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Measuring spatial coupling in inhomogeneous dynamical systems
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We propose coherence as a tool to quantify spatiotemporal dynamics, in particular, in spatially inhomoge-
neous dynamical systems. We demonstrate coherence to be an appropriate measure of predictability and,
hence, spatial coupling in nonlinear systems, using analysis and via experimental results from a circular jet
flow. Coherence measurements reveal sizable regions of strong spatial coupling in this spatially developing
open flow, in contrast to much smaller coupling regions indicated by conventional correlation. Decaying
coherence, indicating spatiotemporal dynamics, is also found in the jet, and possible physical mechanisms are
discussed. In addition, the causes for coherence decay are explained analy&d#l§3-651X97)00204-3

PACS numbds): 47.20—k, 47.27—i

[. INTRODUCTION Sec lll, experimental measurements of coherence and corre-
lation are used to analyze spatiotemporal dynamics in an
Experimental studies of spatially extended dynamical sysepenflow (viz., a circular jet, and possible physical mecha-
tems [1] utilize the idea ofspatial coupling Coupling nisms for the observed coherence decay are analyzed. Con-
throughout the domain indicates temporal dynanfpermit- ~ cluding remarks are presented in Sec. IV.
ting the capture of dynamics through single-point measure-
ments, while its spatial decay indicates spatiotemporal dy- II. COUPLING IN LINEAR
namics (requiring simultaneous measurements at multiple AND NONLINEAR SYSTEMS
locationg. The number and locations of probes required to ) . ]
describe the dynamics adequately depend on the spatial ex- BY spatial coupling we mean that the dynamics at one
tent of coupling and the domain size, thus necessitating spa@cation can be predicted using measurements at another.
tial coupling measurements. Devising an appropriate mealhis implies the existence of an underlying predictive func-

Inhomogeneous systems are typified by spatially varying
dynamical quantities, e.g., modal amplitude and phase. A. Linear model

Single-mode systems can be described by a single frequency, For a linear system, thieansfer function Hf) is used for

mﬁﬁi?n Sofzjaep(;’ 2Fedmpsh?1§/:p§es thfuhrisgfenmvoeclizp;;n ggngﬁ%diction(ﬁg. 1). Here, we employ standard signal process-
y P b itqg formulations with one important distinction: the input

phase speeds, making the dynamics, particularly complex . .
modal interactions, much more difficult to describe. In thisx(t) and outputy(t) signals are fromspatially separated

paper, we address the spatiotemporal dynamics of inhomé)-mbes' It is indeed this distinction which permits the inter-

) retation of coherence as a measure of the spatiotemporal
geneous multimode systems. Such systems are common al

of major scientific and technological interest, e.g., in open- namics.
; i ’ &9, 1OP In an ideal(i.e., single-input, noise-free, lingasystem
flow hydrodynamics.

Measures often used in homogeneous spatiotemporal s with known H(f) and input, one can predict the output Sig-
. gene P P yﬁal, Fourier transform, and power spectrum, respectively
tems, e.g., correlation lengft,2] and dimension densify3],

may be inapplicable to inhomogeneous systems due to their y(t)=h(t)*x(t), (1a)
spatially varying length and time scales. Ordinary coherence
and cross bicoherence were used to infer spatial coupling in

a plane mixing layeran inhomogeneous open flow4]. Y(H=HMHX(), (1b)
Spectra and bispectrédrom which coherence is derived d

were previously used to describe energy transfer among fré"

guenciegaccompanying transition to turbulenda plasmas _ 5

[5], in free shear layerf6] and in a Poiseuille-profile j¢f7]. Gyy(H=IHH*Gud ) (10

However, for the first time, coherence is shown here to be a i i )
reliable measure of spatial coupling. where* denotes convolutlprh(t) is the impulse response,
The paper is organized as follows. In Sec 11, coherence i§!(F) = Gxy(f)/Gulf), G,y is the cross spectrum, ar@,,

shown to be a measure of “predictability” and of spatial @1dGyy are the autospectra. Insertirg f) into Eq.(1c) and
coupling in dynamical systems. Coherence is compared witRormalizing byG,,(f), one obtains the coherence spectrum
conventionally used correlation, and the causes of its spatidf@/léd “coherence” or “ordinary coherencg

decay are analytically illustrated. A coupling measure for
guadratically nonlinear systems is formulai@chich can be
extended to higher-order, e.g., cubic and quartic, systdms

|Gy(F)[?

