
PHYSICAL REVIEW E APRIL 1997VOLUME 55, NUMBER 4
Nonequilibrium phase transitions induced by multiplicative noise
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We review a mean-field analysis and give the details of a correlation function approach for spatially
distributed systems subject to multiplicative noise, white in space and time. We confirm the existence of a pure
noise-induced reentrant nonequilibrium phase transition in the model introduced in@C. Van den Broecket al.,
Phys. Rev. Lett.73, 3395~1994!#, give an intuitive explanation of its origin, and present extensive simulations
in dimensiond52. The observed critical properties are compatible with those of the Ising universality class.
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I. INTRODUCTION

Noise is usually thought of as a phenomenon which p
turbs the observation and creates disorder. This idea is b
mainly on our day to day experience and, in the contex
physical theories, on the study of equilibrium systems. T
effect of noise can, however, be quite different in nonline
nonequilibrium systems. Several situations have been d
mented in the literature, in which the noise actually parti
pates in the creation of ordered states or is responsible
surprising phenomena through its interaction with the n
linearities of the system@1–10#. Recently@11#, a quite spec-
tacular phenomenon was discovered in a specific model
spatially distributed system with multiplicative noise, whi
in space and time. It was found that the noise generate
ordered symmetry-breaking state through a genuine sec
order phase transition, whereas no such transition is obse
in the absence of noise. The purpose of this paper is
present a more detailed investigation of this phenomen
First, we will give an intuitive explanation of why the tran
sition occurs in this particular model and not in others. T
explanation also sheds light on why phase transitions w
not discovered in the related context of noise-induced tr
sitions @1#. Second, after reviewing the mean-field analy
which was introduced in@12#, we present the details of
more sophisticated approach, which involves the appro
mate calculation of the spatial correlation function. Third,
include extensive simulations of the model in spatial dim
siond52, and present a finite-size scaling analysis show
that the critical properties of the phase transition are com
ible with those of the dynamical Landau-Ginzburg model
the Ising model.
551063-651X/97/55~4!/4084~11!/$10.00
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II. ZERO-DIMENSIONAL MODELS:
SHORT-TIME VS LONG-TIME BEHAVIOR

Consider the stochastic differential equation

ẋ5 f ~x!1g~x!j, ~1!

wherej stands for Gaussian white noise with first two m
ments

^j~ t !&50,

^j~ t !j~ t8!&5s2d~ t2t8!. ~2!

Equation ~1! is interpreted according to the Stratonovitc
interpretation@13#. Hence the probability densityP(x,t) for
the variablex(t) obeys the Fokker-Planck equation@1,14#

] tP~x,t !52]x@ f ~x!P~x,t !#1
s2

2
]x$g~x!]x@g~x!P~x,t !#%,

~3!

and the steady-state solution is given by

Pst~x!5NexpH E
0

x
f ~y!2

s2

2
g~y!g8~y!

s2

2
g2~y!

dyJ , ~4!

whereN is a normalization constant andg8(x) stands for the
derivative ofg(x) with respect to its argument. The extrem
x̄ of the steady-state density obey the following equation

f ~ x̄!2
s2

2
g~ x̄!g8~ x̄!50. ~5!
4084 © 1997 The American Physical Society
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One notes that this equation is not identical to the equa
f ( x̄)50 for the steady states in the absence of multiplicat
noise. As a result, the most probable states need not coin
with the deterministic stationary states. More importan
solutions can appear or existing solutions can be ‘‘dest
lized’’ by the noise. These changes in the asymptotic beh
ior of the system have been generally named noise-indu
transitions@1#.

To illustrate this phenomenon, consider the case of a
terministically stable steady state atx50, e.g.,
f (x)52x1o(x), perturbed by a multiplicative noise. As
clear from Eqs.~4! and ~5!, a noise term of the form
g(x)511x21o(x2) will have a stabilizing effect, since
2(s2/2)g( x̄)g8( x̄)52s2x̄1o( x̄), and it makes the coeffi
cient of x more negative. On the other hand, noise of
form g(x)512x21o(x2), i.e., with maximal amplitude a
the reference statex50, has the tendency to ‘‘destabilize
the reference state. In fact, above a critical intens
s2.sc

251, the stationary probability density will no longe
have a maximum atx̄50, and ‘‘noise-induced’’ maxima can
appear. This phenomenon remains possible even if the d
ministic steady-state equation, obtained by fixing the rand
value of the noise to a constant valuel, namely,
f ( x̄)1lg( x̄)50, has a unique solution for alll. Hongler’s
model @17#, with f (x)52tanhx52x1o(x) and
g(x)5sechx512x2/21o(x2), is a concrete example of thi
situation: fors2.sc

252, two noise-induced maxima aris
on both sides of the deterministic reference statex̄50. One
has coined the term ‘‘pure noise-induced transition’’ for th
type of transitions.

