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Sporadic driving of dynamical systems
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In this paper the sporadic driving of time continuous systems and accompanying phenomena are examined.
Mathematical analysis of sporadically driven linear systems gives an explanation for the observed dependence
of the asymptotic stability of the sporadically driven system on the driving period. Several generalizations of
sporadic driving are proposed and their practical implications are considered. The sensitivity of the synchro-
nized motion between sporadically coupled chaotic systems to the influence of noise is explored. The synchro-
nization test of nonlinear models for time series is enhanced through the usage of sporadic driving.
[S1063-651%97)02804-3

PACS numbdss): 05.45+b

[. INTRODUCTION through bandlimited channels. It was also shown how to re-
alize a digital communication system on the basis of sporadic
Nowadays it is well knowr{1] that even for dynamical driving. Living in the era of digital communications, this
systems behaving chaotically, one can find subsystem®&ight be an interesting and significant application of chaotic
which possess the property of asymptotic stability.Systems. The concept of sporadic driving may also be ap-
Asymptotic stability of the driven subsystem is a necessarplied to synchronizing dynamical systems that are coupled
and sufficient condition for synchronization of the subsystenPy & signal that consists of spike trains. This case may, for
to the driving chaotic systefii,2]. Initially, the idea of syn- €xample, occur with firing neurons or coupled lasers that
chronized chaotic motions seemed surprising and a bit pardateract with a(chaotio sequence of sharp intensity pulses
doxical due to the sensitive dependence upon initial condil16]. Although being physically connected continuously by
tions. Since then, several researchers have contributed to t§e@me synapses or fiber optics, there is practically no interac-
area and interesting results have emerged: synchronization 8en betweerthe spikes and, therefore, the case of sporadic
hyperchaotic systems and one directionally coupled onedriving is (at least approximatejyrealized.
dimensional arrays of chaotic systems connected with a sca- In this paper, we analyze the properties and the mecha-
lar signal[3—6], transmission of information signals between Nism of asymptotic stability of sporadically driven systems.
Synchronized chaotic Systert@’S_q, genera"zed Synchro- Clear understanding of the origins of asymptotic stability of
nization[10—17, etc. sporadically driven systems is of great significance for the
In [13], the asymptotic stability of dynamical systems previously mentioned and some new applications that will
which are driven by random forces at regular intervals wag0ssibly emerge in the future.
investigated. On the basis of numerical simulations it was [n Sec. Il we shall summarize the achieved results regard-
conjectured that, for a class of randomly driven dynamicalng the idea of time discontinuous driving of dynamical sys-
systems, the final trajectory of the system is completely intems and pose several relevant questions. Section Il gives
dependent of the initial state provided that the time intervapnswers to these questions through mathematical analysis of
between two adjacent kicks by the random force is smallelinear examples, and points to some interesting phenomena.
than a certain threshold value. [t4], it was reported that These phenomena are also encountered in sporadically
synchronized motion between two identical one directionallydriven nonlinear systems, as is shown in Sec. IV through
coupled dynamical systems can be achieved when certajiimerical analysis. Section V contains generalizations of
variables of the driven system are set to the Correspondingporadic driving in different directions. Implications of the
variables of the driving system only at discrete times. MoreProposed generalizations for practical applications of spo-
generally, in[15] it was shown that the asymptotic stability radic driving are considered. In light of the latest results on
of a time Continuous|y driven dynamica| system imp"esthe performance of the synchronized motion in a noisy envi-
asymptotic stability of the time discontinuous driven coun-ronment, Sec. VI addresses this issue for the case of sporadi-
terpart for sufficiently small driving periods. In other words, cally coupled chaotic systems. Section VIl shows how spo-
under certain conditions it is sufficient to drive(ehaotio ~ radic driving can be used to test nonlinear models of
dynamical system only in time-equidistant moments in orde€xperimental data. In Sec. VIII we summarize and make
to achieve its asymptotic stability, and not continuously assome concluding remarks.
time goes on. If15], the time discontinuous driving of dy-
namical systems was namegoradic driving The possible
applications of sporadic driving in communications were
pointed out and analyzed to a certain extent. Sporadic driv- The idea of asymptotic stability of time continuous dy-
ing enables the perfect transmission of chaotic signalgamical systems that are time discontinuously driven has

II. SPORADIC DRIVING
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been discussed by several authd3-13. In order to avoid  sition of the vector field™ that governs the evolution of Eq.

any possible terminology ambiguities, at the beginning wea4) in the time intervals,<t<t,_ ;. Integrating Eq(4) from
definestablg asymptotically stableandunstabledriven dy-  time t=nT—¢ tot=nT+&, one can find in the limit

namical systems. e—0 that Eq.(4) describes a dynamical system which is
Definition 1.Consider a driven dynamical system sporadically driven bys;. For T=0 the sporadically driven
. system(4) becomes a time continuously driven system, i.e.,
x=G(x, (1)), @D the sporadic driving reduces to the driving method of Pecora

wherexe UC RN, se UC RV, Gil X Us—~RN. We say that and Carroll[1]

Eqg. (1) is stablewith respect to the driving signai(t) if

u=s,

there exists a phase poirg,, such that for alle>0 and

tpy, a d(e,tg)>0 can be found such that .

1X0.1— Xo.4| < 8(e.to) implies v=F,(uv). ®)
[X(t;tg,X0.0) = X(t;tg, X0 || <& for t>tq. (20  One can check the asymptotic stability of &tiyne continu-

