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We review a mean-field analysis and give the details of a correlation function approach for spatially
distributed systems subject to multiplicative noise, white in space and time. We confirm the existence of a pure
noise-induced reentrant nonequilibrium phase transition in the model introdug¢€dVfan den Broeclet al,,

Phys. Rev. Lett73, 3395(1994], give an intuitive explanation of its origin, and present extensive simulations
in dimensiond=2. The observed critical properties are compatible with those of the Ising universality class.
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I. INTRODUCTION II. ZERO-DIMENSIONAL MODELS:
SHORT-TIME VS LONG-TIME BEHAVIOR

Noise is usually thought of as a phenomenon which per- Consider the stochastic differential equation
turbs the observation and creates disorder. This idea is based .
mainly on our day to day experience and, in the context of x=f(x)+9(x)¢§, 1)
physical theories, on the study of equilibrium systems. The

. . ) 4 ; where ¢ stands for Gaussian white noise with first two mo-
effect of noise can, however, be quite different in nonlinear

nonequilibrium systems. Several situations have been docJTJentS

mented in the literature, in which the noise actually partici- (&(1))=0,

pates in the creation of ordered states or is responsible for

surprising phenomena through its interaction with the non- (EEM))y=0a28(t—1"). (2

linearities of the systerfil—10]. Recently[11], a quite spec-

tacular phenomenon was discovered in a specific model of §auation (1) is interpreted according to the Stratonovitch
spatially distributed system with multiplicative noise, white INterpretation13]. Hence the probability density(x,t) for

in space and time. It was found that the noise generates a{He variablex(t) obeys the Fokker-Planck equatifh14]

ordered symmetry-breaking state through a genuine second- o2
order phase transition, whereas no such transition is observe@ P(x,t)= —d,[ f(X) P(x,t)] +?ax{g(x)ax[g(x) P(x,t)1},
in the absence of noise. The purpose of this paper is to &)

present a more detailed investigation of this phenomenon.
First, we will give an intuitive explanation of why the tran- and the steady-state solution is given by
sition occurs in this particular model and not in others. This

explanation also sheds light on why phase transitions were

0_2
Y= 5 9)g'(y)

not discovered in the related context of noise-induced tran- St
sitions[1]. Second, after reviewing the mean-field analysis PS(x)=Nexp o 2 dy ¢, (4
which was introduced if12], we present the details of a 79 (y)

more sophisticated approach, which involves the approxi-
mate calculation of the spatial correlation function. Third, wewhereN is a normalization constant amgd(x) stands for the
include extensive simulations of the model in spatial dimenderivative ofg(x) with respect to its argument. The extrema
siond=2, and present a finite-size scaling analysis showingx of the steady-state density obey the following equation:
that the critical properties of the phase transition are compat-
ible with those of the dynamical Landau-Ginzburg model or
the Ising model.

R 0'2 - R
f(X)—7g(X)g’(X)=0. 5
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One notes that this equation is not identical to the equation

f(x)=0 for the steady states in the absence of multiplicative 0.12 ‘ ' '
noise. As a result, the most probable states need not coincide
with the deterministic stationary states. More importantly, 0.10
solutions can appear or existing solutions can be “destabi-
lized” by the noise. These changes in the asymptotic behav-
ior of the system have been generally named noise-induced 0.08
transitions[ 1]. <x(t)>
To illustrate this phenomenon, consider the case of a de- 0.06

terministically stable steady state ax=0, e.g.,
f(x)=—x+o0(x), perturbed by a multiplicative noise. As is
clear from Egs.(4) and (5), a noise term of the form
g(x)=1+x?+0(x% will_have a stabilizing effect, since
—(0?12)g(x)g’ (x)= — e®x+0(x), and it makes the coeffi- 0.02
cient of x more negative. On the other hand, noise of the

form g(x)=1-x?+0(x?), i.e., with maximal amplitude at 0.00 , ‘ , ‘
the reference state=0, has the tendency to “destabilize” 0.0 0.2 04 0.6 0.8 1.0
the reference state. In fact, above a critical intensity , t

02>U§:1’ the sta@nary probability density will no longer FIG. 1. Time-dependent evolution of the first momérgt))
have a maximum at=0, and “noise-induced” maxima can s A '
appear. This phenomenon remains possible even if the deteRating from an initial stat@(x,t=0)=5(x~0.1), of a stochastic
ministic steady-state equation, obtained by fixing the randonif?;')aflf t;‘r?&sgr']rég 5;‘;2;;3&3?2%:3;; ;‘;dfec:r(?ﬁ:hn‘:g dileT?n-
value of the noise to a constant valug, namely, g ’

— — . ; ; troduced in[11] (full line), f(x)=—x(1+x?)2 and g(x)=1+x2.
fFO)+1g(x) =0, ha§ a unique solution for all. Hongler's Notice that, for Hongler's model, the decay is monotonic, whereas
model [17], with f(x)=—tanlk=—x+0(xX) and