2 Ny
Yot D= G ()G, (1)

=1. 2
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Given H(f), an ideal system is completely predictable and,

hence, has unity coherence.
FIG. 2. Correlation decay for a fully coupled spatially develop-

B. Coherence and predicted energy ing system, withé/A=1 indicating spatiotemporal dynamics.

In experiments, spectral quantities are estimatkshoted Sinceu is at the originx=0 andu=v for zero spatial
by “~ ) from ensemble averages. Thetimated G, and  separation, the coefficientgs=c(0) andb=d(0). Using any
G,y can be used tpredictthe output spectruntt’~ " indi- input u, andH(f) derived from Eq(4), v can be predicted
cates prediction exactly. Applying Eq(3) to Eq. (4) yields y2, (»;)=1 and
- y2,(w,) =1, irrespective of the spatial variation ofandd.
|ny|2 Thus, coherence is unity at the relevant frequencies and, as

— Q126 —
ny_|H| Grx= Gy expected, the spatial coupling extends as far as the evolution
in Eq. (4) is obeyed(i.e., to infinity, in principlg. Note that
even correlation will correctly indicate spatial coupling in a
multimode system provided modal amplitude ratios and
~ 212 phase differences do not vary in spdnet the general cage
1Gﬁ |Gyl ?) Using the cross-correlation coefficient defined as
G GyxGyy pu (N E[Ry, (N oyo,] (WhereR,,(7) is the cross correla-

tion, o are the standard deviations, and signaEndv have

Thus, the estimated coherence is a frequency-by-frequen&gro mean we obtain

ratio of the predicted to the measured output energies. More-

over, sinceG,, is evaluated fromG,, measurements at a _ Ruw(0) (ac+hbd)
different location, coherence is a measure gpfatial cou- Puv e ouo, [(a®+b?)(c?+ d?)1Y
pling. High coherencé~1) indicates strong coupling, while
its difference from unity indicates the fraction of unpredict-
able output energy, i.e., the loss of coupling. Further, sinc
[H|*=%%,Gy,/Gyxx. time series prediction also depends on
coherence. Note that the estimation errors can be arbitraril
reduced given sufficiently large datas¢8 and need not
contribute significantly to coherence decéiyenceforth, we
will drop the caret “~ ” since all spectra discussed are es-
timated)

yielding thecoherence estimator

s=<1.

Thus, Puv, =1 only if c/a=d/b, i.e., each frequency is

?spatiall)b amplified identically. Note that, although
w(f)22f% Ry, (7)e 1277 d7, (i.e., the cross correlation
and the cross spectrum are a Fourier paidditional infor-
mation is obtained frorwﬁv(f) due to its normalization by
spectra(which differ at each frequengyather than by con-
stants as inp,,(7). A frequently used measure of spatial
coupling—correlation lengthé—is based on correlation,
which is expected to decay a@vmax(x)~e*”§; i.e., over a
distancex= ¢, p decays tee ™! (=37% of its original value.
Correlation lengtht was used1] to categorize dynamical At what correlation value, and, hence, what value/af, can
systems as “large’(viz., spatiotemporalor “small” (viz.,  two signals still be considered coupled? This being an unre-
spatially couplegl when & ~1 or &a>1, respectively solved issue, we will restrict our comparisons of coherence
(where is some dynamically significant length scaldow-  (in sec. lll) to correlation only.
ever, in spatially inhomogeneous systefesg., free shear As a simple example, consider the amplitude evolution of
flows), spatial growth rates and phase speeds of the various(x) andd(x) to be exponential and omit spatially depen-
instability modes differ, making correlation inadequate fordent phases. Such exponentially growing amplitudes are
coupling measurements. Consider the simple example of @mmonly found in the initial(instability-dominated re-
completely predictable one-dimensional spatiotemporal sysgions of shear flows such as mixing layers and [jétsCon-

C. Comparison of coherence and correlation function

tem with inputu(x,t) and outputv (x,t) sider coherence for spatially growing wavésg. 2) with
a/b=10 andc/d=0.5 atx/\A =2, typical of amplitude ratios
u(0t)=a coswt+b cosw,t, (of a fundamental frequency and its subharmpwioserved

in free shear flow§9]. Again, coherences at both frequencies
and v(x,t) =c(x)coswt+d(x)coaw,t. (4) remain unity throughout the domain, whilqurnax rapidly