ously or time discontinuousjydriven system(1) numerically
The setB(e,t,) of all phase points , that satisfy Eq(2) is  through conditional Lyapunov exponer(@LE), or analyti-
called theregion of stabilityof Eq. (1). If Eq. (1) is not stable  cally through a properly defined Lyapunov function. The
then it is calledunstable CLEs of Eq.(4) depend not only on the vector field and
Definition 2. Consider Eq.(1). We say that Eq(1) is  the driving signak;, but also on the driving period, since
asymptotically stablevith respect to the driving signa{t) if T is one of the defining parameters of Ed). Therefore,
(i) Eg. (1) is stable with respect to the driving sigrsét); (i)  CLEs of Eq.(4) will vary with T and will differ from those
there exists a phase poirg, and a positive numbef(to),  of Eq. (5), but their negativity is still a valid criterion for the
such that|xg 1— X 4| < 8(to) implies asymptotic stability. This will be illustrated numerically and
) _ _ analytically in this paper. 1f14] it was observed that despite
t'['l”x(t’to’XOYJ)_X(t’tO’XOZ)H:0' 3  the presence of a positive CLE of E@), it is still possible
to achieve asymptotic stability of E@4) for certainT>0
The setB(t,) of all phase points , that satisfy Eq(3) is ~ values. . _ .
called theregion of asymptotic stabilitef Eq. (1). The following theorem determines the conditions for
In simple terms, a driven dynamical system is asymptoti-2Symptotic stability of sporadically driven dynamical sys-
cally stable if it possesses asymptotically stable solutions®ms. Its proof also explains the mechanism of asymptotic
Some of these solutons may be different, i.e.,Stability of sporadically driven systems.
lim,_.|X(tito.xo.) —X(tit. X4 )| #0,  where  both _ TheoremConsider the driven systentd) and (5). If Eq.
X(t;t0,%0,) andx(t;tg,xg ;) denote asymptotically stable so- (5) is asymptotically stable, then the sporadically driven sys-
lutions. Different asymptotically stable solutions have differ- tem (4) is asymptotically stable for sufficiently small driving
ent regions of asymptotic stability. In Definition »3 , de- periodsT. . . . o
notes one phase point which belongs to the region o Proof. Denpte withB the. region of asymptotlc stability of
asymptotic stability of the solutior(t;ts,Xo1). g. (5). Consider two copies of Ed5) driven by the same

In this paper we shall consider the driven dynamical sy:s—Signal S(t) and starting from nearby initial conditions
tem (1) when its driving signal is applied only at equidistant Yo-Po€ 5, and the v components v(t;to,vo) and

time pointst,=nT,n=...,—1,0+1, ... , in thefollowing v'(t;tg,vg) of their trajectories. The primed variables are
U=[Xq, ... Xy] andv=[Xy41, ... Xy]. At timest, the encedv(t)=v(t;tg,v0) —v'(t;tg,vp) in the limit of small

componentsu are forced to new values(t,), that is, Auv is governed by

u(t,)=s(t,). In the time intervals,<t<t,. 1, Eq. (1) be- .

haves in an undriven way and free from the driving signal Av=D,F,(sv)Av (6)

§(t). For this kind ofsporadic drivingonly the values of _ _ _ _

S(t) at the time points,, are relevant for the behavior of Eq. WhereD,F, is the Jacobian of the vector fiefe, with re-

(1). Therefore, we say that Eql) is driven by the time Spect to the variables, and the higher-order terms
sequences;={5(t,)} (note the usage of the subscrip).  O(Sv,v’) are neglected. Due to the assumed asymptotic sta-
Sporadic driving of Eq(1) as described in this paragraph can bility of Eq. (5) it follows that lim_..[|Av(t)[=0. In terms

be mathematically written as of CLEs, ave'raging Eq6) over the attractor will yield nega-
tive CLEs ofv=F(s,v) with respect tcs for all initial con-
oo o
- ditions vy e B.
“_Fu(“’an;x S(t=tp)(S(tn) —U(ty-)), Now consider two copies of the sporadically driven sys-
tem (4) which are driven by the sampled versispof (t).
o=F,(u,v) 4) Consider their two trajectories(t;ty,Xo) and x'(t;tg,%g)

which are based on nearby initial conditioxg x, whosev
where 5(t) denotes a Dirac pulseyt,_) are the values of components belong td. Note that theu components of
the signalu(t) immediately prior to the driving timets,, and ~ X(t;tg,Xo) andx’(t;tg,x;) become irrelevant after the first
Fuo=[f1,....fu] andF,=[fy+1,....fn] are a decompo- driving sample ofs; is applied. We shall consider the
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asymptotic stability only of the subsystem. The evolution
of the differenceAv(t)=v(t;ty,Xo) — v’ (t;tg,X() is gov-
erned by

Av=F,(u,v)—F,(u',v")=D,F,(u,v)Au+D,F,(u,v)Av,
(7)

whereD,F, andD,F, are the Jacobians of the vector field
F, with respect to the variables and v, respectively. All
higher-order terms in Eq7) are neglected. The driving im-
pulse at the moment, forcesu andu’ to the same new
value 5(t,,) and thus the differencAu(t,) to a new value
0. Thus, immediately after the momety, D F,(u,v)Au
can be neglected compared withF, (u,v)Av, andu can be
replaced bys.

(i) Consequently, Eq(7) reduces to Eq(6). (ii) If T is
sufficiently small therv(t,, ;to,Xo), v’ (ts;tg,Xg) € B for all
t, or at least for a large portion of driving times.

Properties(i) and (ii) along with the asymptotic stability
of Eq. (5), assure thav(t;ty,X,) andv’(t;tg,xg) will ap-
proach each other immediately after the time paint As
time elapses from,, v(t;ty,Xo) andv’(t;ty,Xy) may begin
to diverge due to the possibly unstable nature of (Ej.But,
for sufficiently smallT, the initial convergence after time
t, betweenp(t;ty,%o) andv’(t;tg,X;) dominates the overall
behavior of Av(t). As a consequence, lim,Av(t)=0.
Since in addition Au(t,)=0 it follows that
limy_..[[x(t;tg,Xg) =X (t;to,X4)|=0. Thus, Eq.(4) is as-
ymptotically stable for sufficiently small driving periods

For largeT values in Eq.(4), the trajectoryv(t;tg,Xg)
may one or more times leave and reenkebetween two
driving impulses bys; . Whetherv(t,;tg,Xg) belongs ta3 or
not, depends ow(t,,_1;ty,Xg), as well as onl. Thus, any
change inT might exclude some points frofi and include
some new points inB3, which means that the region of
asymptotic stability depends dn A simple consequence of
the Theorem is

Corollary. If Eq. (5) is unstable, then for sufficiently
small driving periodsT, the sporadically driven systefd) is
unstable.

The validity of the Theorem is not conditioned on the

asymptotic stability of the nondriven system
u="Fy(uv),

)

v=F,(u,v),

but when Eq(8) is asymptotically stable then the Theorem is

obvious and Eq(4) is asymptotically stable for sufficiently

large T. Therefore we pay attention only to the case when
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the later chaotic divergend the intervalst,<t<t,,,) is
determined by the positive Lyapunov exporien{LE) of
Eq. (8). Therefore, the critical valu€y is mainly determined
by the CLEs of Eq(5) and by the positive L&) of Eq. (8).
If a driven dynamical system has many different asymptoti-
cally stable solutions, then their CLEs will be different, in
general. Consequently, CLEs afg, will be different for
different asymptotically stable solutions of a sporadically
driven system.