> 57 . for the other model there is a tendency to initially destabilize small
g(x) =sech=1-x/2+0(x), is a concrete example of this | 51 es ofx.

situation: for o?>g?%=2, two noise-induced maxima arise

on both sides of the deterministic reference siate. One  jan_ The equation for the maximum of the probability, which
has coined the term “pure noise-induced transition” for thiss aiso the average value in this approximation(x), takes

type of transitions. , o . on the following form[valid if f((x))>(&x?)f"((x)), and a
Following the formalism for equilibrium states, it iS gimilar condition for the term involvingy(x) :
tempting to introduce the notion of a “stochastic potential”

Ug(x) by writing: PS{(x)~exd—Ug(x)]. One concludes . o2

that for a system undergoing a noise-induced transition, e.g., x=f(x)+ 7g(x_)g’(x_)_ 7

for g(x)=1—x2+0(x?), and fora>> o2, the stochastic po-

tential has two minima. Consider now a spatially extended ) ) ) )

system obtained by coupling such units. The coupling is sucdh€ important observation to make is that the sign of the

that it favors the nearest-neighbor units, to stay at the sam@ultiplicative noise term imppositeto that appearing in the

maximum of the probability densityminimum of the sto- ong-time result, cf. Eq(5). Hence it predicts an opposite

chastic potential In analogy to what happens for equilib- gffect of the multiplicative noise at early times. In particular,

rium models, such as the Landau-Ginzburg mddé,19, if we were to probe the “stability” of the refer_ence state

one expects that this system will undergo a phase transitioti =0, We would conclude from Ed7) that a noise of the

for some critical value of the “temperaturghoise intensity ~ 1orm g(x)=1+x?+0(x?) now has the tendency to destabi-

o2. However, it turns out that this is not the case. In fact, welizeé the reference state=0, favoring initially non-null val-

will show in the next sections that one needs a noise ofl€s of the variable. o

precisely the other type, namely(x)=1+x2+0(x?), to To |IIustrat_e this point further, in Fig. 1 we h_ave repre-

generate a genuine phase transition. The reason for this coupented the time-dependent evolution of the first moment

terintuitive result can be clarified by focusing on the short-(X(t)), starting from an initial stat&®(x,t=0)=&(x—-0.1),

time behavior. for Hongler's model,f(x) = —tanthx and g(x) =seckx, and
From Eq.(3), we obtain the following exact equation for for the model introduced in Ref11], f(x)=—x(1+x?)?

the time evolution of the first moment of the probability andg(x)=1+x?. For Hongler's model, the analytic result is
density: available. For the other moddlx(t)) was obtained through

a numerical integration of the corresponding Langevin equa-
. o? , tion. If one would like to interpret these results again in
=fx))+ 7<g(x)g (X)) (6)  terms of an equilibrium picture with a Brownian particle in
an effective potential .4(x), one finds that the short-time
When f and/org are nonlinear, the evolution of the first behavior corresponds to an effective potential with a single
moment is coupled to higher-order moments. Suppose, howninimum atx=0 for Hongler's model, while it it bistable
ever, that we start with an initial Dira& probability density, for the other model. In other words, the picture is just the
and follow it for a short time, such that fluctuations are smallreverse of the one suggested by the consideration of the
and the probability density is well approximated by a Gausssteady-state probability and the stochastic potefutiglx).

0.04
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the location of the lattice point under consideration. The time
evolution ofx, is described by the following set of stochastic
differential equationgwe consider a hypercubic lattice in
dimensiond with lattice spacingay=1):

. D
X =f(x)+g(x)é+ 55 2 (Xr=x),  (8)

r’ en(r)

wheren(r) denotes the set of ®sites neighbor ta, and
{&(t)} are Gaussian noises, white in time and space, with
zero mean and an autocorrelation function given by

<§r(t)§r’(t,)>:Uz&r,r’ﬁ(t_t’)- 9

(6, stands for a Kronecket function) The last sum of Eq.
(8) is, in the continuum limit, nothing but the usual diffusive
Laplacian termV2x,. Equations of this kind are very gen-
eral, and cover a multitude of different physical phenomena
both in equilibrium and nonequilibrium problems. We focus
in this paper on the steady-state properties of this system.
However, the presence of multiplicative noise terms compli-
cates matters significantly and, in fact, the multivariate
steady-state probabilitPi({x,}) is only known in general
for the case of additive noise, i.e., whgfx) is a constant
function.