55 MEASURING SPATIAL COUPLING IN INHOMOGENEO\S . . . 4181

decays, with&\~1, suggesting a limited spatial extent of to second ordefi.e., to triad interactions higher-order com-

coupling even when the dynamics are completely predictputations are justified only ifi) knowledge about the dynam-

able. ics (e.g., the governing equationidicates their presence
Downstream(relative) shifts among component waves of (e.g., in surface gravity wavesr (i) second-order results

different frequencies in dispersive systems also causes loare substantially different from linear coherence.

correlation at all time delays. However, since coherence only The quadratic system model is

depends on phase variatioffikom one realization to another

at each frequency, it can accurately detect spatial coupling i _ _

auch systoms, YH=LOX(H+ X Qs f)X(F)X(f2),  firfo=t,

)

) It is represented in terms of the linear and quadratic transfer

Coherence can be less than unity due to measuremefinctionsL(f) andQ(f,,f,), respectively; the first term on
noise, unmeasured uncorrelated additional inputs, or nonlinne right side represents linear energy transfer to the output at
earity [8]; since measurement noise can be minimized, it \hile the second term represents the cumulative contribu-
effects will not be considered here. Expanding &8). in  {jon of all triad interactions to the output dt Owing to
terms of ensemble-averaged Fourier spectra and substltutugg,mmetry with respect té, and f,, the summation in Eg.
amplitude and phase decompositions of the fody (7) is restricted tof ;=1,.
=X@xplidy), Yi=Ykexplidy,) and ¢y=dy, — by, we can Multiplying Eg. (7) by its complex conjugate, ensemble
isolate the effects of amplitude and phase jitter on coherenceveraging and then normalizing I§y,,(f) yields thetotal
(By “jitter” we mean random variations of a dynamical coherence

1=f2

D. Coherence decay

variable)
To study amplitude jitter, we fix the phase differengg 5 1 5
in all realizations and obtain yi(f)= Gyy() ILOIGul )
2
2 (XY _
=<1, 5 + f1,f,)|2D(fy,f
Vxy <x§><y§) fléfz |Q(f1,f2)[*D(f1,f2)
where the ensemble averages are defined by . .
(u)=1NZ}_,u, k is the realization number arid is the +2R L(f)fzf Q*(f1.f)A* (f1,f) 1 |1,
ensemble size. This becomes an equality i rx, for all k; e
i.e., the ratior of the output to input amplitudes can vary 8

with frequency but must be fixed for all realizatiofis con- . )

trast to the requirement that=constfor all frequenciesfor ~ Where A(f1,f5) = (Xi(f1) Xi(f2) X (g)) (the autobispec-
pus, =1). As a simple example, assuming tlygt=ryx, and trum) andD(f1,f2) = (|X(f1) X(f2)[%); this assumes n,egll-
r, is distributed uniformly on the interv40,1], uncorrelated ~ 9iPe fourth—or(,:ier ,momentixk(fl)xk,(fZ)xk (f)Xi (f2))
with X, with mean u, and variance o2, we get (with f{+f,=f;+f,=f), unlessf,=f; [5]. Estimation er-

7,gyzlur/(lurh_grz)' which decays with increasing?. rors are neglected for large ensembles. _ _
To examine phase jitter, we hold amplituces and y, A!though e_ach_term in Eq[S) is subject to(p055|_bly mis-
fixed and obtain leading physical interpretation, to measure spatial coupling
we need onlyy2(f). As in the linear system, total coherence
Yay=(€'99)|2=|(cosp+i singy)|?<1. (6) indicates the predictability of output energy using measured

input energy; when the input and output measurements are
Note that it is thedifference¢,, not the individual phases spatially separatedptal coherence is a measure of spatial
by, OF ¢, Which affects coherence. Coherence is unity onlycoupling
if ¢, is constant in all realizations. Conside= ¢+ sé,, Taking moments of Eq(7) with respect toX*(f) and
with constant$ and a random variabl@, distributed uni-  X*(f1)X*(f,), and ensemble averaging gives two coupled
formly on the interval[0,27]. Here, 7§y:Sin2(1TS)/(Trs)2, equations for. and Q, respectively{5], which can be sub-
which decays to zero as—1. stituted into Eq(8) to obtain the following nevexplicit for-
mula for total coherence

