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Kinetic theory of fluidized granular matter

Byung Chan Eu* and Hikmat Farhat
Department of Chemistry, McGill University, Montreal, Quebec, Canada H3A 2K6

~Received 8 July 1996; revised manuscript received 23 September 1996!

In this paper, we present a statistical treatment of fluidized, elastic granular matter and a kinetic equation that
describes the evolution of macroscopic properties of such matter. The present kinetic theory recognizes that the
effects of excluded volume become dominant in the dynamic evolution of an assembly of granules and
accordingly takes them into account in the formulation. On the basis of the equilibrium solution of the kinetic
equation, a thermodynamics-like mathematical structure is constructed for the Boltzmann entropy of granular
matter. The meaning of temperature in this mathematical structure is fixed by the shear rate. The equilibrium
solution is shown to yield a density distribution comparable with the experimental data of Clementet al.
@Europhys. Lett.16, 133~1991!#. The shear viscosity of granular matter is shown to increase with the packing
fraction. This behavior is in qualitative agreement with experimental result by Haneset al. @J. Fluid Mech.150,
357 ~1985!#. The viscosity also increases with the shear rate since the ‘‘temperature’’ increases with the shear
rate in the case of granular matter. Consequently, the granular matter is shown to be dilatant, as is experimen-
tally known. @S1063-651X~97!01504-3#

PACS number~s!: 05.20.Dd, 05.60.1w, 46.10.1z, 83.70.Fn
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I. INTRODUCTION

Granular matter has unusual properties and behavior@1,2#
that defy easy comprehension from the conventional way
thinking and theories of continuum matter known to
through our studies of condensed matter up until now. T
subject has been studied in engineering@3–6# and has been
lately drawing attention in physics@7–9#. There have been
some kinetic theories@10–14# proposed for such matte
along the lines of the classical Chapman-Enskog theory
gases@15#, but they appear to be only a first step towa
theories of a deeper, perhaps more appropriate, nature.
recent experimental article and computer simulations
granular matter, Clement and Rajchenbach@16# and Gallas,
Herrmann, and Sokolowski@17#, respectively, report that a
density distribution of granules subjected to an acoustic p
turbation at the bottom of its pile exhibits a Fermi-like di
tribution. Although this feature appears to be what is in
itively expected and intriguing, it requires some thought w
regard to the underlying dynamical and kinetic theore
principles. It is the aim of the present paper to presen
viewpoint on the kinetic theory of granular matter which
sufficiently fluidized to treat it as if it is a fluid. To make th
treatment as simple as possible without sacrificing the es
tial aspects of granular matter, we assume that the gran
are elastic, since the assumption can still describe dissipa
in the system. The inelasticity of collisions between granu
is important, but not of primary importance in a statistic
description of granular matter, since a similar effect can
achieved by means of momentum correlations, as will
shown later. A truly particulate, statistical treatment of t
subject should take into account the internal states of g
ules and their evolution at the kinetic theory level, but suc
treatment would be rather involved in formalism. Here,
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set aside the question of internal states of granules by tr
ing them as an elastic substance and pay attention to
translational motions only. Nevertheless, we believe that
theory presented in this work still has sufficient validity as
starting point for further investigations on granular matt
The present theory is quite different from the statistical tre
ment given recently by Bernu, Delyon, and Mazighi@18# on
granular matter and those in Refs.@9–14#.

In Sec. II, we examine granular matter for its feature
distinct from the ordinary molecular fluids, with a specifi
aim of guiding us in developing a kinetic theory of fluidize
elastic granular matter. Based on what we have found
granular matter in Sec. II, a kinetic theory is then develop
for the fluidized granular matter in Sec. III. The balan
equations can be derived for mass, momentum, and ener
the conservation laws—from the kinetic equation if the ma
momentum, and internal energy densities are statistically
fined appropriately. Such definitions are given in Sec. IV, b
the explicit forms for the balance equations are referred to
the literature, since they are in the same forms as those
the ordinary continuum matter. However, in applying the
in flow problems the existence of a basic, finite length sc
of the granules must be carefully taken into account. TheH
theorem is also briefly discussed together with the equi
rium solution of the kinetic equation in the same section. T
equilibrium solution is used to construct a thermodynam
analogy in Sec. V, since thermodynamics of granular ma
is unavailable at present. In Sec. VI, the parameters app
ing in the equilibrium solution are corresponded to obse
ables such as shear rate and so on. We thereby constru
analogy of thermodynamics by means of the equilibrium
lution of the kinetic equation. The calculated density dist
bution is compared with experiment in Sec. VII. The visco
ity of granular matter is calculated in Sec. VIII. It shows th
dilatancy of the granular matter and a qualitatively corr
density dependence reminiscent of experiment. The conc
ing remarks are given in Sec. IX.
f
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II. GRANULAR MATTER IN CONTRAST
TO ORDINARY MOLECULAR FLUIDS

To acquire a clear picture of how distinct the behavior
granular matter is from the ordinary molecular fluids, w
compare characteristics of the two kinds of matter in qu
tion. First of all, for a given volume there is a difference
many orders of magnitude in number between the ordin
molecular fluids and granular matter, since there are ab
1019 molecules in 1 cm3 of a molecular fluid whereas ther
can be, for example, only 104 ~of course, depending on th
size of the grain! in the case of granular matter. This implie
that considerable caution must be exercised when a statis
theory is applied to granular matter, since the character
cally small number density of granules can give rise to s
able fluctuations in the mean values calculated. Closely
lated to this feature is the fact that granular particles
macroscopic in size and mass. This also gives rise to
question under what condition can granular matter be tre
as a continuum and calls into question the validity of co
tinuum equations such as the mass, momentum, and en
balance equations. In general, since grains are massive
gravitational force cannot be left out in general when gra
lar matter is considered for its dynamic properties, wher
the gravitational force plays an insignificant role in the ca
of molecular fluids except, perhaps, for interfacial pheno
ena. Unlike molecular fluids, attractive forces betwe
granular particles are negligible and play an insignificant r
in granular dynamics. Dynamics in granular matter is dom
nated by the hard, repulsive forces and the excluded-volu
effects come into play significantly in the case of granu
matter, whereas in the case of molecular fluids it becom
important only when the density of the latter is close to
close-packed fluid value. In the case of molecular flui
thermodynamics provides a well-defined continuum desc
tion of their behavior and such a continuum description c
be furnished by a molecular theory with the help of statisti
mechanics and, in particular, kinetic theory. In fact, in t
case of molecular fluids, these two lines of theory are mu
ally complementary in the sense that, whereas the therm
namic theory is given molecular foundations by the stati
cal theory of the system, the latter is elevated to a phys
theory from a purely mathematical probability theory wi
the help of thermodynamics. If we wish to develop a sta
tical theory of granular matter, it is therefore important
have a phenomenological thermodynamic theory of the s
tem firmly founded on the principles of thermodynamics a
if such a phenomenological theory is absent, on an ana
that is well thought through at least from the viewpoint
thermodynamic principles. Since it is not clear at pres
what the thermodynamics of processes in granular ma
should be like, this question should be resolved before
attempt to formulate statistical and kinetic theories for gra
lar matter. We will return to this question later.

