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Critical behavior of O„n…-symmetric systems with reversible mode-coupling terms:
Stability against detailed-balance violation
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We investigate nonequilibrium critical properties ofO(n)-symmetric models with reversible mode-coupling
terms. Specifically, a variant of the model of Sasva´ri, Schwabl, and Sze´pfalusy ~SSS! is studied, where
violation of detailed balance is incorporated by allowing the order parameter and the dynamically coupled
conserved quantities to be governed by heat baths of different temperaturesTS andTM , respectively. Dynamic
perturbation theory and the field-theoretic renormalization group are applied to one-loop order, and yield two
new fixed points in addition to the equilibrium ones. The first fixed point corresponds toQ5TS /TM5` and
leads to modelA critical behavior for the order parameter and to anomalous noise correlations for the gener-
alized angular momenta; the second one is atQ50 and is characterized by mean-field behavior of the
conserved quantities, by a dynamic exponentz5d/2 equal to that of the equilibrium SSS model, and by
modified static critical exponents. However, both these new fixed points are unstable, and upon approaching
the critical point detailed balance is restored, and the equilibrium static and dynamic critical properties are
recovered.@S1063-651X~97!11504-5#

PACS number~s!: 05.70.Ln, 64.60.Ak, 64.60.Ht
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I. INTRODUCTION

Nonequilibrium steady states~NESS! have been much in
vestigated, the main goal being the discovery of their co
mon and distinguishing features as compared to equilibr
states. A promising approach to this problem is the study
phase transitions: since equilibrium critical phenomena
play a large degree of universality, it is natural to ask to w
extent these universal features remain characteristic of n
equilibrium phase transitions.

The basic complication with NESS is that, in addition
the interactions that entirely define the equilibrium prop
ties, the dynamics is also essential in determining the ste
state properties. Thus, for example, a classification of n
equilibrium phase transitions requires not only t
understanding of the role of symmetries of the order para
eter, the range of interactions, and the dimensionality of
system, but the clarification of both the relevance of cons
vation laws imposed by dynamical symmetries and the ra
of the dynamical processes. Possibly, new dimensiona
and anisotropy effects in the dynamics may also be imp
tant.

The most frequently studied models with nonequilibriu
phase transitions are generalizations of systems with m
A type dynamics@1#. The transitions in these systems ha
been shown to be robust against local nonequilibrium per
bations, which do not conserve the order parameter@2,3#,
and, remarkably, this robustness was found to persist ev
the dynamicalperturbations broke the discrete symmetry
the system@4#. Both locality and the nonconserving charac
of the perturbations are essential for the phase transitio
stay in the Ising universality class. Indeed, nonlocal noneq
librium dynamics generates effective long-range forces
551063-651X/97/55~4!/4120~17!/$10.00
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thus changes the universality class dramatically@5#.
The nonequilibrium generalizations of modelB type dy-

namics~with conserved order parameter! are more interest-
ing. External fields or local,anisotropic, nonequilibrium per-
turbations may drive the system into a NESS with pha
transitions that are not characterized by any known equi
rium universality class@6#, or belong to universality classe
with long-range interactions@7,8#.

Nonequilibrium generalizations of the case when a n
conserved order parameter is coupled to a conserved qua
have been considered in Ref.@9# where it was found that
linear coupling to a conserved quantity generates power-
correlations for the order parameter. This suggests tha
this situation, long-range effective interactions are genera
in the system, which in turn govern the critical behavior
the phase transition.

There are several other nonequilibrium phase transiti
that have been studied without considering any equilibri
context. Most notable among these are phase transitions
sociated with the presence of an absorbing state~directed
percolation! @10#, and the roughening transition in surfac
growth and equivalent models such as the Kardar-Pa
Zhang equation@11#.

In this paper we continue the investigation of nonequil
rium generalizations of models originally proposed to d
scribe equilibrium critical dynamics. Our aim is to study a
example where there is a reversible mode coupling betw
the order parameter and another~conserved! field, using the
field-theoretic dynamic renormalization group~RG! @12,13#.
A simple example of this type of system is the Heisenb
model for isotropic ferromagnets where precession terms
troduce a coupling among the different spin compone
~modelJ according to the classification in Ref.@1#; for early
4120 © 1997 The American Physical Society
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55 4121CRITICAL BEHAVIOR OF O(n)-SYMMETRIC SYSTEMS . . .
RG studies of this model see Ref.@14#; a comprehensive
review of the critical dynamics of ferromagnets is given
Ref. @15#!. However, similar to the purely relaxational dy
namics of modelsA andB, the effect of a~spatially isotro-
pic! violation of detailed balance can be removed by
simple rescaling~see Sec. II B!. We shall thus mainly con-
sider a more complicated model, which was originally intr
duced by Sasva´ri, Schwabl, and Sze´pfalusy~SSS! in the con-
text of structural phase transitions@16#. This SSS model
consists of a nonconservedn-component order paramete
purely dynamically coupled to then(n21)/2 conserved
generalized angular momenta related to the underly
O(n) symmetry of the system. Then52 realization de-
scribes the critical dynamics of planar ferromagnets and
perfluid 4He @17# ~for reviews regarding dynamic critica
phenomena in superfluid helium, see Ref.@18#!, while the
casen53 corresponds to the dynamics of isotropic antif
romagnets@19#. The SSS model, with its dynamic expone
z5d/2 ~below the upper critical dimensiondc54) thus en-
compasses modelsE andG ~according to Ref.@1#! as special
cases.

We shall generalize the previous field-theoretic RG st
ies of the SSS model@20,21# to a nonequilibrium situation by
assuming that the order-parameter componentsSa and con-
served angular momentaMab are attached to heat baths
different temperaturesTS and TM , respectively. Thus the
detailed-balance condition required for near-equilibrium d
namics is violated and the flow of energy between the t
heat baths ensures that the steady state is out of equilibr
The introduction of two temperatures leads to an additio
variable in the problem, namely, the temperature ra
Q5TS /TM ~of which no analog can be constructed f
model J). By studying the RG flow equations to one-loo
order ~first order ine542d), we find two new fixed points
corresponding to the casesQ50 andQ5`, respectively, in
addition to the equilibrium fixed points of the SSS mod
The latter are~i! the usual Gaussian fixed point~describing
static and dynamic mean-field behavior,z52), ~ii ! the model
A fixed point, corresponding to a decoupling of the co
served fields from the order parameter, with the nontriv
static exponents of theO(n)-symmetricf4 model and dy-
namic exponentz521O(e2), and the three nontrivial SSS
dynamic fixed points consisting of the two so-calledweak-
scalingfixed points with the order parameter and conserv
quantities fluctuating on different time scales, characteri
by the exponents~iii ! zS5222(n21)e/(2n21)1O(e2),
zM522e/(2n21)1O(e2), and ~iv! zS52 andzM5d22,
and finally ~v! the strong-scaling fixed point with
zS5zM5z5d/2. The results for~iv! and~v! actually hold to
all orders in e, and follow from the exact sum rule
zS1zM5d @17,20,22# ~see Sec. III A!. Stability analysis
shows that to one-loop order only the strong-scaling fix
point ~v! is stable; however, at least forn52 the actual
fixed-point values are rather close to its stability bounda
which allows for the possibility that in fact for superflui
helium strong scaling may be violated at the lambda tra
tion @20# ~a two-loop study of modelF, combined with Borel
resummation techniques, actually suggests the stability
weak-scaling fixed point@23#!.

The stability of the above fixed points may change in
nonequilibrium situation where the order parameter and c
-
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served variables are allowed to fluctuate at different temp
tures, which explicitly introduces different characteris
time scales. Indeed, while one of the two new nonequi
rium fixed points, corresponding to~a! Q5`, is described
by modelA dynamicszS5zM52 ~with the usualf4 model
statics!, albeit accompanied byanomalous noise correlation
for the conserved fields, the second new fixed point, chara
terized by ~b! Q50, yields, actually to all orders ine,
zS5d/2 for the order parameter as in equilibrium, b
zM52, i.e., ordinary diffusion for the generalized angul
momenta~note that the above-mentioned equilibrium su
rule does not hold here!; this unusual behavior is supple
mented byanomalous order-parameter noise correlation,
and evenmodified static critical exponents. However, stabil-
ity analysis reveals that in fact both these fixed points~a! and
~b! are unstable, and for any initial value of 0,Q,` the
flow asymptotically leads to thestable strong-scaling equi
librium fixed pointof the SSS model~see Sec. III B!. Thus
we conclude that while violation of detailed balance mig
be conceived as a relevant perturbation, in fact the unde
ing O(n) symmetry in conjunction with spatial isotropy an
the growing correlation length as the phase transition is
proached effectivelyrestore detailed balance~described by
the fixed point withQ51), and thus asymptotically yield th
usual static and dynamic critical behavior of the equilibriu
SSS model.