Following the formalism for equilibrium states, it i
tempting to introduce the notion of a ‘‘stochastic potentia
Ust(x) by writing: Pst(x);exp@2Ust(x)#. One concludes
that for a system undergoing a noise-induced transition, e
for g(x)512x21o(x2), and fors2.sc

2 , the stochastic po-
tential has two minima. Consider now a spatially extend
system obtained by coupling such units. The coupling is s
that it favors the nearest-neighbor units, to stay at the s
maximum of the probability density~minimum of the sto-
chastic potential!. In analogy to what happens for equilib
rium models, such as the Landau-Ginzburg model@18,19#,
one expects that this system will undergo a phase trans
for some critical value of the ‘‘temperature’’~noise intensity!
s2. However, it turns out that this is not the case. In fact,
will show in the next sections that one needs a noise
precisely the other type, namelyg(x)511x21o(x2), to
generate a genuine phase transition. The reason for this c
terintuitive result can be clarified by focusing on the sho
time behavior.

From Eq.~3!, we obtain the following exact equation fo
the time evolution of the first moment of the probabili
density:

^ẋ&5^ f ~x!&1
s2

2
^g~x!g8~x!&. ~6!

When f and/or g are nonlinear, the evolution of the firs
moment is coupled to higher-order moments. Suppose, h
ever, that we start with an initial Diracd probability density,
and follow it for a short time, such that fluctuations are sm
and the probability density is well approximated by a Gau
n
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ian. The equation for the maximum of the probability, whi
is also the average value in this approximationx̄5^x&, takes
on the following form@valid if f (^x&)@^dx2& f 9(^x&), and a
similar condition for the term involvingg(x)#:

ẋ̄5 f ~ x̄!1
s2

2
g~ x̄!g8~ x̄!. ~7!

The important observation to make is that the sign of
multiplicative noise term isoppositeto that appearing in the
long-time result, cf. Eq.~5!. Hence it predicts an opposit
effect of the multiplicative noise at early times. In particula
if we were to probe the ‘‘stability’’ of the reference sta
x̄50, we would conclude from Eq.~7! that a noise of the
form g(x)511x21o(x2) now has the tendency to destab
lize the reference statex̄50, favoring initially non-null val-
ues of the variablex.

To illustrate this point further, in Fig. 1 we have repr
sented the time-dependent evolution of the first mom
^x(t)&, starting from an initial stateP(x,t50)5d(x20.1),
for Hongler’s model,f (x)52tanhx and g(x)5sechx, and
for the model introduced in Ref.@11#, f (x)52x(11x2)2

andg(x)511x2. For Hongler’s model, the analytic result
available. For the other model,^x(t)& was obtained through
a numerical integration of the corresponding Langevin eq
tion. If one would like to interpret these results again
terms of an equilibrium picture with a Brownian particle
an effective potentialUeff(x), one finds that the short-time
behavior corresponds to an effective potential with a sin
minimum atx50 for Hongler’s model, while it it bistable
for the other model. In other words, the picture is just t
reverse of the one suggested by the consideration of
steady-state probability and the stochastic potentialUst(x).

FIG. 1. Time-dependent evolution of the first moment^x(t)&,
starting from an initial stateP(x,t50)5d(x20.1), of a stochastic
variable satisfying Eq.~1!, for Hongler’s model~dashed line!,
f (x)52tanhx andg(x)x5sechx'12x2/2, and for the model in-
troduced in@11# ~full line!, f (x)52x(11x2)2 and g(x)511x2.
Notice that, for Hongler’s model, the decay is monotonic, wher
for the other model there is a tendency to initially destabilize sm
values ofx.
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We can now understand a possible mechanism for
presence of a phase transition when coupling such sc
variables. Imagine that the short-time behavior can be
scribed by a bistable potentialUeff(x) according to the dis-
cussion in the previous paragraph and, hence, non-null s
metric states develop initially. Then, if the spatial coupling
sufficiently strong, it is possible that these non-null sta
couple to form local ordered regions which might sub
quently coarsen and grow~see Fig. 2!. This mechanism is the
physical explanation of the existence of a phase transitio
the spatially extended version of the system.

III. MEAN-FIELD THEORY
FOR SPATIALLY EXTENDED SYSTEMS

We now consider spatially extended systems with mu
plicative noise@11,12,20–23#. For simplicity, and in order to
keep a clear connection with the zero-dimensional mod
discussed in Sec. II, we consider a lattice model with o
spatially distributed scalar variablexr , with r determining

FIG. 2. Time evolution of domains starting in a completely ra
dom initial configuration toward an ordered phase for the spati
extended model given by Eqs.~8! and ~29! on a square lattice
(L5128,s254.00, andD520). Dark areas correspond to positiv
values of the fieldxr, and light areas to negative values. Notice t
initial development of small ordered regions which subseque
grow.
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the location of the lattice point under consideration. The ti
evolution ofxr is described by the following set of stochast
differential equations~we consider a hypercubic lattice i
dimensiond with lattice spacinga051):

ẋr5 f ~xr !1g~xr !j r1
D

2d (
r8Pn~r !