The consideration made earlier on granular matter s
gests that the notion of finite size and excluded volume
sociated with granules play a crucial role. This of course
well recognized in the phenomenological studies@1–6,8#,
statistical treatments@10–12,15,18#, and computer simula
tions @9,17#, but the subtle aspects of excluded volume
not seem to have been fully and clearly elucidated at
f
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dynamical level when the granular assembly is in motio
We believe that the excluded-volume effect and, especia
the momentum correlations arising therefrom should be b
ter accounted for than has been so far in the kinetic-the
treatments mentioned. For definiteness of our discussion
consider an assembly ofN spherical, elastic granular par
ticles of diameters and massm in this work. The total
volume ofN such granules then is

V05Nv0 , ~1!

wherev0 is the volume of the granule

v05
4p

3 S s

2 D 3. ~2!

Note thatV0, however, is not the actual volume of the sy
tem. If the actual volume of the assembly in a configurat
is denoted byV, then the number densityn at the given
configuration of the granular assembly is given by

n5N/V. ~3!

The packing fraction of the assembly may be defined by

f5 1
6nps3. ~4!

Unlike molecular fluids, the number density of granular m
ter sensitively depends on its configuration, since it can
sume an unusual metastable form~e.g., arches and voids!
with a volume larger than a close-packed volume, which
the minimum volume the system can assume. The clo
packed volume of the granular matter will be denoted byVc ,
which yields the volume per particlevc5Vc/N that may be
written as

vc5
1
6pRc

3. ~5!

HereRc , defined by Eq.~5!, is the diameter of imaginary
spheres making up the volumeVc . The ratioRc/s is larger
than unity. The volume of configuration space ofN granular
particles in the close-packed configuration is therefore e
mated to be

Gconf5~ 1
6pRc

3!N. ~6!

The diameters of the granule orRc sets the basic length
scale in the description of the granular assembly of inte
here. All the distances in the theory of granular matter c
sidered here can be reckoned in this scale. The differenc
the configuration space volumesVc andV0 is

DGconf5@ 1
6p~Rc

32s3!#N, ~7!

which ranges in the interval

@ 1
2ps2dRc#

N<DGconf<@ 1
2pRc

2dRc#
N. ~8!

Here dRc5Rc2s. Therefore, the minimum volume unce
tainty of the excluded volume of the system, i.e.,the granu-
lar matter, is given by

GR[DRc
N 5@ 1

2ps2dRc#
N. ~9!
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55 4189KINETIC THEORY OF FLUIDIZED GRANULAR MATTER
Left unperturbed, granular matter in a stable or metasta
configuration~state! does not flow and the velocities of th
particles are equal to zero. Only an external force such
shearing or other means of forcing produces a motion of
assembly in part or as a whole. If the frequency of the p
turbation isv and the characteristic distance associated w
it is amplitudeA, then the momentum of a granule of massm
associated with the motion is

pA5emAv, ~10!

where e is a dimensionless proportionality constant. If w
denote the velocity of the particle byc and the motion is in
the direction of the gravitational field, then at equilibrium

mgA5 1
2mc2,

whereg is the gravitational acceleration. That is, the char
teristic distance in this instance is given by

A5
c2

2g
. ~11!

Bagnold@2# found that the mean velocity, or more precise
the speed of a granular assembly subjected to shearin
proportional to shear rateg. Therefore, since the characte
istic frequencyv is proportional tog in the case of shearing
we may take

c5a8g5av. ~12!

Here a is a constant parameter with the dimension of d
tance which may be seta5A2eA. By combining Eqs.~10!–
~12!, we obtain

pA5UgmAv, ~13!

where

Ug5
Av2

g
. ~14!

This parameterUg characterizes the motion of granular pa
ticles subjected to the gravitational field and an external p
turbation that displaces the particles from their positions i
static configuration. Therefore, the volume of the moment
space ofN granular particles going through such a me
motion is given by

Dp
N5~UgmAv!3N ~15!

and the corresponding phase volume is then given by

Gc[Dc
N5~DpDRc

!N5@ 1
2psA

3Ug
3~mAv!3#N, ~16!

where

sA5Vc
1/3s,

Vc5
dRc

s
5
Rc

s
21. ~17!

Therefore, it is possible to interpretsA as the effective diam-
eter of the granule swelled by the factorV c

1/3 associated with
le
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e
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-
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the perturbation applied to the granular system. ThisGc is the
minimum phase volume associated with the granular ass
bly, which under the gravitational field is perturbed by
external force of frequencyv and amplitudeA in a close-
packed configuration. This phase volume must be prop
taken into account in the development of a kinetic theory
fluidized granular matter, since it must serve as distance
momentum scales for the phase volume of the system in
statistical description of the granular matter of interest. T
Dc is essentially the phase volume which accommodate
granular particle of the mean momentumpA . This basic
phase volume per granuleDc is not negligible compared with
the actual phase volume in the case of granular partic
This point is crucial in determining the behavior of an a
sembly of granular particles.

Let us denote the phase volume element of the gran
assembly around the phase point, or simply the pha
~r (N),p(N)! by dG5dr (N)dp(N), where r (N) and p(N) collec-
tively denote the center-of-mass position and moment
vectors of granular particles in a fixed coordinate syste
Then, the statistical description of such a system can be v
only if this phase volume of the system is much larger th
the basic phase volumeGc presented earlier. This will be
generally the case if the granular matter is sufficiently flu
ized. Thus, we will assume that the phase volume of
system contains a large number of the basic phase volumGc
mentioned, and the former is reckoned in the scale of
latter,Gc . The number of basic phase volumes in unit pha
volume is then equal to 1/Gc . And such a number is an
element that must be carefully taken into consideration w
the collision term in the kinetic equation is calculated on t
basis of granular collision dynamics.