This paper is organized as follows. In Sec. II, we brie
review the derivation of Langevin equations describing
critial dynamics ofO(n)-symmetric models including re
versible mode-coupling terms, and consider the possible
evance of detailed-balance violation for the relaxatio
modelsA andB, as well as model J and the SSS model. S
III will then be devoted to the RG study of the nonequili
rium SSS model as outlined above, starting with stat
some general exact relations and Ward identities, follow
by a detailed study of the one-loop perturbation theory,
ensuing flow equations, and a discussion of the physical c
tent and stability of the RG fixed points. Finally, in Sec. I
we shall summarize our results again, draw some con
sions, and provide an outlook on possible future resea
along the path followed in this paper. In the Appendix, w
provide a list of the explicit results to one-loop order for t
two-, three-, and four-point functions required for the ren
malization of the nonequilibrium SSS model.

II. CRITICAL DYNAMICS OF MODELS
WITH REVERSIBLE MODE-COUPLING TERMS

A. General considerations

The universal static critical behavior of a system that
invariant with respect to rotations of itsn-component order
parameter and displays a second-order phase transition i
scribed by the followingO(n)-symmetric f4 Landau-
Ginzburg-Wilson Hamiltonian ind space dimensions

H@$S0
a%#5E ddxH r 02 (

a51

n

S0
a~x!21

1

2(
a51

n

@¹S0
a~x!#2

1
u0
4! F (a51

n

S0
a~x!2G2J ; ~2.1!
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herer 05(T2Tc
0)/Tc

0 denotes the relative distance from th
mean-field critical temperatureTc

0 , and we denote unrenor
malized quantities by a subscript ‘‘0.’’ This effective fre
energy determines the equilibrium probability distributi
for the vector order parameterS0

a ,

Peq@$S0
a%#5

e2H[ $S0
a%]/kBT

*D@$S0
a%#e2H[ $S0

a%]/kBT
, ~2.2!

and furthermore provides the starting point for the constr
tion of the field-theoretic static renormalization group, whi
by virtue of a perturbation~loop! expansion in the nonlinear
ity u0 provides a systematic means to compute the two in
pendent static critical exponentsh andn either in ane ex-
pansion about the upper critical dimensiondc54, or directly
in fixed dimensionalityd @24#. Here, h is the anomalous
dimension which describes the power-law decay of
order-parameter correlations at the critical poi
^Sa(x)Sb(x8)&}1/ux2x8ud221h, and the exponentn charac-
terizes the divergence of the correlation length asTc is ap-
proached,j}uT2Tcu2n.

The simplest dynamics that may be imposed on the or
parameter fluctuationsS0

a(x,t) in order to describe how the
system relaxes to equilibrium~for which the mean-field sta
tionarity conditiondH@$S0

a%#/dS0
a50 holds! is then given

by the following Langevin-type equations of motion:

]S0
a~x,t !

]t
52l0~ i¹!a

dH@$S0
a%#

dS0
a~x,t !

1za~x,t !, ~2.3!

where the temporal average of the stochastic forces is
sumed to vanish,̂za(x,t)&50. In equilibrium, furthermore,
an Einstein relation connects the second moment of the
correlated~white! noise with the relaxation coefficient,

^za~x,t !zb~x8,t8!&52l0kBT~ i¹!ad~x2x8!d~ t2t8!dab;
~2.4!

this ensures that the probability distributionP@$S0
a%# finally

approaches the equilibrium distribution~2.2! in the limit
t→`, as can be readily checked with the aid of the asso
ated Fokker-Planck equation. Equation~2.3! incorporates
both the case of a nonconserved order parameter with pu
relaxational dynamics (a50) and the case of a conserve
order parameter, which as a consequence of the ensuing
tinuity equation relaxes diffusively (a52). In the classifica-
tion scheme of Hohenberg and Halperin, these situations
referred to as modelsA andB, respectively, and the corre
sponding dynamic critical exponents describing the criti
slowing down near the phase transition~characteristic time
scales diverge astc}jz}uT2Tcu2zn) are given in terms of
the static exponenth by z542h ~model B) and
z521ch ~modelA) @1#. In the latter case, however,c is a
new universal number and thereforez is an independent ex
ponent not determined by the static critical exponents.

One may already anticipate that anisotropic violation of
the Einstein relation~2.4!, which is a consequence of a
underlying detailed balance condition, by choosing a coe
cient l̃0 instead ofl0kBT for the noise correlator, merel
amounts to a change in the order-parameter temperaturT.
-
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Therefore, as long as one remains sufficiently close to
critical point, theuniversalcritical behavior~exponents, am-
plitude ratios, etc.! will not be affected, while only nonuni-
versal amplitudes become modified through a rescaled n
linear couplingu0 ~see Sec. II B and Ref.@3#!.

However, in anO(n)-symmetric system there are alway
additional slow diffusive modes present. In our case th
modes are associated with the conserved generalized an
momentaM0

ab , which generate the rotations in orde
parameter space. Generically, they couple to the ord
parameter fluctuations, and therefore Eq.~2.3! does not cor-
rectly describe their dynamics. Two cases can now
distinguished:~i! the vector order parameter itself is identic
to the generators of the groupO(n); this yields, forn53,
precisely the dynamics of isotropic Heisenberg ferromagn
@14#, modelJ according to Ref.@1#. ~ii ! The order paramete
is nonconserved, and the conserved angular momenta co
tute new dynamical variables; this defines theO(n)-sym-
metric model introduced by Sasva´ri, Schwabl, and Sze´p-
falusy@16#, and encompasses both modelE for the dynamics
of theXY model, i.e., of planar ferromagnets and superflu
4He (n52) @17#, and modelG for isotropic antiferromag-
nets (n53) @19#.

Upon collecting the order-parameter and angul
momentum components in a large vectorca5(Sa,Mab), the
general structure of the ensuing Langevin equations re
@14,16#

]ca~x,t !

]t
5Va@$ca%#~x,t !2La

dH@$ca%#

dca~x,t !
1za~x,t !,

~2.5!

whereLa5l or La52D¹2 for all the nonconserved an
conserved fields, respectively. The second term on the ri
hand side of Eq.~2.5! describes irreversible relaxation pro
cesses as in modelsA andB @Eq. ~2.3!#; the first term, on the
other hand, consists ofreversible‘‘mode couplings,’’ which
are given entirely by the Poisson bracketsQab@$ca%#
}$ca,cb%. As can be shown with the Kawasaki-Mor
Zwanzig projector formalism,V@$ca%# assumes the form o
a ‘‘streaming velocity’’ in the space of theca, namely,

Va@$ca%#5g(
b

S kBTdQab

dcb 2Qab
dH@$ca%#

dcb D . ~2.6!

Note that the mode-coupling constantsg are independentof
a, which guarantees thatVa@$ca%#e2H[ $ca%]/kBT is
divergence-free,

E ddx(
a

d

dca~Va@$ca%#e2H[ $ca%]/kBT!50, ~2.7!

and therefore the equilibrium distributionPeq@$c
a%#

}e2H[ $ca%]/kBT is not affected by the mode-coupling term
which are of purely dynamical origin.

We defer the explicit construction of the mode-coupli
terms for modelJ and the SSS model to the following sub
sections, and close this general discussion with a brief o
line of how one may construct an effective field theory fro
Langevin equations of the type
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55 4123CRITICAL BEHAVIOR OF O(n)-SYMMETRIC SYSTEMS . . .
]ca~x,t !

]t
5Ka@$ca%#~x,t !1za~x,t ! ~2.8!

@see Eq.~2.5!#, with ^za(x,t)&50 and the general noise co
relator

^za~x,t !zb~x8,t8!&52Lad~x2x8!d~ t2t8!dab ~2.9!

~see Refs.@12,13#!. This form of the white noise may b
inferred from a Gaussian distribution for the stochastic for

W@$za%#}expF2
1

4E ddxE dt(
a

za~La!21zaG ;
~2.10!

eliminatingza via Eq. ~2.8! then immediately yields the de
sired probability distribution for the fieldsca,

W@$za%#D@$za%#5P@$ca%#D@$ca%#}eG[ $c
a%]D@$ca%#,

~2.11!

with the Onsager-Machlup functional

G@$ca%#52
1

4E ddxE dt(
a

S ]ca

]t
2Ka@$ca%# D

3~La!21S ]ca

]t
2Ka@$ca%# D . ~2.12!