E. Nonlinear model

For nonlinear systems, ordinary cohereneg, may fall 11— X 7(fy.f)l?
below unity, but this does not necessarily imply that the dy- ,y_%_(f): YA(f) l=Ta + 2 B2(f4,f,),
namics are less predictable. Coupling can be measured using 1- S 2(f,.1,) f1=1,
a nonlinear system modéfig. 1) and its coherencd$]. The f1=1, 172
procedure outlined below is applicable to systems of arbi- 9)
trary order; after constructing the system model, sufficient
moments and inner products can be taken to extract thehere YA(f) is the ordinary coherence,

transfer functions and/or coherence. However, the mathe?(f1,f,)=[|A(f1,f,)|2/D(f1,f,)Gy(f)] (the autobicoher-
ematical complexity and computational expense grow drasence, — 7(f1,f5)=[C*(f,f)A(f1,)/D(f1,f5) Gy ()],
tically with increasing order. We will restrict our discussions C(f1,f5,) = (X (f1)Xk(f2) Yk (f)) (the cross bispectrum
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and B%(fy,f,) =[|C(f1,f,)|?/D(f1,f,)G,,(f)] is the cross 10

bicoherence. Note that this new result does not require com- "

putationally intensive. or Q calculations to evaluate2(f) i

[5,10]. Further, ifA(f,,f,)=0, y2(f) reduces to the sum of or " 7

Y3(f) and=B?(f,,f,) (simplifying computations consider-

ably). In fact, even in the presence of substanfgf,,f,), -10 1

further (heuristig analyses suggest that a sufficient condition rf

for high y2(f) is high values of both?(f) and= B3(f,,f,). G, 0| )
For negligible autobicoherence, analytical results for total (B)

coherence decay can be obtained, analogous to the linear

case: fixed amplitude ratios and phase differences give high

values of total coherence, and amplitude or phase jitter cause

-30 | 4

its decay. Similar results are expected when autobicoherence A 1

is high, but analysis is difficult; some examples are examined

in Appendix B. _ _ _ 0 100 200 300 400 500 600
This completes the formulation of a spatial coupling mea- £ (Hz)

sure(viz., y2) for a quadratically nonlinear system. In con-
trast to prior methods, we provide an explicit and [ - . .
P P b easily cal FIG. 3. Power spectrum for a periodic state, stable double pair-

2 .
culable formula for yr. In Sec i, expgrlmental ing (SDP), with acoustic forcing af only, displaying dynamically
measurements of total coherence and correlation in an ex:= .~ _
. . - significant spectral peaks at the fundamemfahe subharmonié/2
cited circular jet flow are presented.

and the quarterharmonid4, recorded ak/D=1.75.

lIl. EXPERIMENTS IN A SPATIALLY the relevant and dominant frequencies are the fundamental,
DEVELOPING FLOW: THE FORCED JET the subharmonics, and the sidebands generated by detuned
feedback(i.e., when feedback is not exactly &#2 andf/4)

We have experimentally investigated a spatially inhomo{12]. Although the dynamics of this physical system can be
geneous system, a free jet with a top-hat exit profile in tranrelatively simple(nominally two-dimensional and limited to
sition from laminar to turbulent flow. The transition region is as few as three, or even two, instability mogehis proto-
subject to several instabilities(i) a primary Kelvin-  typical flow embodies several important and common fea-
Helmholtz instability leading to the formation of axisymmet- tures of spatiotemporal dynamical systems: spatially evolv-
ric vortex rings (“vortex roll up”), (ii) subsequent two- ing, inhomogeneous, and dispersive, with linear and
dimensional subharmonic instabilities leading to the mergenonlinear instabilities. In the following we briefly describe
of neighboring vorticegvortex “pairings”), and(iii) three-  the salient features of a periodic and a chaotic state chosen
dimensional instabilities leading to vortex fragmentation andor the present study.
transition to turbulence. The jet was acoustically excited at a The periodic state, stable double pairit§DP, was
single frequency. The dimensionless control parameters arefound for 0.0ka;<0.20 and 1.05St,<1.60. Spectral
the forcing amplitudea;=u;/U, and the forcing frequency peaks aff, f/2, andf/4 (see Fig. 3, recorded downstream of
Sty=fD/U,: u; is the centerline rms-velocity fluctuation at the first pairing location, ax/D=1.75 are due to periodic
f, U, is the centerline exit velocity, ard is the jet diameter. vortex roll up followed by a periodic first pairing and then a
Two periodic and two low-dimensional chaotic attractorsperiodic second pairing of vortices downstream. For SDP,
were found over large regions in the parameter space. Thiie first and second pairings occur approximatelyxédd
experimental facility and procedures, the phase diagram, the 1.5 and atx/D~2.5, respectively[11,12. Since the
attractors’ invariants and transitions between dynamicabources of/2 andf/4 at the jet exit are presumably feedback
states are extensively discussedid,12. from pairings, it is reasonable to expect that spatial coupling