For the sporadically driven systefd) one can always
find the stroboscopic mam,:RN—RN"M which is given
by sampling the solutiom(t;tg,Xg) at time pointst,

u(n)=s(n),

v(n+1)=M,(v(n),u(n)),

(€)
(10

wheres(n), u(n), andv(n) denotes(t,), u(t,) ando(t,),
respectively. In Eq(9) we use the fact thai(t,) =s(t,). In

this paper, we assume the uniqueness of solutions, that is,
solutions of a dynamical system are uniquely determined by
its defining differential equations and initial conditions.
Thus, if in the limitn—« states of the sporadically driven
dynamical systen@) at timest,, are determined bg(n) then

it follows that even in the time intervals between two adja-
cent “kicks” by s(n) the dynamics of Eq(4) is determined

by s(n). In short, if and only if the driven maf®)—(10) is
asymptotically stable with respect $n), then the sporadi-
cally driven dynamical systen¥) is asymptotically stable
with respect tos;. The numerical computation of the map
M, just by numerical integration of Eq4) over a certain
period of time is always possible, but it does not simplify the
question “Is Eq.(4) asymptotically stable for a givem?”
When it is possible to analytically construct the mMp then

its analysis may be much simpler than the analysis of &q.
This will be exploited in Sec. lll where, due to the linearity
of the driven systems, the construction of a stroboscopic map
will be possible.

An example based on Chua’s circuit illustrating the Theo-
rem follows. A driving chain of one-dimensional impulses
sr=X17={ ... X1(—=T),%x1(0),x4(T), ...} generated by
Chua’s circuit

x=C(X) (12)

sporadically drives an identical copy of Chua’s circuit

+oo0
y: C(y) + nzz_w 5(t_tn)(xl(tn) - yl(tn—))aoyo} )
(12

Eq. (8) is chaotic. In our examples we shall also consider the i ) ,
case when Eq(8) is an unstable dynamical system in the Where the vector field C(x) is defined as C(x)

sense that it diverges to infinity.

If Eq. (5) is asymptotically stable, then the Theorem im-

plies the existence of a positive vallig such that Eq(4) is
asymptotically stable for alf<T,. The speed of the initial
convergencdafter time points,) of two trajectories of Eq.

(4), starting at nearby initial conditions, is determined by the

CLEs of Eq.(5). When s(t) is generated by an identical
dynamical system to Eq8) and is used in such a way as to

=[a(X=X179(X1)) . X1~ X2+ X3, — BXz], 9(x)=m;x
+ 3 (mog—m)[|x+1|—|x—1]] and my=—-1.27m,
=—-0.68,4=10.0,8=14.87. In a large area around these pa-
rameter values Eq(ll) exhibits the chaotic double-scroll
attractor.

In this example a one directional time discontinuous cou-
pling between two time continuous dynamical systeih
and (12) is performed. If Eq.(12) is asymptotically stable

synchronize Eq(4) to the driving system, then the speed of with respect tax;t then Eq.(11) and Eq.(12) synchronize.
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FIG. 1. Difference|x(t;0X,) —y(t;0,y0)| between two solutions
of Eq. (11) and Eq.(12) which are based on two different initial
conditionsx, andy,, for T=0.10,0.15,0.20.

The sum in Eq(12) describes an infinite coupling between
X, andy,; only in the equidistant times,. As a result,
y,(t) is forced to be equal ta,(t,,) at timest,. Between
two adjacent driving impulses, Chua’s circ(l?) oscillates
unforced and independently from the driving syst€i).
Denotingv=[Yy,,y3] andu=[y;] one can readily see the
compatibility of Eq. (12) with Eqg. (4). The subsystem
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(the channel response to a single Dirac pulse excitation
o(t) is[sin(mut)/mit]). Then the channel output may be writ-
ten as

+ o

o X 8(t—nT)xy(nT)]

n=—o

%(t) = sin(wvt)

vt

+ o

> Xy(nT)

n=—ow

siMav(t—nT)]
7r(t—nT)

The values ok, (t) at the timesnT are

+ o

Y1<nT>=mE x.(mT)

=—m

sin(r(n—m
nq(r(rg— m) - =x(nT)
and the sequence;; can be exactly recovered by sampling
X,(t) at timesnT, that is, x;1=X;7. Then the sequence
X1 can be used to drive E¢L2) and to successfully produce
the interpolated signal,(t). Thus, the concept of sporadic
driving makes possible the synchronization of chaotic sys-
tems connected via bandlimited channels, and the transmis-
sion of chaotic signals through bandlimited channels. Ac-
cording to [17], power spectra of chaotic signals are
exponentially decreasing and, therefore, with infinite width.
But, as previously argued, despite the infinite width of their
spectra, it is still possible to perfectly transmit chaotic sig-
nals through bandlimited channels using the concept of spo-

v=[y,,y3] is linear and its asymptotic stability can be easily radic driving. This is not in contradiction to the well known

proved: CLEs are £0.5,—0.5). Then from the Theorem it
follows that there exists a maximal driving perid¢ of the
sequence of driving impulses that still allows Edl) and

Eq. (12) to synchronize. Numerically, we have found that the

asymptotic stability of Eq. (12) is assured for

T<TH=0.26. This is illustrated in Fig. 1. Figure 1 shows the

difference||x(t;0.xo) — y(t;0yo)| between two trajectories of
Egs.(11) and(12) which are based on two different initial
conditionsxy andy,, for T=0.10,0.15,0.20.

sampling theoreni18], since the chaotic signals are gener-
ated(at least in this papgby deterministicdifferential equa-
tions which, in addition, ar&nownat the receiver. Only the
initial conditions of the driving system are not known at the
receiving end of the channel, i.e., at the interpolating side.
On the contrary, the sampling theorem assumes no knowl-
edge about the information source.

Even though the Theorem is of particular importance for
the concept of sporadic driving, it does not address the fol-

The onset of synchronization between two identical dy-oying questions(1) If a sporadically driven dynamical sys-
namical systems which are sporadically coupled, as in Edsem is unstable foffy<T<T,+e where e>0, does this

(11) and(12), can be viewed from another point of view. The
driven dynamical systengl2) nonlinearly interpolates the
samplesx;t and produces the interpolated signalt). If
Eq. (12) is asymptotically stable for a giveh, then the non-
linear interpolation is successful, thatyg(t) =x,(t). In this
case X, (t) is uniquely determined by its samplgs;. The
spectrum of the signak” . 8(t—nT)x,(nT) is periodic
with period v= 1/T and is given by

