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We investigate nonequilibrium critical properties@¢n)-symmetric models with reversible mode-coupling
terms. Specifically, a variant of the model of Sasv&chwabl, and Sz#alusy (SS9 is studied, where
violation of detailed balance is incorporated by allowing the order parameter and the dynamically coupled
conserved quantities to be governed by heat baths of different tempergmadT),, , respectively. Dynamic
perturbation theory and the field-theoretic renormalization group are applied to one-loop order, and yield two
new fixed points in addition to the equilibrium ones. The first fixed point correspon®s=td /Ty =« and
leads to modeA critical behavior for the order parameter and to anomalous noise correlations for the gener-
alized angular momenta; the second one iat0 and is characterized by mean-field behavior of the
conserved quantities, by a dynamic exponentd/2 equal to that of the equilibrium SSS model, and by
modified static critical exponents. However, both these new fixed points are unstable, and upon approaching
the critical point detailed balance is restored, and the equilibrium static and dynamic critical properties are
recovered[S1063-651X97)11504-5

PACS numbg(s): 05.70.Ln, 64.60.Ak, 64.60.Ht

[. INTRODUCTION thus changes the universality class dramaticigly
The nonequilibrium generalizations of mod&ltype dy-

Nonequilibrium steady statéBlESS have been much in- namics(with conserved order parameterre more interest-
vestigated, the main goal being the discovery of their coming. External fields or locaknisotropic nonequilibrium per-
mon and distinguishing features as compared to equilibriunturbations may drive the system into a NESS with phase
states. A promising approach to this problem is the study ofransitions that are not characterized by any known equilib-
phase transitions: since equilibrium critical phenomena disrium universality clas$6], or belong to universality classes
play a large degree of universality, it is natural to ask to whawith long-range interactionf/,8].
extent these universal features remain characteristic of non- Nonequilibrium generalizations of the case when a non-
equilibrium phase transitions. conserved order parameter is coupled to a conserved quantity

The basic complication with NESS is that, in addition to have been considered in R¢f] where it was found that
the interactions that entirely define the equilibrium proper-inear coupling to a conserved quantity generates power-law
ties, the dynamics is also essential in determining the steadygorrelations for the order parameter. This suggests that, in
state properties. Thus, for example, a classification of nonthis situation, long-range effective interactions are generated
equilibrium phase transitions requires not only thein the system, which in turn govern the critical behavior at
understanding of the role of symmetries of the order paramthe phase transition.
eter, the range of interactions, and the dimensionality of the There are several other nonequilibrium phase transitions
system, but the clarification of both the relevance of conserthat have been studied without considering any equilibrium
vation laws imposed by dynamical symmetries and the rangeontext. Most notable among these are phase transitions as-
of the dynamical processes. Possibly, new dimensionalitgociated with the presence of an absorbing stdieected
and anisotropy effects in the dynamics may also be imporpercolation [10], and the roughening transition in surface
tant. growth and equivalent models such as the Kardar-Parisi-

The most frequently studied models with nonequilibriumZhang equatiofl1].
phase transitions are generalizations of systems with model In this paper we continue the investigation of nonequilib-
A type dynamicq1]. The transitions in these systems haverium generalizations of models originally proposed to de-
been shown to be robust against local nonequilibrium perturscribe equilibrium critical dynamics. Our aim is to study an
bations, which do not conserve the order paramf2eg], example where there is a reversible mode coupling between
and, remarkably, this robustness was found to persist even ihe order parameter and anottfeonserveilifield, using the
the dynamicalperturbations broke the discrete symmetry offield-theoretic dynamic renormalization grodrG) [12,13.
the systeni4]. Both locality and the nonconserving characterA simple example of this type of system is the Heisenberg
of the perturbations are essential for the phase transition tmodel for isotropic ferromagnets where precession terms in-
stay in the Ising universality class. Indeed, nonlocal nonequitroduce a coupling among the different spin components
librium dynamics generates effective long-range forces andmodelJ according to the classification in R¢l]; for early
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RG studies of this model see Réfl4]; a comprehensive served variables are allowed to fluctuate at different tempera-
review of the critical dynamics of ferromagnets is given intures, which explicitly introduces different characteristic
Ref. [15]). However, similar to the purely relaxational dy- time scales. Indeed, while one of the two new nonequilib-
namics of model#\ and B, the effect of a(spatially isotro-  rium fixed points, corresponding t@ ® =<, is described
pic) violation of detailed balance can be removed by aby modelA dynamicszg=zy=2 (with the usualg* model
simple rescalingsee Sec. Il B We shall thus mainly con- staticg, albeit accompanied bgnomalous noise correlations
sider a more complicated model, which was originally intro-for the conserved fieldshe second new fixed point, charac-
duced by Sasvg Schwabl, and Sz#alusy(SSS in the con-  terized by (b) ®=0, yields, actually to all orders ire,
text of structural phase transitiojd6]. This SSS model zg=d/2 for the order parameter as in equilibrium, but
consists of a nonconservet-component order parameter zy, =2, i.e., ordinary diffusion for the generalized angular
purely dynamically coupled to th&@(n—1)/2 conserved momenta(note that the above-mentioned equilibrium sum
generalized angular momenta related to the underlyingule does not hold hejethis unusual behavior is supple-
O(n) symmetry of the system. The=2 realization de- mented byanomalous order-parameter noise correlatipns
scribes the critical dynamics of planar ferromagnets and suand evermodified static critical exponentslowever, stabil-
perfluid “He [17] (for reviews regarding dynamic critical ity analysis reveals that in fact both these fixed poiatsand
phenomena in superfluid helium, see Rgf8]), while the (b) are unstable, and for any initial value ok® <« the
casen=3 corresponds to the dynamics of isotropic antifer-flow asymptotically leads to thetable strong-scaling equi-
romagnetg19]. The SSS model, with its dynamic exponent librium fixed pointof the SSS mode(see Sec. Ill B. Thus
z=d/2 (below the upper critical dimensiof.=4) thus en- we conclude that while violation of detailed balance might
compasses modelsandG (according to Ref{1]) as special be conceived as a relevant perturbation, in fact the underly-
cases. ing O(n) symmetry in conjunction with spatial isotropy and

We shall generalize the previous field-theoretic RG studihe growing correlation length as the phase transition is ap-
ies of the SSS mod¢R0,21] to a nonequilibrium situation by proached effectivelyestore detailed balancédescribed by
assuming that the order-parameter compon&fitand con-  the fixed point with® =1), and thus asymptotically yield the
served angular momentd *# are attached to heat baths of usual static and dynamic critical behavior of the equilibrium
different temperaturesTg and Ty, , respectively. Thus the SSS model.
detailed-balance condition required for near-equilibrium dy- This paper is organized as follows. In Sec. I, we briefly
namics is violated and the flow of energy between the twdgeview the derivation of Langevin equations describing the
heat baths ensures that the steady state is out of equilibriuratitial dynamics of O(n)-symmetric models including re-
The introduction of two temperatures leads to an additionaVversible mode-coupling terms, and consider the possible rel-
variable in the problem, namely, the temperature raticevance of detailed-balance violation for the relaxational
®=Tg/Ty (of which no analog can be constructed for modelsA andB, as well as model J and the SSS model. Sec.
model J). By studying the RG flow equations to one-loop !l will then be devoted to the RG study of the nonequilib-
order (first order ine=4—d), we findtwo new fixed points rium SSS model as outlined above, starting with stating
corresponding to the cas@=0 and® =, respectively, in some general exact relations and Ward identities, followed
addition to the equilibrium fixed points of the SSS model.by a detailed study of the one-loop perturbation theory, the
The latter are(i) the usual Gaussian fixed poifdescribing ensuing flow equations, and a discussion of the physical con-
static and dynamic mean-field behavips; 2), (ii) the model  tent and stability of the RG fixed points. Finally, in Sec. IV
A fixed point, corresponding to a decoupling of the con-we shall summarize our results again, draw some conclu-
served fields from the order parameter, with the nontrivialsions, and provide an outlook on possible future research
static exponents of th®(n)-symmetric ¢* model and dy- along the path followed in this paper. In the Appendix, we
namic exponenz=2+O(e?), and the three nontrivial SSS Provide a list of the explicit results to one-loop order for the
dynamic fixed points consisting of the two so-calledak-  two-, three-, and four-point functions required for the renor-
scalingfixed points with the order parameter and conservednalization of the nonequilibrium SSS model.
guantities fluctuating on different time scales, characterized
by the exponentsiii) zg=2—2(n—1)e/(2n—1)+O(€?),
2y=2—el(2n—1)+0(€?), and(iv) zs=2 andzy=d—2, Il. CRITICAL DYNAMICS OF MODELS
and finally (v) the strong-scaling fixed point with WITH REVERSIBLE MODE-COUPLING TERMS
zs=2z=2z=d/2. The results fofiv) and(v) actually hold to A. General considerations
all orders in e, and follow from the exact sum rule
zst+zy=d [17,20,22 (see Sec. Il A. Stability analysis
shows that to one-loop order only the strong-scaling fixe
point (v) is stable; however, at least far=2 the actual
fixed-point values are rather close to its stability boundary
which allows for the possibility that in fact for superfluid
helium strong scaling may be violated at the lambda transi- (o0 1
tion [20] (a two-loop study of moddF, combined with Borel H[{sg}]:f ddx{_oz sg(x)2+_z [VSE(x)]2
resummation techniques, actually suggests the stability of a 241 2421
weak-scaling fixed poinii23]).