III. KINETIC EQUATION FOR FLUIDIZED
GRANULAR MATTER

We have now come to realize that a granular assem
should behave qualitatively differently from the behavior
an isolated pair of granular particles, which should stric
obey the laws of motion within the framework of Newtonia
mechanics. It is because of the very fact that the partic
have a sizable excluded volume, which causes strong co
lations of momenta, that there are severe limitations on
collective motion of the particles in a congested assembly
granular particles. In the case of granular matter, becaus
the relatively large volume fraction of the excluded volum
the aforementioned limitations become a dominant factor
collective motions of granular particles. We believe that t
momentum correlations take precedence over the inelast
of collisions in the hierarchy of dominant effects in granu
matter. We now take this feature into account in formulati
a kinetic theory of such matter. A cogent picture for the ki
of difference in the behaviors of an isolated pair of granu
and an assembly of them can be seen in the example use
Jaeger, Nagel, and Behringer in their recent article@19#.
These authors compare, say, the motions of a bead wi
sack of many beads that falls on a glass plate. A single b
falling on the glass plate repeatedly bounces off the p
before it comes to rest, whereas the sack falls dead on
plate and remains there. The basic difference is attribute
many inelastic collisions that the beads in the sack
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4190 55BYUNG CHAN EU AND HIKMAT FARHAT
through, but it is basically the excluded-volume effect
beads in the sack that frustrates the bouncings of the
beads hitting the plate which are predicted to occur by
Newtonian laws of motion. In the case of the beads in
sack—a congested assembly of beads—the individual
tions of beads are highly correlated and constrained, un
isolated beads. In this connection, it must be pointed out
the friction forces on contact are indispensable in
molecular-dynamics simulations of granules by Gallas, H
rmann, and Sokolowski@17#, and that they are a kind o
momentum correlation that springs into action when the p
ticles come into contact. We thus see that a congested as
bly of granules puts certain statistical constraints on the
namical evolution that isolated individual particles wou
have followed according to the Newtonian mechanical la
and that the normal Newtonian mechanical evolution
been thereby frustrated. That is, the statistical evolution
such an assembly, therefore, cannot be inferred to be cl
cal in the sense of the Boltzmann kinetic theory. This is
crucial point we would like to stress in this work.

We are interested in the probability of finding a granu
particle with momentump at position r in phase volume
elementdr dp at time t and the spatiotemporal evolution o
the probability distribution function. That is, the object
interest is the single distribution functionf̄ ~v,r ;t! of velocity
v5p/m at time t. If this distribution function is integrated
over the entire phase volume, it is normalized to the to
number of particleN:

E dr dv f̄ ~v,r ;t !5N. ~18!

Therefore, when integrated over the momentum space
gives

E dv f̄ ~v,r ;t !5n, ~19!

wheren5N/V is the number density. If we count the num
ber of particles flowing in and out of the elementary pha
volumedr dv at r andv in time intervaldt, it is given by

S ]

]t
1v•“1F•“vD f̄ ~v,r ;t !dr dv dt. ~20!

HereF is the external force per mass and“v5]/]v. This is
the change in number density due to the kinematic flow
particles in the elementary phase volume mentioned. I
important to note that the distribution function is taken to
uniform in this elementary phase volume, and this phase
ume must be clearly larger thanGc. This means that the
distribution function is coarse grained in a scale compara
to or larger than that ofDc . The kinematic change in numbe
density must be balanced by the change in number den
due to collisions of particles within the phase volume. If w
denote the collisional rate of change in number density
R8@ f̄ #, then the number density change indr dv in time du-
rationdt is

R8@ f̄ #dr dv dt. ~21!
f
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On equating Eqs.~20! and ~21!, there follows the evolution
equation forf̄ ~v,r ;t!:

S ]

]t
1v•“1F•“vD f̄ ~v,r ;t !5R8@ f̄ #. ~22!

We now calculate the collisional contribution. It is useful f
this purpose to recognize that the collision integral in t
kinetic ~e.g., Boltzmann! equation consists of two basic com
ponents. One is the collision dynamical part, which accou
for the collision event that is imagined to occur betwe
isolated particles~e.g., a pair of particles!. This collision
event is governed by Newtonian laws of motion for a fe
particles and, in the present theory, two particles. The ot
is the statistical part that gives the statistical weight for
occurrence of particles having the values of the dynam
variables predicted by the Newtonian laws. It is important
keep a clear distinction between these two factors in mak
up the collision integral in the kinetic equation. The statis
cal weighting factor is not altering the collision dynami
itself governed by the Newtonian mechanical laws, but
statistical probability of the mechanically predicted collisio
event deviates from the classical, Boltzmann kinetic-the
form, which is usually taken in the kinetic-theory treatmen
@20#.

First, let us define by vectork the unit vector along the
apse line of the two hard spheres in contact that is paralle
the vector connecting the centers of mass of the two p
ticles. The relative velocity vector of the particles is denot
by g125v12v2, wherev1 andv2 are the velocities of the two
particles 1 and 2 in collision. Then the volume swept by t
two particles in collision in timedt is

s2~g12•k!dt.

We will henceforth drop the subscript 1 from the quantiti
for particle 1. The initial velocities of the colliding pair o
particles are denoted byv andv2, wherev[v1. We also take
into account the aforementioned coarse graining of distri
tion functions so that the distribution functions are assum
to be uniform in the collision volume. The population of th
colliding pair of particles is f̄ ~v,r ;t! f̄ ~v2,r ;t!x~r ,r2ks!,
wherex~r ,r2ks! is the spatial correlation function for th
pair of granular particles in collision. In the case of a gran
lar assembly that has a large excluded volume relative to
actual volume of the system and thus a relatively lar
elementary-phase volume occupied by a particle, the po
lation of the particles in the final state of collisionthat is
statistically realizableis

Cg*[@12Dc f̄ * ~v,r ;t !#@12Dc f̄ * ~v2 ,r ;t !#. ~23!

We elaborate on the presence of theCg* factor in the colli-
sional rate of change. In the case of the collision of an i
lated pair of granular particles, the collision process is de
ministically described by the Newtonian laws of motion a
the particles end up in the final state as predicted by
classical mechanical laws. However, in a congested ass
bly of granular particles that are constantly in collision, som
collisional events are not statistically realizable, althou
they are dynamically dictated by the Newtonian laws of m
tion, if the basic phase volumes into which the particles
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55 4191KINETIC THEORY OF FLUIDIZED GRANULAR MATTER
destined to go are already occupied by other particles in
assembly. At this point, it is useful to recall the comparis
of a bead and a sack of beads made by Jaeger, Nagel
Behringer @19#, which was mentioned earlier. Sinc
Dc f̄ * ~v,r ;t! gives, on the average, the fraction of particles
be found inDc , which are already at the state predicted
the collision of an isolated pair by the Newtonian laws a
thus precludes other particles coming intoDc , the factor
@12Dc f̄ * ~v,r ;t!# gives the fraction of particles that are stat
tically allowed in the said state on completion of the sa
event of collision between the pair of particles 1 and 2. Sin
the other particle must be found atr2ks if one is atr , the
other factor for particle 2 is similarly@12Dc f̄ * ~v2,r2ks;t!#,
but this factor is taken in the form@12Dc f̄ * ~v2,r ;t!# for the
consistency with the coarse graining of the distribution fu
tion over the collision volume. This factor, of course, has
physical meaning similar to the factor@12Dc f̄ * ~v,r ;t!#.
Therefore, the factorCg* represents, on the average, t
physical reality that not all collisional events in a conges
assembly of granular particles can be realized, at the st
tical level of description, in states as predicted by the Ne
tonian laws of motion for an isolated pair of particles a
that there is an additional statistical constraint manifest
itself because of the interactions of mutual exclusion am
the particles. This exclusion effect even appears in the
mentum space in the form of a momentum correlation fu
tion, whichCg* in effect represents, since the statistical ev
lution of the system is considered in the phase space.
factorCg* , a momentum correlation function, is absent in t
ordinary classical fluids sinceDc is O~\3! for ordinary fluids
and hence, for example,Dc f̄ * ~v,r ;t!;nDc5O(n\3), which
is small at normal states. The factorCg* may also be com-
pared to the friction force on contact that is indispensa
used in molecular-dynamics simulations@17# of granular
matter. As will be seen later, the end effects of the mom
tum correlation factors such asCg* and the friction forces
used in molecular-dynamics simulations are the same in
they tend to keep the particles in the gravitational field pi
up. We remark that this momentum-correlation effect is
taken into account in the existing kinetic theories of granu
fluids cited earlier.