The set of Eqs(8) and(9) are equivalent to the following
Fokker-Planck equation:

atp({xr}vt)

d D
=2 077{ —fx) 55 2 (4 Xe) P({xr},u]
FIG. 2. Time evolution of domains starting in a completely ran- ' ' r'en(r)
dom initial configuration toward an ordered phase for the spatially o2 9 9
extended model given by Eg$8) and (29) on a square lattice, + — —{g(x)—[g(x)P{x},1)]} |. (10)
(L=128,0%=4.00, andD =20). Dark areas correspond to positive 2 9% I

values of the fieldk,, and light areas to negative values. Notice the

initial development of small ordered regions which subsequentlyBy integrating Eq(10) over all variables with the exception
grow. of x, (and assuming that the steady-state properties are uni-

. , f ins the followi - [
We can now understand a possible mechanism for th?g:Tr)lleogrfe?s?'leB?otba?bil(i)tyc-)wmg exact steady-state equation

presence of a phase transition when coupling such scalar
variables. Imagine that the short-time behavior can be de- 5
scrlb_ed py a blstab_le potentibl 4(x) according to the dis- 0= 2| —f(x,)+ D[ X — E(x,)]
cussion in the previous paragraph and, hence, non-null sym- X,
metric states develop initially. Then, if the spatial coupling is

2
sufficiently strong, it is possible that these non-null states 9 9 s
couple to form local ordered regions which might subse- 3 g(xr)axrg(xr) PHx,), (D
quently coarsen and gro@ee Fig. 2. This mechanism is the
physical explanation of the existence of a phase transition ignere
the spatially extended version of the system.
IIl. MEAN-FIELD THEORY E(y)=<er|Xr=Y>=j dx, % PS(x,/[x,=y), r’en(r)
FOR SPATIALLY EXTENDED SYSTEMS (12)

We now consider spatially extended systems with multi-
plicative noisg11,12,20—23 For simplicity, and in order to represents the steady-state conditional averagg, ot a
keep a clear connection with the zero-dimensional modelseighboring siter’ e n(r), given thatx, at siter takes the
discussed in Sec. I, we consider a lattice model with onevalue x,=y. The solution to Eq(11) is readily found(we
spatially distributed scalar variable , with r determining drop the subscript for simplicity of notation),
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PSY(x) reference state and precisehot in models whose zero-
dimensional version displays a noise-induced transif#g.,
o2 ) not in Hongler's model This probably explains why the
« [Y)=509(y)g"(y)~Dly—E(y)] existence of noise-inducgzhasetransitions was not discov-
=7 lexp f dy ~ , ered earlier(see also Ref.36]).
0 0",
- 9°(y)

13 IV. CORRELATION FUNCTION APPROACH

. o . ) We now present a more sophisticated approach, which
whereZ is a normalization constant. This result is exact, butiyolves the approximate calculation of the spatial correla-
we still have to determine the unknown functigiy). tion function. The method is an adaptation to multivariate

We start by considering in this section the simplest apqker-Planck equations of a technique developed in the
proximation[12], which is analogous to the traditional Weiss context of multivariate Master equatiof@7,3§. The start-

mean-field approach from the theory of equilibrium critical ing point is the following ansatz for the conditional average:
phenomena and which has also been applied successfully in

several other stochastic problerf1—35. In this approxi-

mation, one neglects the correlation between neighboring(xr'|xr=y>:J' A X P X = Y) = (X) + Crr (Y= (X)),
sites so thatE(y)=(x), independent ofy. Note that, the (16)
steady-state probability is now a function{sd, cf. Eq.(13).

The value of(x) follows from a self-consistent relation aris- where c,,,=(x, 6,/ )/{5x?) (Sx=x—(x)) is the spatial

ing from its very definition, correlation coefficient between sitesandr’. The system is
. assumed to be statistically homogeneous, so that single-site

<X>:f dxxP(x)=F((x)). (14) averages are independent of the specific locaf@m hence

—o the subscript denoting the location will be dropjpdd par-

_ o _ _ o ticular, the ansatz16) implies that
Since this is a complicated nonlinear equation(i), the

appearance of multiple solutions cannot be excluded, thus E(y)=(X)+c(y—(x)) 17

suggesting the possibility of breaking the ergodicity associ-

ated with the presence of a phase transition in the model. where ¢ is the nearest-neighbor correlation coefficient
Even though an exact analysis of Ed.4) is difficult  c=c,. with r’ en(r). Note that the mean-field approxima-

without specifying the explicit form of the functionfsand tion corresponds to the choige=0. The variablec appears

g, one can extract precious information by considering theas a second unknown in the explicit form of the steady-state

strong-coupling limitD — . Using the saddle-point approxi- probability, cf. Eqs(13) and(17), and its value can be found

mation, one finds that Eql4) reduces to the following self-consistently as follows. The ans&i®) implies the fol-

simple equation fofx): lowing property for any functionp:

0'2 ’ = ’
(00 + S a0 () =0. s (X)) = (0 B00)) +Cr o X b)),

which, in combination with the Fokker-Planck equatidg),

It is instructive to derive this result in a different way. One leads to the following closed equation for the correlation
easily verifies that the evolution equation for the first mo-functionc,, . for a cubic lattice in dimensiod:
ment(x,(t))=(x(t)) is identical in form to that for the zero-
dimensional system, i.e., it is given by E). At the steady- D E
state and considering the lim —o°, one can neglect the 2d
fluctuations of the variable around its average value, and
concludes that the steady-state equation for the first moment
reduces to Eq(15), which is thus exact in this limit.