The stability of the above fixed points may change in a +20°
nonequilibrium situation where the order parameter and con- 4!

The universal static critical behavior of a system that is
d’nvariant with respect to rotations of itscomponent order
parameter and displays a second-order phase transition is de-
scribed by the following O(n)-symmetric ¢* Landau-
Ginzburg-Wilson Hamiltonian i space dimensions

2
]; 2.1
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herer,=(T—T2)/TY denotes the relative distance from the Therefore, as long as one remains sufficiently close to the
mean-field critical temperatur€., and we denote unrenor- critical point, theuniversalcritical behavior(exponents, am-

malized quantities by a subscript “0.” This effective free Plitude ratios, etg.will not be affected, while only nonuni-
energy determines the equilibrium probability distribution versal amplitudes become modified through a rescaled non-

for the vector order parameté&f, linear couplingu, (see Sec. I B and Ref3]).
However, in anO(n)-symmetric system there are always
e~ HI{SoH/kgT additional slow diffusive modes present. In our case these
Ped {S5}1= - , (2.2  modes are associated with the conserved generalized angular
I DI{S5}]e HliSollkeT momenta M3#, which generate the rotations in order-

parameter space. Generically, they couple to the order-
and furthermore provides the starting point for the construcparameter fluctuations, and therefore E2j3 does not cor-
tion of the field-theoretic static renormalization group, whichyectly describe their dynamics. Two cases can now be
by virtue of a perturbatiofioop) expansion in the nonlinear- - gjstinguished(i) the vector order parameter itself is identical
ity Up provides a systematic means to compute the two indey the generators of the group(n); this yields, forn=3,
pendent static critical exponenisand v either in ane ex-  precisely the dynamics of isotropic Heisenberg ferromagnets
pansion about the upper critical dimensity+4, or directly  [14], modelJ according to Ref[1]. (ii) The order parameter
in fixed dimensionalityd [24]. Here, » is the anomalous s nonconserved, and the conserved angular momenta consti-
dimension which describes the pOWer'Ia.W decay of tthte new dynamica' Variab'es; this defines men)_sym_
order-parameter correlations at the critical point, metric model introduced by SasvaSchwabl, and Sze
(S*(x)SP(x"))1/|x—x'|*"2*7, and the exponent charac-  falusy[16], and encompasses both moéior the dynamics
terizes the divergence of the correlation lengthTass ap-  of the XY model, i.e., of planar ferromagnets and superfluid
proached e [T—T¢| . “He (n=2) [17], and modelG for isotropic antiferromag-

The simplest dynamics that may be imposed on the ordemets (1=3) [19].

parameter fluctuationSg(x,t) in order to describe how the Upon collecting the order-parameter and angular-
system relaxes to equilibriurtfor which the mean-field sta- momentum components in a large veatdr= (S, M “#), the
tionarity condition SH[{Sg}]/6Sg=0 holdg is then given general structure of the ensuing Langevin equations reads

by the following Langevin-type equations of motion: [14,16
oSyt SHISH pexy JOHLy
= AV m+§ (xt, (23 —r VT -L W+§ (x,1),
(2.9

where the temporal average of the stochastic forces is as-
sumed to vanish({*(x,t))=0. In equilibrium, furthermore, whereL*=\ or L*= —D_V2 for all the nonconserved and
an Einstein relation connects the second moment of the ureonserved fields, respectively. The second term on the right-

correlated(white) noise with the relaxation coefficient, hand side of Eq(2.5 describes irreversible relaxation pro-
cesses as in modefsandB [Eq. (2.3)]; the first term, on the
(¥ (X, 1) LB(X" 1))y =2\ kg T(iV)38(x—x") 8(t—t") 6%F; other hand, consists oéversible“mode couplings,” which

(2.4  are given entirely by the Poisson bracke®**[{y}]
) S e e «{yp*, P}, As can be shown with the Kawasaki-Mori-
this ensures that the probability distributi®f{Sg} ] finally  zwanzig projector formalismy[{*}] assumes the form of

approaCheS the equi”brium dlStrlbUthlQZ) in the limit a “Streaming Ve|ocity” in the space of thﬁa, name|y’
t—oo, as can be readily checked with the aid of the associ-

ated Fokker-Planck equation. Equatid®.3) incorporates

both the case of a nonconserved order parameter with purely V“[{w“}]=92
relaxational dynamicsa=0) and the case of a conserved p
order parameter, which as a consequence of the ensuing ¢
tinuity equation relaxes diffusivelya(=2). In the classifica-
tion scheme of Hohenberg and Halperin, these situations arg'
referred to as modeld and B, respectively, and the corre- 9V€
sponding dynamic critical exponents describing the critical
slowing down near the phase transiti@@haracteristic time f ddXE ¢
scales diverge agx &%x|T—T,| %) are given in terms of « oY”
the static exponentn by z=4-—7 (model B) and

z=2+cy (modelA) [1]. In the latter case, however,isa and therefore the equilibrium distributionP{“}]

new universal number and therefarés an independent ex- o~ HI{¥“I/keT s not affected by the mode-coupling terms,
ponent not determined by the static critical exponents. which are of purely dynamical origin.

One may already anticipate that &otropic violation of We defer the explicit construction of the mode-coupling
the Einstein relation(2.4), which is a consequence of an terms for model and the SSS model to the following sub-
underlying detailed balance condition, by choosing a coeffisections, and close this general discussion with a brief out-
cient Ao instead of\gkgT for the noise correlator, merely line of how one may construct an effective field theory from
amounts to a change in the order-parameter temperature Langevin equations of the type

5Q# SH[{y“}]

5170[3 _Qaﬁﬁ—l/iﬁ . (26)

kgT

%ote that the mode-coupling constagtare independendf

which guarantees thatVe[{y*}]e HH# keT g
rgence-free,

(Ve[{yp e MW WkeTy =0, (2.7)
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AP*(x,1) ing the perturbation expansion to those contributions that are
—r KT+ 4% (2.8)  consistent with causality requirements, we may therefore
safely neglect these additional terms.

[see Eq(2.5)], with ({*(x,t))=0 and the general noise cor-
relator B. Model J—isotropic ferromagnets

(29X, D) ZB(X 1)) =2L8(x—x") 8(t—t") 8B (2.9) We now turn explicitly to the construction of the Lange-

vin equation for the critical dynamics of isotropic ferromag-

(see Refs[12,13). This form of the white noise may be nets[14]. In this casen= 3, and the order parameter consists
inferred from a Gaussian distribution for the stochastic force®f the three spin components;, &, andS*. The total mag-
netization is a conserved quantiygencea=2), and in fact

. the S* are identical with the generators of the rotation group
' 0(3): M?=5?, M?=5*, and M13=—-9'. The Poisson