In the configuration space conjugate to the moment
space, the exclusion effect is relatively easy to comprehen
a spatial correlation function is made use of, and for t
purpose we insertx~r ,r2ks! in the collisional rate. This is
the probability of finding a pair of particles separated
ks—namely, a pair correlation function—at the instant
collision and the excluded-volume effect is already built in
it. Since the spatial correlation function must be a function
the relative distance between the particles, we find

x~r ,r6ks!5x~s!,

which is the pair correlation function evaluated at the cont
point of the hard granular particles regardless of the m
menta of the particles involved. Thisx~s! is also in confor-
mation with the coarse graining of distribution functio
over the collision volume. This distribution function can b
in principle, determined within the framework of kinet
theory if its own kinetic equation is formulated and solve
e
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but in this work we will use the equilibrium-pair correlatio
function determinedad hoc from elsewhere, e.g., the equ
librium theory.

Taking the aforementioned factors into account, we obt
the forward collisional rate of change in the number of p
ticles in the volume elementdk dv dr dv2 and the collision
volume

~R8@Dc f̄ #dr dv dt! forward

5s2m3E dv2E dk~g12•k!x~r ,r2ks! f̄ ~v,r ;t ! f̄ ~v2,r ;t !

3@12Dc f̄ * ~v,r ;t !#@12Dc f̄ * ~v2 ,r ;t !#dv dr dt, ~24!

where the asterisk denotes the postcollision value. Note
x~r ,r2ks!5x~s! in Eq. ~24!.

It is possible to calculate the collisional rate for the r
verse collision in a manner similar to Eq.~24!, and we obtain

~R8@Dc f̄ #dr dv dt!reverse

5s2m3E dv2E dk~g12•k!x~r ,r1ks! f̄ * ~v,r ;t ! f̄ * ~v2 ,r ;t !

3@12Dc f̄ ~v,r ;t !#@12Dc f̄ ~v2 ,r ;t !#dv dr dt, ~25!

for which we have used the Liouville theorem for the pha
volume. Recallx~r , r1ks!5x~s! in Eq. ~25!. The restitutive
coefficient, which appears in the existing kinetic theor
@10–14# for granular matter, is set equal to unity in the
collision terms, since the granules are assumed to be ela
We reiterate that despite the fact that the collisions are e
tic, the assembly is still dissipative because of random co
sions between the particles. The net coarse-grained c
sional rate of change in number is given by combining~24!
and ~25!:

R8@Dc f̄ #5s2m3x~s!E dv2E dk~g12•k!

3$ f̄ * ~v,r ;t;t ! f̄ * ~v2 ,r !@12Dc f̄ ~v,r ;t !#

3@12Dc f̄ ~v2 ,r ;t !#2 f̄ ~v,r ;t ! f̄ ~v2 ,r ;t !

3@12Dc f̄ * ~v,r ;t !#@12Dc f̄ * ~v2 ,r ;t !#%.

~26!

This collision term will be used in this work. We remark th
a fine-grained form of the collision integral does not give r
to a satisfactory kinetic equation and macroscopic continu
equations.

With the definition of a new distribution function

f5Dc f̄ , ~27!

the kinetic equation forf ~r , v, t! may be written in the form

S ]

]t
1v•“1F•“vD f ~v,r ;t !5R@ f #, ~28!

whereR@ f #5Dc
21R8@Dc f̄ #. The kinetic equation~28! with

the collision integral defined by Eq.~26! is the basis of the
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4192 55BYUNG CHAN EU AND HIKMAT FARHAT
kinetic theory of fluidized, elastic granular matter presen
below. To be more precise, this kinetic equation must
accompanied by a kinetic equation for configuration corre
tion functionx~s! appearing in the collision integral, but th
theory becomes much more complex if such a kinetic eq
tion is added. Since we are interested in the essential fea
that captures the kinetic evolution of nonequilibrium pr
cesses in fluidized, granular matter, we will confine the d
cussion to the level of precision by which we not only n
glect inelastic collisions and set the restitutive coefficie
equal to unity, but also take the equilibrium pair correlati
function for x~s!. For a more complete theory, we defer
future studies that more properly treatx~s! and take into
account the internal degrees of freedom for the granu
~e.g., inelasticity of granules!.

IV. CONSERVATION LAWS, THE H THEOREM,
AND EQUILIBRIUM SOLUTION
OF THE KINETIC EQUATION

A. Conservation laws

Mean values for macroscopic observables are statistic
calculated by the formula

Ā~r ,t !5Dc
21m3E dv A~r ,v! f ~v,r ;t ![^A~r ,v! f ~v,r ;t !&.

~29!

With this definition for macroscopic variables, the kine
equation~28! yields the balance equations for mass, mom
tum, and energy as well as other evolution~constitutive!
equations. They can be readily derived by using the w
known procedure in kinetic theory. Since the procedure
well documented@20# and no particular consideration is re
quired for the present problem, we will simply give the s
tistical definitions for the quantities involved and will refer
the explicit forms for the balance equations in Ref.@20#.

The mass densityr, momentum densityru, and internal
energy densityrE are defined, respectively, by the statistic
formulas

r5^mf&, ~30!

ru5^mvf &, ~31!

E5rE5^ 1
2mC2f &, ~32!

whereC5v2u denotes the peculiar velocity. These defin
tions and the kinetic equation give rise to the balance eq
tions for the conserved variables, if the stress tensorP and
the heat fluxQ are defined, respectively, by the statistic
formulas

P5^mCCf &, ~33!

Q5^ 1
2mC2Cf &. ~34!

