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Casimir energy for a spherical cavity in a dielectric: Applications to sonoluminescence
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In a series of papers, Schwindétroc. Natl. Acad. Sci. U.S.£90, 958 (1993; 90, 2105(1993; 90, 4505
(1993; 90, 7285(1993; 91, 6473(1994)] proposed that the “dynamical Casimir effect” might provide the
driving force behind the puzzling phenomenon of sonoluminescence. Motivated by that exciting suggestion,
we have computed the static Casimir energy of a spherical cavity in an otherwise uniform material. As
expected, the result is divergent; yet a plausible finite answer is extracted, in the leading uniform asymptotic
approximation. This result agrees with that found usjrfignction regularization. Numerically, we find far too
small an energy to account for the large burst of photons seen in sonoluminescence. If the divergent result is
retained, it is of the wrong sign to drive the effect. Dispersion does not resolve this contradiction. In the static
approximation, the Fresnel drag term is zero; on the other hand, the electrostriction could be comparable to the
Casimir term. It is argued that this adiabatic approximation to the dynamical Casimir effect should be quite
accurate[S1063-651X97)03304-1

PACS numbeps): 78.60.Mq, 42.50.Lc, 12.20.Ds, 03.7k

I. INTRODUCTION approximation of treating the bubble as static for calculating
the Casimir energy should be very accurate. Sonolumines-
In a series of papers, Schwinger propos$édl that the cence aside, this calculation is of interest for its own sake, as
dynamical Casimir effect could provide the energy thatone of a relatively few nontrivial Casimir calculations with
drives the copious production of photons in the puzzling phenonplanar boundarief12—-19. It represents a significant
nomenon of sonoluminescen¢2—4]. In fact, however, he generalization of the calculation of Brevik and Kolbenstvedt
guessed an approximatstatio formula for the Casimir en- [20], who considered the same geometry with
ergy of a spherical bubble in water, based on a general, byie= '€’ =1, a special case, possibly relevant to hadronic
incomplete, analysigs]. He apparently was unaware that one physics, in which the result is unambiguously finite. It is, as
of us had, in the late 1970s, completed the analysis of theoted above, a straightforward generalization of the result in
Casimir force for a dielectric ball6]. It is our purpose here [6]; the most significant technical improvement is that here
to carry out the very straightforward calculation for the the energy is calculated directly. We also examine Fresnel
complementary situation, for a cavity in an infinite dielectric drag and electrostriction; the latter may be numerically sig-
medium. (A preliminary version of this paper appeared in nificant.
[7].) In fact, we will consider the general case of spherical In Sec. Il we review the Green’s dyadic formalism we
region, of radiusa, having permittivitye’ and permeability shall employ, and compute the Green’s functions in this case
', surrounded by an infinite medium of permittiviyand  for the TE and TM modes. Then, in Sec. lll, we compute the
permeability . force on the cavity from the discontinuity of the stress tensor.
Of course, this calculation is not directly relevant to The energy is computed similarly in Sec. IV, and the ex-
sonoluminescence, which is anything but static. It is offerecbected relation between stress and energy is found. Fresnel
as only a preliminary step, but it should give an idea of thedrag, in the static approximation, is considered in Sec. V,
orders of magnitude of the energies involved. It is a signifi-and electrostriction in Sec. VI. Estimates in Sec. VIl show
cant improvement over the crude estimation useflinAt-  that the Casimir energy so constructed, even with physically
tempts at dynamical calculations ex[8-10], but they are required subtractions, and including both interior and exte-
subject to possibly serious methodological objections, someior contributions, is divergent, but that if one supplies a
of which will be discussed belowOther theoretical models plausible contact term, a finite resu#t least in leading ap-
to explain sonoluminescence are giver[11].) In fact, we  proximation follows. This finite result agrees with that
anticipate that because the relevant scale of the electromafpund using/-function regularization(Physically, we expect
netic Casimir effect is in the optical region, with character-that the divergence is regulated by including dispergiNini-
istic time scalet~10"° s, and the scale of the bubble col- merical estimates of both the divergent and finite terms are
lapse is of orderr~107° s (more relevant may be the given in the conclusion, and comparison is made with the
duration of each flash, which is10 ! s), the adiabatic calculations of Schwinger and others. A simple estimate is
given which suggests that any macroscopic electromagnetic
phenomenon such as the Casimir effect cannot possibly sup-
*Electronic address: milton@phyast.nhn.ou.edu ply the energy required for sonoluminescence. There, and in
TElectronic address: ng@physics.unc.edu the Appendix, where we discuss the form of the force on the
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surface due to the fluctuating electric and magnetic fields, a _ i -
comparison with9] is made. D(r,r ')=% gi(r,r")Xim(Q)— ZVXﬁ(f-f')le(Q) :