(2.10 brackets between the spin components read

1
W[{é“}]ocexp[—z f dx f A (L) i

eliminating ¢ via Eq.(2.8) then immediately yields the de-

v — af
sired probability distribution for the fieldg*, {s".s% zy sy, (219

WI{Z“HDI{{*}] = P[{lﬂa}]D[{lﬂ“}]“ee[{wa}]p[{‘ﬁg]’m which immediately yields the streaming velocity

with the Onsager-Machlup functional o f e wpyay SHLES™]
VIS I= 02 S g
G[{W}]=—3f ddxf dt> (a‘/’a—K“[W}])
4 « | at =—gﬁ2 cBYSPY2SY, (2.16
ay—1 al/lu @ a 7
x(L*) — KUy (2.12 _ _ .
ot because the contractions of the fully antisymmetric tensor

his functional id al €*#7 with all the symmetric terms in Eq2.1) vanish, leav-
From this functional one cou da ready construct a pertur-mg only the contribution stemming from the gradient term in
bation expansion for correlation functions of the field$; the Hamiltonian. The mode-coupling terrt& 16 represent
however, as for cgqser_ved quantities the inverse of the Onpe gpin precession in the effective field generated by the
sager coefficient® is singular, and furthermore high non- e spins, and in the ordered phase lead to propagating spin

linearitiese K °[{4*}]* appear, it is convenient to introduce \yayes (Goldstone mod@swith quadratic dispersion(q)
Martin-Siggia-Rose auxiliary fields via a Gaussian transfor-, 2

mation to partially linearize the above functional. This leads T.he complete Langevin equation for the conserved order

to parameter of isotropic ferromagnef®odel J according to
_ N Ref.[1]) finally reads
PLY = [ DT, (213
ISy . SH{SsH] .
with the Janssen-De Dominicis functional ot —go% e PTSEVES NV 558 E
(2.17
T a1 — d ) o ja
9] jd Xf dt}a: i with (£%(x,t))=0 and
~ [ dy® ~
—1/1“( —Ka[{l/la}]) . (219 (LX) EA(X 1)) = —20gV28(x—X) 8(t—1") %P,
at (2.18

Equation (2.14 will provide the starting point for our o i
discussion of the nonequilibrium dynamics of the isotropicHere we have already allowed for a violation of the detailed-
ferromagnetmodelJ) as well as that of the SSS model in balance condition by introducing a noise strenighthat is
the subsequent subsections. In Sec. I, we shall use the coot necessarily equal tdokgT, where\, is the spin diffu-
responding Janssen—De Dominicis functional for the consion constant. However, the form of E¢®.17 and (2.18
struction of the dynamical field theory of the SSS model withalready suggests that similar to the case of the purely relax-
broken detailed balance, and therefrom infer its RG flowational modelsA and B, the ratiohg/\o may be absorbed
equations. We finally remark that both in Eq&.12 and into a rescaled temperatuiie and modified nonlinear cou-
(2.14 we have omitted contributions stemming from the plingsu, andgy.
functional determinan®D[{{“}]/D[{4“}]. As is shown in This can be readily seen by employing the corresponding
Refs.[13,20, these terms precisely cancel apausalFeyn-  Janssen—De Dominicis function@.14); for our nonequilib-
man diagrams for the dynamic response function that coultium modelJ this becomes a sum of the dynamic functionals
be constructed from the above functionals, and upon restricfor the relaxational models
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_ —_—— ~ perature rescaling will not suffice to render the field theory
Jre|[{53},{53}]=f ddxf dt> [AOSS(iV)aSS identical to the equilibrium one. We therefore consider a
“ nonequilibrium version of th@©(n)-symmetric SSS model,
9 _ where a nonconservadcomponent order parameter couples
Eﬂ\o(lv)a(ro—vz)}sg to n(n—1)/2 conserved generalized angular momeia|;
possible realizations of this are as follows: for n=2: the

Upa ~ . critical dynamics of theXY model[17] (model E according
—XOEE S5iV)2S5S6SE, (219 to Ref. [1]), with the order-parameter componer8$ and
p S, and the conserved quantity’>=S?, which generates
with a=2, and the additional contribution stemming from Fotations in thexy plane; (i) for n=3: the dynamic critical
the reversible spin precession term, behavior of isotropic antiferromagnets, wigf, &, andS*
representing the components of the staggered magnetization,

- ] wpyEacpo2ey andM?=M? M?3=M*, andM 3= — MY denoting the com-
Ind {So}{So}]= —gof d Xf dtﬂ% e PTSESEVAS]. ponents of the magnetization itself, which are conserved and
M (220 can be identified with the generators 6{(3) (model G
' [19]).
Rescaling the fields according to The variablesM§? are noncritical quantities, and their

coupling to the order-parameter fluctuatid® is of purely

12 T\ 12 . . . ;
~u 0 "=, . [MNo a dynamical character. Hence it suffices to simply add a qua-
SO_’(’;\’;) So. SO_’()\_O So (2.23) dratic term to the Hamiltonia®.1),

. . . 1

then renders the noise strength and the relaxation constantin  yrrgey rpefyv1=Hrisn 1+ J d9x= M 2B x)2

the quadratic partfirst and second lineof Eq. (2.19 equal, [{S6}{Mo"H=HI{So}] 22’/3 0" (9%

and if in addition the rescaled static and dynamic nonlinear (2.23

couplings . _ .
and for the construction of the reversible mode-coupling

— N _ [N\ M2 terms, again all that is required are the following Poisson
Up=3"Uo Go=|5| Yo (222 Dbrackets:
0 0
are introduced, the ensuing Janssen—De Dominicis function- {8%,87}=0, (M S} =s7sF— 875",

als for the above nonequilibrium generalizations of the relax-
ational models as well as mod@lappear in precisely the ~ {M*,M7%}=5"7MF2+ §F2M *7— §*OMFY— 5P 7M.
same form as in equilibrium where detailed balance holds. (2.29
As both the renormalized counterpartsinf and'g'g/)\é ap-
proach universal fixed-point values near the transition, th
modifications in Eq(2.22 merely entenonuniversabmpli-
tudes. It is therefore established that thi¢ical properties of
neither the relaxational modefs andB nor isotropic ferro- SH
magnets(model J) are affected by violating the detailed- Ve[{S?} IM*B} =g, Sﬁwzgz MBS,
balance condition. It is, however, important to note that both B oM B

the O(n) symmetryand the spatial isotropy of the models (2.29
have been left intact by the above nonequilibrium generali- ) )

zation. For the dynamics of Heisenberg ferromagnets, wand in the equation of motion for the conserved angular mo-
finally remark that the dynamic critical exponent becomesnenta,
z=(d+2-7)/2, as aconsequence of a Ward identity stem-

ming from the underlyingO(3) symmetry(see also Sec. VB[ {ST IM Al ] =g
Il A) and, indeed, dynamic scaling wia=5/2 is observed '

pon inserting Eq(2.24) into Eq.(2.6), one readily finds the
ollowing mode-coupling terms in the equations of motion of
the order parameter,

S ﬁ_Sﬁasa

oH oH )

experimentally in a variety of substances. In some real fer-

romagnets, however, anisotropies and/or long-range dipolar +g>, (May oH —MBY oH )
forces are present, which do not conserve the total magneti- Y SMPY MY
zation, and upon approaching the critical point lead to a dy- B — > eu

namic crossover to modél scaling withz~=2. Further de- = —g(S'VS - °VEST), (229

tails regarding these issues and the dynamic critical behavior .
of ferromagnets may be found in R&L5]. respectively. Note that as for mode&[Eqg. (2.16)], here as a

consequence of the antisymmetry of the Poisson brackets

only the gradient terms in the Hamiltonian contribute. We

remark that in the ordered phase the above reversible mode

couplings produce propagating Goldstone modes with linear
More interesting for the issue of violating detailed balancedispersionw(q)«(.

will clearly be a situation where there at@o independent Thus we arrive at the following set of coupled nonlinear

temperature scales conceivable, and therefore a simple terhangevin equations that define the SSS model:

C. The SSS model—planar ferromagnets,
isotropic antiferromagnets
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ISy SH[{Sg}]
7=go% Mgﬁsg—Koa—Sg+€“, (2.27)
Mgk
2=~ 90(SEVASG—SVASE) + DoVAM P + 7,
(2.28

with {£%(x,t))=0, (n*F(x,t))=0, and

(LU EB(X )= 2N 8(x—X") B(t—t') 5%,
(2.29

(n*P(x,0)77°(X' 1)) = —2DV28(x—X') 8(t—1')
X (8B 570— 5%9687).  (2.30

4125
For the mode-coupling terms,
Ind {S31.{S51AMEP {MGA) ]
:f ddxf dtazﬁ [gOEgMgﬁsg

—%M8B<SSVS€—S€VSS)}, (239

however, which originally have identical couplingg, the
effect of this rescaling procedure is to generate tifterent
dynamical coupling constants in the first and second terms of
Eq. (2.35, respectively, namely,

~ \12
~ _[Do o
go=<D—) 90, 90=O0Go,
0

Here we have allowed for violation of detailed balance via (2.36)
introducing noise coefficients, and D, which are in gen-

eral not taken equal to\gkgTg and Dok Ty, respectively,

whereTs and Ty, are the temperatures of the heat baths ofVhere

the order parameter and of the conserved variables. Yet we ~

now also have thedditional freedom to choose the ratio M Do 53
0,=Ts/Ty different from 1, which corresponds to a viola- " NoDg’ (2.39

tion of the detailed balance in the dynamicaluplingof the

modesS§ andMg”. We should stress again that neither theThys, even if both equation@.27) and(2.28 obey detailed
underlying O(n) symmetrynor the spatial isotropy are af- palance separately, two different dynamic couplings will be
fected by this SpeCifiC nonequi”brium perturbation. generated as |0ng a'ES;éTM’ and then the new variable
This becomes clear upon considering the Janssen—De D@y = T./T,, describes the deviation from equilibrium. With
minicis functional(2.14, which corresponds to Eq&2.279—  the two independent couplingsg, and T4, the

(2.30. Its harmonic part now reads renormalization-group equations will become different as

~0 fea (o « compared to the equilibrium situation, and new critical be-
Jha'[{so}'{so}'{MOB}’{MOB}] havior may be expected at least in the extreme cases where

the temperature ratio is eith@,=0 or @y=. In Sec. Il

we shall proceed with a detailed investigation of the one-

loop flow equations of the nonequilibrium SSS model, as

given by the field theory2.31), (2.33, and(2.35), as func-

tion of the couplingg2.34), (2.36), and(2.37).