Rgfe_rring to the discussion ir_1 Sec. Il, we conclude that ini, B andy given by
the limit D—oo the system will undergo a second-order
phase transition if the corresponding zero-dimensional model o?(g?(x))
displays a linear instability in its short-time dynamics. The B=—Fo

(Crr’_cr”r’)+ 2 (Crr'_crr”)

r"en(r) r"en(r’)

=B —2YCy1, (18)

2
physical content of this conclusion is clear: when the system (ox%)
is strongly coupled, the short-time instability of the trajectory (19
is the driving force behind the nonequilibrium phase transi- o2

tion. The criterion of short-time linear instability has been <5x f(X)+?g(x)g’(x) >

mentioned in other theoreticB22] and numerica34] find- _

ings. However, we stress that it only holds as an approxima- v %) '

tion for finite values ofD, and that it can completely break

down for small values oD, cf. the example in Sec. V. Asan In deriving Eg. (18, we have used the fact that
interesting corollary, we return to the discussion of Sec. Il to(f(x)>+(02/2)(g(x)g’(x)>=0 at the steady-state, cf. Eq.
conclude that we expect pure noise-indupadsetransitions  (6). Obviously,3>0, and it can be also proved that-0 if
in models for which the noise intensity has a minimum at thec<1.
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Since the system is space-translational invariant at the B (= coglk,)

steady-state, the correlation function can be written in terms ¢,=c(lg,)= — o - .

of relative coordinates, i.ec,,,=c(r—r’)=c(r’'—r). Using mDJo  \[2(1+y/D)—cogk,)]* -1

this property, Eq(18) can be rewritten as (25)
D Using the relation ¥ 23°_; cos(k,)=md(k,), one obtains the
q 2 [c(r’)—c(r)]=2yc(r)— B o. (200  following simple result for the spatial correlation length

r’en(r)
* -1/2
A closed expression for the correlation functiofr) can be =S Clzﬁ RAEIRA el (26)
obtained in the case of a square lattides 2. By taking the =0 4D[D D 2

Fourier transform of Eq(20) one fin . .
ourier transform of Eq(20) one finds At this point, a comment about the limitations of the present

D[cogk,) +cogk,) — 2[c(k)=2yc(k)— B,  (21) approach is in place. As it is clear from the previous result,
the divergence of the correlation length requires tat0.
from which the Fourier transforng(k) of the correlation On the other hand, it is also clear from E&4) that in this
function is readily obtained. In order to perform the inverselimit c=1, and in factc(r)=1,Vr. The reason of this be-
Fourier transform, the following identity is helpful: havior is that the decay of the spatial correlations is de-
scribed by a single constant parameiercf. Eq. (18). In a

fmdze*“l (21 -(2)= ifwdk more sophisticate.d. approximation, this would no Ionger'be
0 e/ im B P true and a less trivial appearance of long-range correlations
would become possible. In the example that we will treat in
y fwdk coglky)cogmk,) Sec. V, we find that the parametgrnever converges to 0,
o ’t—cogky)—cogky)’ even at a phase transition point. The present method is thus

of no use in describing long-range spatial correlations. Its
wherel,(z) is the modified Bessel function. One concludesmain virtue is to give improved results, when compared to
that the mean-field theory, for quantities such as the location of
the critical point and the local probability density.
B (> _ Finally, we note that the ansatz in E{.6) is exact ifr
c(r)= SJO dze YR (2)I(2) for r=le+mey, andr’ are correlated Gaussian variables. This condition is
(22) verified for a linear Fokker-Planck equatipf(x)= —x and
g(x)=1]. The above-derived expressions are therefoact
where € ,€) is the unit cell of the square lattice. for the linear model. One has in this case tHay=0,
A nearest neighbor in the square lattice has coordinateg=1, andB=2[1+(1—-c)D], with the following final re-
=1 andm=0 (or, equivalently|=0 andm=1), and one sults forc andA:
can perform the Laplace transform appearing in E2R)

explicitly (formula 12.9 in Ref[39]) obtaining the following K D \? .
result for the quantityc: _1+D 1+D 2 )
ﬂ B b ) D D 2} ' ( 7)
=——+ —K||—= +
=~ 20 70" |\37D } (23 1+D
where K is the complete elliptic integral of the first kind. N = EJF 1+(1-¢)D _ (28)
This expression can be further simplified by noting that 2 pJ(1+2b)%-1
c=1-B/2D+ y/D which follows directly from Eq(18) for
the choicer=r'. By elimination of 8, one obtains the fol- V. PURE NOISE-INDUCED PHASE TRANSITION

lowing final result forc:
The results obtained in Sec. IV are general; they can be