~xr82xr !, ~8!

wheren(r ) denotes the set of 2d sites neighbor tor , and
$j r(t)% are Gaussian noises, white in time and space, w
zero mean and an autocorrelation function given by

^j r~ t !j r8~ t8!&5s2d r ,r8d~ t2t8!. ~9!

(d r ,r8 stands for a Kroneckerd function.! The last sum of Eq.
~8! is, in the continuum limit, nothing but the usual diffusiv
Laplacian term¹2xr . Equations of this kind are very gen
eral, and cover a multitude of different physical phenome
both in equilibrium and nonequilibrium problems. We foc
in this paper on the steady-state properties of this syst
However, the presence of multiplicative noise terms com
cates matters significantly and, in fact, the multivaria
steady-state probabilityPst($xr%) is only known in general
for the case of additive noise, i.e., wheng(x) is a constant
function.

The set of Eqs.~8! and~9! are equivalent to the following
Fokker-Planck equation:

] tP~$xr%,t !

5(
r F ]

]xr H F2 f ~xr !1
D

2d (
r8Pn~r !

~xr2xr8!GP~$xr%,t !J
1

s2

2

]

]xr H g~xr !
]

]xr
@g~xr !P~$xr%,t !#J G . ~10!

By integrating Eq.~10! over all variables with the exceptio
of xr ~and assuming that the steady-state properties are
form!, one obtains the following exact steady-state equat
for the one-site probability:

05
]

]xr
F2 f ~xr !1D@xr2E~xr !#

1
s2

2
g~xr !

]

]xr
g~xr !GPst~xr !, ~11!

where

E~y!5^xr8uxr5y&5E dxr8xr8P
st~xr8uxr5y!, r 8Pn~r !

~12!

represents the steady-state conditional average ofxr8 at a
neighboring siter 8Pn(r ), given thatxr at site r takes the
value xr5y. The solution to Eq.~11! is readily found~we
drop the subscriptr for simplicity of notation!,
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Pst~x!

5Z21expHE0xdy f ~y!2
s2

2
g~y!g8~y!2D@y2E~y!#

s2

2
g2~y!

J ,

~13!

whereZ is a normalization constant. This result is exact, b
we still have to determine the unknown functionE(y).

We start by considering in this section the simplest
proximation@12#, which is analogous to the traditional Weis
mean-field approach from the theory of equilibrium critic
phenomena and which has also been applied successfu
several other stochastic problems@24–35#. In this approxi-
mation, one neglects the correlation between neighbo
sites so thatE(y)5^x&, independent ofy. Note that, the
steady-state probability is now a function of^x&, cf. Eq.~13!.
The value of̂ x& follows from a self-consistent relation aris
ing from its very definition,

^x&5E
2`

1`

dxxPst~x![F~^x&!. ~14!

Since this is a complicated nonlinear equation in^x&, the
appearance of multiple solutions cannot be excluded, t
suggesting the possibility of breaking the ergodicity asso
ated with the presence of a phase transition in the mode

Even though an exact analysis of Eq.~14! is difficult
without specifying the explicit form of the functionsf and
g, one can extract precious information by considering
strong-coupling limitD→`. Using the saddle-point approx
mation, one finds that Eq.~14! reduces to the following
simple equation for̂x&:

f ~^x&!1
s2

2
g~^x&!g8~^x&!50. ~15!

It is instructive to derive this result in a different way. On
easily verifies that the evolution equation for the first m
ment^xr(t)&5^x(t)& is identical in form to that for the zero
dimensional system, i.e., it is given by Eq.~6!. At the steady-
state and considering the limitD→`, one can neglect the
fluctuations of the variablex around its average value, an
concludes that the steady-state equation for the first mom
reduces to Eq.~15!, which is thus exact in this limit.

Referring to the discussion in Sec. II, we conclude tha
the limit D→` the system will undergo a second-ord
phase transition if the corresponding zero-dimensional mo
displays a linear instability in its short-time dynamics. T
physical content of this conclusion is clear: when the sys
is strongly coupled, the short-time instability of the trajecto
is the driving force behind the nonequilibrium phase tran
tion. The criterion of short-time linear instability has be
mentioned in other theoretical@22# and numerical@34# find-
ings. However, we stress that it only holds as an approxi
tion for finite values ofD, and that it can completely brea
down for small values ofD, cf. the example in Sec. V. As a
interesting corollary, we return to the discussion of Sec. I
conclude that we expect pure noise-inducedphasetransitions
in models for which the noise intensity has a minimum at
t
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reference state and preciselynot in models whose zero
dimensional version displays a noise-induced transition~e.g.,
not in Hongler’s model!. This probably explains why the
existence of noise-inducedphasetransitions was not discov
ered earlier~see also Ref.@36#!.