I1l. RENORMALIZATION OF THE NONEQUILIBRIUM
SSS MODEL

A. Response functions and Ward identities

By adding source terms to the Janssen—De Dominicis
functional (2.14), one arrives at the generating functional
and can be readily rescaled to the equilibrium form via Eqg.
(2.21) combined with

~ [a
- Mgﬁ(E—DOVZ)MgB}, (2.30)

Z[{F“},{ha}]a f D[{@g}]p[{(ﬂg}]eJ[{ES},{wS}]

_ DA\ 2_ 5 12
Mgb(sg) Mge, Mf;h(D—Z) M&P. (2.32

Xexpf ddxf dtY, (h*ys+heyg),

Thereby, the relaxation vertex

Sl S IS= o 0t [ oS, Sysystss

B
(2.33
attains the new effective coupling
~ g
Ug=7"Ug. (234)
Ao

(3.9

and the @N)-point correlation functions (cumulantg
G;:[/N Jn can be obtained from kvia functional derivatives
with respect to the sourcds® and h®, and then taking all

he=h"=0. Following the usual field-theoretic techniques
[24,13, we furthermore define the generating functional for

the one-particle irreducible vertex functions usingg
=6 InZ/6h* and ¢g = 6 InZ/6h* via the Legendre transform



4126 UWE C. TAUBER AND ZOLTAN RACZ 55

TL{$}{#6}1=—InZ[{h"},{h}] Xo(x=X',t=t")(8776%° = 5577
-~ SMEP(x,t
+f ddxf dt> (h"gg+h¢d); _ HMgT(x1) 0 (x1))
a SHY (X' 1) 15,6

3.2 ~

(3.2 = —D(M§P(x,t) VZMZ (X' 1))
the (NN)-point vertex functionsI'gzn,n then follow via —ZQO(MS‘B(x,t)[’égsg](x’,t’)). (3.9
functional derivatives of Eq(3.2) with respect to¢g and _
b5 [Note that= (Mg#(x,t)[MFMEPI(x’,t'))=0.] Hence we

With (¢5)=0 we can write (ng(x,t)Zg(x’,t’» also need cumulants containing composite operadfs

=G, (x—X',t—t')8*, etc,, and upon introducing the _=EB[M3‘BS€] andYS‘B:['égsg], as well as the correspond-
Fourier transform according to  ¥*(Q,w) ing vertex functions, which are related to each other via
= [d%/dty*(x,t)e ' (@*~ ) one finds the following con-
nections between the two-point correlation and vertex func- . I'ysy(q, )
tions: Gosv@0)=— —————. (3.9
' Foss(—0,~w)
Ggw(q,w)zl"o@,(—q,—w)*l, (3.3 Using Eqgs.(3.4) and(3.9), we can finally write
F(q0) Xo(q1w):Fo§s(_q,—w)fl[)\o_goroé[MS](q,w)(]é 0
0 @ .
GGy 0) = — " (34
|F0W(q,w)|

Xo(0, @) =T opim(— 0, — ) [ Dog*+ Zgorov\][ga(q,é)ib
For the &N)-point functions withNN>2, relations similar '

to Eq. (3.4 hold; see Eq(3.9) below. We conclude this discussion of general properties of the
In order to assign a meaning to the auxiliary fields, wesSSS model with the derivation of Ward identities, which are
compute the response functions for the SSS model by firs§ consequence of th@(n) symmetry, and the fact that the
addlng external fields to the HamlltonlzﬁEZB) [13,22, MS‘:B are the generators of this symmetry grd:llﬁ,ZO,ZZ
As a first version, consider that a spatially homogeneous, but
= o ~ B time-dependent external fielth*#(t) is switched on at
26,: h SOJFEB H**MGP), 39 t=0. According to Eqg.(3.5 and the equation of motion
(2.27), this produces the following additional contribution to
the expectation value of the order-parameter component

H—>H—f dx

which produces the following additional terms in the dy- _,
namic functional: Sp

t ~
~ ~ ~ e o(X,))F=— dt’H*A(t’ xt')NF. (3.1
a a>fB
Upon employing suitable variational derivatives, this leads to

+gO% (Eaﬁgﬁsg—ﬁaﬁ'égsg—g ﬁ“ﬁmgVMgV) . the following relation between the nonlinear susceptibility
a, Y

(3.6) Ros:sm(X, ;X t/;X", ") (877 682~ 5*°5F7)
2/ Qo
Therefore the dynamic order-parameter susceptibility be- _ & <SO(,)§'I)> (313
comes ShP(X' ") SHY2 (X" 8") |25 =05
S(SE(X,1)) and the order-parameter response:
Xo(X—X',t—t')ﬁaﬁ:T
5h (X’t)ﬁ'g=o dy 7 Y 2
_ f d%’'Ros:sm(X,1;0,0:x",t") = —go® (t—t") xo(X,1).
=No( S5, SH(X',t")) (3.14)
+go> <%(X,t)[ﬁgvsg](x/,t/)>, An equivalent Ward identity for vertex functions can be ob-
¥ tained by noting that the “mixed” generating functional

37 W {48y, {(H "} {H}] [compare Eqgs(3.D), (3.2] is
invariant with respect to the following nontrivial variations

and similarly the response function for the conserved quancorresponding to  Eq. (3.12: 6SH*P=gH"’,  §¢g
tities reads = — 0o sH P pht [22]. Hence
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SW B. Renormalization to one-loop order

o W
shief 90545

Bt

=0, Bearing the results of the previous subsection in mind, we
(3.15 introduce multiplicatively renormalized fields and param-
' eters according to

SW= Ef ddxf dt>, Hes
2 <

which with ﬁ3‘5= 8 InZ/sH# translates to a Ward identity

for the generating functiondB.2) of the vertex functions, ’éa:Z_lSngg’ Sazzé&sg, (3.20

f ddx f dtaEB ;;B ﬁéﬁ—zgo%,cbgt}:o. \=25'Ziko, D=25D,, (3.21

o i (3.16 N=(ZsZ9 “Z\No, D=ZoDo, (3.2

Specifically, this yields 7=25'Z,70u"?, To=To—Tqc, (3.23

Ponss(a/2,w/2;0/2,0/2;- 9, — w) U=2Zg%Z upAqu’ 2. (3.29
=goﬁow)[Fo,r,,,\7,(q/2,w/2)Fo§S(q/2,w/2)]. Here,Ay=T'(3—d/2)/29" 1792 denotes al-dependent geo-

metric factor, andx is a momentum scale. Thus all the
(3.17 renormalized couplings are dimensionless, as ds
o =goAT2u@ 92 Note that both the static and the mode-
Note that Eqs(3.14) and(3.17 hold quite independently of coypling constantsi, and g, become dimensionless at the
any detailed-balance condition. upper critical dimension,=4. We determine the renormal-
We can use these Ward identities now to demonstrate thg5tion constantéZ factorg by demanding that they absorb
the mode-coupling constagt as a consequence of the un- 5| the (ultravioley divergences in the corresponding vertex
derlying O(n) symmetry, does not renormalif80]. First,  fynctions to one-loop ordeisee the Appendix We further-
we note that thstgtic response function for the conserved ore employ the dimensional regularization scheme with
angular momenta isxactly minimal subtraction ind=4— e dimensions, i.e., only in-
o clude the ultraviolet poles 1/¢ in the Z factors, along with
Xo(G,0=0)=1, (3.18 their residues in four dimension$urther details on these
procedures can be found in RE€24]). In order to avoid the
infrared singularities near the critical point, we take 1
(7= p? to one-loop orderandq=0, =0 as the normal-
ization point. This, of course, follows closely the renormal-
ization procedure for the equilibrium SSS mod20] (see
also Ref.[21]).