(2.8b
Il. GREEN'S DYADIC FORMULATION

We follow closely the formulation given ifil4,6]. We  When these are substituted in Maxwell's equati¢h§) we
start with Maxwell’'s equations in rationalized units, with a obtain, first,
polarizationsourceP (in the following we sec=A=1):
~ 11
d d =9, fi=f+—-=00r—r")Xk(Q"), (2.9
vxH="0+p V.D=_V.p, 9=01, Ffi=fi+_ 2 im(
at at
(2.2
J and then the second-order equations
—V><E=EB, V-B=0,

, , , _ (D|+w2,u,6)g|(r,r')=iw,uf dQ"Xf (Q")-V"X1,
where, for an homogeneous, isotropic, nondispersive me-
dium, (2.10a

D=¢€E, B=uH. (2.2 1
(Dj+ w?ue)fy(r,r'y=— ;f dQ"X,(Q")- V"X (V"X 1)
We define a Green’s dyadk by

11
E(r,t)=J (dr )t T(r,tr' ') -P(r' t') (2.3 =D drmrXin(Q7), - (2100

and introduce a Fourier transform in time, where
“do P 29 1(1+1)
F(r,t;r’,t’)=f —e P rw), (24 -2 422
— 2T D=zt o r2 (219

where in the following thew argument will be suppressed.

. . . These equations can be solved in terms of Green’s func-
Maxwell's equations then becontehich defined) q

tions satisfying
VXT'=io®, V- -®=0,

(2.5 1
1 (D|+w26u)F|(r,r’)=—r—zﬁ(r—r’), (212
;VXQ):—ia)EF', V.-T'=0,

which have the form
in whichT'" =T+ 1/¢, wherel includes a spatiad function.

The two solenoidal Green’s dyadics given here satisfy the ik j (KT )[h(K'T=)—Aj(K'r=)], r.r'<a
following second-order equations: Fi(r,r')y=s. )
ikhy(kro)[ji(kr<)=Bhi(kro)], r,r'>a,
1 (213
(V?+ w?ep)T" = — —VX(VXD), (2.6a
where
(V?+ w?en)®P=iwuV X1 (2.6b

k=|o|Vue, k'=|o|Ju'e, (2.14
They can be expanded in vector spherical harmgids?2]

defined by and h;=h{? is the spherical Hankel function of the first
kind. Specifically, we have

1
le:mLYlm 2.7

Fi(r, 1) = w2uF (1 )XE(Q"), (2.153

as follows:
gi(r,r")=—iwuV’'XG/(r,r") Xk (Q"), (2.15b

T(rr ):% hi(r. ) Xim(€2) whereF, and G, are Green’s functions of the fori(2.13,

with the constant& andB determined by the boundary con-
ditions given below. Givelfr|, G, the fundamental Green’s

i
* weﬂVg,(r,r MXim(€1) |, (.89 dyadic is given by
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r’(r,r'>=% @2 uF (1, ) X m( Q)X (Q)
——V><G|(r F)Xim(Q)XE(Q)X V'