IV. CORRELATION FUNCTION APPROACH

We now present a more sophisticated approach, wh
involves the approximate calculation of the spatial corre
tion function. The method is an adaptation to multivaria
Fokker-Planck equations of a technique developed in
context of multivariate Master equations@37,38#. The start-
ing point is the following ansatz for the conditional averag

^xr8uxr5y&5E dxr8xr8P
st~xr8uxr5y!5^x&1crr 8~y2^x&!,

~16!

where crr 85^dxrdxr8&/^dx
2& (dx5x2^x&) is the spatial

correlation coefficient between sitesr and r 8. The system is
assumed to be statistically homogeneous, so that single
averages are independent of the specific location~and hence
the subscript denoting the location will be dropped!. In par-
ticular, the ansatz~16! implies that

E~y!5^x&1c~y2^x&! ~17!

where c is the nearest-neighbor correlation coefficie
c5crr 8 with r 8Pn(r ). Note that the mean-field approxima
tion corresponds to the choicec50. The variablec appears
as a second unknown in the explicit form of the steady-s
probability, cf. Eqs.~13! and~17!, and its value can be found
self-consistently as follows. The ansatz~16! implies the fol-
lowing property for any functionf:

^xr8f~xr !&5^x&^f~x!&1crr 8^dxf~x!&,

which, in combination with the Fokker-Planck equation~10!,
leads to the following closed equation for the correlati
function crr 8 for a cubic lattice in dimensiond:

D

2d F (
r9Pn~r !

~crr 82cr9r8!1 (
r9Pn~r8!

~crr 82crr 9!G
5bd r ,r822gcrr 8, ~18!

with b andg given by

b5
s2^g2~x!&

^dx2&
,

~19!

g52

K dxF f ~x!1
s2

2
g~x!g8~x!G L

^dx2&
.

In deriving Eq. ~18!, we have used the fact tha
^ f (x)&1(s2/2)^g(x)g8(x)&50 at the steady-state, cf. Eq
~6!. Obviously,b.0, and it can be also proved thatg.0 if
c,1.
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Since the system is space-translational invariant at
steady-state, the correlation function can be written in te
of relative coordinates, i.e.,crr 85c(r2r 8)5c(r 82r ). Using
this property, Eq.~18! can be rewritten as

D

d (
r8Pn~r !

@c~r 8!2c~r !#52gc~r !2bd r ,0 . ~20!

A closed expression for the correlation functionc(r ) can be
obtained in the case of a square lattice,d52. By taking the
Fourier transform of Eq.~20! one finds

D@cos~kx!1cos~ky!22# c̃~k!52g c̃~k!2b, ~21!

from which the Fourier transformc̃(k) of the correlation
function is readily obtained. In order to perform the inver
Fourier transform, the following identity is helpful:

E
0

`

dze2ztI l~z!I m~z!5
1

p2E
0

p

dkx

3E
0

p

dky
cos~ lkx!cos~mky!

t2cos~kx!2cos~ky!
,

whereI l(z) is the modified Bessel function. One conclud
that

c~r !5
b

DE0
`

dze22z~11g/D !I l~z!I m~z! for r5 lex1mey ,

~22!

where (ex ,ey) is the unit cell of the square lattice.
A nearest neighbor in the square lattice has coordin

l51 andm50 ~or, equivalently,l50 andm51), and one
can perform the Laplace transform appearing in Eq.~22!
explicitly ~formula 12.9 in Ref.@39#! obtaining the following
result for the quantityc:

c52
b

2D
1

b

pD
KF S D

g1D D 2G , ~23!

whereK is the complete elliptic integral of the first kind
This expression can be further simplified by noting th
c512b/2D1g/D which follows directly from Eq.~18! for
the choicer5r 8. By elimination ofb, one obtains the fol-
lowing final result forc:

c5
g1D

D

KF S D

g1D D 2G2
p

2

KF S D

g1D D 2G . ~24!

The averages appearing in the definition ofg, cf. Eq. ~19!,
have to be calculated with respect to the steady-state p
ability given by Eq.~13!, which itself depends on̂x& and
c. As a result, Eqs.~14! and~24! form a set of two nonlinear
self-consistent relations determining the values of^x& and
c. When multiple solutions to these equations are found,
again expects that the system undergoes a phase transi

We also mention the following result for the spatial co
relation function along the axis of the square lattice:
e
s

es

t

b-

e
n.

cl5c~ lex!5
b

pDE0
p

dkx
cos~ lkx!