+ oo

v 2 o(f—nv)

n=—o=

+ oo

=y 2 Xi(f=nv)

n=—w

Xq(f)e

where > denotes convolution. Due to the periodicity of its
spectrum, the signat ~_ . 8(t—nT)x,(nT) can be trans-

imply that the system is necessarily unstable for all
T>Ty+&?(2) Do the CLES(or at least the largest onef a
sporadically driven system monotonously rise as the driving
periodT increases?3) If a time continuously driven system

is unstable then is the sporadically driven version of the
same system necessarily unstable forTall One might ex-
pect that the natural answer to the previous questions is af-
firmative. For example, consider the first question. If for a
driving period T, the chaotic behavior of the sporadically
driven system overpowers the initial convergence of its tra-
jectories immediately after the driving timeg, then one
may expect that this will also be the case fora#T;. As a

little surprise we shall see that the answers to the three ques-
tions are all negative. The negative answer to the second

mitted through an ideal low-pass channel with transfer funcduéstion implies the existence of a driving perigdwith

tion

14

for |f| <z
HLP(f): 2
otherwise

smallest CLEs of Eq(4), and, therefore, the fastest conver-
gence of nearby orbits and fastest synchronization. The an-
swers will be given through examples exploiting sporadically
driven linear systems. Certain phenomena will be encoun-
tered during these examples. Afterwards, we shall show that
these phenomena also occur in the sporadically driven
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Chua’s circuit, the Lorenz system and thesRier system. 4
We shall also show that sporadic driving may resuldi@ad-
beat synchronization in continuous-time syst¢ry.

IIl. SPORADICALLY DRIVEN LINEAR SYSTEMS

In this section, we examine the asymptotic stability of
sporadically driven linear systems. We use linear systems in
our analysis since their analytical treatment is possible and
the analytical construction of stroboscopic maps as in EQs.
(9) and (10) is feasible. We shall see several phenomena
which are interesting and seem strange at first glance. Lin-
earity of the driven system will enable us to explain the
origins of these phenomena. Furthermore, the observed phe- . ‘ : :
nomena also appear when nonlinear systems are sporadically 0 3 10 15 »
driven, as in Sec. IV.

Consider a linear two-dimensional system which is spo- . . ) )
radically driven by an arbitrary signa(t), or more precisely FIG. 2. The ratior(T) for different pairs of real eigenvalues
by a sequence of samples pi,p>, whend=-1.0. A—(p,=0.1, p,=—-1.2), B—(p;=-0.1,

p,=—1.2), C—(p;=-01, p,=-0.2), D-(p;=0.0001,
+o p2: - 02) .

Xp=axythxpt X S(t—te)(S(ty) ~Xa(ty-)),

r(T)

25 30

system v=[Xx,] is asymptotically stable if and only if

. d<<0. According to the Theorem the asymptotic stability of
Xp=CX+dx. (13 the v subsystem implies the existence of positivg or, in
other words, Eq(15) has a positive solution fof, . One can
easily see this in another way. Immediately after the driving

define a difference=x—x’ where the primed variables are : P . .
from a system identical to Eq13) and driven by the same ‘Tﬂ the tlmet—_(_)_ls applled,_ the differences(t) pehaves as
e,=de, and initially the ratior (T) enters the regiof+1, 1).

signalsy. Due to the linearity of Eq(13) it is easy to con- o ally ! ] ]
struct a stroboscopic map between two successive kicks b the driving period is smaller than the valtiéthere is any
St at Whlch_r(T) leaves th_e reg|or_(—1, 1) then Eq.(_13) is
asymptotically stable. Figure 2 illustrates several interesting
e,(nT)=0, cases:(a) Eqg. (13) is asymptotically stable only in the
initial region T<T, for p;=0.1p,=—1.2 (curve A
and p;=0.0001p,=-0.2 (curve D). (b)) Typ—w
e (NT)=r(T)ey(nT), when p;=—-0.1p,=—1.2 (curve B; (c) For
(14) p1= .—0.1,p2= —Q.2 (curveC) the regi.onT>TH where Eq.
(13) is unstable is followed by a region df values where

wherep, andp, are the eigenvalues of the matie=[23].  Ed. (13) is asymptotically stable.

In order to examine the asymptotic stability of Eq3) we

d- Px epiT
k

ez((n+1)T)={2

i#k Mi

If e,(nNT)—0 whenn—o then Eq.(13) is asymptotically Knowing the valuer(T), one can compute the largest
stable. Therefore, CLE of Eq. (13) as\;=In|r(T)|. Note that a smallef does
rTl= | 2Pz epimay S7PL oyl 1 (1 :
P1—p P2—P1

determinesT, . LEs of the nondriven version of E(L3) are
equal to the real parts ob; and p, while the CLE of
v=[X,] subsystem is equal t. If p; andp, are real then
Ty is completely determined through Ed5) by LEsp; and
p, of the nondriven system and CLdEof the time continu-
ously driven system. Otherwise, when and p, are com-
plex conjugate,T in addition depends on their imaginary
part.

The dependence of the ratigT) on the driving period
T is graphically presented in Figs. 2—4. If we choose a driv-
ing period T, such that]r(T)|<1, then the systenil3) is T 5 0 s 2 2 30
asymptotically stable, fo[r(T)|=1 it is stable, and other- : T
wise it is unstable. For certain values pf andp,, interest-
ing facts about the ratio(T) can be observed. Figure 2 F|G. 3. The ratior(T) for different pairs of complex eigenval-
shows the ratia(T) for different pairs of real eigenvalues ues p,=p+jo,p,=p—jo, when d=-1.0. A—(p=-0.02,
p1.p2 when d=—1.0(<0). First, we note that the sub- ¢=1.4),B—(p=0.01,0=1.2).

r(T)




4040 STOJANOVSKI, KOCAREV, PARLITZ, AND HARRIS 55

5 with the Theorem. Ifd=0, which means that Eq13) is
stable forT=0, then whether this stability will convert into
instability or asymptotic stability foT >0 depends on other
entries of the matrixA. If d>0 (Eq. (13 is unstable for
T=0) then still there may exist infinitely many regions of
T values where the sporadically driven system is asymptoti-
cally stable. Multiple regions of values producing asymp-
totically stable sporadically driven system may also occur
whend=0.

This kind of dependence of the asymptotic stability of a
sporadically driven system oh is not a special feature of
linear systems. We have used the linear systEBhsince its
mathematical analysis is possible. Now we shall investigate
the stability of sporadically driven nonlinear systems. The
T asymptotic stability of these systems will be analyzed
through their CLEs, since their stability analysis through
Lyapunov functions or linearized equations is much more
difficult. Similar phenomena to those shown in Figs. 2—-4
have been observed in these cases. When it occurs, we shall
qualitatively explain the difference in the behavior of spo-
radically driven linear and nonlinear systems.