From this functional one could already construct a pert
bation expansion for correlation functions of the fieldsca;
however, as for conserved quantities the inverse of the
sager coefficientLa is singular, and furthermore high non
linearities}Ka@$ca%#2 appear, it is convenient to introduc
Martin-Siggia-Rose auxiliary fields via a Gaussian transf
mation to partially linearize the above functional. This lea
to

P@$ca%#}E D@$ i c̃a%#eJ[ $c̃a%,$ca%] , ~2.13!

with the Janssen-De Dominicis functional

J@$c̃a%,$ca%#5E ddxE dt(
a

F c̃aLac̃a

2c̃aS ]ca

]t
2Ka@$ca%# D G . ~2.14!

Equation ~2.14! will provide the starting point for our
discussion of the nonequilibrium dynamics of the isotro
ferromagnet~modelJ) as well as that of the SSS model
the subsequent subsections. In Sec. III, we shall use the
responding Janssen–De Dominicis functional for the c
struction of the dynamical field theory of the SSS model w
broken detailed balance, and therefrom infer its RG fl
equations. We finally remark that both in Eqs.~2.12! and
~2.14! we have omitted contributions stemming from t
functional determinantD@$za%#/D@$ca%#. As is shown in
Refs.@13,20#, these terms precisely cancel anyacausalFeyn-
man diagrams for the dynamic response function that co
be constructed from the above functionals, and upon rest
s

-

n-

-
s

or-
-

ld
t-

ing the perturbation expansion to those contributions that
consistent with causality requirements, we may theref
safely neglect these additional terms.

B. Model J—isotropic ferromagnets

We now turn explicitly to the construction of the Lang
vin equation for the critical dynamics of isotropic ferroma
nets@14#. In this case,n53, and the order parameter consis
of the three spin components,Sx, Sy, andSz. The total mag-
netization is a conserved quantity~hencea52), and in fact
theSa are identical with the generators of the rotation gro
O(3): M125Sz, M235Sx, and M1352Sy. The Poisson
brackets between the spin components read

$Sa,Sb%5(
g

eabgSg, ~2.15!

which immediately yields the streaming velocity

Va@$Sa%#52g(
b,g

eabgSg
dH@$Sa%#

dSb

52g(
b,g

eabgSb¹2Sg, ~2.16!

because the contractions of the fully antisymmetric ten
eabg with all the symmetric terms in Eq.~2.1! vanish, leav-
ing only the contribution stemming from the gradient term
the Hamiltonian. The mode-coupling terms~2.16! represent
the spin precession in the effective field generated by
other spins, and in the ordered phase lead to propagating
waves ~Goldstone modes! with quadratic dispersionv(q)
}q2.

The complete Langevin equation for the conserved or
parameter of isotropic ferromagnets~model J according to
Ref. @1#! finally reads

]S0
a

]t
52g0(

b,g
eabgS0

b¹2S0
g1l0¹

2
dH@$S0

a%#

dS0
a 1za,

~2.17!

with ^za(x,t)&50 and

^za~x,t !zb~x8,t8!&522l̃0¹
2d~x2x8!d~ t2t8!dab.

~2.18!

Here we have already allowed for a violation of the detaile
balance condition by introducing a noise strengthl̃0 that is
not necessarily equal tol0kBT, wherel0 is the spin diffu-
sion constant. However, the form of Eqs.~2.17! and ~2.18!
already suggests that similar to the case of the purely re
ational modelsA andB, the ratio l̃0 /l0 may be absorbed
into a rescaled temperatureT, and modified nonlinear cou
plingsu0 andg0.

This can be readily seen by employing the correspond
Janssen–De Dominicis functional~2.14!; for our nonequilib-
rium modelJ this becomes a sum of the dynamic functiona
for the relaxational models
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Jrel@$S̃0
a%,$S0

a%#5E ddxE dt(
a

H l̃0S̃0
a~ i¹!aS̃0

a

2S̃0
aF ]

]t
1l0~ i¹!a~r 02¹2!GS0a

2l0

u0
6 (

b
S̃0

a~ i¹!aS0
aS0

bS0
b, ~2.19!

with a52, and the additional contribution stemming fro
the reversible spin precession term,

Jmc@$S̃0
a%,$S0

a%#52g0E ddxE dt (
a,b,g

eabgS̃0
aS0

b¹2S0
g .

~2.20!

Rescaling the fields according to

S̃0
a→S l0

l̃0
D 1/2S̃0a , S0

a→S l̃0
l0

D 1/2S0a ~2.21!

then renders the noise strength and the relaxation consta
the quadratic part~first and second line! of Eq. ~2.19! equal,
and if in addition the rescaled static and dynamic nonlin
couplings

ũ05
l̃0
l0

u0, g̃05S l̃0
l0

D 1/2g0 ~2.22!

are introduced, the ensuing Janssen–De Dominicis funct
als for the above nonequilibrium generalizations of the rel
ational models as well as modelJ appear in precisely the
same form as in equilibrium where detailed balance ho
As both the renormalized counterparts ofũ0 and g̃0

2 /l0
2 ap-

proach universal fixed-point values near the transition,
modifications in Eq.~2.22! merely enternonuniversalampli-
tudes. It is therefore established that thecritical properties of
neither the relaxational modelsA andB nor isotropic ferro-
magnets~model J) are affected by violating the detailed
balance condition. It is, however, important to note that b
the O(n) symmetryand the spatial isotropy of the model
have been left intact by the above nonequilibrium gener
zation. For the dynamics of Heisenberg ferromagnets,
finally remark that the dynamic critical exponent becom
z5(d122h)/2, as aconsequence of a Ward identity stem
ming from the underlyingO(3) symmetry ~see also Sec
III A ! and, indeed, dynamic scaling withz'5/2 is observed
experimentally in a variety of substances. In some real
romagnets, however, anisotropies and/or long-range dip
forces are present, which do not conserve the total magn
zation, and upon approaching the critical point lead to a
namic crossover to modelA scaling withz'2. Further de-
tails regarding these issues and the dynamic critical beha
of ferromagnets may be found in Ref.@15#.

C. The SSS model—planar ferromagnets,
isotropic antiferromagnets

More interesting for the issue of violating detailed balan
will clearly be a situation where there aretwo independent
temperature scales conceivable, and therefore a simple
t in

r

n-
-

s.

e

h

i-
e
s

r-
ar
ti-
-

or

e

m-

perature rescaling will not suffice to render the field theo
identical to the equilibrium one. We therefore consider
nonequilibrium version of theO(n)-symmetric SSS model
where a nonconservedn-component order parameter coupl
to n(n21)/2 conserved generalized angular momenta@16#;
possible realizations of this are as follows:~i! for n52: the
critical dynamics of theXY model @17# ~modelE according
to Ref. @1#!, with the order-parameter componentsSx and
Sy, and the conserved quantityM125Sz, which generates
rotations in thexy plane;~ii ! for n53: the dynamic critical
behavior of isotropic antiferromagnets, withSx, Sy, andSz

representing the components of the staggered magnetiza
andM125Mz,M235Mx, andM1352My denoting the com-
ponents of the magnetization itself, which are conserved
can be identified with the generators ofO(3) ~model G
@19#!.

The variablesM0
ab are noncritical quantities, and the

coupling to the order-parameter fluctuationsS0
a is of purely

dynamical character. Hence it suffices to simply add a q
dratic term to the Hamiltonian~2.1!,

H@$S0
a%,$M0

ab%#5H@$S0
a%#1E ddx

1

2(
a.b

M0
ab~x!2,

~2.23!

and for the construction of the reversible mode-coupl
terms, again all that is required are the following Poiss
brackets:

$Sa,Sb%50, $Mab,Sg%5dagSb2dbgSa,

$Mab,Mgd%5dagMbd1dbdMag2dadMbg2dbgMad.
~2.24!

Upon inserting Eq.~2.24! into Eq.~2.6!, one readily finds the
following mode-coupling terms in the equations of motion
the order parameter,

Va@$Sa%,$Mab%#5g(
b

Sb
dH

dMab 5g(
b

MabSb,

~2.25!

and in the equation of motion for the conserved angular m
menta,

Vab@$Sa%,$Mab%#5gSSa
dH

dSb 2Sb
dH

dSaD
1g(

g
SMag

dH

dMbg 2Mbg
dH

dMagD
52g~Sa¹2Sb2Sb¹2Sa!, ~2.26!

respectively. Note that as for modelJ @Eq. ~2.16!#, here as a
consequence of the antisymmetry of the Poisson brac
only the gradient terms in the Hamiltonian contribute. W
remark that in the ordered phase the above reversible m
couplings produce propagating Goldstone modes with lin
dispersionv(q)}q.

Thus we arrive at the following set of coupled nonline
Langevin equations that define the SSS model:
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]S0
a

]t
5g0(

b
M0

abS0
b2l0

dH@$S0
a%#

dS0
a 1za, ~2.27!

]M0
ab

]t
52g0~S0

a¹2S0
b2S0

b¹2S0
a!1D0¹

2M0
ab1hab,

~2.28!

with ^za(x,t)&50, ^hab(x,t)&50, and

^za~x,t !zb~x8,t8!&52l̃0d~x2x8!d~ t2t8!dab,
~2.29!