A@2~11g/D !2cos~kx!#
221

.

~25!

Using the relation 112( l51
` cos(lkx)5pd(kx), one obtains the

following simple result for the spatial correlation lengthl:

l[(
l50

`

cl5
b

4D F g

D S 11
g

D D G21/2

1
1

2
. ~26!

At this point, a comment about the limitations of the prese
approach is in place. As it is clear from the previous res
the divergence of the correlation length requires thatg→0.
On the other hand, it is also clear from Eq.~24! that in this
limit c51, and in factc(r )51,;r . The reason of this be
havior is that the decay of the spatial correlations is
scribed by a single constant parameterg, cf. Eq. ~18!. In a
more sophisticated approximation, this would no longer
true and a less trivial appearance of long-range correlat
would become possible. In the example that we will treat
Sec. V, we find that the parameterg never converges to 0
even at a phase transition point. The present method is
of no use in describing long-range spatial correlations.
main virtue is to give improved results, when compared
the mean-field theory, for quantities such as the location
the critical point and the local probability density.

Finally, we note that the ansatz in Eq.~16! is exact if r
and r 8 are correlated Gaussian variables. This condition
verified for a linear Fokker-Planck equation@ f (x)52x and
g(x)51#. The above-derived expressions are thereforeexact
for the linear model. One has in this case that^x&50,
g51, andb52@11(12c)D#, with the following final re-
sults forc andl:

c5
11D

D

KF S D

11D D 2G2
p

2

KF S D

11D D 2G , ~27!

l5
1

2
1

11~12c!D

DA~112/D !221
. ~28!

V. PURE NOISE-INDUCED PHASE TRANSITION

The results obtained in Sec. IV are general; they can
applied for any choice of the functionsf (x) andg(x). In this
paper, however, we want to discuss in detail the case of p
noise-induced phase transitions. We will focus here on
prototype model that was introduced in Ref.@11#, namely,
the set of Eqs.~8! with the choice

f ~x!52x~11x2!2, g~x!511x2. ~29!

We are inclined to believe that it is the simplest possi
model that exhibits such a transition, and possibly cor
sponds to a kind of ‘‘normal form unfolding.’’

As a first approach to understanding this model, in Fig
we show the phase diagrams as predicted by the mean-
theory and the correlation function approach~CFA! de-
scribed in Secs. III and IV, respectively. These have be
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obtained by numerical solution of the self-consistency re
tions Eqs.~14! and ~24!. The most important feature show
in Fig. 3 is the prediction of the existence of a symmet
breaking phase corresponding to a solution of the s
consistent equations witĥx&Þ0. Both the mean-field theory
and the CFA predict the appearance of such a phase
though they vary slightly in the region of parameters
which one expects the ordered phase to exist. Accordin
these approximate theories, the ordered phase app
through a second-order phase transition for a sufficie
strong spatial couplingD, and at a finite critical value of the
noise intensitysc

2 . There is no phase transition if the spat
couplingD is less than some critical value. This agrees w
with our intuitive explanation of the transition given in Se
II: if the coupling is not strong enough, and local orderi
cannot be induced in the early evolution, the late-time dis
bution will be governed instead by the maximax̄ of the
steady-state probability density, Eq.~5!, which in this case is
x̄50. If we turn now to the limit of very strong spatia
coupling, whenD→`, the location of the critical point a
s251 is in agreement with the linear instability criterio
mentioned in Sec. II. Another interesting, although certai
not surprising, feature of the transition, is that as one
creases further the noise intensity, the ordered phase d
pears through another second-order phase transition.
second, reentrant, transition shows that the more ‘‘tra
tional’’ effect of the noise, namely, the ability to destro
ordered states, is also present in our model.

If we take, for instance,D520, the order parameter^x&
takes nonzero values only for noise intensity values in
interval (sc1

2 ,sc2
2 ). The mean-field theory predicts the pha

transition points atsc1
2 '1.11 andsc2

2 '19.1, while the CFA

yields a somewhat narrower region for the ordered pha
namely 1.50,s2,18.7. It is expected that the mean-fie
approach and, to a lesser extent, the CFA, overestimate
size of the ordered region.