Spectral dynamicsOf particular importancéto techno-  will extend at least as far as the pairing locatigaad per-
logical processes such as mixing and aerodynamic noise gehaps beyond, unless there are significant effects from new
eration are the formation and pairings of vortices. While the instabilities whose origins were not measured; see Sec. Il C.
fundamental frequency (associated with vortex roll yps A chaotic statgthe “quarterharmonic chaotic attractor,”
externally forced, the vortical interactiofand, hence, the QCA) is found in the range 0.088a;<0.02 and 1.% St,
associated subharmonic and quarterharmonic frequefides =<1.25. The power spectruitirig. 4) recorded near the first
and f/4) are driven by feedback from vortex pairinfgk3],  vortex pairing location X/D=2) shows peaks dt and two
i.e., are self-excited. The spatially growing waves associatedidebands around the subharmonidf,=f/2—Af,
with these frequencies have linear regions in which theyf,=f/2+Af), indicating (almos} periodic subharmonic
grow exponentially at different rategvolving at different modulations, i.e., a first pairing whose location changes
phase speedsfollowed by nonlinear regions where they (nearly periodically in spac¢12]. The broadband centered
saturate at different amplitudes and grow or decay due tat f/4 is due to chaotic second pairing occurring farther
self-interactions and cross-interactions. The saturation of thdownstream. The waves corresponding to the modulated
fundamental is physically realized by vortex roll up; pairings subharmonic and the broadband quarterharmonic have
result from the(nonlineay subharmonic resonance phenom-longer (than in SDP spatial evolution times and are results
enon, where a fundamental and its subharmonic interact tof detuned pairing feedbadl 2]. Correspondingly, the first
reinforce the subharmoni@.e., f+(—f/2)=1f/2) [9]. Thus, pairing location for QCA is delayed to/D~2, and the sec-
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G‘Illll(f)
@B) .

FIG. 6. Spatial variation of total cohereng&(f) and the peak
correlation coefficienpy ,  for QCA; nominally high Y3(f) at
o L ' L L all frequencies indicates strong coupling at least uxtb~4,

1
100 200 300 400 500 600 .
£ (Hz) while P Xomay drops to very low values by/D~1.

FIG. 4. Power spectrum for a chaotic state, quarterharmoni¢€lation diminishes well before the minimum expected cou-

chaotic attractoQCA), with acoustic forcing af only, showing  Pling distance ok/D~2.5(i.e., the second pairing locatipn
dynamically significant spectral peaks at the fundamentathe

lower and higher sidebands around the subharmdniéy) and the B. Total coherence
center frequency of the broadband quarterharméticrecorded at .
/D=2 q Y q To analyze t_otal coherg_ncyz% [evaluate_d using EQQ)]
for the dynamically significant frequencies noted in the
o power spectra of SDP and QCA, 400 records of 1024
ond pairing may occur as far agD ~4. samples were averaged with a frequency resolution of 2 Hz
Below we present cross correlation and total coherencgsee Appendix A for further detajls
for SDP (at a;=2.4%, Sp=1.2) and QCA (at a;=1.4%, SDP. Total coherences at, f/2 and f/4 remain high