11
—ﬁﬁ(r MXim(Q)X Q). (2.16

Now we consider a sphere of radiascentered at the
origin, with properties’, u’ in the interior ance, u outside.
Because of the boundary conditions that

1
EJ_ ’ GEr ’ Br ’ ;BJ_ (217)

be continuous at=a, for the constant® andB in the two
Green'’s functions in Eq2.16 we find

_ Je_;u”émx')'é((x)A— VRIS ) )
|
-~ Jens(x' 3] (x)A—Iﬂsmx)s. &) 10
Ve (%)~ Veu B(0F (x')
A ’
(2.180
J_smx SO0 Ver SO () o

A

Here we have introducex=ka, x’ =k’a, the Riccati-Bessel
functions

4209
e (x)=xh(x), S (x)=xj(x), (2.19
and the denominators
A= en Si(x )& (x)— e 1S (X' )& (x),
A= e 1S (x )&/ (x)— VS (X' )& (x), (2.20

and have denoted differentiation with respect to the argu-
ment by a prime.

Ill. STRESS ON THE SPHERE

We can calculate the stre¢force per unit areaon the
sphere by computing the discontinuity of the radial-radial
component of the stress tengsee the Appendix

F=T(a—)-Ty(at), (3.2

where

=3 ([e(E2ED+u(HI —H)]).
The vacuum expectation values of the product of field
strengths are given directly by the Green'’s dyadics computed
in Sec. II:

(3.2

I(E(NE(r'))=T(r.r"), (3.39
. 1 -
|<B(r)B(r’)>=—ZZVXF(r,r’)XV’ (3.3b

where here and in the following we igno&functions be-
cause we are interested in thmit asr’—r. It is then rather
immediate to find, for the stress on the sphéiee limit
t’'—t is assumey

3 1f°°dw ey 2L K 2 I(1+1) 14 Nerr
= 72 ,x,27—re 2 A (e'—¢€) <2 (a+,a+)+ o +EE i ((r,r')
r=r'=a+
+(u' < 2G)(a+,a+)+ I(I+1)+1 i Fi(r,r’ 3.4
(n'—n) 72 (at,a+t)+| —5— ﬁﬁ_rr&Tr i(rr’) (3.4a
r=r’'=a+
—if leldmZ 3.4b
“2a%)_.22° & 4n NRIA (3.4b
|
wherey=wa, §=(t—t')/a, and € w2
ew) 1
~ - ~ —~ > - &= & w7z (3.6
A K = N[ (B(xJ& (%)~ (X' /& (x)) %~ £2(8(x')& { (X (__,) ‘1
€ p

+3 [ (x')€(x))?]+ const.

(3.5

Here the parametef is

This is not yet the answer. We must remove the term
which would be present if either medium filled all spatiee
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same was done in the case of parallel dielecigs). The y—iy, X—iX,
corresponding Green’s function is

|<o>:[ikfj'(k'k)h'(k'u' nr<as g ret—t (X [8=(xe—x)/al,
ikjj(kro)hy(krs), r,r'>a.
The resulting stress is "

XS )E {(x) ~ & (x )/ (x')] e

—x[5/( —B(x)3 [ (x)]}. (3.8 E|(X)—><9|(X)=;<7) K+ 172(%). (3.10

The final formula for the stress is obtained by subtracting Eq.

3.8 from Eq. (3.4b:
(3.9 g.(3.4b IV. TOTAL ENERGY

Fe J dyely5 2l+1 In a similar way, we can directly calculate the Casimir
2a) .27 & 4w energy of the configuration, starting from the energy density

d ~
X4 X==INA A +2X[s/ (X" )/ (X")—e(x")g"(x")]