The stress tensorP and the heat fluxQ, in turn, obey their
own evolution equations which can be derived from the s
tistical formulas with the help of the kinetic equation. Su
evolution equations are in fact the constitutive equations
the stress and the heat flux. The derivations of the bala
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equations indicate that the conventional continuum mech
cal equations hold for fluidized granular matter, if the kine
equation~28! is assumed. They are in the same forms@20# as
those for ordinary molecular fluids. It implies that granul
matter, when sufficiently fluidized, acts as if it is a co
tinuum matter obeying the conventional mass, moment
and energy conservation laws.

B. H theorem and equilibrium solution of the kinetic equation

The stability of the equilibrium solution of the kineti
equation~28! can be examined in terms of a Lyapunov fun
tion, which in the case of kinetic equations appears as
BoltzmannH function, that is, the Boltzmann entropyS. It is
defined by the statistical formula

S[rS52kB^ f ~r ,v;t !ln f1@12 f ~r ,v;t !# ln~12 f !&.
~35!

The derivative of this Boltzmann entropy satisfies the
equality

dS

dt
>0, ~36!

where the equality holds only at equilibrium. This inequal
can be proved by the well-known procedure of the Bol
mann kinetic theory. We remark that the statistical form
S in ~35! is strictly dictated by the collision term~26! of the
kinetic equation~28!. It is not arbitrarily chosen at all. If the
form for S is not taken exactly as in~35!, theH theorem,
namely, the inequality~36!, cannot be proved, given the co
lision term ~26! for the kinetic equation.

If the kinetic equation is used to calculate the local fo
of the inequality~36!, the Boltzmann entropy balance equ
tion follows:

rdtS52“•Js~r ,t !1sent~r ,t !, ~37!

where the statistical formulas for the Boltzmann entropy fl
Js and the Boltzmann entropy productionsent are respec-
tively given by

Js52kB^C$ f ~r ,v;t !lnf1@12 f ~r ,v;t !# ln~12 f !%&,
~38!

sent5kB^ ln~ f2121!R@ f #&>0. ~39!

The positivity ofsent is a local representation of theH theo-
rem andsent vanishes at equilibrium.

Thus, the equilibrium solutionf e of the kinetic equation is
given by

^ ln~ f e
2121!R@ f e#&50. ~40!

On applying the procedure@20# of the kinetic theory of or-
dinary fluids, the solution of this equation can be easily o
tained in a well-known form. That is, if the Hamiltonian of
particle subjected to the gravitational field is denoted by

H5 1
2mC21mgz, ~41!

then the equilibrium solution is given by
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f e5@expb~H2me!11#21, ~42!

whereb is a constant and the parameterme is closely related
to the normalization factor off e . These parameters general
depend onr . The gravitational field is taken parallel to thez
axis. The equilibrium solution has exactly the same form
the distribution function for Fermi-Dirac particles. The re
son for this is the excluded volume effect that manifests
self even in the momentum space by statistically putting c
straints on the population of particles undergoing collisio
transitions and thus resulting in strong momentum corre
tions for the collision pairs in the congested granular part
assembly. The distribution functionf e is normalized to den-
sity:

n5^@expb~H2me!11#21&. ~43!

In the case of granular matter, the meaning of parameterb is
more subtle than the case of Fermi-Dirac particles, since
not clear whether there is a thermodynamic structure adm
sible from the viewpoint of the thermodynamic laws. In fa
the meaning of temperature must be altered in the cas
granular matter. The reason for this statement is discusse
the following.

V. THERMODYNAMIC ANALOGY
FOR GRANULAR MATTER

In the case of molecular fluids, the thermodynamic the
of processes@21# is well founded on the notion of cycles, th
Carnot cycle being the prototype. As is well known, it w
the Carnot cycle and its analysis@22,23# that gave rise to the
mathematical structure of thermodynamics. The thermo
namics of fluidized granular matter, however, presents
unfamiliar and vexing situation, since it is not obvious ho
to construct a cycle with it as a working substance. In
case of granular matter, the notions of heat and tempera
are not as well clarified or established as for molecular flu
and it is not clear if one can simply apply to granular mat
the thermodynamic theory valid for molecular fluids. To s
this point more clearly, let us examine whether or not it
possible to construct a cycle similar to the Carnot cycle
the conventional notions of heat and temperature, which
used for the Carnot cycle with a molecular fluid as the wo
ing substance. In the case of the latter fluid, the tempera
of the fluid rises and the volume expands on absorption
heat by the system, whereas injecting the same amoun
heat into granular matter as supplied to the mass of a
lecular fluid will not result in a noticeable change in it exce
for, perhaps, a slight expansion of the volume due to
thermal expansion of the granules, but the change is not
to random translational motions of the granules themsel
which are induced by the supplied heat and the raised t
perature. Therefore, we see that the granular matter is tr
lationally cold and random translational motions of the gra
ules do not get excited by heat. This indicates that it is
possible to construct a thermodynamic theory of granu
matter on the basis of the conventional notions of heat
temperature, even if the matter is fluidized by a mechan
external force, in the same manner as for molecular flu
However, we might be able to resort to a thermodynam
analogy to acquire from the equilibrium solution of the k
s
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netic equation a mathematical structure of thermodynam
for fluidized granular matter, that resembles that of therm
dynamics of molecular fluids.

An example of such a thermodynamic analogy in phys
and in the description of natural phenomena is the cas
radiation@24#. It is helpful to recall that the thermodynamic
of radiation was constructed on the basis of an analogy to
thermodynamics of matter under the assumption that th
exists an equilibrium Gibbs relation for the radiation entro
and with the help of the black body in equilibrium wit
radiation and the Stefan-Boltzmann law@25# Erad5asbT

4,
whereT is the temperature of the black body. We use t
procedure@24# as a guide for constructing a thermodynam
icslike phenomenological theory of fluidized granular mat
under consideration and acquire the meaning of tempera
from the experimental observation of the energy-shear
relation @2#.

Anticipating the result presented later, we may set in
canonical form~42!

b51/kBT. ~44!

Here T is the translational temperature of granular mat
that is mechanically fluidized, but not the internal tempe
ture of the granules at rest. We remark that this ‘‘tempe
ture’’ is not the conventional temperature we talked abou
the case of ordinary molecular fluids.

Bagnold@2# observed on the basis of experimental stud
that the mean velocity of granular matter is proportional
the shear rate and, consequently, the mean internal ener
related to the shear rate squared. In fact, we have alre
availed ourselves of this result in Sec. II, where the notion
basic phase volume is introduced. Thus, we may write
internal energy of fluidized granular matter in the form

E5E0@11cg~g!g2#, ~45!

wherec is a constant with the dimension of time square
g~g! is a dimensionless function of shear rateg which tends
to unity asg vanishes, andE0 is the energy of the system i
a stationary configuration atg50 ~e.g., a stationary meta
stable configuration!. Within the range of shear rate studie
Bagnold foundg~g! is independent of the shear rate and th
can be set equal to unity. Following Bagnold, we will ta
g~g!51 in this work. However, this assumption concerni
g~g! is not mandatory in the subsequent analysis and ma
easily removed without altering the thermodynamic analo
presented for granular matter. We now state the follow
assumption about the existence of the Clausius entrop
fluidized granular matter that obeys the equilibrium Gib
relation

dSe5T21~dE1pdV!. ~46!