StD'%”l.Z), measured using hot-wire vglocity probes_; Qata ac(=0.9 as far asx/D~4, 5 and 7, respectively(Fig. 5),
quisition was performed using a 12-bit analog-to-digital CoN-indicating spatial couplingwell beyond the second pairing
verter on a Masscomp MC6650 computer. The referencg,cation. As previously noted, this is not surprising provided
probe was positioned near the jet exi/p~0) and dis- ey unmeasured events do not occur, i.e., events whose ori-
placed radially by 0.2, with long prongs to keep the probe gins are underresolved or undetected at the first location
body out of the jet cor¢thus minimizing probe interference (g ¢ - three-dimensional secondary instabiljtie&lthough
and wakeyg a second prob(aallg_ned with the jet centerline theoretically bound by unityy2(f/2) and y2(f/4) slightly
was traversed downstream at intervalsAof/D=0.25. exceed unity at a few locatiorie.g., atx/D =4), apparently
because of insufficient spectral averagisge Appendix A
From cross bispectrenot shown, the most significant qua-
_ o dratic interactions for SDP were found to be those between
The peak cross-correlation coefficignt,,  forboth at-  the fundamental and the subharmofiie., f + (- f/2)=1/2)
tractors decay rapidlyFigs. 5 and § falling below 0.5 by  and those between the subharmonic and the quarterharmonic
x/D=1. This decay is primarily due to rapid spatial varia- (i.e., f/2+ (—f/4)=1{/4), culminating in the first and second
tion of the ratio of the fundamental and the subharmonicvortex pairings, respectively@].
amplitudegsee Sec. Il and the amplitude plotg[ir]). Cor- QCA Total coherences &t the lower sidebandl, and the
higher sideband,, frequencies(shown in Fig. 6 remain
above 0.8 as far as<3x/D=<5, the region where chaotic
second pairing is usually complet¢di2]. Again, there are
slight excursions above unity in the values pf(f,) and
y2(f,). The dynamically significant quadratic interactions
seen(in the bispectra, not shown hegrare those ofi) f and
fy (e, f—=f,=1), (i) f andf, (i.e.,f—f,=f,), and(iii) f,
and f, with frequencies in the broadband surroundifig
(e.g.,f,—f/4=fl4— Af or f,,— f/4=f/4+ Af); owing to the
broadband surroundinig4, a coarser frequency resolution of
9 Hz was chosen around that frequency for computations.
High 2 at all significant frequencies up 1dD=4 indicate
strong spatial coupling, even in the presence of chaotic dy-
FIG. 5. Spatial variation of total coherengé(f) and the peak namics.
correlation coefficienp, ,  for SDP; highy2(f) at all frequen- High values ofy2 over a large region for both periodic
cies indicates strong coupling at least upxtb~4, while low  and chaotic vortex dynamics indicate that the transitional jet
values ofp, ,  (by x/D~1) spuriously indicates the loss of cou- displays temporal, rather than spatiotemporal, dynamics.
pling. Cross-correlation results spuriously imply a much smaller

A. Cross correlation
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FIG. 7. Spatial development of an instability amplitude for a  FIG. 8. Spatial development of the amplitude of a resonant sub-
pair of realizations, illustrating an amplitude jitter mechanism in harmonic wave for different phases, illustrating mechanisms for
free shear flows. amplitude and phase jitter in free shear flows.

coupled domaini.e.,x/D<1) as a result of spatial inhomo-
geneities. Similar results were found in an excited mixing

layer as wel[4]. The rapid drop ofy2 downstrean(x/D>7 : . i A i )
for SDP andx/D>5 for QCA) is evidence of spatiotemporal gﬁzgel(olfs” atxo). This phase jitter will also result in coher

dynamics; possible mechanisms for such disorder are dis- Phase jitter may also be caused by the development of

cussed next. three dimensionality. The three-dimensional effect sketched
in Fig. 9 (showing two realizations of advecting rectilinear
vorticeg is analogous to azimuthal instabilities of ring vor-
As addressed in Sec. Il coherence de¢mglicative of tices, butis more easily understood in a planar configuration.
coupling los$ can result from amplitude and/or phase jitter. In both realizations, the trailing vortex is rectilinegor
However, the physical mechanism for such jitter may differnearly s9, but a spanwise instabilitfof fixed wave number
among dynamical systems. In the following, some suchbut arbitrary phasehas grown on the leading vortex as it
mechanisms are discussed in the context of jet flows; similamoved downstream. Coherence at the vortex passage fre-
arguments may apply to other open free shear flows as weltjuency will fall below unity since the phase shiff between
such as wakes and mixing layers. u(t) andw(t) varies from one realization to the next. Note
Amplitude jitter An example of how amplitude jitter may that, in this case, the phase jitter is due to an unknown input
occur in a jet is illustrated in Fig. 7, where the spatial devel-(viz., the disturbances which trigger the three dimensional-
opment of the amplitude of an instability mo@iaz., Kelvin-  ity). If the spanwise disturbance is present on the upstream
Helmholt? is sketched for two realizations from an en- vortex, even at low amplitudes, additional spanwise-
semble of different initial amplitudes; the saturation separated probes at the upstream location might provide suf-
amplitudes of these modes are known to be relatively inserficient information to make the downstream distortion pre-
sitive to the initial amplitude§9]. The input amplitudes, at  dictable(using multiple and partial coherencs).
f is measured at the origir,. In the first case, the output
fundamental spectral amplitudg, is measured ax, in the IV. CONCUDING REMARKS

linear range; hence, the ordinary coherengg,=1 (assum- 2 . . S
ing constant phase shift dt betweenx, andx,) since the Total coherencey(f) accurately identifies coupling in

amplitude ratiov /u, is constant in each realizatijeee Eq.  SPatiotemporal dynamical systems, particularly inhomoge-