dx 2 2
eE“+ uH
=— 4.1
—2x[s{ (x)&/ () —e(X)s"(X)] (3.9
where we have now performed a Euclidean rotation In terms of the Green’s dyadic, the total energy is
E= f (dryu
1 1 <
=—.f r2drdQ| e TrL(r,r)——— TrV XI(r,r) XV’ (4.28
2i 0 p
" do g o=t }m‘, 2I+1)fwr2dr 2K[Fy(r,r)+G(r r)]+iirir'[|: +G](r,r") (4.2b
“2i) _.2at - 0 " " r2ar or’ S IV '
|
where there is no explicit appearanceecbr u. (However, % da
the value ofk depends on which medium we are)is in E (21+1) 2—e lor
[14], we can easily show that the total derivative term inte- -
grates to zero. We are left with a
xu r2drk’3(Ae+Ag)j2(k'r)
1(>do = < o 0
E=— Ee"”E (2|+1)J r2dr 2k2 .
- =1 0 +f r2drk3(BF+BG)h|2(kr)]. (4.5
a

X[F(r,r)+Gy(r,r)]. (4.3

The radial integrals may be performed by using the follow-

However, again we should subtract that contribution Wh'd}ng indefinite integral for any spherical Bessel functign

the formalism would give if either medium filled all space.
That means we should replaEg and G, by

| doeito0= Sk =0 =xiixi
(4.4 (4.6

However, we must remember to add the contribution of the
so then Eq(4.3) states that total derivative term in Eq4.2b) which no longer vanishes

~ ~ [—iK'AGh(K'Dj (KT, rr'<a
Fi.Gi= —ikBg ghy(kr)h/(kr"), r,r'>a,
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when the replacemertd.4) is made. The result is precisely
that expected from the stre3.9),

d

E=47a’F, F= —
Ja

E, 4.7

47a?

where the derivative is the naive one, that is, the cutdffis
no effect on the derivative.

It is useful here to make contact with the formalism intro-
duced by Schwing€di5]. In terms of an imaginary frequency
{ and a parametew, he derived the following simple for-
mula for the energy from the proper-time formalism:

E (4.9

— ng dw Tr,G
0 0

where the trace refers to space, the Green’s function is

1

= wra’ 4.9

and the Hamiltonian appropriate to the two modesfas a
nonmagnetic materigl

.

Consider the TE parfthe TM part is similar, but not
explicitly considered by Schwingerin terms of Green’s
function satisfying(2.12, we have

TE:
TM:

&06(90_ Vz

95—V -(1/e)V. (4.10

— xdgfwde (2I+1)fwdrr2F|(r,r;§ze+w),
mJo 0 =1 0
(4.11)

CASIMIR ENERGY FOR A SPHERICAL CAVITY IN A ...
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r-(E()XH(r"))=—r-(H(r')xE(n))
__mfijki:i'q)jk(r,'r)
ZQ)F'Z {Xim(
X[VXG(r',nX{n(Q)]
LV XF(r',n)Xim(Q)IX XL (Q)}
(5.3
This is easily seen to reduce to
r-(ExH)= w——rlz Gi(r',H)Xim(Q")- X5, (Q)
- r—;r%ﬁ(r MXim() - Xin(€2),
(5.9

so when() and()’ are identified, and the angular integral is
carried out, we obtain the corresponding energy faiaav,
adiabatic, radially symmetric motign

® © d 2
E’=,8f0 rzdr(e,u,—l)f_w%we_'“"lzl (21+1)

X

19 , 1 9
Fé—rrG|(r ,r)———r Fi(r',r) .
(5.9

It is clear, immediately, that if the cutoff is set equal to
zero, this vanishes because the integrand is odd;inom-

where the third argument of the Green'’s function reflects theare to Eq.(4.3). Since the sign of- is certainly irrelevant,

substitution in(2.12) of w?e— — ¢?e—w. We now introduce
polar coordinates by writing

1
—2p?cos9dp d6,

Ve

and integrate ovef from O to 27r. The result coincides with
the first term in Eq(4.3).

dsdw= (4.12

{26+W=p2,

V. FRESNEL DRAG

As may easily inferred from Pauli's bod4], the non-
relativistic effect of material motion of the dielectri(r), is
given by the so-called Fresnel drag term

E':J(dr)é“_

To preserve the spherical symmefof course, this is likely
not to be realisti; we consider purely radial velocities

1
B (DX H)=J (dr)(em—1)B- (EXH).
(5.1

B=pr. (5.2)

Then, what we seek is the asymmetrical structure

we therefore claim that in this quasistatic approximation the
Fresnel drag is absent.