Here p is the pressure andV is the conjugate volume. We
emphasize that this relation will be established for granu
matter not on the basis of the thermodynamic second l
which was originally stated only for cycles with a molecul
fluid as the working substance, but by means of statist
mechanics under the thermodynamic-statistical mechan
correspondence used in the ensemble theory; this time
procedure is only reversed from that for ordinary molecu
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4194 55BYUNG CHAN EU AND HIKMAT FARHAT
fluids. We elaborate on this in the following. We remark th
we are not considering a system at rest, which was con
ered by Edwards and Oakeshott@7# for the thermodynamic
formalism for a granular assembly.

It is now asserted that as in the Gibbs ensemble met
@26# for ordinary molecular fluids, there is the following co
respondence@27# between thermodynamicSe in Eq. ~46! and
the equilibrium Boltzmann entropy computed from Eq.~35!
with the equilibrium canonical form~42!

Seust⇒Seu th , ~47!

where the subscripts st and th mean the statistically c
puted and the thermodynamic entropy, respectively, a
similarly, there hold the correspondences forE andp

Eust⇒Eu th , pust⇒pu th . ~48!

We use Eqs.~45!–~48! to fix the meaning of parameterb and
thus the meaning ofT therewith. First, the meaning ofb in
the distribution function is fixed by comparing Eq.~45! with
the statistically computed mean energy. Then the corresp
dence~48! is used to endowT in Eq. ~46! with the ‘‘thermo-
dynamic’’ meaning. It must be noted that this process is j
the reverse of the one used for ordinary molecular flu
where the meaning ofb is fixed in terms ofT that is founded
on the thermodynamic second law which provides the th
modynamic temperature scale. This reversal of the proce
is forced upon us because Eq.~46! is not given by the second
law on the basis of analysis of a reversible cycle conventi
ally made in thermodynamics of molecular fluids. This tim
it is the statistical theory, constructed by an analogy to
molecular statistical theory which is known to yield a stru
ture of thermodynamics, and the correspondences, Eqs.~47!
and~48!, that is enabling us to construct a thermodynami
like mathematical structure for fluidized, granular matt
which is analogous to the thermodynamics of molecular
ids.

VI. DETERMINATION OF PARAMETERS b AND me

It is necessary, for the stated aim, to calculate the norm
ization condition forf e and the mean internal energy for th
granular matter subjected to the gravitational force when
granules have acquired kinetic energies by an external fo
Since the integrals involved do not permit exact evaluatio
they will be calculated to an approximation, first, in the lim
where the parameterb is large andme2mgz.0. In this limit
the meaning ofb is elucidated. With the meaning ofb thus
established, we then consider the case whereb is moderate
in value. It is necessary to evaluate the following integra

n~z!5
2p

Dc
S 2mb D 3/2E

0

`

dt
t1/2

exp~ t2a!11
, ~49!

E5
2p

Dc
S 2mb D 3/2b21E

0

`

dt
t3/2

exp~ t2a!11
, ~50!

where withb5bmg

a5b~me2mgz![m̄e2bz. ~51!
t
d-

d

-
d,

n-

t
s

r-
re

-
,
e
-

-
,
-

l-

e
e.
s,

:

These integrals can be treated by means of well-known p
cedures@28#. We summarize the results below.

A. The case ofa positive and very large

The normalization integral for this case is given by t
formula

n~z!5
4p

3Dc
S 2mb D 3/2a3/2F11

p2

8a2 1
7p4

640a4 1••• G . ~52!

By using this result, we find to the lowest order

a5m̄e2bz.S 3Dcn~z!

4p D 2/3 b

2m
. ~53!

The mean internal energy is given by the formula

E5
4p

5Dc
S 2mb D 3/2b21a5/2F11

5p2

8a22
7p4

384a4 1••• G
[

4p

5Dc
S 2mb D 3/2b21a5/2@11a22K~a!#. ~54!

On truncation of the series, Eq.~54! may be approximated by

E.
4p

5Dc
S 2mb D 3/2b21a5/2S 11

5p2

8a2D . ~55!

The front factor in Eq.~54! is independent ofb if Eq. ~53! is
used. With the definitions

E05
3n~z!5/3

10m S 3Dc

4p D 2/3 ~56!

and

u5A2/5~pkBm!21S 3Dcn~z!

4p D 2/3, ~57!

we obtain the internal energy in the form

E5E0~z!F11S Tu D 2G , ~58!

for which Eq.~44! is used. By using Eq.~45! and the corre-
spondence~48!, we now identifyT:

T5cug. ~59!

This identification ofT with g ~more precisely, the absolut
value of the shear rate! can be made more precise if a mo
precise phenomenological expression forE exists than Eq.
~45! and if Eq.~54! is used without truncation. However,
would not change the basic conclusion thatT is directly pro-
portional tog. Therefore, we will be content with the resul
Eq. ~59!, obtained here. We remark that the constantc in
~59! cannot be calculated by means of statistical mechan
but is a parameter like the Boltzmann constant that mus
chosen to correlate the mechanics of granular matter with
thermodynamics.

Since f e , on substitution into the statistical formula fo
the Boltzmann entropy, yields the differential form forSe
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dSe5kBb~dE1pdV! ~60!

if p is defined statistically by the formula

p52pkBTDc
23/2E

0

`

dt t1/2ln~11ea2t!. ~61!

On making use of the correspondence~47!, we find

Tu th⇔~kBb!21ust, ~62!

which by virtue of Eq.~44! implies that the thermodynami
temperature must be identified withT as in Eq.~59!, namely,

Tu th5cug. ~63!

In this manner the statistical theory gives rise to an interp
tation of thermodynamic temperature and thus to a ther
dynamic analogy, as characterized by Eq.~60! for the granu-
lar matter under consideration. We note the relation

p5 2
3E~z!. ~64!

This relationship can be used to compute the density de
dence ofp. If Eq. ~54! is used in this expression forp, the
equation of state is given by

p5
8p

15Dc
S 2mb D 3/2b21a5/2@11a22K~a!#

' 2
3E0~z!F11S Tu D 2G . ~65!

This is the equation of state in the limit ofa→`.

B. The case ofa moderate in value

The density is given by the expansion

n~z!5n0(
l50

`
al

~11e2a! l11 , ~66!

where

n05
2

psA
3Ug

3~mAv!3
S 2pm

b D 3/2, ~67!

al5 (
k50

l S lkD ~21!k

~11k!3/2
.0. ~68!