In order to check the validity of these mean-field ty

FIG. 3. Phase diagram for the noise-induced phase transitio
predicted by the mean-field theory~dashed line!, cf. Eq. ~14!, and
the CFA ~full line!, based on Eqs.~14! and ~24! for dimension
d52.
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approximations and also to gain an understanding of
phenomenon of a noise-induced phase transition, we h
performed numerical simulations of the model defined
Eqs. ~8! and ~29! on a square lattice~see the Appendix for
details of the simulations!. The simulations confirm qualita
tively all the predictions of the mean-field approaches, a
give us more accurate data about the transition points. In
4 we plot the order parameter^x& as a function ofs2 for
D520 according to the two mean-field-type theories dev
oped earlier together with the simulation results for vario
system sizes. The simulation data indeed confirm the e
tence of both phase transitions, but the ordered phase app
in a smaller interval 1.71,s2,5.8. The latter values hav
been obtained on the basis of finite-size scaling analysis
Sec. VI.

VI. CRITICAL PHENOMENA

The pure noise-induced phase transition discussed in
V appears to be an interesting phenomenon. The ques
therefore arises as to whether this transition shares the u
features of equilibrium phase transitions and, additiona
whether it belongs to any of the existing universality class
In this sense, a theoretical argument has recently been
forward indicating that the critical properties are those of
Ising universality class@40#. To investigate these points, w
have performed extensive computer simulations in the vic
ity of both the entrant and reentrant critical points f
D520 for two-dimensional systems of sizeL3L for values
of L ranging in size betweenL510 and 128. Apart from the
order parameterm5uL22( rxru, and the correlation coeffi-
cient, c, we also measure higher-order moments, as wel
time and spatial correlations. The results are collected
Figs. 4–11. One clearly recognizes all the trademarks

as
FIG. 4. Order parameter̂x& vs intensity of the noise for

D520, according to the mean-field theory~dashed line!, the CFA
for d52 ~full line!, and 2d simulations for system sizes 32332
~circles!, 64364 ~diamonds!, and 1283128 ~squares!. Notice that
although the general features of mean-field approximations a
with the simulation result, they tend to overestimate the orde
region.
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second-order phase transitions: divergence of fluctuat
~Fig. 5!, scaling properties~Figs. 7 and 8!, long-range spatia
correlations~Fig. 9!, and critical slowing down~Fig. 10!. We
now discuss each of these topics in some detail.

In an equilibrium second-order phase transition, the re
tive fluctuations of the order parameter~susceptibility! and

FIG. 5. Susceptibility,x5(L2/s2)@^m2&2^m&2#, as a function
of s2 for system sizes 32332 ~circles!, 64364 ~diamonds!, and
1283128 ~squares!. The peaks clearly show the enhancement
fluctuations around the two critical points.

FIG. 6. Second-order cumulantk25^m2&/^m&2 as a function of
s2 for system sizes 32332 ~circles!, 64364 ~diamonds!, and
1283128 ~squares!. The curves cross ats2'1.71 ands2'5.8,
which, according to the finite-size scaling theory, are identified
the location of the critical points~see the text!.
ns

-

energy~specific heat! diverge with characteristic critical ex
ponents. In our model, we define a ‘‘susceptibility’’x as a
suitable measure of the fluctuations of the order parame

x[
L2

s2 @^m2&2^m&2#; ~30!

this definition, and more specifically, the presence of
s2 term in the denominator is the equivalent of the us
definition x5L2@^m2&2^m&2#/kBT for thermal systems. In
Fig. 5 we plot x as a function of noise intensitys2 for
different system sizes. The enhancement of fluctuations n
the two critical points is clear. In the case of equilibriu
phase transitions, the susceptibility at the critical pointxc
only diverges in the thermodynamic limitL→`. For finite
systems, the theory of finite-size scaling@41# tells us that the
critical valuexc increases as a suitable power of the syst
size, namely,xc;Ly, with the value ofy related to the val-
ues of the critical exponents. Since in Fig. 5 it is obvious t
fluctuations also grow with system size, it is very tempting
try to analyze our data using the standard techniques
have been so successful for equilibrium phase transitio
We now briefly review the main predictions of finite-siz
scaling theory that are relevant to our study. For a therm

f

s

FIG. 7. Plot of^m&Lv vs (12s2/sc
2)Lu in order to check the

prediction of finite-size scaling of the order parameter^m& for the
entrant@plots~a!# and the reentrant@plots~b!# transitions. We use in
this figure the Ising (u51, v5

1
8! and mean-field (u51, v5

1
2! criti-

cal exponents. The quality of the scaling is certainly superior for
Ising exponents than for the mean-field ones.
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phase transition the order parameterm is a function of tem-
peratureT and system sizeL. Finite-size scaling theory pre
dicts that near a critical point the average of thekth-order
moment ofm is a homogeneous function of its argumen
namely@42,43#,

^mk&5L2kvm̃k~eLu!, ~31!

wheree[12T/Tc is a measure of the distance to the critic
point, m̃k is a scaling function, andu andv are critical ex-
ponents which take different values according to whether
are below the critical dimension where hyperscaling relati
hold (u51/n and v5b/n) or above the critical dimension
where mean-field exponents hold (u5d/2, v5d/4). In the
following, we will assume that finite-size scaling also hol
for our systemsuch that equivalent relations are valid wi
e[12s2/sc

2 measuring the distance to the transition poi
We will use the above expressions in order to locate
critical pointssc

2 and also to compute the critical exponen
u andv, which in turn, will allow us to obtain the exponen
n andb.