If we were dealing with statics, of courg&x H) would
be zero by time-reversal invariance. Our argument extends
that result to the quasistatic regime. Our point in presenting
result(5.5) is that it will make it possible to extend the cal-
culation to the dynamical regime, where Fresnel drag is non-
zero.

Related is the Abraham value of the field momentum
[25,2€],

G=EXH, (5.6)

which then makes an extra contribution to the force density,

J
:(6_1)E(EXH)' (5.7
However, as Brevik notef6], this is also zero, because, in
the Fourier transform, successive action of the time deriva-
tive brings downw and —w. Thus the continuing contro-
versy about which field momentum to use is without conse-
quence here. This should already be obvious, because the
energy is well defined, and we have already seen that the
force is related to the energy by Ed@.7). Also see the Ap-
pendix.
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VI. ELECTROSTRICTION e—1
=Kp, 6.2
When a dielectric medium is deformed, there is an addi- etr2 P 6.2
tional contribution to the force density, that of electrostric- _ o )
tion [22,25, whereK is a constant. Consequently, the logarithmic deriva-
tive appearing in Eq(6.1) is
1 2 Jde
fESZEV E pa_ y (61) Jde 1
p pgzg(e‘—l)(é‘l‘Z). (63)

wherep is the density of the medium. This term is without

effect for a computation of théorce on the dielectric, be- The calculation of the electrostrictive Casimir effect for a
cause it is a total derivative; however, here, where we arelielectric ball is given by Brevik26]. We have confirmed
calculating thestresson the surface, it can be significant. his result, and generalized it to the situation at hand. Again,
The simplest model for describing the density dependence dhe contribution if either medium fills all space has been
the dielectric constant is that given by the Clausius-Mossottsubtracted. The result for the integrated stress on the spheri-

equation cal cavity, after the Euclidean transformation is performed, is
|
1 = % sl (=1 (e+2)[Ag A X
FES:_@E (2|+1)deyéy‘sr — | & 217 X)) —x (AF+AG)fO dé I, 148
, xdé (e—1)(e+2)[2\? Bg ,
+X AGL ?'lzu/z(f)} t— ;) - Z(XZKI2+1/2(X))
—X(Bg+ BG)L dé K|2+1,2(§)+xBGf : —KZ, &) ] (6.4)

VIl. ASYMPTOTIC ANALYSIS AND NUMERICAL In general, using the uniform asymptotic behavior, with
RESULTS x=wvz and v=1+3, and, for simplicity looking at the large

The result for the stress, E.9), is an immediate gen- Z behavior, we have

eralization of that given ifi6], and therefore, the asymptotic
analysis given there can be applied nearly unchanged. The
result for the energy is new, to our knowledge, and seems not " 2ma \/_
to have been recognized earlier.

We first remark on the special casew= e’ x’. Then
x=x', and the energy reduces to

d
dZ éZV(S/\E,uZ P

€n

1
«In 1+—1624(—6, . 7.4

2
1) (1-8|,

which exhibits a cubic divergence @-0. To be more ex-
plicit, let us content ourselves with with the case when
(7.2 e—1 ande’'—1 are both small, angh=p'=1. Then the
leadingv term is

Ez—% dyé”Z (2I+l)x—|n[l E((sie)")?,

where
: (€-9’< s d 1
=R 7.2 B~ T6ma &V f_deé %dz (1+ )2
mtu
(€ =)

(7.9

16 1 (e'—€)?
If £&=1 we recover the case of a perfectly conducting spheri- 3\?"' i '
cal shell, treated i14], for which E is finite. In fact, Eq.