It is possible to solve Eq.~66! for a to calculate the normal
ization factor. The result is

a5 lnFn~z!DcS b

2pmD 3/2G1 (
k>1

ckj
k, ~69!

where

j5n~z!Dc~2pmkBT!23/2, ~70!
-
o-

n-

ck5
1

k! H dk

djk
ln (

j51

`
j j21

j ! F dj21

dl j21 w j~l!G
l50

J
j50

,

~71!

with w~l! defined by

w215
d

dl (
l51

`
~21! l21l l

l 5/2
.

The leading examples forck are

c15223/2, c25
3

2 S 182
2

35/2D , ~72!

etc. If al(11e2a)2 l,1, Eq. ~66! may be approximated by

n~z!.
n0

11e2a . ~73!

By applying for the same procedure as for Eq.~69!, we
obtain the internal energy in the form

E5 3
2n~z!b21S 11 (

k>1

k

k11
ckj

kD , ~74!

which implies that the equation of state is given by the f
mula

p5n~z!b21S 11 (
k>1

k

k11
ckj

kD . ~75!

These results suggest that the granular matter is not idea
the virial coefficients are given by

Bk5
k

k11
ckL

3k, ~76!

where

L5Dc
1/3S b

2pmD 1/2. ~77!

These coefficientsBk stem from the momentum correlation
induced by the excluded volume inherent in the granu
particles in a congested fluidized assembly. Perhaps her
may make anad hoccorrection to the equation of state b
adding the contribution from the spatial correlation of ha
spheres:

p5n~z!b21S 11 (
k>1

Bkn
k1

2ps3n

3
x~s! D . ~78!

Note that the last term in this equation is the hard-sph
contribution to the equation of state that arises from the s
tial correlation of particles and the trace of the virial tens

It is possible to resume the series in Eq.~75! into a form
similar to the Carnahan-Starling form@29# by applying the
Padéapproximant method as used in Ref.@30# and obtain the
formula for the equation of state
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p5n~z!b21H 11
j@ 1

2 c11
1
16 ~ 32

3 c223c1!j#

~12 1
8 j!3

J
5n~z!b21F11

j~0.17720.070j!

~12 1
8 j!3

G . ~79!

This equation of state will be useful for calculating the tran
port coefficients later in this work.

VII. COMPARISON WITH EXPERIMENT

A. Distribution of unperturbed granular matter

Having identified the parameters inf e in terms of phe-
nomenological quantities, we are now ready to examine
distribution function in more detail and in comparison wi
available experimental observations. SinceT tends to zero
according to the relation~59! as g vanishes, the limit of
vanishing shear rate corresponds to the absolute zero of
perature for molecular fluids. Thus, we may say that
granular matter is absolutely cold with respect to the tra
lational motion when it is not perturbed by an external for
such as shearing force or tapping. In this limit the distrib
tion function becomes a step function:

f e5 H 1 if a>0
0 if a,0. ~80!

The value ofme determines the positionz where the distri-
bution function vanishes. This is the situation where granu
are statically piled up in the gravitational field. The distrib
tion function in Eq.~80!, together with the density distribu
tion already calculated in Eq.~52!, indicates the behavior o
the granular matter under the gravitational field in the lim
of vanishing perturbation. Their behavior is physically re
sonable and in agreement with experimental observation
everyday experience with granular matter. In a recent w
of Goldhirsh and Tan@9#, which was not in print before the
original version of this work was submitted, a reduc
velocity—in fact, radial speed—distribution function com
puted by a simulation method for a sheared granular flui
shown to deviate from the normal Gaussian form. The vel
ity distribution function f e obtained in the present work i
consistent with their finding, sincef e and any reduced distri
bution function obtained from it is certainly not Gaussia
This aspect and other macroscopic properties of granular
ids predicted by the present theory will be discussed i
separate work in the future.

B. Density distribution at a nonvanishing perturbation

If a granular assembly is vertically shaken or tapped a
finite amplitude and frequency as was done by Clement
Rajchenbach@16#, the particles in the assembly collective
move more or less vertically, although their velocities are
uniform but have a distribution. Such a velocity distributio
is given byf e . There are cases where some velocity com
nents vanish owing to the setup of the experiment in ha
For example, if thex andy components of the velocity ar
virtually absent, as in some experiments, and furthermor
thez component of the velocity in the up phase or the do
-

e

m-
e
-

-

s

t
-
nd
k

is
-

.
u-
a

a
d

t

-
d.

if
n

phase has a narrow distribution, as seems to be the case
the experiment by Clement and Rajchenbach@16#, then the
distribution of the particles can be given by the density di
tribution function defined by the dimensionless densityr̄(z):

r̄~z!5
ps3

Dc
S 2pm

b D 3/2E
2`

`

dqE
2`

`

ds

3E
2`

`

dt
d~q!d~s!d~ t2t0!

exp@q21s21~ t2t0!
21bz2m̄e#11

,

~81!

whereq5Amb/2vx , s5Amb/2vy , and t5Amb/2vz with
t05Amb/2pu ~u5the collective velocity of granules!. This
gives rise to the density distribution

r̄~z!5
r̄0

exp~bz2m̄e!11
, ~82!

where

r̄05
ps3

Dc
S 2pm

b D 3/2. ~83!

By choosingb50.5 mm21, r̄050.91, andm̄e515, which im-
pliesmb550 m22 s2, we show that the distribution in Eq.
~82! fits well the experimental data on thez dependence of
density obtained by Clement and Rajchenbach@16# as shown
in Fig. 1. The experimental values forA andv are, respec-
tively, A52.5 mm andv520 s21. We have not made com-
parison with the simulation data of Gallas, Herrmann, a
Sokolowski @17#, since the simulation data agree with th
experiment.

VIII. THEORY OF TRANSPORT PROCESSES
IN GRANULAR MATTER

The theory of transport processes in granular matter c
be developed in a completely parallel manner analogous

FIG. 1. Reduced density distribution with respect toz. The open
circles are the data by Clement and Rajchenbach@16#. Here the
static packing density is takenr̄050.91. Note thatr̄0 is dimension-
less.
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55 4197KINETIC THEORY OF FLUIDIZED GRANULAR MATTER
the procedures developed for ordinary fluids in Ref.@20#. We
therefore will simply present the relevant results for granu
matter. We will confine our discussion to linear transp
processes in this paper. It is possible to show that the vis
ity h and thermal conductivityk are given by the formulas

h5
2p2bg

R~11! , ~84!

k5
~ĈpTp!2bg

R~33! , ~85!

where g5(m/2kBT)
1/2/n2s2, Ĉp55kB/2m, and R( i i )

( i51,3) are collision bracket integrals defined by the fo
mula

R~ i i !5 1
4 @~h1

~ i !1h2
~ i !2h1

~ i !*2h2
~ i !* !