FIG. 4. Ratior(T) for different triples @,p,,p,). A—(d=0,
p.=0.1, p,=0.02),B—(d=0, p,=0.1, p,=—-0.02), C—(d=0,
p=0.03, 0=1), D—(d=0, p=-0.03, ¢=0.8), E-(d=0.5,
p;=0.02,p,=—-0.9),F—(d=0.5,p=0.05,0=1.3).

not mean higher stability and faster convergence during the
synchronization transient. Furthermore, for certain pairs V. SPORADICALLY DRIVEN NONLINEAR SYSTEMS

P1,p, there exists a valud, such thatr(T)=0. If one For the sake of simplicity, in this section, chaotic systems
choosed =T then two copies of Eq13) driven by the same are sporadically driven by one-dimensional sequences pro-
driving sequencs; will synchronize after only two samples duced by their nondriven counterparts. Therefore, the
of st are received. This is similar to the notiondéad-beat asymptotic stability of the driven system results in synchro-
synchronizatiorof discrete-time systemd.9]. nized motion with the driving system. We have numerically
Figure 3 shows the ratio(T) for different pairs of com- investigated the dependence of the CLEs of the driven sys-
plex eigenvaluegp,;=p+jo,p,=p—jo and d<0. When tem on the driving period, and have obtained similar de-
p<0 one or more regions of values where Eq(13) is  pendencies to those for the linear syst€l) which were
unstable may occur. Whes>0 infinitely many regions of given in Figs. 2—4. Several diagrams will be given which
T values where Eq(13) is asymptotically stable occur, but show these dependencies and indicate that the numerical re-
their length decreases dsincreases. One can choose arbi-sults are in accordance with the Theorem. As is well known,
trarily large T which gives|r(T)|<1 and thus achieve syn- a driven system is asymptotically stable if and only if its

chronization. CLEs are all negative. CLEs of driven systems will be de-
What happens whed is not negative? According to the noted as\;=\,=N\3.

Corollary, if d>0 thenr(T)>1 for sufficiently smallT. In First we consider three sporadically driven Chua’s circuits

other words, if the time continuously driven subsystem i

v=[X,] is unstable, then so is E¢L3) for sufficiently small -

driving periodsT. If d=0 then the time continuously driven y=Cly)+ nzz_w 8(t=1tn) (Xa(tn) —y1(tn-)),0,0},

subsystenv=[x,] is stable and the behavior ofT) in the ) " (16)

vicinity of T=0 is not obvious. On the basis of knowledge

of only d, one cannot determine whether, for smglistabil- _ [+ 1

ity will convert into instability or asymptotic stability. Figure y=C(y)+|0, > 8(t—ty) (Xa(ty) —Y2(t,-)).0],

4 illustratesr (T) for different triples @=0,p;,p,). Surpris- L n=-= ]

ingly, even ford=0 there may exist one or more regions of (17)

T values, where the sporadically driven system is asymptoti- . ]

cally stable(curvesA,C,D andF). CurveF shows that even - B _

for unstable time continuously driven subsystems one can y=Cy+ O’O’nzz_m A=) (X3(tn) = ¥3(tn-)) |,

sometimescarefully choose an arbitrarily large driving pe- - (18
riod T and achieve asymptotic stability. But one should be
aware of the fact that the length of regions where where the driving sequencest,Xot1,Xst are produced by
[r(T)|<1 decreases for largéf and therefore the driving Eqg.(11). Figures 5—7 show the two largest CLEs of Ebf),
period should be very accurately chosen. For certain dynamkEq. (17), and Eq.(18), respectively. The third CLE for all
cal systems, stabilitycurve B) and instability(curve E) at  three systems E@16), Eq.(17), and Eq(18) equals—» and
T=0 can turn into instability for allT>0. corresponds to the driven coordindsee Appendix

Let us summarize the previous graphics and discussion. If As stated in Sec. Il, the subsystamns[y,,y3] is asymp-
d<0 (d>0) then the subsystem=[x,] is asymptotically totically stable. CLEs\; and\, of Eq.(16) are negative for
stable(unstabl¢ and T, >0 (T, =0) which is in accordance T<0.26, and almost identical to each other 16+ 0.86. For
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FIG. 5. Two largest CLEs of Chua’s circu(it6) which is driven FIG. 7. Two largest CLEs of Chua’s circuit8) which is driven
by x,7 generated by an identical Chua’s circuit. by x3r generated by an identical Chua’s circuit.

where L(X)=[16.0(X,—X1),45.6¢; — X1X3— X5,X1X>

large T values,\, tends to 0.39 and , tends to 0.0 which — 4.0¢.]. Time seauences - X-- X~ were used to sporadi-
are just the two largest LEs of a nondriven Chua's circuit.., dsr]i;/e three ic(]jenticallgc;pizgs: ngqug) P

This numerical observation can be generalized in the follow-

ing way: CLEs of a sporadically driven system tend to the +oo ]

LEs of the nondriven system whéh— oo, y=L(y)+| > 8(t—t))(X(ty) —y1(t,-)),0,0[, (20)
The subsystenv=[y,,y3] is not asymptotically stable: Ln=—e ]

its CLEs are 0.0 and-2.5. Due to the presence of a CLE o

with value 0.0, the Theorem does not determine whether Eq. .

(17) is asymptotically stable or not for small As shown on y=Ly)+ O’n;_w (1= 1tn) (Xa(tn) —y2(tn-)),0}, (2D

Fig. 6, numerical computations have indicated asymptotic ) ’

stability of Eq.(17) for T (0,0.83)U(1.25,1.49), whilex; r +o0 1

achieves its minimum fof =0.19. y=L(y)+|0,0, > 8(t—t,)(Xs(t,) —y3(t,_))|.
CLEs forv=[y;,Y>] subsystem are 1.5 and5.1. Ac- [ n=-< ]

cording to the Theorem, for sufficiently small values of the (22)

driving periodT, the sporadically driven systefi8) is un- _ . . .
stable as can be seen in Fig. 7. Despite this, @8) is Time continuously driven subsystema=[y,.y;] and

asymptotically stable foT e (0.4,0.85)J (1.56,1.68). v=[y1,ys] are asymptotically stable and so are E2f)) and

Also we have numerically examined the Lorenz system E‘?- (21) for smallT (see Figs_. 8-10The time continuously
driven subsystene=[y,Yy,] is stable but is not asymptoti-

cally stable(its largest CLE is 0.0). Numerical integration of

x=L(x), (29
15 100
14
0.5 L1
0 4
2 8
3 05 110 N
o 1] g
< ]
2 s 110"
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FIG. 8. Largest CLE, the average noise-induced synchronization
error e,,s, and the maximal noise-induced synchronization error
FIG. 6. Two largest CLEs of Chua’s circyit7) which is driven e, for the Lorenz system&0) which is driven byx,; generated
by x,1 generated by an identical Chua’s circuit. by an identical Lorenz systefi9).
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FIG. 9. Largest CLE, the average noise-induced synchronization g 11. Two largest CLEs of the Reler systen(24) which is
error e, and the maximal noise-induced synchronization erroryyiven byx,r generated by an identical Bsler system.
€may for the Lorenz system&1) which is driven byx,r generated
by an identical Lorenz systeif19).