(7.1 is f".’"te for a_II & _and If we use the Iea(_jmg umform_ Here, the last arguable step is made plausible by noting that,
asymptotic approximation for the Bessel functions we Obta'rbincecS: 7/a, the divergent term represents a contribution to
the surface tension on the bubble, which should be canceled
E~ _52 (7.3 by a suitably chosen counter teifgontact term This argu-
ment is given somewhat more weight by the discussion in
[27]. In essence, justification is provided there for the use of
Further analysis of this special case is given by Brevik and, function regularization, which directly gives the finite part
Kolbenstved{ 20]. here:

256a
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P \2 ®
Nu 2

7 (e—e?] 1 whereK is a wave-number cutoff. Putting in his estimate,
32ma =1 2

= —m _Z)’ (76) a~4x10 3cm, K~2x10°cm™! (in the UV), we find a
large Casimir energyE.~13 MeV, and something like
3x 1P photons would be liberated if the bubble collapsed.
Note that, for smalle—1, Schwinger’s result is propor-
nal to (e—1), rather than é—1)2, indicating that he had
not removed the “vacuum” contribution corresponding to
€0—1 Eqg. (3.9). This is the essential physical reason for the dis-
e(w)—1= T=oZa2 (7.7 crepancy between his results and ours.
w @ What does our fullalbeit stati¢ calculation say? If we

If this rendered the expression for the stress fifwe con- believe the subtracted result, the last form in E45), and

sider the stress, not the energy, for it is not necessary tg_sfli&elotbgtcr;h?o t;uﬁr?ij rggliljlgsisdf:Iighagmmg;aglja?'us
consider the dispersive factdfwe(w))/dw therd, we could - T ' 9

: .. gested by experimen{s], we find that the change in the
?;?Fatsr:evc;gtcs)gz?f)the sign of the force would be positive: Casimir energy iSAE~+10# eV. This is far to small to

account for the observed emission.
(€o—1)2C 1 1 On the other hand, perhaps we should retain the divergent

~ 4+ 2" result, and put in reasonable cutoffs. If we do so, we have
F 128772a4|21 v f_mdz(przz)2 (1+ 22 2)?’ P

7.8 _1)2
(78 Eo_ L€ 41) a?K3~ —ax 1P eV, 8.2

because|_ ,»°=(27°—1){(—s) vanishes as=2.
Alternatively, one could argue that dispersion should betio
included[28-30, crudely modeled by

where zo= wpa/v. As v—x, z;—0, and the integral here

approachesrz,/2, and so perhaps of acceptable magnitude, but ofwliengsign.(The

(e—1)2 L (€9—1)2 emission occurs at minimum radiuslhe same conclusion
) e 0eD v~ e, (7.9  follows if one uses dispersion, as Eg-10 shows.

256ma’ 05y 512ra ° So we are unable to see how the Casimir effect could
_ possibly supply energy relevant to the copious emission of
if we take v~ woa as the cutoff of the angular momentum |ight seen in sonoluminescence. Of course, dynamical effects
sum. [Inconsistently, for thereg~1. If z,=1 in Eq.(7.8),  could change this conclusion, but elementary arguments sug-
however, the same angular momentum cutoff gigesf the  gest that this is impossible unless ultrarelativistic velocities
value in Eq.(7.9).] The corresponding energy is obtained by are achieved. For example, consider the Larmor formula, ap-

integrating—4ma’7, propriate to dipole radiation; it gives the power radiated,
(60_1)2 3.2 2 d 2
A I 7.1 -2 83

which is of the form of Eq(7.5 with 1/6— wqa/4.