K D 2} . applied for any choice of the functiorigx) andg(x). In this
y+D y+D 2 paper, however, we want to discuss in detail the case of pure
= D D 2] (24)  noise-induced phase transitions. We will focus here on the
_) } prototype model that was introduced in REf1], namely,
y+D the set of Eqs(8) with the choice
The averages appearing in the definitionyofcf. Eq. (19), f(x)=—x(1+x3)2, g(x)=1+x2 (29)

have to be calculated with respect to the steady-state prob-

ability given by Eg.(13), which itself depends ofx) and We are inclined to believe that it is the simplest possible

c. As aresult, Eqs(14) and(24) form a set of two nonlinear model that exhibits such a transition, and possibly corre-

self-consistent relations determining the values(xf and  sponds to a kind of “normal form unfolding.”

c. When multiple solutions to these equations are found, one As a first approach to understanding this model, in Fig. 3,

again expects that the system undergoes a phase transitiome show the phase diagrams as predicted by the mean-field
We also mention the following result for the spatial cor- theory and the correlation function approat@FA) de-

relation function along the axis of the square lattice: scribed in Secs. Il and 1V, respectively. These have been
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FIG. 3. Phase diagram for the noise-induced phase transition as
predicted by the mean-field theofgiashed ling cf. Eq. (14), and
the CFA (full line), based on Eqs(14) and (24) for dimension
d=2.

FIG. 4. Order parametefx) vs intensity of the noise for

D =20, according to the mean-field theaigashed ling the CFA

for d=2 (full line), and A simulations for system sizes 332
(circles, 64x 64 (diamondg, and 128 128 (squares Notice that
obtained by numerical solution of the self-consistency rela@lthough the general features of mean-field approximations agree
tions Eqgs.(14) and (24). The most important feature shown with the simulation result, they tend to overestimate the ordered
in Fig. 3 is the prediction of the existence of a symmetry-€9'0n:

breaking phase corresponding to a solution of the self- S ] ) ]
consistent equations witfx) # 0. Both the mean-field theory @PProximations and also to gain an understanding of this
and the CFA predict the appearance of such a phase 4phenomenon of a noise-induced phase transition, we have
though they vary slightly in the region of parameters forPperformed numerical simulations_ of the model defined by
which one expects the ordered phase to exist. According t§9S-(8) and(29) on a square latticesee the Appendix for
these approximate theories, the ordered phase appeéjgtalls of the simulations The simulations confirm qualita-
through a second-order phase transition for a sufficientlyjively all the predictions of the mean-field approaches, and
strong spatial couplin®, and at a finite critical value of the 9ive Us more accurate data about the transition p0||12ts. In Fig.
noise intensityo? . There is no phase transition if the spatial 4 we plot the order parametgk) as a function ofo* for
couplingD is less than some critical value. This agrees wellP =20 according to the two mean-field-type theories devel-

with our intuitive explanation of the transition given in Sec. oped ear[ier togethef with _the simul_ation result; for variou_s
II: if the coupling is not strong enough, and local ordering SYStém sizes. The simulation data indeed confirm the exis-
cannot be induced in the early evolution, the late-time distrience of both_phase transmc;ns, but the ordered phase appears
bution will be governed instead by the maximaof the In a small_er interval 1‘7{_‘7 <5_‘8.' Th_e Iatter_values ha_ve
steady-state probability density, E&), which in this case is been obtained on the basis of finite-size scaling analysis, cf.
x=0. If we turn now to the limit of very strong spatial Sec. VI.

coupling, whenD —oo, the location of the critical point at

o?=1 is in agreement with the linear instability criterion VI. CRITICAL PHENOMENA
mentioned in Sec. Il. Another interesting, although certainl . . . .
g 9 y The pure noise-induced phase transition discussed in Sec.

not surprising, feature of the transition, is that as one in- . . .
_appears to be an interesting phenomenon. The question

creases further the noise intensity, the ordered phase disa f : to whether this t ii h th |
pears through another second-order phase transition. Th erefore anses as to whetner this transition shares the usua
eatures of equilibrium phase transitions and, additionally,

second, reentrant, transition shows that the more “tradi- . S ; :
tional” effect of the noise, namely, the ability to destroy Whet_her it belongs to any of the existing universality classes.
ordered states. is also preéent in Ol,,ll’ model In this sense, a theoretical argument has recently been put
If we take f,or instanceD = 20, the order barametéx) forward indicating that the critical properties are those of the
takes nonzer'o values only for r{oise intensity values in th sing universality clasg40]. To investigate these points, we

