Consider the TE part~the TM part is similar, but not
explicitly considered by Schwinger!. In terms of Green’s
function satisfying~2.12!, we have

E5
1

2pE0
`

dzE
0

`

dw(
l51

`

~2l11!E
0

`

dr r 2Fl~r ,r ;z
2e1w!,

~4.11!

where the third argument of the Green’s function reflects
substitution in~2.12! of v2e→2z2e2w. We now introduce
polar coordinates by writing

z2e1w5r2, dzdw5
1

Ae
2r2cosudr du, ~4.12!

and integrate overu from 0 to 2p. The result coincides with
the first term in Eq.~4.3!.

V. FRESNEL DRAG

As may easily inferred from Pauli’s book@24#, the non-
relativistic effect of material motion of the dielectric,b(r ), is
given by the so-called Fresnel drag term

E85E ~dr !
em21

e
b•~D3H!5E ~dr !~em21!b•~E3H!.

~5.1!

To preserve the spherical symmetry~of course, this is likely
not to be realistic!, we consider purely radial velocities

b5b r̂ . ~5.2!

Then, what we seek is the asymmetrical structure
e

r̂•^E~r !3H~r 8!&52 r̂•^H~r 8!3E~r !&

52
1

im
e i jk r̂ i•F jk~r 8,r !

5v r̂•(
lm

$X lm~V8!

3@“3Gl~r 8,r !X lm* ~V!#

1@“83Fl~r 8,r !X lm~V8!#3X lm* ~V!%.

~5.3!

This is easily seen to reduce to

r̂•^E3H&5v
1

r

]

]r
r(
lm

Gl~r 8,r !X lm~V8!•X lm* ~V!

2v
1

r 8

]

]r 8
r 8(

lm
Fl~r 8,r !X lm~V8!•X lm* ~V!,

~5.4!

so whenV andV8 are identified, and the angular integral
carried out, we obtain the corresponding energy for aslow,
adiabatic, radially symmetric motion,

E85bE
0

`

r 2dr~em21!E
2`

` dv

2p
ve2 ivt(

l51

`

~2l11!

3H 1r ]

]r
rGl~r 8,r !2

1

r 8

]

]r 8
r 8Fl~r 8,r !J U

r 85r

.

~5.5!

It is clear, immediately, that if the cutofft is set equal to
zero, this vanishes because the integrand is odd inv; com-
pare to Eq.~4.3!. Since the sign oft is certainly irrelevant,
we therefore claim that in this quasistatic approximation
Fresnel drag is absent.

If we were dealing with statics, of course^E3H& would
be zero by time-reversal invariance. Our argument exte
that result to the quasistatic regime. Our point in present
result ~5.5! is that it will make it possible to extend the ca
culation to the dynamical regime, where Fresnel drag is n
zero.

Related is the Abraham value of the field momentu
@25,26#,

G5E3H, ~5.6!

which then makes an extra contribution to the force dens

f85~e21!
]

]t
~E3H!. ~5.7!

However, as Brevik noted@26#, this is also zero, because, i
the Fourier transform, successive action of the time deri
tive brings downv and2v. Thus the continuing contro
versy about which field momentum to use is without con
quence here. This should already be obvious, because
energy is well defined, and we have already seen that
force is related to the energy by Eq.~4.7!. Also see the Ap-
pendix.
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VI. ELECTROSTRICTION

When a dielectric medium is deformed, there is an ad
tional contribution to the force density, that of electrostr
tion @22,25#,

fES5
1
2“SE2r

]e

]r D , ~6.1!

wherer is the density of the medium. This term is witho
effect for a computation of theforce on the dielectric, be-
cause it is a total derivative; however, here, where we
calculating thestresson the surface, it can be significan
The simplest model for describing the density dependenc
the dielectric constant is that given by the Clausius-Moss
equation
-
ic
T
n

er

ai

n

i-
-

re

of
ti

e21

e12
5Kr, ~6.2!

whereK is a constant. Consequently, the logarithmic deriv
tive appearing in Eq.~6.1! is

r
]e

]r
5
1

3
~e21!~e12!. ~6.3!

The calculation of the electrostrictive Casimir effect for
dielectric ball is given by Brevik@26#. We have confirmed
his result, and generalized it to the situation at hand. Aga
the contribution if either medium fills all space has be
subtracted. The result for the integrated stress on the sp
cal cavity, after the Euclidean transformation is performed
FES52
1

12a2(l51

`

~2l11!E
2`

`

dyeiydH ~e821!~e812!

e8 F AG

2x8
„x82I l11/2

2 ~x8!…8 2x8~AF1AG!E
0

x8
dj I l11/2

2 ~j!