^hab~x,t !hgd~x8,t8!&522D̃0¹
2d~x2x8!d~ t2t8!

3~dabdgd2daddbg!. ~2.30!

Here we have allowed for violation of detailed balance
introducing noise coefficientsl̃0 and D̃0, which are in gen-
eral not taken equal tol0kBTS andD0kBTM , respectively,
whereTS andTM are the temperatures of the heat baths
the order parameter and of the conserved variables. Ye
now also have theadditional freedom to choose the rati
Q05TS /TM different from 1, which corresponds to a viola
tion of the detailed balance in the dynamicalcouplingof the
modesS0

a andM0
ab . We should stress again that neither t

underlyingO(n) symmetrynor the spatial isotropy are af
fected by this specific nonequilibrium perturbation.

This becomes clear upon considering the Janssen–De
minicis functional~2.14!, which corresponds to Eqs.~2.27!–
~2.30!. Its harmonic part now reads

Jhar@$S̃0
a%,$S0

a%,$M̃0
ab%,$M0

ab%#

5E ddxE dtH(
a

l̃0S̃0
aS̃0

a

2(
a

S̃0
aF ]

]t
1l0~r 02¹2!GS0a

2 (
a.b

D̃0M̃0
ab¹2M̃0

ab

2 (
a.b

M̃0
abS ]

]t
2D0¹

2DM0
abJ , ~2.31!

and can be readily rescaled to the equilibrium form via E
~2.21! combined with

M̃0
ab→SD0

D̃0
D 1/2M̃0

ab , M0
ab→S D̃0

D0
D 1/2M0

ab . ~2.32!

Thereby, the relaxation vertex

Jrel@$S̃0
a%,$S0

a%#52l0

u0
6 E ddxE dt(

a,b
S̃0

aS0
aS0

bS0
b

~2.33!

attains the new effective coupling

ũ05
l̃0
l0

u0 . ~2.34!
f
e

o-

.

For the mode-coupling terms,

Jmc@$S̃0
a%,$S0

a%,$M̃0
ab%,$M0

ab%#

5E ddxE dt(
a,b

H g0S̃0aM0
abS0

b

2
g0
2
M̃0

ab~S0
a¹S0

b2S0
b¹S0

a!J , ~2.35!

however, which originally have identical couplingsg0, the
effect of this rescaling procedure is to generate twodifferent
dynamical coupling constants in the first and second term
Eq. ~2.35!, respectively, namely,

g̃05S D̃0

D0
D 1/2g0 , g̃ 085Q0g̃0 , ~2.36!

where

Q05
l̃0
l0

D0

D̃0

. ~2.37!

Thus, even if both equations~2.27! and~2.28! obey detailed
balance separately, two different dynamic couplings will
generated as long asTSÞTM , and then the new variable
Q05TS /TM describes the deviation from equilibrium. Wit
the two independent couplingsg̃0 and g̃ 08 , the
renormalization-group equations will become different
compared to the equilibrium situation, and new critical b
havior may be expected at least in the extreme cases w
the temperature ratio is eitherQ050 orQ05`. In Sec. III,
we shall proceed with a detailed investigation of the on
loop flow equations of the nonequilibrium SSS model,
given by the field theory~2.31!, ~2.33!, and~2.35!, as func-
tion of the couplings~2.34!, ~2.36!, and~2.37!.

III. RENORMALIZATION OF THE NONEQUILIBRIUM
SSS MODEL

A. Response functions and Ward identities

By adding source terms to the Janssen–De Domin
functional ~2.14!, one arrives at the generating functional

Z@$h̃a%,$ha%#}E D@$ i c̃0
a%#D@$c0

a%#eJ[ $c̃0
a%,$c0

a%]

3expE ddxE dt(
a

~ h̃ac̃0
a1hac0

a!,

~3.1!

and the (ÑN)-point correlation functions ~cumulants!

G
0c̃ÑcN
c

can be obtained from lnZ via functional derivatives

with respect to the sourcesh̃a and ha, and then taking all
h̃a5ha50. Following the usual field-theoretic technique
@24,13#, we furthermore define the generating functional f
the one-particle irreducible vertex functions usingf̃0

a

5d lnZ/dh̃a andfo
a5d lnZ/dha via the Legendre transform
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G@$f̃0
a%,$f0

a%#52 lnZ@$h̃a%,$ha%#

1E ddxE dt(
a

~ h̃af̃0
a1haf0

a!;

~3.2!

the (ÑN)-point vertex functionsG0c̃ÑcN then follow via
functional derivatives of Eq.~3.2! with respect tof̃0

a and
f0

a .
With ^c0

a&50 we can write ^c0
a(x,t)c̃0

b(x8,t8)&
5G0c̃c

c
(x2x8,t2t8)dab, etc., and upon introducing th

Fourier transform according to ca(q,v)
5*ddx*dtca(x,t)e2 i (q•x2vt), one finds the following con-
nections between the two-point correlation and vertex fu
tions:

G0c̃c
c

~q,v!5G0c̃c~2q,2v!21, ~3.3!

G0cc
c ~q,v!52

G0c̃c̃~q,v!

uG0c̃c~q,v!u2
. ~3.4!

For the (ÑN)-point functions withÑN.2, relations similar
to Eq. ~3.4! hold; see Eq.~3.9! below.

In order to assign a meaning to the auxiliary fields,
compute the response functions for the SSS model by
adding external fields to the Hamiltonian~2.23! @13,22#,

H→H2E ddxF(
a

h̃aS0
a1 (

a.b
H̃abM0

abG , ~3.5!

which produces the following additional terms in the d
namic functional:

J→J1E ddxE dtFl0(
a

h̃aS̃0
a2D0 (

a.b
H̃ab¹2M̃0

ab

1g0(
a,b

S h̃aM̃0
abS0

b2H̃abS̃0
aS0

b2(
g

H̃abM̃0
agM0

bgD G .
~3.6!

Therefore the dynamic order-parameter susceptibility
comes

x0~x2x8,t2t8!dab5
d^S0

a~x,t !&

dh̃b~x8,t8!
U
h̃b50

5l0^S0
a~x,t !S̃0

b~x8,t8!&

1g0(
g

^S0
a~x,t !@M̃0

bgS0
g#~x8,t8!&,

~3.7!

and similarly the response function for the conserved qu
tities reads
-

st

-

n-

X0~x2x8,t2t8!~dagdbd2daddbg!

5
d^M0

ab~x,t !&

dH̃gd~x8,t8!
U
H̃gd50

52D0^M0
ab~x,t !¹2M̃0

gd~x8,t8!&

22g0^M0
ab~x,t !@S̃0

gS0
d#~x8,t8!&. ~3.8!

@Note that(r^M0
ab(x,t)@M̃0

grM0
dr#(x8,t8)&50.# Hence we

also need cumulants containing composite operatorsY0
a

5(b@M̃0
abS0

b# andY0
ab5@S̃0

aS0
b#, as well as the correspond

ing vertex functions, which are related to each other via

G0SY
c ~q,v!52

G0S̃Y~q,v!

G0S̃S~2q,2v!
. ~3.9!

Using Eqs.~3.4! and ~3.9!, we can finally write

x0~q,v!5G0S̃S~2q,2v!21@l02g0G0S̃[ M̃S]~q,v!#,
~3.10!

X0~q,v!5G0M̃M~2q,2v!21@D0q
212g0G0M̃ [ S̃S]~q,v!#.

~3.11!

We conclude this discussion of general properties of
SSS model with the derivation of Ward identities, which a
a consequence of theO(n) symmetry, and the fact that th
M0

ab are the generators of this symmetry group@17,20,22#.
As a first version, consider that a spatially homogeneous,
time-dependent external fieldH̃ab(t) is switched on at
t50. According to Eq.~3.5! and the equation of motion
~2.27!, this produces the following additional contribution
the expectation value of the order-parameter compon
S0

a ,

^S0
a~x,t !&H̃52g0E

0

t

dt8H̃ab~ t8!^S0
b~x,t8!&H̃ . ~3.12!

Upon employing suitable variational derivatives, this leads
the following relation between the nonlinear susceptibility

R0S;SM~x,t;x8,t8;x9,t9!~dagdbd2daddbg!

5
d2^S0

a~x,t !&

dh̃b~x8,t8!dH̃gd~x9,t9!
U
h̃b5H̃gd50

~3.13!

and the order-parameter response:

E ddx8R0S;SM~x,t;0,0;x8,t8!52g0Q~ t2t8!x0~x,t !.

~3.14!