Using Fgg(q,w)=zgll“ogg(q,w), the renormalization

of the noise strengthgo andBo, as well as of the diffusion
constantD is readily inferred from Eqs(A3), (A4), and

as follows from the Hamiltoniari2.23 and the fact that in
the limit w— 0 there is no coupling between the critical fluc-
tuationsS§ andM §#, which is true even for our nonequilib-
rium model. Therefore there cannot be any field renormal
ization for the angular momentaM “B=z12Me# (and
similarly for M##) with Z,,=1. Second, as a result of the
g dependence of the mode-coupling verti¢@s35), to all
ordersin perturbation theory

9 (A8), respectively, with the results
MFOMM(QZO,M=1, (3.19 A
gu < =1 —
and henc&yZy=1. We remark that an analogous equation e 1+wp
for model B leads to the identity=4— » for the dynamic -
exponent[l:ﬂ; a smllar result for the K_ardar-Panerha_ng 7—1+ Agu W02 (3.26
(KPZ) equation implies the absence of field renormalizations D 2¢ 00%0
there as wel[25]. At last, we utilize the above Ward iden-
tities (3.14), (3.17), both of which imply that the renormal- Agu™ ¢ —
ization factor for the mode-coupling constant is identical to Zp=1+ Twof(@o, (3.27

Z,=Zy=1. Physically, this means that the reversible mode
couplings are not affected by critical fluctuations. This fact
will lead to certain general identities for the dynamic expo-
nent in the scaling regimes; see Sec. Il C. Again, similar N o 5
Ward identities may be derived and corresponding conclu- WO:_O fOZQZ_O (3.29

. ~ . . D,’ O)\ZD
sions can be drawn for the mode-coupling constant in model 0 oMo
J, as mentioned above, leading to the exact result
z=(d+2—7)/2 [14], and also for the nonlinearity in the for the ratio of relaxation constant, and effective dynami-
KPZ problem, there originating in the Galilean invariance ofcal couplingfy.
the equivalent Burgers equation, and implying the nontrivial Next, we consideF3g(q, ) =(Z3Zs) YT g35(q, w); see
scaling relationz+ y=2 between the dynamic and rough- Eg.(A5). First, we determine the fluctuation-inducggdshift
ness exponeni®5]. roc from the condition of criticalityyo(q=0,0=0)"1=0,

where we have used the definitio(&37) and
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which because of E(3.10 is equivalent to demanding that Z, Agu € n+2_ Agu € n-1 —
I'035(0,0)=0 for ry=r,.. Equation(A7) then yields with Z,7—=1- Uo+ Wofo®g
Eq. (2.34 Zg € 6 e 1+wg
Agp” € (n—1)wi—
. :_n+2,ﬁof 1 i - (1+w0)2f°(1_°)' 3.3)
¢ 6 kroc+k
1 Then, renderingI'35(0,w)/ (i w) anddl'3(q,0)/99? finite
—(n— F(1— . gives
(Nn=1)wofp(1-0y) kWor0c+(1+Wo)k2’ ,
Agu” € (n—1)wg—
(3.29 (Z5Zg)¥2=1—— > fo(1-0y), (3.32

€ (1+W0)2 f
note that ford<2 the integrals on the right-hand side of Eq.

(3.29 are infrared divergent. Evaluating the momentum in- Agu™ € n—1 —
tegrals for 2<d<4 gives explicitly LH=1+ 1+—WOW0f0®0

_ 2Aq ~ Agu™ € (N—1)wi—
|r00|_ (d_Z)(4_d) 6 u0+(n_1) - € (1+W0)3 f0(1_®0) (333
Wa V42 2/(4—d) . . .
x 0 fo(1—0,) (3.30 Equation(3.32 also absorbs the divergences in the three-
1+wy ° 0 ' point function (A11), which confirms that indeed@,=1.

_ o . Equation(A12) can then be used to determine the still un-
(notice the pole atl;=2 and the essential singularity at known field renormalization itself, with the result
d.=4). The first term here corresponds to the downwards

shift of the critical temperature of theé* model; the second Agp™ ¢ n—1 —

contribution, which is of purely dynamical origin, may either Zs=1- T 2e mzwofo(l— 0o);  (3.39
reduceT, further, namely, forTs<T,,, or enhance it with

respect to the equilibrium situation, Tis>T,, . notice thatZs#1 andZ3#1 already to one-loop order if

Upon definingro=rg—rq., the true distance from the ©®,#1. At last, the multiplicative renormalization of the
critical point, and inserting Eq(3.29 into (A7), setting nonequilibrium SSS model vertex functions is concluded by

rOC=0+O(u0,g§) in the integrals, one finds rendering the four-point functiofA13) finite with
|
Z, Age S n+8_ A n-1 — Agu € (h—1)wi— BAL € Nn—1 (Wofo)?
—=1- Uy+ - - - = - .
UZS 1 € 6 do € 1+W0W0fo € (1+W0)2 fO(l ®O) € 1+W0 Uo ®O(1 ®O)

(3.39

When detailed balance hold®,,=1, these one-loof factors reduce to the well-known equilibrium resyteg).

Whereas the vertex functions and hence also the two-point correlation fun¢ighsre rendered finite with the above
Z factors, the dynamic response functions may require additional additive renormalizations, as a consequence of the involved
composite operators. The response function for the conserved angular m@g&htausing Eq.(3.18) for its static limit, can
generally be written in the following form:

_ Ao(d, 0)g°
Using Eqgs.(A6) and(A10), one finds the one-loop result
A Dyl 1+ 2w,fo® f < ! ! : 3.3
ol @)=Dol 1+ gWofoO0 |, = a2 4107 70+ (q12=K)Z “Twi2hg+ o+ A+ K2 (339

hence, as the ultraviolet singularity in E§-37) is absorbed by th& factor (3.27), no additive renormalization is needed. This
comes as no surprise, as the contribution from @d.0) is nonsingular.

However, the integral EqA9) is divergent, and therefore a corresponding additive renormalization has to be introduced.
The structure of the order-parameter susceptibiByL0 is

Ao(g,0)
—ilw+Ay(9,0)/ x0(0,0)

Xo(Q,w)= (3.38

Here, using Eqs(A5) and(A9), the static susceptibility reads to one-loop order
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0-1erl1— n+2_ f 1 n—1 T 1-0 1 o
Xo(@.0) =70 1= 5 Kot k) Trwg V00190 | o i wo)(q K + (1 wo) (qPA+ KD)]
- - (1-wo)(q-k) = (1+wp)g?/4
+ —1+WOWOfO(l_®O) Jkkz[WoTo_(l_Wo)(q'k)+(1+W0)(q2/4+ k2)] ' (339)
where Eq.(3.29 has been inserted, and the renormalized Onsager coefficient is
A =\o| 1+ (n—1)Wyf (@ f ! ! : 3.4
ol @)=ho L+(N=LWoloOo | = =02 k)Z ZTaiDo+ wol o+ (a/2+ )21+ (92— k)2’ (349

as expected, the above multiplicative renormalizations withyijth the method of characteristigs— u/’; this defines run-
Egs. (3.3)—(3.34) do not suffice to remove the divergences ning couplings as the solutions to the first-order differential
in Egs.(3.39 and(3.40. We determine the necessary addi- RG flow equations
tive renormalization by requiring that

d /da(/) L(Na(), a(l)=a (3.47
a—qmq,m;:g: Zs+As, (3.4 7=

. Th luti f th llan- ik iB46 th
and Eqs(3.39 and(3.34 then yield e solution of the Callan-Symanzik equatiG®46 then

reads
Agp™ ¢ n—-1 (1 Wy — ——
— - _ I'Srykesyi(@,4al,q, w
AS e (1+W0)2(2+1+W0 Wofo(l ®O) STMKXSSM (lu’{ }q )
3.4 17 ds’
(342 =exp{ Ef [r&s(/) +sis(7 )]
Indeed,x,(0,0)"* and A,(0,0) are then rendered finite with ! ’
the combinations of Z factors Es+Ag)Z,/Zs and X Tgripkes (1 1a()),al /ol u2/2).
Z,/(Zs+Ag), respectively. ’ ’ ’ .48
C. RG flow equations and fixed points Upon introducing the renormalized ratios
The renormalization-group equations serve to connect the _
asymptotic theory, where the infrared divergences become A AD
manifest, with a region in parameter spdreour case con- w=5, 0=y 5 (3.49
sisting of{a}=\,D,\,D,qg,u,7) where the couplings are fi-
nite and ordinary “naive” perturbation expansion is appli- 5nq renormalized effective couplings
cable. They are derived by observing that the “bare” vertex
functions do not depend on the renormalization sgale o D N
2 ~_ =
M Iosmkssmi({ao}) =0. (3.43
Klo and collecting the definitions Eq$3.20—(3.23 and one-