(5)]. In the second case, the output spectrum is measured g§gousS ones. Coherence is applicable to homogeneous sys-
x,, in the nonlinear range, wherehas reached its saturated ©ms as well; when dynamics are dominated by a single fre-

valueug,;. Here, the amplitude ratiog,/u, varies from one
realization to another, amdﬁv< 1. Similar effects may occur y fz
X

for the subharmonic and the quarterharmonic as well.

Phase jitter Coherence can be affected by variations of
the phasadlifference(of individual frequency components oW on
several ways; here, two such effects are illustrated by exam- —
ining the spatial development of a resonant subharmonic
wave(Fig. 8 in a jet flow. When the fundamental waueot
shown) reaches a critical amplitude &, it resonates non-

linearly with and reinforces the subharmonic, thus modifying

the subharmonic spatial growth ratdepending oné, the u(®) v oo
phase difference between the two wavie. First, consider Realization 1 Realization 2
the coherence dt/2 between the signals &g andx, : phase

jitter will be absent if the subharmonic phase speed is inde- FIG. 9. lllustration of phase jitter due to random three-
pendent of §. Neverthelessd variations (due to detuned dimensional disturbances on rectilinear vortices in a plane free
feedback result in amplitude jitter ak, and, hence, coher- shear flow; the downstream phase at the vortex passage frequency
ence decay. In contrast, there is no amplitude jitter betweefin v(t)] is different in the two realizations.

Xo andx,, but the phase after saturati@re., atx,) may not
be linearly related to the phase prior to the onset of reso-

C. Physical mechanisms of coherence decay

v(t)
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guency, coherence and correlation results are identical; with synthetic signal with significant energy at a single triad,
multiple modes, coherence can identify frequencies and inf,+f,=f, and low-amplitude random noise. The autobico-
teractions responsible for coupling decay. Since coherendeerence surrS=Ef1>f2a2(fl,f2) is ideally equal to unity.

can be interpreted as the predictable energy fraction, thighis sum was evaluated after applying rectanguR)y énd
appears to be the first method for measuring predictability ijamming H) windows, yieldingS,=4.21 andSz=2.04
multimode spatiotemporal systems. Consequently, this resuliyith «?(f,,f,),~1 at two frequencies around the true
is an important step in addressing the challenging problem dheal. After applying thresholdsS,,=3.00 andSg=1.00.
modeling and controlling technologically relevant spatiotem-ajthough the noise contribution is reducey, is clearly still
poral (open flows. in error (due to spectral leakape

To demonstrate the practical feasibility of coherence, as a |n processing the experimental data, it was found that
spatial coupling measure, we measured total coherence inyging a relatively small number of realizatiore.g., 100
circular jet. The results indicate large spatially coupled reyecords for spectral averaging resulted j#(f) exceeding 1
gions (extending from 4 to 7 jet diametgrsmplying high  (its theoretical upper boundin fact, even after the number
predictability of dynamicgusing single-point measurements of realizations was increased to 400, such excursions were
in these flow regions. We have demonstrated that misleadingot completely eliminatedevident in Figs. 6 and )7 We
estimates of spatial coupling can be inferred frompelieve that these errors are attributable to noise. In practice,
correlation-based measures. N it may not always be possible to select a threshold which
~ Diminished coherence comes from additional unmeasuregjiminates all noise while preserving all signal contributions.
inputs (or interactiony higher-order nonlinearity or mea- |y general, increasing the number of realizations should di-
surement noise; these manifest themselves as jitter in amplininish these excursions. For SDPx&D = 3.75, calculations
tudes and phases of the measured dynamical variablgjeided y2(f/2)~1.14 using 100 realizations, but
Mechanisms for such jitter depend on the physical system,2({/2)~1.07 using 400 realizations. Also for SDP, at
under considgration, e.g., the onset of secondary instabilitiegp =3 25, y3(fl4)~1.14 using 100 realizations, but
in Rayleigh-Beard convectior{14], transverse instabilities y2(/14)~0.992 using 400 realizations.
in film flows [15], three dimensionality in open shear flows
[16], higher-order nonlinearities, or transition to turbulence.
In the first three cases, the apparent loss of predictability can, APPENDIX B: ANALYSIS OF TOTAL COHERENCE
in principle, be recovered by judicious placement of addi- WITH HIGH AUTOBICOHERENCE