1x8AGE
0

x8dj

j
I l11/2
2 ~j!G 1

~e21!~e12!

e S 2p D 2F2
BG

2x
„x2Kl11/2

2 ~x!…8

2x~BF1BG!E
x

`

dj Kl11/2
2 ~j!1xBGE

x

`dj

j
Kl11/2
2 ~j!G J . ~6.4!
ith

en

hat,
to
eled

in
of
rt
VII. ASYMPTOTIC ANALYSIS AND NUMERICAL
RESULTS

The result for the stress, Eq.~3.9!, is an immediate gen
eralization of that given in@6#, and therefore, the asymptot
analysis given there can be applied nearly unchanged.
result for the energy is new, to our knowledge, and seems
to have been recognized earlier.

We first remark on the special caseAem5Ae8m8. Then
x5x8, and the energy reduces to

E52
1

4paE2`

`

dyeiyd(
l51

`

~2l11!x
d

dx
ln@12j2„~slel !8…

2#,

~7.1!

where

j5
m2m8

m1m8
. ~7.2!

If j51 we recover the case of a perfectly conducting sph
cal shell, treated in@14#, for which E is finite. In fact, Eq.
~7.1! is finite for all j, and if we use the leading uniform
asymptotic approximation for the Bessel functions we obt

E;
3

64a
j2. ~7.3!

Further analysis of this special case is given by Brevik a
Kolbenstvedt@20#.
he
ot

i-

n

d

In general, using the uniform asymptotic behavior, w
x5nz andn5 l1 1

2, and, for simplicity looking at the large
z behavior, we have

E;2
1

2pa

1

Aem
(
l

n2E
2`

`

dz eiznd/Aemz
d

dz

3 lnF11
1

16z4 S em

e8m8
21D 2~12j2!G , ~7.4!

which exhibits a cubic divergence asd→0. To be more ex-
plicit, let us content ourselves with with the case wh
e21 and e821 are both small, andm5m851. Then the
leadingn term is

E;2
~e82e!2

16pa (
l51

`

n2
1

2E2`

`

dz einzdz
d

dz

1

~11z2!2

52
~e82e!2

64a S 16d3
1
1

4D→2
~e82e!2

256a
. ~7.5!

Here, the last arguable step is made plausible by noting t
sinced5t/a, the divergent term represents a contribution
the surface tension on the bubble, which should be canc
by a suitably chosen counter term~contact term!. This argu-
ment is given somewhat more weight by the discussion
@27#. In essence, justification is provided there for the use
z function regularization, which directly gives the finite pa
here:
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E;
~e82e!2

32pa (
l51

`

n2
p

2
5

~e82e!2

64a S 2
1

4D , ~7.6!

because( l50
` ns5(22s21)z(2s) vanishes ats52.

Alternatively, one could argue that dispersion should
included@28–30#, crudely modeled by

e~v!215
e021

12v2/v0
2 . ~7.7!

If this rendered the expression for the stress finite@we con-
sider the stress, not the energy, for it is not necessar
consider the dispersive factord„ve(v)…/dv there#, we could
drop the cutoffd and the sign of the force would be positiv
~at last, we sete851)

F;1
~e021!2

128p2a4(l51

`

n2E
2`

`

dz
1

~11z2!2
1

~11z2/z0
2!2

,

~7.8!

where z05v0a/n. As n→`, z0→0, and the integral here
approachespz0/2, and so

F;
~e021!2

256pa3
v0(

l51

nc

n;
~e021!2

512pa
v0
3 , ~7.9!

if we takenc;v0a as the cutoff of the angular momentu
sum. @Inconsistently, for thenz0;1. If z051 in Eq. ~7.8!,
however, the same angular momentum cutoff gives5

12 of the
value in Eq.~7.9!.# The corresponding energy is obtained
integrating24pa2F,

E;2
~e021!2

256
v0
3a2, ~7.10!

which is of the form of Eq.~7.5! with 1/d→v0a/4.
It is rather more difficult to extract numerical results fro

the formula for electrostriction, Eq.~6.4!. Indeed, Brevik
@25# considered only two special cases,e@1, appropriate to
a perfect conductor, ande21!1. In fact, in the latter case
corresponding to Eq.~7.5!, he was able to consider only th
single l51 term in the sum. This is highly unreliable, a
such a term may be completely unrepresentative~such as
having the wrong sign@14#!. Because this electrostrictiv
stress presents divergences that are somewhat difficult to
derstand, we will defer its consideration to a later public
tion, and only remark that it is highly likely to contribute
term comparable to the finite Casimir estimate.