+ o
Eq. (22) showed that its stability fof =0 transforms into y=RY)+ O’n;m St tn) (o(tn) y2(tn)),0},
asymptotic stability for small>0. Furthermore, Eq22) is (25
asymptotically stable in three separated regioils
(0,0.02)U(0.07,0.12)J(0.27,0.31)(see Fig. 10 For all

+ o

three system$20), (21), and(22) we observed thak, was y=R(y)+| 0,0, _2 S(t—1tn) (X3(th) —ys(ty,-))| (26)
much smaller than\4, and thus\, is not shown in Figs. e
8-10.

and the driving period’. The time continuously driven sub-
systemv=[y,,y3] is unstable, and so is Eq24) for all
. driving periods(see Fig. 11 Furthermore, the two largest
x=R(x), 23 CLEsA; and\, of Eq.(24) are both positive. The subsystem
v=[y;1,Ys] is also unstable, but Eq25) is asymptotically
where — R(x) =[2.0+ X4(x,=4.0),~X; = X3, X, 0.45], Estable for Te(1.07,2.74) (see Fig. 12 The subsystem
have also revealed nontrivial dependence between the CLES_ : : :
of the sporadically driven systems v=ly1yo] is = asymptotically stable - with X,
=—-0.23)\,=—3.33, and so is Eq26) for T<2.4(see Fig.
13). In the case of Eq(25) and Eg.(26), there exists a
driving periodT which results in the smallegt;, and there-
fore fastest convergence of trajectories of the driven systems
(29 (25 and(26) to those of the driving systel(23).
The dead-beat synchronization reported in Sec. Il is pos-
sible mainly because the driven system is linear. As a result

Numerical examinations over the &ler system

+ oo

=R+ 3 6<t—tn><xl<tn>—yl<tnmo},

AL, A2

FIG. 10. Largest CLE, the average noise-induced synchroniza-
tion error e;,s, and the maximal noise-induced synchronization
error e,y for the Lorenz system$22) which is driven byxsr FIG. 12. Two largest CLEs of the Rsler systen(25) which is
generated by an identical Lorenz systé€ts). driven byx,; generated by an identical Bsler system.
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FIG. 13. Two largest CLEs of the Rsler systen(26) which is FIG. 15. Evolution of the differencele(t)]|, ey(t), ex(t), and
driven by xs;r generated by an identical Bsler system. e;(t) for two Chua’s circuits which are coupled via the method of

sporadic driving with finite durationl =0.85, 7=0.4.

of the linearity, the solutiofs) T of the equationr(T)=0

does not depend on the state of the driven system at thefy vector field the number of PC decompositions is limited.
driving moment. Unlike the sporadic driving of linear sys- Furthermore, not all of the decompositions result in an as-
tems, dead-beat synchronization was not achieved in the cag@ptotically stable response subsystem[3(b], it was pro-

of sporadically driven nonlinear systems. As can be easiljposed that dynamical systems should be seen as objects
observed from Figs. 5-13,16,17, the two largest CLEs of thavhose coordinates can be chosen by the observer and are not
examined sporadically driven nonlinear systems do not tengivena priori. On this basis, a more general drive-response
to — o for any value of the driving period. Whether dead- decomposition (active-passive decompositiotAPD) in

beat synchronization in sporadically driven nonlinear systerms of[3,5]) was proposed. Neither the drivactive) nor

tems is possible and under what conditions is the subject dhe responsépassive part needs to correspond to a subspace
our current research. spanned by the originally chosen coordinates. As a result, the

number of APD decompositions is infinite, and one can
hopefully find an APD decomposition which is better than alll
PC decompositions in the sense that the CLEs of the driven
A. Combination with other synchronization methods system are more negative and it responds better to the driv-

o i . ing system. Itis rather straightforward to generalize sporadic
Several generalizations of Pecora-Car(®iC) synchroni driving in this direction. Actually, a sporadically driven APD

zation method have been proposed so far. The PC methag Lcomposition is also described by Ed), with the only

relies on decompositions of the vector field into two parts: i bei h d h di b
drive and response, where each part corresponds to a su%'—. erence being thati andv are the new coordinates ob-
f tained through a change of the old coordinateandF, and

space spanned by the originally chosen coordinates. For eﬁ; are a decomposition of the original vector figfdand
correspond to the new coordinate@ndv. The Theorem is
Ty =228T+026 also valid for sporadically driven APD decompositions. If
the APD decomposition is carefully chosen, then the CLEs
of the continuously driven passive subsystem may be very
negative. Thus, the sporadically driven APD decomposition
can achieve asymptotic stability for large valuesTofand
the sequence; can be transmitted through a channel with
narrow band.
Sporadic driving can also be generalized in the way the
Fujisaka-Yamada methofi20] generalizes Pecora-Carroll
driving. The following driven dynamical system:

V. GENERALIZATION OF SPORADIC DRIVING

0 . | | , | U=Fy(up)+ X 8(t—t)E(S(ty) —u(t,-))
0 02 04 06 08 1 12 n=-e
v=F,(u,v) (27)

FIG. 14. Dependence of the maximum value of the driving pe-
riod Ty that still yields synchronized motion between two Chua’s
circuits on the driving duration. The Chua’s circuits are coupled behaves independently from the driving sigealexcept for
via the method of sporadic driving with finite duration. the timest,, when theu components are forced to new values
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u(ty)=(1—E)u(t,_)+Es(t,), whereE is the coupling ma- timest,. So, we linearly approximate the dependence be-
trix, and| is an identity matrix. Equatiof27) reduces to Eq. tweenTy and 7 as Ty=0.26+2.28r (dotted curve at Fig.
(4) whenE=1. 14).