It is rather more difficult to extract numerical results from
the formula for electrostriction, Eq6.4). Indeed, Brevik
[25] considered only two special cases; 1, appropriate to . Nd
a perfect conductor, ane—1<1. In fact, in the latter case, d|~ —~, (8.9
corresponding to E(7.5), he was able to consider only the T

single =1 term in the sum. This is highly unreliable, as whered, is an atomic or molecular dipole moment, and

E:(\:/?n a ttﬁémw:gﬁy ts)? r%gzrlr]])pleézgaﬂgée?ggsirlléigﬁzc?i?/e characteristic collapse time for the bubble. Thus the energy
9 g sig ' emitted during one collapse of a bubble in water is

stress presents divergences that are somewhat difficult to un-

whered is the dipole moment. If our bubble, witk atoms,
coherently emits radiation, we expect

derstand, we will defer its consideration to a later publica- a \3\%(d,/e)?
tion, and only remark that it is highly likely to contribute a E~ ahc|10% o ﬁ— (8.5
T

term comparable to the finite Casimir estimate.

(We are assuming that it is atoms or molecules in an equiva-
lent dense volume that are radiating, not the relatively small

So finally, what can we say about sonoluminescence? TBUmber of 9as molecules in the interjo§o witha~10"°
calibrate our remarks, let us recgdl simplified version of ~ ¢m, 7-10 s (suggested by experimentg3]), and
the argument of Schwingét]. On the basis of a provocative da~10""e cm, we obtain an energy of onk~10""" eV.
but incomplete analysis he argued that a bublafe=(1) in  This is in spite of the assumption of coherent radiation. Note

4 o . that in Eq.(8.5), = would have to be~10"! s (which is the
water e=3 possessed a positive Casimir energy upper bound to the observed flash duratitmyield a total

energy of 10 MeV; this would correspond to a velocity
- i across the bubble of #@m/s, well in excess of the speed of
Je/' sound, thus precluding the presumed coherent radiation pro-
(8.1 cess.

VIIl. CONCLUSIONS

c 47ad [ (dk) 1 1 a’k* L
T3 ) @emi2\ T e 12m
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We therefore believe that in Eberlein’s calculatif® magnetic fieldghere, of course, we are interested in vacuum
there is an implicit assumption of superluminal velocities.expectation values of those fieJd3he definitive discussion
Indeed, if one follows Eberlein and usgs-1 fs (though the seems to be given in Stratt¢B2]. We also refer here to the
experimental value seems to be closer to 10ip&ier model  manuscript in process by one of L&3].
profile, one finds the maximum speed of the bubble surface In the text, we computed the force on the surface by con-
to exceed the speed of light by almost two orders of magnisidering the discontinuity of the stress tensor,
tude. Actually, even with such a smal| we find her result
yields an energy output of only 16 MeV, insufficient to Ton=2e(E2—E2)+ 3 u(H?—H?), (A1)
explain sonoluminescence. We note that the short wave-
length result of Eberlein, Eq4.7) of the first reference if9] across the surface, whenedenotes the direction normal to
or Eq.(10) of the second, can be cast in the dipole fd818)  the surface, and directions tangential to the surface. This
by integrating by parts. Up to factors nearly equal to 1, follows directly from a consideration of the interpretation to

g T,n as the flow ofnth component of momentum in the di-
;

~a§ 8.6 rectionn. Because of the boundary conditions that
e C

wherea(t) is the bubble radius. Becauséc<1, we find

that emission energy of 10 MeV requires a time scale obe continuous, the stress on the surface is
7e~10"%" s. This seems to us an implausibly short scale

unless remarkable relativistic phenomena are invol(¢€de F=Ton(=)=Thn(+)

corresponding speed & 7~ 10" s)) [Incidentally, the mag-

EL! Dn! HL! Bn (AZ)

nitude of our cutoff estimate, E8.2), also agrees with Eq. _1 (¢'—€)E? _(i_ 1) D2
(8.3 if K~1/7. This demonstrates that there is nothing clas- 2 tole e
sical about estimaté.5)].