An equivalent Ward identity for vertex functions can be o
tained by noting that the ‘‘mixed’’ generating functiona
W@$f̃0

a%,$f0
a%,$H̃ab%,$Hab%# @compare Eqs.~3.1!, ~3.2!# is

invariant with respect to the following nontrivial variation
corresponding to Eq. ~3.12!: dH̃ab5«H̃ab, df0

a

52«g0(bH̃
abf0

bt @22#. Hence
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dW5
«

2E ddxE dt(
a,b

H̃abF dW

dH̃ab
22g0

dW

df0
a f0

btG50,

~3.15!

which with m̃0
ab5d lnZ/dH̃ab translates to a Ward identit

for the generating functional~3.2! of the vertex functions,

E ddxE dt(
a,b

dG

dm̃0
ab F m̃0

ab22g0
dG

df0
a f0

btG50.

~3.16!

Specifically, this yields

G0M̃ S̃S~q/2,v/2;q/2,v/2;2q,2v!

5g0
]

]~ iv!
@G0M̃ M̃~q/2,v/2!G0S̃S~q/2,v/2!#.

~3.17!

Note that Eqs.~3.14! and~3.17! hold quite independently o
any detailed-balance condition.

We can use these Ward identities now to demonstrate
the mode-coupling constantg, as a consequence of the u
derlying O(n) symmetry, does not renormalize@20#. First,
we note that thestatic response function for the conserve
angular momenta isexactly

X0~q,v50![1, ~3.18!

as follows from the Hamiltonian~2.23! and the fact that in
the limit v→0 there is no coupling between the critical flu
tuationsS0

a andM0
ab , which is true even for our nonequilib

rium model. Therefore there cannot be any field renorm
ization for the angular momenta:Mab5ZM

1/2M0
ab ~and

similarly for M̃ab) with ZM[1. Second, as a result of th
q dependence of the mode-coupling vertices~2.35!, to all
orders in perturbation theory

]

]~ iv!
G0 M̃M~q50,v![1, ~3.19!

and henceZM̃ZM[1. We remark that an analogous equati
for modelB leads to the identityz542h for the dynamic
exponent@13#; a similar result for the Kardar-Parisi-Zhan
~KPZ! equation implies the absence of field renormalizatio
there as well@25#. At last, we utilize the above Ward iden
tities ~3.14!, ~3.17!, both of which imply that the renormal
ization factor for the mode-coupling constant is identical
Zg[ZM[1. Physically, this means that the reversible mo
couplings are not affected by critical fluctuations. This fa
will lead to certain general identities for the dynamic exp
nent in the scaling regimes; see Sec. III C. Again, sim
Ward identities may be derived and corresponding con
sions can be drawn for the mode-coupling constant in mo
J, as mentioned above, leading to the exact re
z5(d122h)/2 @14#, and also for the nonlinearity in th
KPZ problem, there originating in the Galilean invariance
the equivalent Burgers equation, and implying the nontriv
scaling relationz1x52 between the dynamic and roug
ness exponents@25#.
at
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t
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B. Renormalization to one-loop order

Bearing the results of the previous subsection in mind,
introduce multiplicatively renormalized fields and param
eters according to

S̃a5Z
S̃

1/2
S̃0

a , Sa5ZS
1/2S0

a , ~3.20!

l̃5Z
S̃

21
Zl̃ l̃0 , D̃5ZD̃D̃0 , ~3.21!

l5~ZS̃ZS!
21/2Zll0 , D5ZDD0 , ~3.22!

t5ZS
21Ztt0m

22, t05r 02r 0c , ~3.23!

u5ZS
22Zuu0Adm

d24. ~3.24!

Here,Ad5G(32d/2)/2d21pd/2 denotes ad-dependent geo-
metric factor, andm is a momentum scale. Thus all th
renormalized couplings are dimensionless, as isg
5g0Ad

1/2m (d24)/2. Note that both the static and the mod
coupling constantsu0 and g0 become dimensionless at th
upper critical dimensiondc54. We determine the renorma
ization constants~Z factors! by demanding that they absor
all the ~ultraviolet! divergences in the corresponding vert
functions to one-loop order~see the Appendix!. We further-
more employ the dimensional regularization scheme w
minimal subtraction ind542e dimensions, i.e., only in-
clude the ultraviolet poles}1/e in theZ factors, along with
their residues in four dimensions~further details on these
procedures can be found in Ref.@24#!. In order to avoid the
infrared singularities near the critical point, we taket51
(t05m2 to one-loop order! andq50, v50 as the normal-
ization point. This, of course, follows closely the renorma
ization procedure for the equilibrium SSS model@20# ~see
also Ref.@21#!.

Using G S̃S̃(q,v)5Z
S̃

21
G0 S̃S̃(q,v), the renormalization

of the noise strengthsl̃0 andD̃0, as well as of the diffusion
constantD0 is readily inferred from Eqs.~A3!, ~A4!, and
~A8!, respectively, with the results

Zl̃511
Adm

2e

e

n21

11w0
w0 f̄ 0 , ~3.25!

ZD̃511
Adm

2e

2e
w0 f̄ 0Q0

2 , ~3.26!

ZD511
Adm

2e

2e
w0 f̄ 0Q0 , ~3.27!

where we have used the definitions~2.37! and

w05
l0

D0
, f̄ 05g0

2 D̃0

l0
2D0

~3.28!

for the ratio of relaxation constantsw0 and effective dynami-
cal coupling f̄ 0.

Next, we considerG S̃S(q,v)5(ZS̃ZS)
21/2G0S̃S(q,v); see

Eq. ~A5!. First, we determine the fluctuation-inducedTc shift
r 0c from the condition of criticalityx0(q50,v50)2150,
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which because of Eq.~3.10! is equivalent to demanding tha
G0S̃S(0,0)50 for r 05r 0c . Equation~A7! then yields with
Eq. ~2.34!

r 0c52
n12

6
ũ0E

k

1

r 0c1k2

2~n21!w0 f̄ 0~12Q0!E
k

1

w0r 0c1~11w0!k
2 ;

~3.29!

note that ford<2 the integrals on the right-hand side of E
~3.29! are infrared divergent. Evaluating the momentum
tegrals for 2,d,4 gives explicitly

ur 0cu5S 2Ad

~d22!~42d! Fn12

6
ũ01~n21!

3S w0

11w0
D d/2f̄ 0~12Q0!G D 2/~42d!

~3.30!

~notice the pole atdlc52 and the essential singularity a
dc54). The first term here corresponds to the downwa
shift of the critical temperature of thef4 model; the second
contribution, which is of purely dynamical origin, may eith
reduceTc further, namely, forTS,TM , or enhance it with
respect to the equilibrium situation, ifTS.TM .

Upon definingt05r 02r 0c , the true distance from the
critical point, and inserting Eq.~3.29! into ~A7!, setting
r 0c501O(u0 ,g0

2) in the integrals, one finds
-

s

Zt

Zl

ZS
512

Adm
2e

e

n12

6
ũ01

Adm
2e

e

n21

11w0
w0 f̄ 0Q0

2
Adm

2e

e

~n21!w0
2

~11w0!
2 f̄ 0~12Q0!. ~3.31!

Then, rendering]G S̃S(0,v)/]( iv) and]G S̃S(q,0)/]q
2 finite

gives

~ZS̃ZS!
1/2512

Adm
2e

e

~n21!w0
2

~11w0!
2 f̄ 0~12Q0!, ~3.32!

Zl511
Adm

2e

e

n21

11w0
w0 f̄ 0Q0

2
Adm

2e

e

~n21!w0
2

~11w0!
3 f̄ 0~12Q0!. ~3.33!

Equation ~3.32! also absorbs the divergences in the thre
point function ~A11!, which confirms that indeedZg51.
Equation~A12! can then be used to determine the still u
known field renormalization itself, with the result

ZS512
Adm

2e

2e

n21

~11w0!
2w0 f̄ 0~12Q0!; ~3.34!

notice thatZSÞ1 andZS̃Þ1 already to one-loop order i
Q0Þ1. At last, the multiplicative renormalization of th
nonequilibrium SSS model vertex functions is concluded
rendering the four-point function~A13! finite with
e
involved

is

uced.
Zu
Zl

ZS
512

Adm
2e

e

n18

6
ũ01

Adm
2e

e

n21

11w0
w0 f̄ 02

Adm
2e

e

~n21!w0
2

~11w0!
2 f̄ 0~12Q0!2

6Adm
2e

e

n21

11w0

~w0 f̄ 0!
2

ũ0
Q0~12Q0!.

~3.35!

When detailed balance holds,Q051, these one-loopZ factors reduce to the well-known equilibrium results@20#.
Whereas the vertex functions and hence also the two-point correlation functions~3.4! are rendered finite with the abov

Z factors, the dynamic response functions may require additional additive renormalizations, as a consequence of the
composite operators. The response function for the conserved angular momenta~3.11!, using Eq.~3.18! for its static limit, can
generally be written in the following form:

X0~q,v!5
D0~q,v!q2

2 iv1D0~q,v!q2
. ~3.36!