tional sensors; increasing the order of the system model will ' Ag noted in Sec. Il E, the causes of coherence decay are
capture higher-order nonlinearities. In deterministic systemsgjfficult to interpret when autobicoherence is high. To inves-
the only “true” sources of unpredictabilitygiven an ad- tjgate this, we used synthetic input and output sigrielg.,
equate system modeare unmeasured or underresolved in-from spatially separated probesf the following form.

puts, specifically, small fluctuation®.g., changes in initial

conditiong amplified by instabilities and/or temporal or spa- _

. U(t)|x=x, = axcog w,+ +bycoq wot +

fiotemporal chaos. ()| x=x,= 2COL @1+ Pai) + b COL w5t + Ppp)

+ccog wt+ ¢ey) + d O wt + pygy) + Ny(t)
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peaks. For simplicity, the two signals are provided signifi-
APPENDIX A: COHERENCE COMPUTATIONS cant energy only at three frequencies.
The key effects we expect to capture in these signals

S are (i) linear energy transfer ab between thed, and f,
by two problems: noise and spectral leakage. The summgy o (i) autobicoherence ab,+w,=w using theay, by

tions in Eq.(9) contain many termeup to 512 herg depend- andc, terms, andii) quadratic energy transfer tousing the

ing on the frequency resolution. Noise and random estima: - .
. . X a., by and e, terms. To ensure high autobicoherence, the
tion errors at all frequencies cause residual values whosg<’ . : )

. . : ; amplitude ratio ab,/c, and the phase difference
accumulation yield poor estimates ¢f(f). Since the ran-

— — 2 ~
dom error for spectral estimation scales\as'’? (whereN is bk~ bax— bvi are kept constanta™(f,,5)~0.99 for all .
) ) L cases. Pseudorandom number generators produced ampli-
the ensemble sizethe cumulative error can be significant

even wher is large (e.g., 16—10%; to minimize these er- tudes and phases with uniform distribution in the ranges

rors, we used a threshold of (&*2 on all spectra and . )
bispectra. Data windowing causes leakage of coherent en_TABLE I. Effects of amplitude and phase jitter on coherences.

ergy into frequencies neighboring significant coherence OF 4se No
bicoherence peaks, causing summations including these fre- i

The y2(f) estimation using Eq9) is made quite difficult

Casetype  y¥(f) »(f)  B(f1.f2)

guencies to be erroneously high. After testing different win-| Fully coupled 0.999  0.999 0.999
dows, we found rectangular windows to have minimal coher4| Amplitude jitter ~ 0.715  0.460 0.389
ent sideband leakadé 7]. I Phase jitter 0.386  0.322 0.285

Autobicoherence was computed using 200 realizations of
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[0,1] and[0,27], respectively. At least 200 records of 1024 tude ratios have independent, random variations on the inter-
samples were averaged tvia 2 Hzfrequency resolution. val[0,1]. The drop iny2(f) indicates a loss of coupling. For
We consider three cases: full coupling, amplitude jitter,phase jitter(case lll, Table ), we hold amplitude ratios con-
and phase jitter. For full couplin¢see case |, Table,lwe  stant, andd,, hence, the phase differencég=sé,, are al-
eliminate jitter by holding phase differencé$;,— ¢4 and lowed random variations in the ran§@,2x], wheres=0.6.
bek— dak— dp and amplitude ratios constaid,/f, and (As in Sec Il D,s=1 yields 0 for all coherencesThe low
a.b,/e) for each realization. As expectegt2(f)~1, indi- y2(f) indicates coupling decay, hence, poor predictability of
cating strong coupling and hence nearly complete predicty(t). For highy3(f), notice that bothy?(f) and 8(f,f,)
ability of v(t). To investigate amplitude jitteicase Il, Table are high, while lowyZ2(f) is associated with lowy?(f) and
1), we hold the phase differences constant, while the amplig?(f,,f,).
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