; 2 2 i . ave performed extensive computer simulations in the vicin-
interval (o,,0c,). The mean-field theory predicts the IOhaseity of both the entrant and reentrant critical points for

transition points at; ~1.11 andog ~19.1, while the CFA b =20 for two-dimensional systems of size<L for values
yields a somewhat narrower region for the ordered phaseaf L ranging in size betweeh=10 and 128. Apart from the
namely 1.56<0%<18.7. It is expected that the mean-field order parametem=|L " 2Z,x,|, and the correlation coeffi-
approach and, to a lesser extent, the CFA, overestimate ttedent, ¢, we also measure higher-order moments, as well as
size of the ordered region. time and spatial correlations. The results are collected in
In order to check the validity of these mean-field typeFigs. 4—-11. One clearly recognizes all the trademarks of
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80 ———————— T (a) 5=1.71 (b) 6,=5.80
5.0 . T . 8.0 - T .

Mean Field Mean Field

| 4.0
6.0
3.0 ?
E £
X | S-J g 4:0
2.0
2.0

1 1.0

0.0

Ising

11 1.0

(o]
0.8
FIG. 5. Susceptibility,y= (L% ¢?)[{(m? —(m)?2], as a function
of o2 for system sizes 3232 (circles, 64x 64 (diamond$, and s 06
128%x 128 (squares The peaks clearly show the enhancement of =

fluctuations around the two critical points. 0.4

second-order phase transitions: divergence of fluctuations 0.2
(Fig. 5, scaling propertieg§Figs. 7 and 8 long-range spatial

correlationgFig. 9), and critical slowing dowriFig. 10. We 0.0 . . y .
now discuss each of these topics in some detail. -20.0 0.0~ 200 200 00 200
In an equilibrium second-order phase transition, the rela- L-o7s;) Ld-c7o.)

tive fluctuations of the order paramet@usceptibility and
FIG. 7. Plot of(m)L" vs (1—o%/o?)LY in order to check the
prediction of finite-size scaling of the order parametey for the
151-5 20 L 55'6 61 entrantplots (a)] and the reentrariplots (b)] transitions. We use in
) : this figure the Ising (=1, v = %) and mean-field=1, v = 3) criti-
cal exponents. The quality of the scaling is certainly superior for the
Ising exponents than for the mean-field ones.

energy(specific hegtdiverge with characteristic critical ex-
ponents. In our model, we define a “susceptibility’as a
suitable measure of the fluctuations of the order parameter

1.0 1.0

L2
X= —ol(m2)— (m)?; (30

this definition, and more specifically, the presence of the
o? term in the denominator is the equivalent of the usual
definition y=L%[(m?) —(m)?]/kgT for thermal systems. In
Fig. 5 we ploty as a function of noise intensity? for
different system sizes. The enhancement of fluctuations near
the two critical points is clear. In the case of equilibrium
phase transitions, the susceptibility at the critical pojpt
only diverges in the thermodynamic limit—oc. For finite
systems, the theory of finite-size scaliti] tells us that the
critical value y. increases as a suitable power of the system
2 size, namelyy.~LY, with the value ofy related to the val-
ues of the critical exponents. Since in Fig. 5 it is obvious that
FIG. 6. Second-order cumulart=(m?)/(m)2 as a function of ~ fluctuations also grow with system size, it is very tempting to

o2 for system sizes 3232 (circles, 64x64 (diamonds, and try to analyze our data using the standard techniques that
128x 128 (squares The curves cross ar’~1.71 ando?~5.8, have been so successful for equilibrium phase transitions.

which, according to the finite-size scaling theory, are identified adVe now briefly review the main predictions of finite-size
the location of the critical pointésee the text scaling theory that are relevant to our study. For a thermal
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0.015 | lsing 1 v T Sss
A, ]
e
OO_?
0.010 % J
= 0010 < kv
lT.J .?.J i
0.005 0.0
0.005 1 g 0 10 20 30 40 50 60
i
0.000 , 0.000 , FIG. 9. Plot of the normalized spatial correlation function
71100 0.0 100 100 00 10.0 c(i)=(xi+;ox;)/(8x?) in the vicinity of the critical points
L(-cs)) L-c7s) o, =171, 07 =5.8 and in an intermediate value @f correspond-

ing to the ordered phase regigmwe have used in this figure
FIG. 8. Plot ofyL?*~2 vs (1— 0?/a?)LY in order to check the D =20, system sizé = 128). Notice the slow decay of the spatial
prediction of finite-size scaling of the “susceptibilityy for the correlation function near the two critical points.
entrant plots(a)] and the reentranplots (b)] transitions. We use in

this figure the Ising (=1, v = 2) and mean-field§=1, v=3) criti- ~ For o?=02, one hase=0 and the prediction is that
cal exponents. As in the case of the order parameter, Fig. 7, a bettﬁrz(gg L) :’;2(0), i.e., a constant independent of the system
scaling is obtained when using the Ising exponents. sizeL. As a consequence, by plotting the second-order cu-