VIII. CONCLUSIONS

So finally, what can we say about sonoluminescence?
calibrate our remarks, let us recall~a simplified version of!
the argument of Schwinger@1#. On the basis of a provocativ
but incomplete analysis he argued that a bubble (e851) in

waterAe> 4
3 possessed a positive Casimir energy

Ec;
4pa3

3 E ~dk!

~2p!3
1

2
kS 12

1

Ae
D ;

a3K4

12p S 12
1

Ae
D ,
~8.1!
e

to

n-
-

o

whereK is a wave-number cutoff. Putting in his estimat
a;431023 cm, K;23105 cm21 ~in the UV!, we find a
large Casimir energy,Ec;13 MeV, and something like
33106 photons would be liberated if the bubble collapse

Note that, for smalle21, Schwinger’s result is propor
tional to (e21), rather than (e21)2, indicating that he had
not removed the ‘‘vacuum’’ contribution corresponding
Eq. ~3.8!. This is the essential physical reason for the d
crepancy between his results and ours.

What does our full~albeit static! calculation say? If we
believe the subtracted result, the last form in Eq.~7.5!, and
assume that the bubble collapses from an initial rad
ai5431023 cm to a final radiusaf5431024 cm, as sug-
gested by experiments@3#, we find that the change in th
Casimir energy isDE;11024 eV. This is far to small to
account for the observed emission.

On the other hand, perhaps we should retain the diverg
result, and put in reasonable cutoffs. If we do so, we hav

E52
~e21!2

4
a2K3;243105 eV, ~8.2!

perhaps of acceptable magnitude, but of thewrongsign.~The
emission occurs at minimum radius.! The same conclusion
follows if one uses dispersion, as Eq.~7.10! shows.

So we are unable to see how the Casimir effect co
possibly supply energy relevant to the copious emission
light seen in sonoluminescence. Of course, dynamical eff
could change this conclusion, but elementary arguments
gest that this is impossible unless ultrarelativistic velocit
are achieved. For example, consider the Larmor formula,
propriate to dipole radiation; it gives the power radiated,

P5
2

3

~ d̈!2

c3
, ~8.3!

whered is the dipole moment. If our bubble, withN atoms,
coherently emits radiation, we expect

ud̈u;
Nda
t2

, ~8.4!

whereda is an atomic or molecular dipole moment, andt a
characteristic collapse time for the bubble. Thus the ene
emitted during one collapse of a bubble in water is

E;a\cX1023S a

cmD 3C2~da /e!2

~ct!3
. ~8.5!

~We are assuming that it is atoms or molecules in an equ
lent dense volume that are radiating, not the relatively sm
number of gas molecules in the interior.! So with a;1023

cm, t;1025 s ~suggested by experiments@3#!, and
da;1028e cm, we obtain an energy of onlyE;10211 eV.
This is in spite of the assumption of coherent radiation. N
that in Eq.~8.5!, t would have to be;10211 s ~which is the
upper bound to the observed flash duration! to yield a total
energy of 10 MeV; this would correspond to a veloci
across the bubble of 108 cm/s, well in excess of the speed o
sound, thus precluding the presumed coherent radiation
cess.
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We therefore believe that in Eberlein’s calculation@9#
there is an implicit assumption of superluminal velocitie
Indeed, if one follows Eberlein and usesg;1 fs ~though the
experimental value seems to be closer to 10 ps! in her model
profile, one finds the maximum speed of the bubble surf
to exceed the speed of light by almost two orders of mag
tude. Actually, even with such a smallg, we find her result
yields an energy output of only 1023 MeV, insufficient to
explain sonoluminescence. We note that the short wa
length result of Eberlein, Eq.~4.7! of the first reference in@9#
or Eq.~10! of the second, can be cast in the dipole form~8.3!
by integrating by parts. Up to factors nearly equal to 1,

S deD
E

'a
ȧ

c
, ~8.6!

wherea(t) is the bubble radius. Becauseȧ/c,1, we find
that emission energy of 10 MeV requires a time scale
tE;10217 s. This seems to us an implausibly short sc
unless remarkable relativistic phenomena are involved.~The
corresponding speed isa/t;1013 s.! @Incidentally, the mag-
nitude of our cutoff estimate, Eq.~8.2!, also agrees with Eq
~8.3! if K;1/t. This demonstrates that there is nothing cla
sical about estimate~8.5!#.

The only plausible origin of such short time scales lies
the formation of a shock. In that case, velocities can rem
nonrelativistic, while accelerations, or derivatives there
become very large. Classical shock models of sonolumin
cence have been proposed by Greenspan and Nadim an
Wu and Roberts@11#. In this case, the radiation is suppos
to be emitted by bremsstrahlung after ionization of the air
the bubble, or by collision-induced emission from a basica
neutral environment@31#. But this picture has nothing to d
with quantum vacuum radiation.