Using Eqs.~A6! and ~A10!, one finds the one-loop result

D0~q,v!5D0F11
2

d
w0 f̄ 0Q0E

k

k2

t01~q/21k!2
1

t01~q/22k!2
1

2 iv/2l01t01q2/41k2G ; ~3.37!

hence, as the ultraviolet singularity in Eq.~3.37! is absorbed by theZ factor~3.27!, no additive renormalization is needed. Th
comes as no surprise, as the contribution from Eq.~A10! is nonsingular.

However, the integral Eq.~A9! is divergent, and therefore a corresponding additive renormalization has to be introd
The structure of the order-parameter susceptibility~3.10! is

x0~q,v!5
L0~q,v!

2 iv1L0~q,v!/x0~q,0!
. ~3.38!

Here, using Eqs.~A5! and ~A9!, the static susceptibility reads to one-loop order
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x0~q,0!215t0F12
n12

6
ũ0E

k

1

k2~t01k2!
2

n21

11w0
w0
2 f̄ 0~12Q0!E

k

1

k2@w0t02~12w0!~q•k!1~11w0!~q
2/41k2!#

1q2

1
n21

11w0
w0 f̄ 0~12Q0!E

k

~12w0!~q•k!2~11w0!q
2/4

k2@w0t02~12w0!~q•k!1~11w0!~q
2/41k2!#G , ~3.39!

where Eq.~3.29! has been inserted, and the renormalized Onsager coefficient is

L0~q,v!5l0F11~n21!w0 f̄ 0Q0E
k

1

t01~q/21k!2
1

2 iv/D01w0@t01~q/21k!2#1~q/22k!2G ; ~3.40!
it
s
i-

h

th
m

-
li-
e

n

e

tial

as expected, the above multiplicative renormalizations w
Eqs.~3.31!–~3.34! do not suffice to remove the divergence
in Eqs.~3.39! and ~3.40!. We determine the necessary add
tive renormalization by requiring that

]

]q2
x0~q,0!sing

215ZS1AS , ~3.41!

and Eqs.~3.39! and ~3.34! then yield

AS52
Adm

2e

e

n21

~11w0!
2 S 121

w0

11w0
Dw0 f̄ 0~12Q0!.

~3.42!

Indeed,x0(0,0)
21 andL0(0,0) are then rendered finite wit

the combinations of Z factors (ZS1AS)Zt /ZS and
Zl /(ZS1AS), respectively.

C. RG flow equations and fixed points

The renormalization-group equations serve to connect
asymptotic theory, where the infrared divergences beco
manifest, with a region in parameter space~in our case con-
sisting of$a%5l̃,D̃,l,D,g,u,t) where the couplings are fi
nite and ordinary ‘‘naive’’ perturbation expansion is app
cable. They are derived by observing that the ‘‘bare’’ vert
functions do not depend on the renormalization scalem,

m
d

dm U
0

G0S̃r M̃kSsMl~$a0%!50. ~3.43!

Introducing Wilson’s flow functions

z S̃5m
]

]mU
0

lnZS̃ ,zS5m
]

]mU
0

lnZS , ~3.44!

za5m
]

]mU
0

ln
a

a0
, ~3.45!

Eq. ~3.43! may be written as a partial differential equatio
for the renormalized vertex functions:

Fm
]

]m
1(

$a%
zaa

]

]a
1
r

2
z S̃1

s

2
zSGG S̃r M̃kSsM l~m,$a%!50.

~3.46!

Note thatz M̃5zM[0 andzg[2e/2 as a consequence of th
exact results in Sec. III A. Equation~3.46! can be solved
h

e
e

x

with the method of characteristicsm→ml ; this defines run-
ning couplings as the solutions to the first-order differen
RG flow equations

l
da~ l !

dl
5za~ l !a~ l !, a~1!5a. ~3.47!

The solution of the Callan-Symanzik equation~3.46! then
reads

G S̃r M̃kSsMl~m,$a%,q,v!

5expH 12E1l @r z S̃~ l 8!1szS~ l 8!#
dl 8

l 8 J
3G S̃r M̃kSsMl~ml ,$a~ l !%,q/ml ,v/m2l 2!.

~3.48!

Upon introducing the renormalized ratios

w5
l

D
, Q5

l̃

l

D

D̃
~3.49!

and renormalized effective couplings

f̄5g2
D̃

l2D
, ũ5

l̃

l
u, ~3.50!

and collecting the definitions Eqs.~3.20!–~3.23! and one-
loop results~3.25!–~3.27! and ~3.31!–~3.34!, one finds

zS5
n21

2

1

~11w!2
w f̄~12Q!, ~3.51!

z S̃52
n21

2

124w

~11w!2
w f̄~12Q!, ~3.52!

zt5221
n12

6
ũ1

~n21!w2

~11w!3
w f̄~12Q!, ~3.53!

z l̃52
n21

11w
w f̄1

n21

2

124w

~11w!2
w f̄~12Q!, ~3.54!

z D̃52
1

2
w f̄Q2, ~3.55!
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zl52
n21

11w
w f̄Q2

~n21!w2

~11w!3
w f̄~12Q!, ~3.56!

zD52
1

2
w f̄Q. ~3.57!

Notice that nonzero values ofz l̃ and z D̃ induce anomalous
noise correlations, whilezl and zD determine the dynamic
critical exponents; see Eq.~3.66! below.

We furthermore need the flows for the running couplin
v(l ), with $v%5w,Q, f̄ ,ũ,

l
dv~ l !

dl
5bv~ l !, v~1!5v, ~3.58!

as given by theb functions

bv5m
]

]m U
0

v; ~3.59!

with Eqs. ~3.24!, ~3.35!, and ~3.54!–~3.57! these become to
one-loop order

bw5w~zl2zD!

5w2 f̄ F S 122
n21

11wDQ2
~n21!w2

~11w!3
~12Q!G ,

~3.60!

bQ5Q~zl̃2z D̃2zl1zD!

52
1

2
w f̄Q~12Q!FQ1~n21!

117w14w2

~11w!3 G ,
~3.61!

b f̄ 5 f̄ ~2e1z D̃22zl2zD!

5 f̄ F2e2
1

2
w f̄Q21S 121

2~n21!

11w Dw f̄Q
1
2~n21!w2

~11w!3
w f̄~12Q!G , ~3.62!

b ũ5ũF2e1
n18

6
ũ2

2~n21!w

~11w!3
w f̄~12Q!

2
2~n21!

11w S 12
3w f̄Q

ũ Dw f̄~12Q!G . ~3.63!

We are now ready to explore the fixed points of the R
flow equations, as given by the zeros of theb functions
~3.60!–~3.63!. First, we can check that indeed forQ*51 the
equilibrium fixed points~see Ref.@20#! emerge. The above
flow equations then simplify considerably, and the effect
dynamical coupling in Eqs.~3.54!–~3.57! becomes

f5w f̄5
g2

lD
, ~3.64!
s

e

because as nowz l̃[zl and z D̃[zD , we can identify the
noise strengthsl̃ andD̃ with the Onsager coefficientsl and
D, respectively. The correspondingb function for f reads

b f5 f ~2e2zl2zD!5 f F2e1S 121
n21

11wD f G .
~3.65!

The first equation in Eq.~3.65! implies that foranynontrivial
fixed point 0, f *,` the exact relation zl*1zD*
52e5d24 holds. Furthermore the analysis of the R
equation in the vicinity off * reveals that the dynamic expo
nents for the fluctuations of the order-parameter and c
served quantities are given by

zS521zl* , zM521zD* , ~3.66!

which then leads to the following identity@17,20,22#:

zs1zM5d. ~3.67!

Therefore, in astrong-scalingsituation where the characte
istic time scales for the order parameter and angular m
menta are the same, 0,w*,`, and hencezS5zM5z, one
finds the well-knownexactresult

z5d/2. ~3.68!

Indeed, the above one-loop flow equations~3.60! and~3.65!
provide the strong-scaling fixed point

weq* 52n23, f eq* 5e. ~3.69!

However, in addition there are two nontrivialweak-
scalingfixed points withzl*ÞzD* , namely,

ww*50, f w*5
2e

2n21
, ~3.70!

with

zS522
2~n21!e

2n21
1O~e2!,

zM522
e

2n21
1O~e2!, ~3.71!

and

ww8
* 5`, f w8

* 52e, ~3.72!

implying that

zS52, zM5d22. ~3.73!