One may also apply sporadic driving to two-directionally  In the driving intervals with lengthr, the difference
coupled  systems: Xx=F(x)+3'* _8(t—t,)E(X'(t,) € XY evolves according to

—X(t,-))  and X' =F(X)+37 L 8(t—t)E' (X(t,) [_1 1]
= X
_B O

—x'(t,-)), whereE andE’ denote the coupling matrices.
while e;=0. One can solve Eq30) and see thag,(t) and

In practical realizations of sporadic driving with elec- e;(t) approach 0 in an oscillating manner. Therefore, larger
tronic circuits, the driving duration around timeswill al-  driving durationr does not mean smaller differenge(7)||
ways be finite and nonzero. This is our motivation for gen-for every e(0), and itmight also mean larger projection of
eralizing the idea of sporadic driving in the following way. e(7) on the unstable eigenspace. During the nondriving in-
The driving is again applied periodically, but its duration is tervals the driven Chua’s circuit behaves chaotically and
finite rather then tending to zero. The duration of the drivinge,(t) andes(t) diverge from 0 in aroscillatingmanner. The
is denoted as. Each driving period is divided into two parts differencee(T) achieved at the end of the nondriving inter-
with lengthsr and T— 7. At the beginning of each driving val depends not only on the LEs of the driving Chua’s cir-
period, during the time intervat, the response system is cuit, but also on|e(7)| and the projections of(7) on the

e, e, -

é3 €3

B. Sporadic driving with finite duration

being driven by the driving signal as unstable and stable eigenspaces. Figure 15 sHe3|,
e (1), ey(t), andes(t) for T=0.85 andr=0.4.
u=s(t), As a result of the oscillatory behavior around Oe3(t)
. and e;(t) during both driving and nondriving intervals,
v=F,(u,v), (28 for certain ranges of 7 values [7

€(0.24,0.44)J(0.66,0.86)J(0.91,0.99] larger driving in-
while in the remaining time interval, with length— 7, the  terval 7 allows smaller maximum value of the nondriving
driven system behaves independently from the driving signahterval T, — 7 and does not contribute to any increase in
Ty (see Fig. 14
u=Fy(u,v),
VI. SPORADIC DRIVING IN PRESENCE OF NOISE

v=F,(u,0). (29 In this section we address the sensitivity of the synchro-
nized motion of sporadically coupled identical chaotic sys-
We illustrate the concept of sporadic driving with finite tems to noise influence. It is a well known fact that the CLEs
duration through an example with two identical Chua'’s cir-are a necessary and sufficient condition for synchronized mo-
cuits which are coupled in their first coordinatesandyi.  tion [1,2]. From their definition it is obvious that they, as
The driven Chua’s circuit behaves independently and chaotiye|| as the LEs, refer only to the long-term behavior. How-
cally only during the time periods with length— 7 which  ever, when all the CLEs are negative there can still exist
occur periodically with period. During the periodic time points in the synchronization manifold=y whose maximal
intervals with length7 the y; component of the driven |E for perturbations transverse to the synchronization mani-
Chua’s circuit is being kept equal to the componendf the  fold is positive when computed over faite time interval
driving Chua’s circuit. [21]. Such fluctuations in the CLEs computed over a finite
Figure 14 shows the functional relation between the drivtime are the reason that the synchronization transient is not
ing duration7 and the maximum value of the driving period aCCQmpanied with a monotonous approach towards the syn-
Ty that still allows synchronized motion between the twochronization manifold, but instead brief intermittent high-
Chua’s circuits. SurprisinglyT versusr is not a monoto-  magnitude(comparable to the size of the attradtalepar-
nously increasing function as one would intuitively expect.tures from the synchronization manifold appear.
In certain7 ranges, an increase in the driving duration does |n the real systems the noise is inevitably present. There-
not contribute to any increase ifiy. In the remainingr fore we are interested only in a synchronized motion which
ranges the dependence betweeand Ty is approximately s resistant to the negative influence of noise, i.e., in a high-
linear. In order to clarify this surprising dependence we givequality synchronized motion in the language[22,23. The
the following analysis. noise permanently disturbs the synchronized motion which
During the intervals with lengthr, CLEs of Eq.(28) are  gives rise to a sustained transient behavior. Since the CLEs
in power and for Chua’s circuit they are both0.5. In the  do not characterize the transient behavior they cannot be suc-
remaining intervals each with lengfh—7 Chua’s circuit cessfully exploited to quantitatively express the noise influ-
(29) behaves freely and its positive LE is 0.39. Convergencence, and their negativity is not a sufficient condition for the
during 7 and divergence durin§— 7 cancel each other when high-quality synchronized motion. As shown [i82,23 the
—0.57+0.39(T—7)=0, that is, T=2.28r. When 7=0 synchronized motion in the real chaotic systems may be in-
Chua’s circuit(29) is asymptotically stable even for positive terrupted with outbreaks of desynchronized bursty behavior
T, i.e., forT<0.26, sincey; component of the driven system provoked by the noise. The main cause of the desynchro-
is made equal to the component of the driving system at nized bursts are the phase points lying in the synchronization
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A

FIG. 16. A 600<600 grid of the riddled basin of attraction for
Egs. (19 and (220 when T=0.28. The phase points
[p1+A1,p2tAs,p3,p1+A1,p2—As,p3] that go to the in-phase
manifold are represented as white dots, while the black dots correptic attractoy then we can safely conclude that the synchro-
spond to the initial states going to the in-antiphase manifold.nization is of high quality.
p1=0.5085p,=1.0552p3=24.1274. What are the consequences for quality of the synchroni-

zation in a noisy environment when the chaotic systems are

manifold that have one or more positive CLEs computedsPoradically coupled? Two sporadically coupled chaotic sys-
over a finite time, that is, as pictorially expressed2@,23,  tems, in the time intervals when oscillating independently
the unstable invariant sets embedded within the chaotic affom €ach other, amplify the noise perturbation due to their
tractor and therefore lying in the synchronization manifoldchaotic nature and the permanent decrease in their synchro-

whose maximal CLE is positive. The invariant sets of thisnization error is not possible. Thus, from the point of view of

kind are unstable both to perturbations lying in the synchro-the sporadic driving the negativity of the time-derivative of

nization manifold and being transverse to it. When the state he Lygpunoiv functions IS an mappllcaple tool. In the case of
; : me-discontinuous couplings the maximal CLE for a given
of the coupled systems come close to such an invariant se

. 4 . X ifitial state which is computed over a finite time depends
the disturbance in the synchronized motion caused by th Iso on the time of appearance of the next driving impulse.