A precise determination of the critical values of the no
intensity is obtained by focusing on the behavior of t
second-order cumulantk2[^m2&/^m&2. According to the
previous finite-size scaling relation one finds

k2~s2,L !5k̃2~eL2v!. ~32!

FIG. 8. Plot ofxL2v22 vs (12s2/sc
2)Lu in order to check the

prediction of finite-size scaling of the ‘‘susceptibility’’x for the
entrant@plots~a!# and the reentrant@plots~b!# transitions. We use in

this figure the Ising (u51, v5
1
8) and mean-field (u51, v5

1
2) criti-

cal exponents. As in the case of the order parameter, Fig. 7, a b
scaling is obtained when using the Ising exponents.
,

l

e
s

.
e

e

For s25sc
2 , one has e50 and the prediction is tha

k2(sc
2 ,L)5k̃2(0), i.e., a constant independent of the syste

sizeL. As a consequence, by plotting the second-order
mulants for different system sizes, we can determine
critical points as the ones in which the curves for differe
values ofL cross each other. By analyzing the cumulant d
in this way~Fig. 6!, we are able to locate the entrant critic
point quite precisely ats251.7160.01, while the reentran
transition is ats255.860.1.

For the order parameter scaling, the prediction
^m&5L2vm̃(eLu), such that a plot of̂ m&Lv versuseLu

should yield a curve independent of the system size. Thi
checked in Fig. 7. Although it is true that the statistical erro
of the data do not allow a very precise determination of
critical exponentsu andv, it is shown in the figure that, both
for entrant and reentrant transitions, scaling holds bette
we use the 2d Ising critical exponentsb5 1

8 and n51
(u51 and v5 1

8! than the mean-field onesu5d/251 and
v5d/45 1

2. The same conclusions are reached when ana
ing the finite-size scaling behavior of the susceptibili
which, according to its definition Eq.~30!, should behave as
x5Ld22vx̃(eLu). In Fig. 8 we show that properly scale
susceptibility curves fall on top of each other rather we

when using the Ising critical exponentsd22v5 7
4 and

u51, whereas the quality of scaling is worse when us
mean-field exponentsd22v51 andu51. Note that, in a
previous paper@11#, we found a good fit at the entrant tran
sition using mean-field exponents for smaller system si
~up to 48348). This discrepancy may be due to the fact th
the regime of nonclassical behavior is located in a narr

ter

FIG. 9. Plot of the normalized spatial correlation functio
c( i )5^dxi1 jdxj&/^dx

2& in the vicinity of the critical points
sc1
2 51.71, sc2

2 55.8 and in an intermediate value ofs2 correspond-
ing to the ordered phase region~we have used in this figure
D520, system sizeL5128). Notice the slow decay of the spati
correlation function near the two critical points.
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neighborhood of the critical point that could not be inves
gated with these system sizes. Further studies will be ne
sary to determine unambiguously if both transitions~entrant
and reentrant! belong to the same universality class of t
Ising model.

Finally, the spatial and temporal correlation functions a
represented in Figs. 9 and 10 for several values ofs2. One
clearly observes the appearance of long-range correlation
the vicinity of the two critical points, another signature of
phase transition for equilibrium systems. In Fig. 11, we p
the nearest-neighbor correlation coefficientc as a function of
s2, and compare it with the results obtained through
CFA, cf. Eqs.~24! and ~27!. As expected, the agreement
only good for small values of the noise intensity.

VII. PERSPECTIVES

We have confirmed the existence of a pure noise-indu
phase transition in the model introduced in Ref.@11#, ex-
plained the role of the short-time instability of the single-s
stochastic dynamics in generating the transition, and gi
evidence that its critical properties are compatible with th
of Ising universality class~in d52). These results open
number of perspectives for future research. First, the mo
that we introduced has been chosen for its mathematical
plicity, but it does not have a direct physical meaning. T
intuitive arguments given in Sec. II, however, suggest t
the pure noise-induced transitions will arise generically
systems with a multiplicative noise term, whose amplitu
has a minimum in the reference state. It remains to be s
whether our model corresponds to a kind of ‘‘normal for
unfolding’’ of such phase transitions. Second, we exp