Note that at both fixed points the relationzS1zM5d holds,
of course. For the fixed point~3.72! this sum rule actually
even implies that Eq.~3.73! is probably exact, forzl should
vanish if w*5`. Finally, there is also the modelA fixed
point with f 0*50 ~and w* unspecified because now th
order-parameter and angular momenta are decoupled!, with
zS521O(e2); yet, according to Eq.~3.65!, it is clearly un-
stable against f for d,4: l d f /dl 5b f(l )52e f at
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f 0*50, and hencef will increase in the asymptotic limi
l →0. Similarly, both weak-scaling fixed points are unsta
~to one-loop order at least! for d,4: Nearww8

* 5` one has
bw5ew, and hencew will decrease asl →0, while in the
vicinity of ww*50 one findsbw52ew(2n23)/(2n21),
and upon decreasingl , w will go down as well. Stability
analysis therefore demonstrates that to one-loop order
strong-scalingfixed point withz5d/2 is stable@17,19,20#;
however, asww*50 is actually close to its stability boundar
for n52, it may well be that to higher-loop orders th
strong-scaling fixed point actually becomes unstable for
planar model, and in fact Eq.~3.68! does not hold@20,23#.

We shall not pursue this issue further here, but rather t
to the newly emerging, genuinelynonequilibrium fixed
points, at which even the static critical behavior might
changed, as opposed to the equilibrium situation w
Q*51 for which statics and dynamics decouple; see E
~3.51!, ~3.53!, and~3.63!. For all the above fixed points, w
therefore have the nontrivial static Heisenberg fixed point~to
one-loop order!

uH*5
6e

n18
, ~3.74!

which is stable ford,4, and leads to the critical exponen
of theO(n)-symmetricf4 model

h52zS*501 lO~e2!,

1/n52zt*522
~n12!e

n18
1O~e2!. ~3.75!

At the critical point there also appear anomalous long-ra
noise correlations, both for the fluctuations of the ord
parameter and of the conserved fields. For the ord
parameter noise, given byG S̃S̃(q,v), one finds

^za~q,v!zb~q8,v8!&

5L~q,v!d~q1q8!d~v1v8!dab, ~3.76!

with

L~q,0!}qzS22, L~0,v!}v~zS22!/2. ~3.77!

Similarly, from G M̃ M̃(q,v) we can infer the noise for the
generalized angular momenta at the critical point, taking i
account its diffusive character,

^hab~q,v!hgd~q8,v8!&5D~q,v!d~q1q8!d~v1v8!

3~dagdbd2daddbg!; ~3.78!

taking into account its diffusive character, we find the lim
ing behavior

D~q,0!}qzM, D~q→0,v/q2!}~v/q2!zM /2. ~3.79!

This concludes our discussion of the equilibrium fix
points, and we now turn to the two new universality clas
appearing as a consequence of our genuinely nonequilib
perturbation.
he

e

rn

h
s.

e
-
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o

s
m

The b function for the temperature ratioQ05TS /TM
~3.61! reveals that there can only be nonequilibrium fix
points with either ~i! Q*50 or ~ii ! Q*5`, which as
TS'Tc effectively either correspond to a ‘‘renormalized
temperatureTM5` or TM50. In the first case,Q*50, one
finds bw52(n21)w f̄w3/(11w)3, with the stable fixed
pointw*5`. Inserting this into Eqs.~3.62! and~3.63! yields

Q*50: w*5`, f̄ *5
e

2~n21!
,

ũ*52uH*5
12e

n18
. ~3.80!

The divergence ofw* already shows that this fixed poin
describes a kind of weak-scaling behavior somewhat sim
to the equilibrium fixed point~3.72! with ~3.73!. Indeed, in-
serting Eq.~3.80! into Eqs.~3.56! and ~3.57! yields

zS5d/2, zM52, ~3.81!

i.e., the dynamic exponent for the order parameter is ide
cal to its equilibrium value, while the angular momenta a
described by mean-field theory~simple diffusion!. Actually,
any nontrivial fixed point 0, f̄ *,` via Eqs. ~3.62! and
~3.66! implies the identity 2zS1zM5d121zD* . As for
Q*50 both the anomalous dimensions~3.57! and ~3.55!
should vanish according to the general structure of the c
plings, the result~3.81! is probably exact. There is, howeve
a nonzero anomalous dimension for the order-param
noise,z

l̃
*52e; therefore the constantl̃0 in Eq. ~2.29! is to

be replaced by a wave-vector- and frequency-depend
function,

^za~q,v!zb~q8,v8!&

5L̃~q,v!d~q1q8!d~v1v8!dab, ~3.82!

with the singular large-wavelength and low-frequency b
havior (d,4)

L̃~q,0!}qd24, L̃~0,v!}v~d24!/2, ~3.83!

which follows from the matching conditionsml 5q and
(ml )25v, respectively. Finally, the new nonequilibrium
static fixed pointũ*52uH* , along with the fact that now the
dynamics affects the static anomalous dimension~3.53!,
yields thenewstatic critical exponents

h52zS*501O~e2!,

1/n52zt*522S 121
2~n12!

n18 D e1O~e2!. ~3.84!

According to Eq.~2.36!, the fixed point~3.80! corresponds to
the situation where there exists a coupling}g0 of the order
parameter to the angular momenta, leading to the dyna
exponentzS5d/2, the generation of long-range noise corr
lations, and even to anomalous static exponents, yet the
namics of the conserved quantities themselves remains u
fected by the critical fluctuations and hence displays me
field behavior.
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The above analysis has tacitly assumed thatw̃5wQ
5l̃/D̃ remains finite forQ*50 and w*5`. However,
b w̃5w̃(z l̃2z D̃)52ew̃, and hence the fixed point~3.80! is
unstable for d,4 against an increasing couplingw̃, or
equivalently, against the generation of the new effective c
pling

f̃5w f̄Q25g2
l̃2

l3D̃
, ~3.85!

which characterizes the second nonequilibrium fixed po
whereQ*5`, and which describes a coupling of the critic
order-parameter fluctuations into the diffusive dynamics
the angular momenta, but no effect of the latter on the eq
tion of motion for the order parameter itself. Indeed, t
anomalous dimensions~3.51!–~3.54!, ~3.56!, ~3.57! all van-
ish whenQ→` with f̃ held finite, and with Eq.~3.63! one
finds the standardf4 Heisenberg static exponents~3.75!
along with modelA and purely diffusive dynamics for th
order-parameter and conserved quantities, respectively,

zS521O~e2!, zM52; ~3.86!

note thatw* cannot be specified because of this decoupl
of the modes. Theb function for the effective mode couplin
~3.85! becomes b f̃ 5 f̃ (2e12z l̃23zl2z D̃)5 f̃ (2e
1 f̃ /2), andhence we arrive at the following fixed-point va
ues:

Q*5`: f̃ *52e, ũ*5uH* . ~3.87!

At this fixed point anomalous noise correlations for the a
gular momenta emerge, which in analogy with Eq.~3.82! can
be written in the form

^hab~q,v!hgd~q8,v8!&5D̃~q,v!d~q1q8!d~v1v8!

3~dagdbd2daddbg!, ~3.88!

replacing Eq.~2.30!. Their singular behavior follows from
Eq. ~3.55! with ~3.87!,

D̃~q,0!}qr, r5d22, ~3.89!

which is probably an exact result again, because the e
tence of a nontrivial fixed pointf̃ * with r521z

D̃
* implies

the relation 3zS1r5d1412z
l̃
* , and both the structure o

the perturbation theory and the above physical interpreta
require thatzl*5z

l̃
*50. Similarly, the frequency depen

dence ofD̃(q,v) displays anomalous behavior, but becau
of the underlying diffusive dynamics we now have to ta
the limit q→0more carefully, namely, withv/q2 held fixed.
One then gets

D̃~q→0,v/q2!}~v/q2!r/2. ~3.90!

It is a remarkable fact that these anomalous noise corr
tions always appear for those degrees of freedomtowards
which the energy flows, i.e., those quantitites that are in c
tact with the heat bath atlower temperature. It should be
noticed that the power laws in Eqs.~3.83!, ~3.89!, and~3.90!
-

t

f
a-

g

-

is-

n

e

a-

-

arenotdetermined by the corresponding dynamic exponents
as opposed to the equilibrium situation described by Eqs
~3.77! and ~3.79!, which are consequences of detailed bal-
ance. Yet again, inspection of Eq.~3.62! in the vicinity of
Eq. ~3.87!, b f̄ 522e f̄ , shows that this second new fixed
point isunstablewith respect to the flow off̄ .