» . . mulants for different system sizes, we can determine the
phase transition the order parameteis a function of tem-  critical points as the ones in which the curves for different
peratureT and system size. Finite-size scaling theory pre- yajyes ofl_ cross each other. By analyzing the cumulant data
dicts that near a critical point the average of #t-order in this way (Fig. 6), we are able to locate the entrant critical
moment ofm is a homogeneous function of its arguments, point quite precisely at?=1.71+0.01, while the reentrant
namely[42,43, transition is ator?=5.8+0.1.

o For the order parameter scaling, the prediction is
ky — kv u 1
(m9=L""m(eL%, (3D (my=L"’m(eL"), such that a plot ofm)L’ versusel"
wheree=1—T/T, is a measure of the distance to the critical SEOULd é",eld a curvef I!]nde%e.n(.:lent of :}he .;,]ystem. S|.ze.| This is
point, m, is a scaling function, and andv are critical ex- Cf eﬁ ed In Z'g' 7 Altl ough Itis true t at; e statistica erfrorr]s
ponents which take different values according to whether w@' the data do not allow a very precise determination of the

are below the critical dimension where hyperscaling relation<'!tic@l €xponentsi andw, it is shown in the figure that, both

_ _ . : : or entrant and reentrant transitions, scaling holds better if
hold (u=1/v andv=B/v) or above the critical dimension ?

where mean-field exponents hold=£d/2, v=d/4). In the we use the dl Ising critical exppnentsﬂzg and y=1
following, we will assume that finite-size scaling also holds(U=1 andv=5) than the mean-field ones=d/2=1 and

for our systemsuch that equivalent relations are valid with ¥ =d/4=3. The same conclusions are reached when analyz-
e=1- 0%/ o2 measuring the distance to the transition point.'ng. the f|n|te—.S|ze spalmg_ .b.ehawor of the susceptibility,
We will use the above expressions in order to locate théNh'Ch’ according to its definition Eq30), should behave as

—| d-2vy u H
critical pointso and also to compute the critical exponentsX L***x(eL"). In Fig. 8 we show that properly scaled
u andy, which in turn, will allow us to obtain the exponents susceptibility curves fall on top of each other rather well,

v and 8. when using the Ising critical exponeng—2v=7 and

A precise determination of the critical values of the noiseU=1, Whereas the quality of scaling is worse when using
intensity is obtained by focusing on the behavior of themean-field exponentd—2v=1 andu=1. Note that, in a
second-order cumulank,=(m?)/(m)2. According to the Previous papef11], we found a good fit at the entrant tran-
previous finite-size scaling relation one finds sition using mean-field exponents for smaller system sizes

(up to 48x 48). This discrepancy may be due to the fact that
k(02 L)=k,(eL V). (32 the regime of nonclassical behavior is located in a narrow
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v FIG. 11. Nearest-neighbor correlation coefficient[see Eqg.
(16)] vs o2 from simulations [ =128) and theory, cf. Eq24). As
expected, the agreement is only good for small values of the noise
0.0 intensity o2.

time

that, even though our model seems to belong to the Ising
o ) ] universality class as far as its critical properties are con-
FIG. 10. Similar to Fig. 9 but for the temporal correlation func- cerned, the specific noise-induced mechanism by which or-
tion_ in the vicinity of the_ critical points and in the ordered phaseder appears will reflect itself in the time-dependent properties
region (0 =20, system sizé =128). such as nucleation phenomena or the response to external
) - ] ) . fields or symmetry-breaking boundary conditions. Third, it is
neighborhood of the critical point that could not be investi-cjear that phase transitions of another ordfast or higher

gated with these system sizes. Further studies will be necegigep can be generatefd4]. In the case of a first-order
sary to determine unambiguously if both transitidestrant  yransition, this would imply that the macroscopic state of the
and reentrantbelong to the same universality class of the system would change dramatically when the intensity of the
Ising model. _ _ _ noise is varied across a threshold value. Fourth, more com-
Finally, the spatial and temporal correlation functions areyjicated pure noise-induced phase transitions, that break tem-
represented in Figs. 9 and 10 for several values%fOn_e poral symmetry[45], spatial symmetry46] or both, can be
clearly observes the appearance of long-range correlations gynstructed. Finally, we propose to make a search for or
the vicinity of the two critical points, another signature of a eeyaluation of experiments in physical systems for which

phase transition for equilibrium systems. In Fig. 11, we plotyise-induced shift§11,20, and pure noise-induced phase

the nearest-neighbor correlation coefficierds a function of  transitions may be relevant. Some cases have been docu-
A :

o°, and compare it with the results obtained through thenented in the literature of noise-induced shifts in the phase
CFA, cf. Egs.(24) and (27). As expected, the agreement is {ransition or bifurcation point, for example in photosensitive
only good for small values of the noise intensity. chemical reactions, subject to a fluctuating light intensity
[47,48, in liquid crystals[49,50, and in the Raleigh-Benard
VIl. PERSPECTIVES instability with a fluctuating temperature at the plafé4].
Also, stochastic equations for spatially distributed systems
We have confirmed the existence of a pure noise-inducedith multiplicative noise have appeared recently in several

phase transition in the model introduced in Rigfl], ex-  contexts, including lasef&2], directed percolatiof53], and
plained the role of the short-time instability of the single-siteother models for growtfi54].