Introducing Wilson's flow functions loop results(3.25—(3.27) and (3.31)—(3.34), one finds

J J _n—-1 1 —
g“gzuﬁ OInZ’g,gS:,uﬁ OInZS, (3.449 (s~ szf(l 0), (3.50
Eq. (3.43 may be written as a partial differential equation _ n+2_ (n—Lw* —
for the renormalized vertex functions: =2t 6 u+ (1+w)3 Wf(l ©), (353
M 2 §aa A §s+ §s Igrukesm 1(1,{a}) =0. ___nh= 1-—n-11-4w —
(3.49
Note that{z = {u=0 and{y= — €/2 as a consequence of the f5=— wa_.z (3.55

exact results in Sec. Ill A. Equatio(8.46 can be solved
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n-1 — (n—1)w? — because as nowy={, and {g={p, we can identify the
6=~ VIO~ arwEWiA=0), (858 noise strengthi andD with the Onsager coefficients and
D, respectively. The correspondimgfunction for f reads

|
. . (3.69

Notice that nonzero values @f and {g induce anomalous

noise correlations, whilg, and {p determine the dynamic The first equation in Eq3.65 implies that forany nontrivial

1+ n—1
2 1+w

Bi=f(—e—{—{p)=Tf| —€+

critical exponents; see E(3.66 below. fixed point 0<f*<ow the exact relation ¢F+¢}
We furthermore need the flows for the running couplings= — e=d—4 holds. Furthermore the analysis of the RG
v(/), with {v}=w,0,f,u, equation in the vicinity of * reveals that the dynamic expo-
p nents for the_ _fluctuatio_ns of the order-parameter and con-
/dl:j(/ ) (/). o(D)=v, (359 served quantities are given by
25=2+Y, zy=2+{§, (3.66

as given by thes functions which then leads to the following identify.7,20,22:

d

_ 2. Z,+zy=d. (3.6
L (3.59 s

B

0 Therefore, in astrong-scalingsituation where the character-

with Egs. (3.24), (3.35, and(3.54—(3.57) these become to istic time scales for the order parameter and angular mo-
one-loop order menta are the same<Ov* <«, and henceg=2z, =z, one
finds the well-knowrexactresult

A=Wt o) z=d2. (3.68
1 n-1 (n—1)w? ,
=w?f > 1+ e - Trw)? (1-0)]|, Indeed, the above one-loop flow equatigB60 and(3.65
w (1+w) provide the strong-scaling fixed point
(3.60
wi=2n-3, fi=e. (3.69
= T—{5— {0+
Bo=0(e5~ L5~ it lo) However, in addition there are two nontrivialeak-
1 — 1+ 7w+ 4w? scalingfixed points with{} # {5 , namely,
=--wf®(1-0)0+(n-1)————7—|,
2 (1+w) e
* _ * _
(361) WW_O’ fW on—-1' (37Q
Br=1(—e+{5—20—{p) with
1 — 1 2(n—-1)\ — 2(n—1)e
= 2. = o 2
?f € 2wf@) +(2+ Tow wf® 2s=2 on=1 +0(€9),
20n-Dw? o) 3.6
T 1w VA0, (3.62 2y=2- 5 +0(?), (3.7
BT +n+8~ 2(n—1)w f—(l ®) and
T=Ul —€ u— sWf(1-€
+
6 (+w) wh =, ff=2¢, (3.72
Z(n_l)/l WO -0 363  implying th
—1+W\—~ wf(1-0)|. (3.63 implying that
ZS:2, ZM:d_Z (373)

We are now ready to explore the fixed points of the RG
flow equations, as given by the zeros of tfiefunctions  Note that at both fixed points the relatiag+ zy=d holds,
(3.60—(3.63. First, we can check that indeed f0r* =1 the  of course. For the fixed poinB.72 this sum rule actually
equilibrium fixed points(see Ref[20]) emerge. The above even implies that Eq3.73 is probably exact, fot, should
flow equations then simplify considerably, and the effectivevanish if w* =. Finally, there is also the modd fixed

dynamical coupling in Eqg3.54—(3.57 becomes point with f5=0 (and w* unspecified because now the
) order-parameter and angular momenta are decolphath
f—wie 9 (3.64 zs=2+ 0(€?); yet, according to Eq(3.65), it is clearly un-
AD’ ' stable againstf for d<4: /Zdf/ld/=8¢(/)=—€f at
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f6 =0, and hencef will increase in the asymptotic limit The B function for the temperature rati®,=Tg/Ty
/—0. Similarly, both weak-scaling fixed points are unstable(3.61) reveals that there can only be nonequilibrium fixed
(to one-loop order at leastor d<4: Nearw}, =< one has Points with either (i) ®*=0 or (i) ®*=o, which as
B.— ew, and hencav will decrease ag’— 0, while in the To~T, effectively either correspond_ to a “renormalized”
vicinity of wj=0 one findsg,=—ew(2n—3)/(2n—1), temperaturély, = or Ty,=0. In the first case@* =0, one
and upon decreasing, w will go down as well. Stability finds B,=—(n—1)wfw?/(1+w)? with the stable fixed
analysis therefore demonstrates that to one-loop order thePINtw* =2 Inserting this into Eqs(3.62 and(3.63 yields

strong-scalingfixed point withz=d/2 is stable[17,19,2(; o .

however, asvy, =0 is actually close to its stability boundary O*=0: wr=w, fr=——o0o,

for n=2, it may well be that to higher-loop orders the 2(n—1)

strong-scaling fixed point actually becomes unstable for the

planar model, and in fact E¢3.68 does not hold20,23. T =2ur= 12 _ (3.80
We shall not pursue this issue further here, but rather turn n+8

to the newly emerging, genuinelyponequilibrium fixed _ . L .
points, at which even the static critical behavior might be' € divergence oiv™ already shows that this fixed point
changed, as opposed to the equilibrium situation withdescribes a kind of weak-scaling behavior somewhat similar

@*=1 for which statics and dynamics decouple; see Eqs?o the equilibrium fixed point3.72 with (3.73. Indeed, in-

(3.51, (3.53, and(3.63. For all the above fixed points, we S€"ing Eq.(3.80 into Egs.(3.56 and (3.5 yields
:)hneer_ei\:‘)%rs gra:jvgrthe nontrivial static Heisenberg fixed p@ot 26=dI2, zy=2, (3.81)
i.e., the dynamic exponent for the order parameter is identi-
(3.74 cal to its equilibrium value, while the angular momenta are
' described by mean-field theofgimple diffusion. Actually,
o N any nontrivial fixed point 8<f* <« via Egs. (3.62 and
which is stable f0|d<_4, fnd leads to the critical exponents (3.66 implies the identity 2g+zy=d+2+¢5. As for
of the O(n)-symmetric¢™ model ®* =0 both the anomalous dimensio8.57 and (3.55
A 04+10(e2 should vanish according to the general structure of the cou-
7=={s=0+10(e), plings, the result3.81) is probably exact. There is, however,
a nonzero anomalous dimension for the order-parameter

6e
n+8’

uy=

1=~ :2_(n+2)6 +0(éd). (3.75 noise,§§= — ¢; therefore the constany, in Eq. (2.29 is to
n+8 be replaced by a wave-vector- and frequency-dependent
At the critical point there also appear anomalous Iong—rangéuncuon’
noise correlations, both for the fluctuations of the order- (£%(9,0)LP(9",0"))
. a, q,

parameter and of the conserved fields. For the order- _
parameter noise, given Hysz(qg, ), one finds =A(q,0)8(0+q") S (w+w') 6, (3.82

(£4(q,w)P(q",0")) with the singular large-wavelength and low-frequency be-

havior (d<4)
=A(q,w)8(q+q") 8w+ w')s*?, (3.76

_ A0 =q? 4 A(0,0)xw@ 472 (3.83
with
which follows from the matching conditiong/'=qg and
A(Q,0%g* %, A(0,0)xw*s 22, (B.70)  (u/)?=w, respectively. Finally, the new nonequilibrium
static fixed poinii* = 2u}; , along with the fact that now the

Similarly, from I'yj(q,») we can infer the noise for the gy namics affects the static anomalous dimensiBr53),
generalized angular momenta at the critical point, taking 'nt%/ields thenew static critical exponents

account its diffusive character,
’ ' ' ’ 77:_5*:0"”0(62),
(7°P(0,0) 77°(q" ,0")) = A(Q,0) 8(q+q") S w+ ) S