Therefore, as both new nonequilibrium fixed points are
actually unstable ford,4, theasymptotic critical behavior
must be governed by theequilibrium ~strong-scaling! fixed
point ~3.69!, ~3.74! with dynamic exponent~3.68! and the
usual static critical exponents~3.75!. The stability against
perturbations away fromQ*51 is readily demonstrated by
observing thatbQ52C(12Q), with C.0 according to Eq.
~3.61!. Hence any deviation from the equilibrium fixed point
will be counteracted by the flow of the couplingQ; i.e.,
whenever the initial value ofQ is neither zero or infinite, the
flow will asymptotically approach the stable equilibrium
fixed point, and thereby detailed balance isdynamically re-
stored. This is illustrated in Fig. 1, which displays the loca-
tion of the fixed points and their flow in the space of the
dynamical couplingsw, f̄ , and f̃ ; notice that both the equi-
librium and ‘‘nonequilibrium’’ modelA fixed points are rep-
resented by lines here because of the undetermined value
w* . Concluding this section, we remark that at each of the
fixed points discussed above, including both new nonequilib
rium fixed points, the anomalous dimension stemming from
the additive renormalization~3.42! vanishes, as doeszS from
the field renormalization. We therefore did not have to take
its effects into account explicitly.

IV. SUMMARY AND CONCLUSIONS

We have studied the critical dynamics ofO(n)-
symmetric systems, including reversible mode-coupling
terms, in the framework of effective Langevin equations and
dynamic field theory, and generalized the equations of mo

FIG. 1. One-loop flow diagram for the nonequilibrium SSS
model in the space of dynamical couplingsw/(11w), f̄ /(11 f̄ ),
and f̃ /2 ~displayed for the casen52, e51). Asymptotically, the
equilibrium strong-scaling fixed pointweq* 52n23, f̃ eq* 5e,
f̄ eq* 5e/(2n23) is stable; in the figure, it is located at the point
(1/2,1/2,1/2)~full circle!.
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tions to nonequilibrium situations where detailed balance
broken. In Sec. II B we have argued that for the dynamics
isotropic Heisenberg ferromagnets the effect of violating
Einstein relation between the spin diffusion constant and
Langevin noise strength can be absorbed via rescaling
static nonlinearity and the mode-coupling constant. He
universal properties cannot be affected by this specific fo
of detailed-balance violation, and the critical point is d
scribed by the usual Heisenberg model exponents with
equilibrium dynamic critical exponentz5(d122h)/2 @14#.
This fact generalizes previous results regarding the stab
of the relaxational modelsA andB against nonequilibrium
perturbations@2,3,4# to a situation where reversible mod
coupling terms are present as well.

On the other hand, for the critical dynamics of plan
ferromagnets~model E) @17# or isotropic antiferromagnet
~modelG) @19#, both incorporated in theO(n)-symmetric
SSS model@16#, such a simple rescaling does not remove
effects of detailed-balance violation completely, as discus
in Sec. II C. This is because there appears a new degre
freedom, namely, the temperature ratioQ0 of the heat baths
to which the order parameter and the conserved angular
menta are attached. This new variable induces differ
renormalizations for the noise strengths as compared to
Onsager coefficients~Sec. III B!, and therefore genuinely
new dynamic and static critical behavior may emerge.
deed, there appear two new fixed points of the resulting
flow equations, describing continuous phase transitions
entirely nonequilibrium character, namely, corresponding
eitherQ50 or Q5`, where in the former case even th
static critical exponents become modified. The ensuing
namic exponents may be interpreted physically by not
that in both cases either the coupling of the order param
into the diffusion equation for the conserved fields vanis
while the reverse coupling remains effective or vice ver
To one-loop order, however, the stability analysis in S
III C shows that both of these fixed points are actually u
stable, and provided 0,Q0,` the asymptotic critical be-
havior is governed by the nontrivial strong-scaling equil
rium fixed point of the SSS model characterized again by
static exponents of theO(n)-symmetric Heisenberg mode
and by the dynamic exponentz5d/2 @16,20#.

This suggests that the role of detailed balance is actua
weaker one as compared to internal symmetries; for w
breaking a discrete or continuous symmetry typically res
in a change of the universality class, detailed balance
comes restored here at the critical point, obviously as a c
sequence of the underlyingO(n) rotation symmetry and the
spatial isotropy of the model. We remark that there are so
notable exceptions, though, for the relevance of symme
breaking terms. For example, theO(n) symmetry of the
Heisenberg model~2.1! is restored as a consequence of t
large critical fluctuations, even when cubic anisotropies
added, ifn,nc ~with nc54 to one-loop order! @26#. We
should also cautiously state that our above results relied
the one-loop approximation only, and specifically the sta
ity boundaries might change in more accurate calculatio
as seems indeed to be the case for the equilibrium pla
model@23#. However, in theb functionsb w̃ andb f̄ describ-
ing the instabilities of the fixed points~3.80! and ~3.87!,
respectively, no dangerousn dependences appeared, and it
is
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therefore probably safe to say that these nonequilibri
fixed points will remain unstable even to higher orders
perturbation theory, albeit forn52 the asymptotic region
may ultimately be governed by the weak-scaling equilibriu
fixed point ~3.70!; see also Fig. 1.

The remarkable result that violation of detailed balan
appears to be an irrelevant perturbation in the RG sens
least in rotation-invariant and isotropic systems, is of cou
strengthening the notion of universality even in nonequil
rium situations. Probably in many experiments probing
critical dynamics with electromagnetic radiation or neutr
scattering, the system is not perfectly thermalized and va
tions in the effective temperatures for the different degree
freedom cannot be avoided completely due to the inevita
critical slowing down that prevents fast relaxation process
Now if such a perturbation were relevant, its effects wou
become enhanced drastically in the vicinity of the phase tr
sition, however small the initial deviations from equilibrium
might have been. Such a behavior is apparently not
served; however, it might be interesting to prepare a nonth
malized system on purpose, say by arranging for the in-pl
spinsSx andSy in a planar ferromagnet to be on a differe
temperature thanSz, conceivably attainable with polarize
electromagnetic radiation. Another possibility would be
introduce a long-wavelength magnetic field with rando
time variation. In an antiferromagnetic material, its effe
would cancel for the staggered magnetization but the c
pling to the magnetization would mimic a situation wi
TM5`. For both experimental realizations, or at least
equivalent computer simulations studies, the effects of
above two new fixed points may then be explored, for th
should manifest themselves in nontrivial crossover behav
and perhaps even the associated anomalous critical e
nents and noise correlations might be detected.

We finally remark again that the specific violation of d
tailed balance investigated here wasisotropic in character,
thereby disturbing neither of the underlying symmetries
the SSS model, namely,O(n) symmetry and its spatial iso
tropy. Obviously, it would be interesting to see if the abo
stability against nonequilibrium perturbations persists ev
when the detailed-balance violation is applied in an ani
tropic manner, e.g., by coupling the order parameter to c
served angular momenta as above, but arranging the n
strength of the conserved fields to be related to differ
temperatures in different space directions. The study of t
or similar direction- or scale-dependent nonequilibrium p
turbations provides a promising venue for further researc
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APPENDIX A: EXPLICIT ONE-LOOP RESULTS
FOR THE VERTEX FUNCTIONS

In this Appendix, we present a list of the results to on
loop order in perturbation theory for those vertex functi
that are required for the renormalization of the nonequi
rium SSS model defined by Eqs.~2.27!–~2.30!, or, equiva-
lently, by the field theory~2.31!, ~2.33!, and~2.35!. In all the
-

-

subsequent expressions, the internal frequency integrat
have already been carried out via the residue theorem.
use the abbreviation*k•••[(2p)2d*ddk•••. We do not ex-
plicitly provide the Feynman diagrams themselves, as t
are identical with those of the equilibrium model@20#.

We begin with the two-point vertex functions renormali
ing the noise strengthsl̃0 and D̃0,
G0S̃S̃~q,v!522l̃0F11~n21!g0
2 D̃0

l0D0
E
k

1

r 01~q/21k!2 S D0~q/22k!2

~v2 il0@r 01~q/21k!2# !21D0
2~q/22k!4

1
l0@r 01~q/21k!2#

@v1 iD 0~q/22k!2#21l0
2@r 01~q/21k!2#2D G , ~A1!

G0M̃ M̃~q,v!522D̃0q
2F114g0

2
l̃0
2

l0D̃0
E
k
~q•k!2S 1

r 01~q/21k!2
1

~v2 il0@r 01~q/21k!2# !21l0
2@r 01~q/22k!2#2

1
1

r 01~q/22k!2
1

~v1 il0@r 01~q/22k!2# !21l0
2@r 01~q/21k!2#2D G . ~A2!

Consequently, we have

G0S̃S̃~0,0!522l̃0F11~n21!g0
2 D̃0

l0D0
E
k

1

r 01k2
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For the computation of the response functions, one needs the two-point functions
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specifically,
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Furthermore, the following vertex functions containing composite operators are required@note Eq.~3.9!#:
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Calculating the three- and four-point functions is already a rather tedious task even to one-loop order, and we mere
the final results needed for renormalization purposes:
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and finally
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