Recent experimental results have made it even more
ficult to accommodate any explanation based on macrosc
considerations. In particular, Hiller and Putterman@4# found
a remarkably strong isotope effect when water~H2O! is re-
placed by heavy water~D2O!, where the dielectric propertie
change by no more than 10%.~However, they have now
published an erratum@32# reporting exceedingly strong
sample dependence, thus warning that ‘‘interpretation
terms of an isotope effect should be regarded as pre
ture.’’! This, together with the already known strong tem
perature dependence, and strong dependence on gas co
tration and the gas mixture, may rule out Casimir effe
explanations entirely. Yet the subject of vacuum energy
sufficiently subtle that surprises could be in store.
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APPENDIX: DISCUSSION OF FORM OF FORCE
ON SURFACE

There seems to be some confusion in the literature ab
the correct form for the stress on a surface due to elec
.
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magnetic fields~here, of course, we are interested in vacuu
expectation values of those fields!. The definitive discussion
seems to be given in Stratton@22#. We also refer here to the
manuscript in process by one of us@33#.

In the text, we computed the force on the surface by c
sidering the discontinuity of the stress tensor,

Tnn5
1
2 e~E'

22En
2!1 1

2m~H'
22Hn

2!, ~A1!

across the surface, wheren denotes the direction normal t
the surface, and' directions tangential to the surface. Th
follows directly from a consideration of the interpretation
Tnn as the flow ofnth component of momentum in the d
rectionn. Because of the boundary conditions that

E' , Dn , H' , Bn ~A2!

be continuous, the stress on the surface is

F5Tnn~2 !2Tnn~1 !

5
1

2 F ~e82e!E'
22S 1e8

2
1

e DDn
2

1~m82m!H'
22S 1

m8
2
1

m DBn
2G ~A3!

in terms of fields on the surface, and where a prime deno
quantities on the2 side of the surface. This is obviousl
equivalent to the following form of the force density:

f52
1

2 SE'
2
“e2Dn

2
“

1

e
1H'

2
“m2Bn

2
“

1

m D
52 1

2 ~E2
“e1H2

“m!, ~A4!

which is just what is obtained from the stationary princip
for the energy@33#.

The controversy seems to center around the additio
‘‘Abraham’’ term

f85~e21!
]

]t
~E3H!. ~A5!

~Henceforward we restrict ourselves to nonmagnetic ma
rial, m51.! As noted in Sec. V, this makes no contribution
Casimir effect, because the vacuum expectation value is
tionary. Furthermore, the existence of such a term is dep
dent upon the~essentially arbitrary! split between field and
particle momentum. The Minkowski choice for field mome
tum

GM5D3H ~A6!

would not imply this additional force density. The analys
of experimental data given by Brevik@25#, however, seems
to favor the Abraham value.

If we were calculating a netforceon the surface, Eq.~A5!
would indeed give a further contribution to the force beyo
that given by Eq.~A3!. Through use of Maxwell’s equations
we easily find
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f n85~e21!F2
1

2e
¹nB

22
1

2
¹nE

21
1

e
“•~BBn!

1“•~EEn!G . ~A7!

If n were a fixed direction, the volume integral of this for
density would turn into a surface integral, and the res
given by Eberlein follows

Fn85 1
2 E dSF S 1e 2

1

e8D ~Bn
22B'

2 !1~e2e8!E'
2

2S 1e 2
1

e8D S 12
1

e
2

1

e8DDn
2G . ~A8!

But this result cannot be used to compute the stress. T
formula ~C5! given in Appendix C of the first paper in@9# is
wrong, and, accordingly, so is Eq.~3.18! there. The first
derivation there is based incorrectly on the formula for
force given in the following paragraph, while the second
based on an obviously incorrect extrapolation from
vacuum stress tensor, which of course gives vanishing st

Finally, we note there is yet another formula for the for
on a dielectric given in terms of polarization charges a
currents,
J.
.

o

n-
s

. A

D

lt

us

e

e
ss.

d

F5E ~dr !FrpolE1
1

c
jpol3BG , ~A9!

where

rpol52“•P, jpol5
]

]t
P1c“3M , ~A10!

with the polarization and magnetization fields given by

P5D2E5S 12
1

e DD, M5B2H5~m21!H.

~A11!

Again, it is easy to show that if one is calculating the force
a fixed direction, so one can freely integrate by parts, fo
nonmagnetic medium, we recover the expected force inc
ing the Abraham term:

F5E ~dr !F2
E2

2
“e1

1

c

]

]t
~e21!E3BG . ~A12!

But the integrand in Eq.~A9! is not interpretable as a forc
density from which the stress may be computed. In effec
is that interpretation that@9# uses.
s.
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