stochastic dynamics in generating the transition, and given
evidence that its critical properties are compatible with those
of Ising universality clasgin d=2). These results open a
number of perspectives for future research. First, the model This work was supported by NATO Grant No. CRG
that we introduced has been chosen for its mathematical sinf850055. C.V.d.B. also acknowledges support from the Pro-
plicity, but it does not have a direct physical meaning. Thegram on Inter-University Attraction Poles, Prime Minister’s
intuitive arguments given in Sec. Il, however, suggest thaOffice, Belgian Government and NFWO Belgium;
the pure noise-induced transitions will arise generically inJ.M.R.P. from Direccio General de InvestigaaioCientfica
systems with a multiplicative noise term, whose amplitudey Tecnica(DGICYT) (Spain, Project No. PB94-0388; R.T.
has a minimum in the reference state. It remains to be seenom DGICYT Projects No. PB94-1167 and No. PB94-1172;
whether our model corresponds to a kind of “normal formand R.K. from Cray Research Inc. and Alabama Education
unfolding” of such phase transitions. Second, we expecand Research Network. Most of the computer simulations
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were carried out using Cray C90 at Alabama Supercomputer St 2ot
Center and the Connection Machine model 5E at Naval Re- X;(t+ 8t) =x;(t) + ?[Fi(x(t))+ Fily(t)]+ 5 7i(t)

search Laboratory.

X[Gi(x(1))+Gi(y(t)], (A5)
APPENDIX: COMPUTER SIMULATIONS
where

A Monte Carlo simulation of the stochastic procd8$
was performed for two-dimensional square lattices of various Vi) =Xi() +F(xi()ot+ G (xi(1) 7i(D) v a?at. (A6)
sizes up toL =128 with periodic boundary conditions. The This method allows largest than the Milshtein method,
stqchgstic differential equation for the variable at ittresite  \yithout a significant increase in computational effort per
X; is given by step. We used this method fof>2.
dx The time stepSt has been chosen by a stability condition,
—=F,(X)+G,(X)&(t), i=1,...N=L2 (A1) and also such that averaged magnitudes do not depend on
dt St within statistical errors. Fob = 20, for example, the nec-
essary values fobt vary betweenst=5x10"* for o?=1

wherex=(xy, ... Xy), and and st=1x10° for o?=15. The Gaussian random num-
D bers necessary for the simulations were generated either by
Fi(x)=f(x;)— 7 E (Xi—Xj), (A2) using the Box-Muller-Wiener algorithm or a very fast nu-
Jen() merical inversion methodl57]. The time evolution of the
G.(X)=g(x). (A3) average value is carefully monitored until the stationary state
is reached.
These equations were integrated using two different algo- The order parameter is computed by
rithms, the Milshtein and the Heun methdd®,56. 1 N
The Milshtein method allows us to advance forward in = - )
: ; : (m) << zEx.> > , (A7)
time by means of the recursion relations L® =1 )
time’ ensemble
2
X (t+ 8t)= Fi(x(t))+U—Gi(x(t))M St where ( Yme and ( >ensem_b|eindicate time average and en-
2 dx; semble average, respectively. The averaging fimeas cho-

‘ T sen to be sufficiently longer than the correlation time, for
+Gi(x()yoTta(t), (A4) example T~2x 10* (10° step$ near the critical points. The
where 7;(t) are independent Gaussian random variables ofNSémble average was taken over at least ten independent
zero mean and variance equal to 1, and the second term f¥YStems. Similarly, the susceptibility is evaluated as

included because E@A1l) is interpreted in the Stratonovich L2 1 N 2
sense. The order of numerical error in the Milshtein method X=— <_2 E Xi) —(m)? . (A8)
is ot. Therefore, a smalbt (e.g., st=1x10"* for c?=1) o L® = e

must be used, while its computational effort per time step is ensemble

relatively small. For larger, where fluctuations are rapid and ~ Simulation of large systems (128.28) was too long for
large, a longer integration period and a smaleris neces- Cray C90 despite the code is mostly vectorized. Therefore,
sary. The Milshtein method quickly becomes impractical. we used a massively parallel computer, the connection ma-
The Heun method is based on the second-order Rungehine model 5E with 256 processors which appeared to be
Kutta method, and integrates the stochastic equation by about ten times faster than Cray C90 for this particular ap-

recursive equation plication with the same programs.
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