X(5%78P0— 5%0587);  (3.78 1, 20n+2)

2" Th+s

e+0(€?). (3.89

1v=—{t=2— (
taking into account its diffusive character, we find the limit-
ing behavior According to Eq(2.36), the fixed poini3.80 corresponds to
the situation where there exists a coupling, of the order
A(g,0)xg™, A(g—0,w/q?)=(w/g?)™/2. (3.79  parameter to the angular momenta, leading to the dynamic
exponentzg=d/2, the generation of long-range noise corre-
This concludes our discussion of the equilibrium fixedlations, and even to anomalous static exponents, yet the dy-
points, and we now turn to the two new universality classesiamics of the conserved quantities themselves remains unaf-
appearing as a consequence of our genuinely nonequilibriufiected by the critical fluctuations and hence displays mean-
perturbation. field behavior.
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_The above analysis has tacitly assumed thatw® %g,z
=MD remains finite for®*=0 and w* =c. However, )
Ba=W({x—{5)=— €W, and hence the fixed poiri8.80 is

unstable for d<4 against an increasing coupling, or noneg."A
equivalently, against the generation of the new effective cou-

pling

1724

weak scaling weakS;cSaling
N - T
SSS
s £@2 2 AZ strong scalin, ;\\.
f=wi®"=g"—=, (3.89 SN B
Mo 0 12 1 1+F

which characterizes the second nonequilibrium fixed point eq. A
where®* =, and which describes a coupling of the critical 12
order-parameter fluctuations into the diffusive dynamics of
the angular momenta, but no effect of the latter on the equa- -
tion of motion for the order parameter itself. Indeed, the ﬁ;/l noneq. SSS
anomalous dimension8.51)—(3.54), (3.56), (3.57) all van-

ish when® — oo with f held finite, and with Eq(3.63 one
finds the standardp* Heisenberg static exponent8.75
along with modelA and purely diffusive dynamics for the
order-parameter and conserved quantities, respectively,

FIG. 1. One-loop flow diagram for the nonequilibrium SSS
model in the space of dynamical couplingg(1+w), f/(1+f),
and f/2 (displayed for the case=2, e=1). Asymptotically, the
equilibrium  strong-scaling fixed pointwg=2n—3, fi~¢,
25=2+0(€?), zy=2; (3.86 faq=€/(2n—3) is stable; in the figure, it is located at the point
(1/2,1/2,1/2)(full circle).
note thatw* cannot be specified because of this decoupling
of the modes. Thg function for the effective mode coupling arenotdetermined by the corresponding dynamic exponents,
(3.859 becomes Bi=f(—€e+2{7—3({,—¢5)=Ff(—€ as opposed to the equilibrium situation described by Egs.
+1/2), andhence we arrive at the following fixed-point val- (3.77) and (3.79, which are consequences of detailed bal-
ues: ance. Yet again, inspection of E(.62 in the vicinity of
_ Eq. (3.87, Bi=—2€f, shows that this second new fixed
O* = f*=2¢ U"=uj. (3.87  point is unstablewith respect to the flow of .
o ) ) ] Therefore, as both new nonequilibrium fixed points are
At this fixed point anomalous noise correlations for the an-ycqally unstable fod<4, the asymptotic critical behavior
gular momenta emerge, which in analogy with E182 can st be governed by thequilibrium (strong-scaling fixed

be written in the form point (3.69, (3.74 with dynamic exponent3.69 and the
B PSRN v , , usual static critical exponent8.75. The stability against
(7°(0,0) 70", 0"))=A(g,0) 5(q+q") (ot o) perturbations away from®* =1 is readily demonstrated by

X(8%7 88— 52958Y) (3.89 observing thaBg=—C(1—0), with C>0 according to Eq.
(3.61). Hence any deviation from the equilibrium fixed point
replacing Eq.(2.30. Their singular behavior follows from will be counteracted by the flow of the couplif@; i.e.,

Eq. (3.55 with (3.87), whenever the initial value dd is neither zero or infinite, the
_ flow will asymptotically approach the stable equilibrium
A(q,0)%xg”, p=d-—2, (3.89 fixed point, and thereby detailed balancedi;iamically re-

stored This is illustrated in Fig. 1, which displays the loca-
which is probably an exact result again, because the exigion of the fixed points and their flow in the space of the
tence of a nontrivial fixed point* with p=2+¢% implies  dynamical couplingsv, f, andT; notice that both the equi-
the relation Ig+p=d+4+ 2§§ , and both the structure of librium and “nonequilibrium” modelA fixed points are rep-

the perturbation theory and the above physical interpretatioﬁe*Senteol ?ydl_ineshhere because of the inieterminedhviIUE of
require thatgt=¢%=0. Similarly, the frequency depen- .- Concluding this section, we remark that at each of the

- } ) fixed points discussed above, including both new nonequilib-
dence ofA(q,w) displays anomalous behavior, but becaus&jym fixed points, the anomalous dimension stemming from
of the underlying diffusive dynamics we now have to takeihe additive renormalizatiof8.42) vanishes, as does from

the limit g— 0 more carefully, namely, witlo/q” held fixed.  the field renormalization. We therefore did not have to take
One then gets its effects into account explicitly.

R 2\ o 2ypl2. _
AG=0.0/g%) = (wlq") (390 IV. SUMMARY AND CONCLUSIONS
It is a remarkable fact that these anomalous noise correla-
tions always appear for those degrees of freedowards We have studied the critical dynamics db(n)-
which the energy flows, i.e., those quantitites that are in consymmetric systems, including reversible mode-coupling
tact with the heat bath dbwer temperature. It should be terms, in the framework of effective Langevin equations and
noticed that the power laws in Eq8.83, (3.89), and(3.90 dynamic field theory, and generalized the equations of mo-
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tions to nonequilibrium situations where detailed balance igherefore probably safe to say that these nonequilibrium
broken. In Sec. Il B we have argued that for the dynamics ofixed points will remain unstable even to higher orders in
isotropic Heisenberg ferromagnets the effect of violating theperturbation theory, albeit fon=2 the asymptotic region
Einstein relation between the spin diffusion constant and thenay ultimately be governed by the weak-scaling equilibrium
Langevin noise strength can be absorbed via rescaling thixed point(3.70); see also Fig. 1.
static nonlinearity and the mode-coupling constant. Hence The remarkable result that violation of detailed balance
universal properties cannot be affected by this specific formappears to be an irrelevant perturbation in the RG sense, at
of detailed-balance violation, and the critical point is de-least in rotation-invariant and isotropic systems, is of course
scribed by the usual Heisenberg model exponents with thetrengthening the notion of universality even in nonequilib-
equilibrium dynamic critical exponemt=(d+2—7)/2 [14].  rjum situations. Probably in many experiments probing the
This fact generalizes previous results regarding the stabilitgritical dynamics with electromagnetic radiation or neutron
of the relaxational modelé and B against nonequilibrium  scattering, the system is not perfectly thermalized and varia-
perturbationg2,3,4 to a situation where reversible mode- {jons in the effective temperatures for the different degrees of
coupling terms are present as well. _ freedom cannot be avoided completely due to the inevitable
On the other hand, for the critical dynamics of planarcitical slowing down that prevents fast relaxation processes.
ferromagnets(model E) [17] or isotropic antiferromagnets now if such a perturbation were relevant, its effects would
(model G) [19], both incorporated in th©(n)-symmetric  pecome enhanced drastically in the vicinity of the phase tran-
SSS modef16], such a simple rescaling does not remove thesition, however small the initial deviations from equilibrium
gﬁects of deta|I(.ad—.baIance violation completely, as discussephight have been. Such a behavior is apparently not ob-
in Sec. Il C. This is because there appears a new degree gfrved; however, it might be interesting to prepare a nonther-
freedom, namely, the temperature raflg of the heat baths  m3a|ized system on purpose, say by arranging for the in-plane
to which the order parameter and the_ consc_arved angqlar M@pinsS* and S in a planar ferromagnet to be on a different
menta are attached. This new variable induces differenfomperature tharg?, conceivably attainable with polarized
renormalizations for the noise strengths as compared t0 thgectromagnetic radiation. Another possibility would be to
Onsager coefficient¢Sec. Ill B), and therefore genuinely iniroduce a long-wavelength magnetic field with random
new dynamic and static critical behavior may emerge. INime variation. In an antiferromagnetic material, its effect
deed, there appear two new fixed points of the resulting RGyoyld cancel for the staggered magnetization but the cou-
flow equations, describing continuous phase transitions %Iing to the magnetization would mimic a situation with
e_ntirely nonequilibrium charaqter, namely, corresponding tor,,= . For both experimental realizations, or at least in
either =0 or ® =, where in the former case even the gqjvalent computer simulations studies, the effects of the
static critical exponents become modified. The ensuing dyapove two new fixed points may then be explored, for these
namic exponents may be interpreted physically by notingshoylg manifest themselves in nontrivial crossover behavior,
that in both cases either the coupling of the order parametefnq perhaps even the associated anomalous critical expo-
into the diffusion equation for the conserved fields vanishe$,ents and noise correlations might be detected.
while the reverse coupling remains eff_e_ctive or v_ice_ Versa. e finally remark again that the specific violation of de-
To one-loop order, however, the stability analysis in Sectyjled balance investigated here wigstropic in character,
III'C shows that both of these fixed points are actually Un-therepy disturbing neither of the underlying symmetries of
stable, and provided 900 ,< the asymptotic critical be- the SSS model, namel(n) symmetry and its spatial iso-
havior is governed by the nontrivial strong-scaling equilib-tropy. Obviously, it would be interesting to see if the above
rium fixed point of the SSS model characterized again by thgtapility against nonequilibrium perturbations persists even
static exponents of th@®(n)-symmetric Heisenberg model \yhen the detailed-balance violation is applied in an aniso-
and by the dynamic exponentd/2 [16,20. _ tropic manner, e.g., by coupling the order parameter to con-
This suggests that the role qf detailed balancg is actually 8erved angular momenta as above, but arranging the noise
weaker one as compared to internal symmetries; for whil&trength of the conserved fields to be related to different
breaking a discrete or continuous symmetry typically result§emperatures in different space directions. The study of this,
in a change of the universality class, detailed balance beyy similar direction- or scale-dependent nonequilibrium per-