FIG. 10. Similar to Fig. 9 but for the temporal correlation fun
tion in the vicinity of the critical points and in the ordered pha
region (D520, system sizeL5128).
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that, even though our model seems to belong to the Is
universality class as far as its critical properties are c
cerned, the specific noise-induced mechanism by which
der appears will reflect itself in the time-dependent proper
such as nucleation phenomena or the response to ext
fields or symmetry-breaking boundary conditions. Third, it
clear that phase transitions of another order~first or higher
order! can be generated@44#. In the case of a first-orde
transition, this would imply that the macroscopic state of t
system would change dramatically when the intensity of
noise is varied across a threshold value. Fourth, more c
plicated pure noise-induced phase transitions, that break
poral symmetry@45#, spatial symmetry@46# or both, can be
constructed. Finally, we propose to make a search for
reevaluation of experiments in physical systems for wh
noise-induced shifts@11,20#, and pure noise-induced phas
transitions may be relevant. Some cases have been d
mented in the literature of noise-induced shifts in the ph
transition or bifurcation point, for example in photosensiti
chemical reactions, subject to a fluctuating light intens
@47,48#, in liquid crystals@49,50#, and in the Raleigh-Benard
instability with a fluctuating temperature at the plates@51#.
Also, stochastic equations for spatially distributed syste
with multiplicative noise have appeared recently in seve
contexts, including lasers@52#, directed percolation@53#, and
other models for growth@54#.
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were carried out using Cray C90 at Alabama Supercomp
Center and the Connection Machine model 5E at Naval
search Laboratory.

APPENDIX: COMPUTER SIMULATIONS

A Monte Carlo simulation of the stochastic process~8!
was performed for two-dimensional square lattices of vari
sizes up toL5128 with periodic boundary conditions. Th
stochastic differential equation for the variable at thei th site
xi is given by

dxi
dt

5Fi~x!1Gi~x!j i~ t !, i51, . . . ,N5L2 ~A1!

wherex5(x1 , . . . ,xN), and

Fi~x!5 f ~xi !2
D

4 (
jPn~ i !

~xi2xj !, ~A2!

Gi~x!5g~xi !. ~A3!

These equations were integrated using two different a
rithms, the Milshtein and the Heun methods@55,56#.

The Milshtein method allows us to advance forward
time by means of the recursion relations

xi~ t1dt !5FFi„x~ t !…1
s2

2
Gi„x~ t !…

dGi~x~ t !

dxi
Gdt

1Gi„x~ t !…As2dth i~ t !, ~A4!

whereh i(t) are independent Gaussian random variables
zero mean and variance equal to 1, and the second ter
included because Eq.~A1! is interpreted in the Stratonovic
sense. The order of numerical error in the Milshtein meth
is dt. Therefore, a smalldt ~e.g.,dt5131024 for s251)
must be used, while its computational effort per time step
relatively small. For larges, where fluctuations are rapid an
large, a longer integration period and a smallerdt is neces-
sary. The Milshtein method quickly becomes impractical.

The Heun method is based on the second-order Ru
Kutta method, and integrates the stochastic equation b
recursive equation
e,

h

er
e-

s

o-

f
is

d

is

e-
a

xi~ t1dt !5xi~ t !1
dt

2
@Fi„x~ t !…1Fi„y~ t !…#1

As2dt

2
h i~ t !

3@Gi„x~ t !…1Gi„y~ t !…#, ~A5!

where

yi~ t !5xi~ t !1F„xi~ t !…dt1G„xi~ t !…h i~ t !As2dt. ~A6!

This method allows largerdt than the Milshtein method
without a significant increase in computational effort p
step. We used this method fors2.2.

The time stepdt has been chosen by a stability conditio
and also such that averaged magnitudes do not depen
dt within statistical errors. ForD520, for example, the nec
essary values fordt vary betweendt5531024 for s251
and dt5131025 for s2515. The Gaussian random num
bers necessary for the simulations were generated eithe
using the Box-Muller-Wiener algorithm or a very fast n
merical inversion method@57#. The time evolution of the
average value is carefully monitored until the stationary st
is reached.

The order parameter is computed by

^m&5K K U 1L2 (
i51

N

xiU L
time

L
ensemble

, ~A7!

where ^ & time and ^ &ensembleindicate time average and en
semble average, respectively. The averaging timeT was cho-
sen to be sufficiently longer than the correlation time,
example,T'23104 (108 steps! near the critical points. The
ensemble average was taken over at least ten indepen
systems. Similarly, the susceptibility is evaluated as

x5
L2

s2 K K S 1

L2 (
i51

N

xi D 22^m&2L
time

L
ensemble

. ~A8!

Simulation of large systems (1283128) was too long for
Cray C90 despite the code is mostly vectorized. Therefo
we used a massively parallel computer, the connection
chine model 5E with 256 processors which appeared to
about ten times faster than Cray C90 for this particular
plication with the same programs.
ys.
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