The only plausible origin of such short time scales lies in +(p = p)H? - (il_ i) B2 (A3)

the formation of a shock. In that case, velocities can remain
nonrelativistic, while accelerations, or derivatives thereof,
become very large. Classical shock models of sonoluminedn terms of fields on the surface, and where a prime denotes
cence have been proposed by Greenspan and Nadim and gyantities on the— side of the surface. This is 0bViOUS|y
Wu and Robert§11]. In this case, the radiation is supposed €quivalent to the following form of the force density:

to be emitted by bremsstrahlung after ionization of the air in
the bubble, or by collision-induced emission from a basically

1 1 1
f=— —( EfVe—DﬁV?— vaﬂ—BﬁV;)

neutral environmeni31]. But this picture has nothing to do 2
with quantum vacuum radiation. _— 5
Recent experimental results have made it even more dif- =—3(E°Vet+HVu), (A4)

ficult to accommodate any explanation based on macroscopic

considerations. In particular, Hiller and Putternjdhfound ~ Which is just what is obtained from the stationary principle
a remarkably strong isotope effect when wattdrO) is re-  for the energy[33]. N
placed by heavy wateD ,0), where the dielectric properties The controversy seems to center around the additional
change by no more than 10%However, they have now Abraham” term
published an erratuni32] reporting exceedingly strong

sample dependence, thus warning that “interpretation in

terms of an isotope effect should be regarded as prema-

ture.”) This, together with the already known strong tem-

perature dependence, and strong dependence on gas concgtenceforward we restrict ourselves to nonmagnetic mate-
tration and the gas mixture, may rule out Casimir effectrial, w=1.) As noted in Sec. V, this makes no contribution to
explanations entirely. Yet the subject of vacuum energy isCasimir effect, because the vacuum expectation value is sta-

f’=(e—1)%(E><H). (A5)

sufficiently subtle that surprises could be in store. tionary. Furthermore, the existence of such a term is depen-
dent upon thgessentially arbitranysplit between field and
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gggﬁ;’ |. Brevik, C. Eberlein, L. Ford, S. Putterman, and D'would not imply this additional force density. The analysis

of experimental data given by Brev[R5], however, seems
APPENDIX: DISCUSSION OF FORM OF FORCE to favor the Abraham value.
ON SURFACE If we were calculating a ndbrce on the surface, EqA5)
would indeed give a further contribution to the force beyond
There seems to be some confusion in the literature abouhat given by Eq(A3). Through use of Maxwell’s equations,
the correct form for the stress on a surface due to electrowe easily find

Gy=DxH (AB)
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, 1,1 1 1
fa=(e=1)| = 5_V4B?~ 5 VoE+ _V-(BB,) sz (dr)| ppoE+ Zipox B, (A9)
+V-(EE,)|. (A7)  Where
9
If n were a fixed direction, the volume integral of this force Ppo=— VP, JpoIZEPJ’_ CV XM, (A10)

density would turn into a surface integral, and the result
given by Eberlein follows

1 1
Fa=%fd%(;—;)(sﬁ—BiH(e—e')Ei

1 1 1 1),
“leme/\tme @)
Again, it is easy to show that if one is calculating the force in
But this result cannot be used to compute the stress. Thiss fixed direction, so one can freely integrate by parts, for a
formula (C5) given in Appendix C of the first paper 9] is ~ honmagnetic medium, we recover the expected force includ-
wrong, and, accordingly, so is E43.19 there. The first ing the Abraham term:
derivation there is based incorrectly on the formula for the
force given in the following paragraph, while the second is F_f
. ; . =] (dr)
based on an obviously incorrect extrapolation from the
vacuum stress tensor, which of course gives vanishing stress.
Finally, we note there is yet another formula for the forceBut the integrand in EqA9) is not interpretable as a force
on a dielectric given in terms of polarization charges anddensity from which the stress may be computed. In effect, it
currents, is that interpretation thg®9] uses.

with the polarization and magnetization fields given by

P=D—E=(l—%)D, M=B—H=(u—1)H.
(A11)

(A8)

EZV —i—lo7 1)EXB Al2
2 '€ cﬁt('E ) - (A12)
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