comes restored here at the critical point, obviously as a conyrpations provides a promising venue for further research.
sequence of the underlyi@(n) rotation symmetry and the

spatial isotropy of the model. We remark that there are some
notable exceptions, though, for the relevance of symmetry-
breaking terms. For example, th@(n) symmetry of the
Heisenberg mode(2.1) is restored as a consequence of the We benefited from discussions with J. Cardy, G. Grin-
large critical fluctuations, even when cubic anisotropies areatein, and K. Oerding. U.C.T. acknowledges support from
added, ifn<n. (with n.=4 to one-loop order[26]. We the Engineering and Physical Sciences Research Council
should also cautiously state that our above results relied o(EPSRQ through Grant No. GR/J78327, and from the Euro-
the one-loop approximation only, and specifically the stabiljpean Commission through a TMR Grant, Contract No. ERB
ity boundaries might change in more accurate calculationdsMBI-CT96-1189. Z.R. acknowledges the hospitality of the
as seems indeed to be the case for the equilibrium plananembers of the Theoretical Physics Department of Oxford
model[23]. However, in theB functionsBg and 87 describ-  University as well as the support from the Hungarian Acad-
ing the instabilities of the fixed point&3.80 and (3.87), emy of Science$Grant No. OTKA T 01945}, and from the
respectively, no dangeromsdependences appeared, and it isSEC Network(Grant No. ERB CHRX-CT92-0063
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APPENDIX A: EXPLICIT ONE-LOOP RESULTS subsequent expressions, the internal frequency integrations
FOR THE VERTEX FUNCTIONS have already been carried out via the residue theorem. We

1ati = —d d “e . -

In this Appendix, we present a list of the results to one-ulsfe. tlhe abb_rdewa;loﬁk~ ' '_(2773. Jd%k h we dlo not ex h
loop order in perturbation theory for those vertex functionPlicitly provide the Feynman diagrams themselves, as they
that are required for the renormalization of the nonequilib-2"€ identical with those of the equilibrium modeo]. _
rium SSS model defined by Eq&.27—(2.30, or, equiva- We begin with the two-point vertex functions renormaliz-
lently, by the field theory2.31), (2.33, and(2.35. In all the  ing the noise strengths, and Dy,

1 Do(a/2—k)?
_ 2 ~0 0
1+(n 1)90)\0D0fkr0+(q/2+k)2

Foss(a,0)= =21 (@—iNo[To+ (q/2+ K)2])2+ DX(q/2—K)*

NolFo+ (g/2+K)?
n . ol o2 éq ; ] =11, (A1)
[w+iDo(a/2—Kk)=]“+Nglro+ (a/2+k)7]
Tomia(0,0) = —2Do0? 1+4g3 % f( k)2 :
owtha of | 27490y B T For (@724 K07 (0 inglro+ (@724 K22+ NZLro+ (92— k)2
+ - 1 A2
r0+(q/2—k)2(w+i)\o[r0+(q/2—k)2])2+)\(2)[r0+(q/2+k)2]2 ‘ (A2)
Consequently, we have
I'yz3(0,0)=— 2N, 1+ 126°f ! ! A3
053(0,00=—2\, (n— )go)\oDo ot K2 No(To - K2 T Dok2|" (A3)
&r“( 0| =-2Dg/1+=¢2 ~‘2)f < (A4)
W omm{d, I 0 ng)\g’BO k(r0+k2)3 .
For the computation of the response functions, one needs the two-point functions
N ) 5 n+2~ 1
Foss(Q,0)=iw+Ng(ro+q°) + T’\ouo ot k2
+(n—1)(ro+q> zxof ! !
(=D o+ a9905 | 3 (/27 K)2 T0+ No[Tot (q/2+ K)2]+ Do(q/2—K)2
o D 1
120 1_20 =0
+(n 1)90D0( o Do) fkiw+xo[ro+(q/2+k)2]+D0(q/2—k)2’ (AS)
_ ) (g-k) 1
~ _ 2_ 44220 .
Fotin(0,0) =10+ Dod™ =400y | & (027 K)2 Tt 2h(ro+ AT KD (A6)
specifically,
(00— . 120f 1 n+2 o f 1
OSS( ) )_ 0 rO +(n )go)\_é kr0+k2 )\0(r0+k2)+D0k2 + 6 )\_OUO kr()+—k2
D o D 1
_1yq2_—09 B
+Hn 1)g0)\0D0(1 Xo Do) kao(ro+k2)+Dok2}' &n
O Fem (@0 =D 1+22X°f < A8
W omm(a,0) q:O_ 0 ago)\gDo (ot K23’ (A8)

Furthermore, the following vertex functions containing composite operators are refuotedeq.(3.9)]:
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Tosi = 1 )‘Of - : A9

oSt (G ) == ("= 1)Goy | T = (0/25K)2 ~Tw+ holTo+ (@/2+K)2]+ Do(02—K)?" (A9)
3 1

(9-k) (A10)

Xo
FOM[ES](q,w):Zgo)\—Ofk

Calculating the three- and four-point functions is already a rather tedious task even to one-loop order, and we merely quote

the final results needed for renormalization purposes:

rot (a2+Kk)?2 —iw+2\o(ro+q/4+k?)

T'yza(0,0:0,0:0,0) = 1 1 25°f ! +(n—1 ZXOJ K !
0ssm(0,0;0,0,0,0)= —go| 1—(n— )goD—O k[)\o(ro+k2)+Dokz]2 (n— )go)\—o kro+k2 [)\O(r0+k2)+D0k2]2 )

(A11)
P ,D k2 1
———Tomisd —9,0:0/2— p,0;a/2+p,0)| =2g 1——(n 1)g2 Of
aq-p) - OMS " " 7la=p=0 0 O\ kfo+k2[>\o(fo+|<2)+Dok2]2
1 2\oDo ! A12
_(“ 19752 (r0+k2) Dho(ror K+ D) (A2

and finally

n+8 XO

Fogsséo!ololoyoloyoyo) = )\OUO

. f 1ol 36 Dof 1 1
6 20 ) (g kd2 T (N D90 1 s Ny oF K2 No(T o K2) + Dok

39c2) Do 1 39% Xo
(n— 2 _v 1 (n— 2 s
(=1 1+ 5 0 Dofk[)\o(r0+k2)+D0k2]2'(n Do 1+ ¥ B ug | x
f k2 1 L 395 )\Of k2 1
" ot K Dho(ror KT Dk (" VX Doty N2 (rot K2 ho(ro+ KO+ Dok
3g¢ Do K2 1
—(n=1) _J 7 7 YY)
392 XODOJ k4 1
+(n—-1 : Al3
( )7\0D0Uo )\cz) k(o k%)% [No(ro+k?) +Dok?]? (AL3)
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