3~h1
~ i !1h2

~ i !2h1
~ i !*2h2

~ i !* !#12. ~86!

Here various symbols are defined as

h1
~1!5m@CC2 1

3C
2d#1 , ~87!

h1
~3!5m@ 1

2C
2C2ĈpTC#1 , ~88!

with the subscript 1 and 2 referring to particles and
square brackets in Eq.~86! stands for the integral

@AB#125bgDc
22m6E dv1E dv2E dk~g12•k! f e~v1! f e~v2!

3@12 f e~v1!#@12 f e~v2!#AB. ~89!

These collision bracket integrals are explicitly evaluated
an approximation and presented below.

We will calculate the collision bracket integral in the ca
wherea is moderate in value. By using the expansion

f e~v!@12 f e~v!#5(
l50

`
d

da F ~11e2a!21e2tS 12e2t

11e2aD l G ,
~90!

wheret is the reduced kinetic energyt i5
1
2mCi

2b ( i51,2)
anda is as defined before. Let us now define the integra

@AB#12
~c!5bgn2Smb

2p D 3E dv1E dv2E dk~g12•k!

3exp~2t12t2!AB, ~91!

@AB#12
~ l1l2!

5bgn2Smb

2p D 3E dv1E dv2E dk~g12•k!

3exp~2t12t2!~12e2t1! l1~12e2t2! l2AB.

~92!

Then [AB] 12 can be split into two terms as follows:
r
t
s-

-

e

o

@AB#125@2nL3~11cosha!#22@AB#12
~c!

1 (
l151

`

(
l251

`

~ l 111!~ l 211!

3@n2L6~11e2a! l11 l214#21@AB#12
~ l1l2! . ~93!

The second term corresponds to the correction to the ‘‘c
sical’’ contribution for which the distribution functions ar
taken to be Maxwellian. The classical collision bracket in
grals [AB] 12

(c) are available in the literature@15#. We will be
content with the lowest-order approximation for the collisi
bracket integrals. Thus, we take

@AB#12'@2nL3~11cosha!#22@AB#12
~c! . ~94!

For the value ofa the result in Eq.~69! must be used with
the last term neglected for consistency with the approxim
tion made for Eq.~94!. We use this result and Eq.~84! to
calculate the viscosity of granular matter. For the viscosi

A5B5m@CC#~2!5m~CC2 1
3C

2d!, ~95!

with d denoting the unit second-rank tensor. Calculating
front factor involvinga in Eq. ~94! with the aforementioned
approximation neglecting thej-dependent term in Eq.~69!
and using the literature result for the collision bracket in
gral [AB] 12

(c) for hard spheres@15#, we obtain from Eq.~84!
the viscosity in the form

h5
5

16s2 SmkBT

p D 1/2F11
L3n~0.17720.070L3n!

~12 1
8 L3n!3

G2,
~96!

for which we have used the equation of state, Eq.~79!. If the
equation of state given in Eq.~78! is used for viscosity, then
it is given by the formula

h5
5

16s2 SmkBT

p D 1/2
3F11

L3n~0.17720.070L3n!

~12 1
8L3n!3

1
2ps3n

3
x~s!G2.

~97!

It must be noted that in contrast to the Newtonian viscos
of molecular fluids the viscosity formulas presented here
pend on the shear rateg on account of theg dependence of
T; see Eqs.~59! and ~63!. Since the quantity in the squar
bracket in Eq.~96! is proportional to the compressibility fac
tor that reaches unity asg increases according to the formu
~75!—the equation of state before resumming by a Pa´
approximant—h approximately increases withg like Ag.
That is, the granular fluid is seen to be dilatant and this i
qualitatively correct behavior as is well known@1# of granu-
lar matter.

The viscosity formula~96! is plotted in Fig. 2. It shows a
rather flat viscosity that slowly reaches a minimum
j5L3n'5.7 before it rapidly increases. This behavior
reminiscent of the experimental data by Hanes and Inm
@31#. This minimum appears because the third virial coe
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cient B2 is negative owing to the momentum correlation
We note that if Eq.~78! is used instead of Eq.~75! for the
equation of state, the minimum will be practically wash
out, since the term containingx~s! does not exhibit a mini-
mum and is dominant.

IX. CONCLUDING REMARKS

In this paper, we have formulated a kinetic theory of fl
idized granular matter by taking into account the exclud
volume effects and significant momentum correlatio
present in congested elastic granular fluids. These two k
of effects combine to give rise to an equilibrium distributio
function which has a mathematical form similar to the eq
librium distribution function of a Fermi gas, which also h
the excluded-volume effects and momentum correlatio
We believe thatthe momentum correlations in a congest
assembly of particles with an excluded volume is the
feature that controls the kinetic evolution of statistical dist
bution in a fluidized granular system. Another significant
point in the present theory is the assertion that in analog

FIG. 2. Viscosity vs reduced densityj5nL3 ~a scaled packing
fraction!. The inset is the blowup of the minimum region. Th
Chapman-Cowling formula for hard spheres is used forn0:
n05(5/16s2)(mkBT/p)

1/2.
ys

ld,
.

-
-
s
ds

-

s.

y

to

the statistical mechanics of ordinary molecular fluids the d
tribution function obeying the kinetic equation postulated
the thermodynamic branch of solution, which yields a th
modynamic theory of processes in fluidized granular mat
and this assertion enables us to construct a thermodyna
theory from the statistical theory. Note that this procedure
just the opposite of the one used in the conventional
semble theory of statistical mechanics, where the thermo
namic branch of the distribution function is constructed
correspondence with the phenomenological thermodynam
established from the thermodynamic laws by means of
Clausius inequality. This thermodynamic formalism for fl
idized granular fluid, with the help of the attendant statisti
theory, elucidates the meaning of granular temperature w
the system is subject to an external perturbation such
shearing. This theory also provides the equation of state
terms of the granular temperature so determined. The p
sure increases with the density, which is a qualitatively c
rect behavior.

The density distribution function obtained from the k
netic equation is in agreement with experiment and the co
puter simulation result on a vibrated granular matter and
viscosity computed in the theory also exhibits qualitative
correct behavior when compared with the viscosity of gra
lar matter in that it remains almost constant over a den
interval and then steeply increases with the density. T
present theory also predicts that granular matter is dilatan
experimentally known. Such behaviors would not ha
arisen if the equilibrium distribution function was simp
given by the Boltzmann distribution function that arises
the equilibrium solution of the kinetic equations appearing
Refs.@10–14#. Therefore, they may be taken as evidence
support of the kinetic equation used in the present work a
in particular, the collision integral therein. Nevertheless,
theory presented here is only a first step toward the goa
understanding kinetic processes in fluidized granular ma
and we hope that the present work stimulates further stu
in kinetic theory of granular matter.
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