noi_se gets amplifigd by the trgnsverse iqstability of the inWe have seen in Sec. IV that the CLEs for coupled chaotic
variant set provoking the motion to be kicked off the SYN-systems may depend on the driving peribih a very com-

chronization manifold. Obviously, the proper criterion for @ pjicated manner. It is reasonable to assume that the maximal
high-quality synchronization is the negativity of the CLEs of ¢| £ for an unstable periodic orbit lying in the synchroniza-
all the invariant sets embedded within the chaotic attractofion manifold may depend on the driving period also in a
[22,23. Although this criterion sounds very simple and complicated way(the driving is done by the unstable peri-
mathematically precise it is rather impractical and cumbergdic orbit generated by another dynamical sysféaj). So,
some due to the infinite number of the invariant sets whosgvhile the chaotic attractor gets more negative maximal CLE
transverse stability must be checked[23] it was proposed with increase ifl, an unstable periodic orbit may experience
to exploit the negativity of the time derivative of Lyapunov more positive maximal CLE. On the contrary, a change in
functions as a tool to show that the perturbations caused by may turn the otherwise positive maximal CLE of an un-
the noise decay permanently rather than sometimes beirgjable invariant set into a negative one, that is, a high quality
amplified by the transversely unstable invariant sets. Butsynchronized motion may emerge when sporadic driving is
finding a Lyapunov function which proves the decay of theused instead of a time continuous driving.

noise-induced perturbations is a very difficult task. A recent Such a complication of the issue of noise influence in the
work [24] has eased the checking of the transverse stabilitgase of sporadic driving has strengthened our decision to
of the invariant sets by pointing out that typically the peri- express the quality of the synchronized motion of sporadi-
odic orbits with low period are the invariant sets with largestcally coupled systems through a direct measurement of the
CLE. Ildentifying the transverse stability of the low-period synchronization error. Here we present results from numeri-
orbits may explain the reasons for the existence or nonexistal experiments concerning the quality of synchronized mo-
ence of the high quality synchronization. Still the direct mea-tion of the sporadically coupled Lorenz syste(h8)—(22) in
surementwhen possibleof the noise-provoked disturbances the presence of small additive noise. We used the fourth-
to the synchronized motion is the most reliable and the easibrder Runge-Kutta method. In real systems, both the driving
est tool to directly determine the quality of the synchroniza-and the driven system, as well as the driving signal during its
tion. If the synchronized motion of two coupled systems intransmission, are contaminated by the noise. Thus we added
the presence of noise is not interrupted by high-magnitudemall random noise to all the coordinates of the driving and
desynchronized burst for a long tim@uring which the the driven systems, and to the driving signal. The random
coupled systems come very close to every point on the chazoise had uniformly distributed amplitudes in the range

FIG. 17. The probability? of going to the in-antiphase manifold
as function of the transverse deviatidn. T=0.28.
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(—107,+10 7). The adjacent noise samples were uncorrenumerical simulations have shown that both chaotic attrac-
lated, and so were the noises added to any two differertors (one lying in the manifoldy;= X4, Yo=X,,y3=X3, and
coordinates. the other lying in the manifoldy;=—X;, Yy,=—Xy,
After the initial time period of length 10, which was al- y3= —X3) have riddled basins of attraction fadl driving
lowed for the transient oscillations to die out, we measuregeriodsT where the largest CLE is negative. In termg28]
the synchronization errog(t)=||x(t) —y(t)||. Figures 8—10 the two basins are called intermingled. Figure 16 shows a
present the dependence &f,; ande,,, on the driving in-  two-dimensional slice of the basin of attraction of the in-
terval T, wheree,,s denotes the average valueeft) aver- phase and in-antiphase attractors. We have randomly chosen
aged over a time interval of length 12000, amgl,, denotes a point[p;,p,,p3] lying on the Lorenz chaotic attractor.
the maximal value of the err@(t) observed during the same Numerically solving Egs.(19) and (22) (without adding
time. Sincee, is averaged over the whole chaotic attractornoisg we have determined the basin to whom a phase point
it is no surprise that in Figs. 8 and 9 it follows the changes il pP1+A1,p2+A5,p3,p1+A1,p2—A,,p3] belongs where
the largest CLH23,25,26. The maximal erroey,,,, which  [p1+A1,p2+A5,p3] and [p;+A;,p,—A,,p3] are the
is sensitive to the local instabilities of the synchronized mo-states at=0 of Eq.(19) and Eq.(22), respectivelyA, is the
tion, reveals the magnitudes of the possible intermittentleviation along the in-phase manifold=y and A, is the
bursts, and values o, small compared to the attractor deviation transverse to the same manifold. We have also
size are a clear indication of a high-quality synchronizedmagnified different regions of Fig. 16 and have inspected
motion. As shown in Figs. 8 and 9 the regions of high- basins near other poinfg;,p5,ps]. The riddled structure of
quality synchronization for the pairs of Lorenz syste(h9) Fig. 16 was always present. As previously said, for riddled
and (20), and(19) and (21) agree very well with thel re-  basins even arbitrarily close points to the manifotdy have
gions of asymptotic stability. Highering and lowering the nonzero probability of settling to the in-antiphase manifold.
noise level did not cause any qualitative change to the nois8o, another proof of the presence of a riddled basin in Egs.
sensitivity except for the scaling @&, and ey, propor-  (19) and (22) is Fig. 17, whereP denotes the numerically
tional to the change in the noise level. These results, alongstimated probability that a randomly chosen point with
with the simulations we carried out for the Chua’s circuit andtransverse deviatio, belongs to the basin of the chaotic
the Rasler system, clearly indicate that a high-quality syn-attractor lying in the in-antiphase manifold. The probability
chronized motion between sporadically coupled chaotic sysP scales as a power law with,, i.e., P~AZ which is in
tems is possible. Furthermore, high-quality synchronizatioraccordance with the theoretical results[#8]. Due to the
also emerged in the cases when the time continuous drivingddled basins neither in-phase nor in-antiphase synchroniza-
does not lead to synchronized motion at dr example, tion can persist indefinitely in presence of noise, and the
driving the Chua’s circuit withx,t or Xzr or driving the  Lorenz systemg19) and (22) repeatedly switch from in-
Rossler system withxst). phase to in-antiphase synchronization and vice versa. The
According to Fig. 10, a high-quality synchronization of time intervals with in-antiphase synchronization are respon-
two Lorenz systems when driving witty is not achievable sible for the large values of the errags,,s and e, ..
for any driving periodT despite the negativity of the largest
CLE in three separatd regions. Here we show that the
underlying reason is the riddled basin of the chaotic attractor
lying in the synchronization manifold. A chaotic attractor
may have a riddled basin only if it lies in an invariant mani-  The problem of determination of equations of motion
fold with lower dimension than that of the full space andof a chaotic system on basis of experimentally collect-
another attractor exists outside the maniff2@]. This con- ed data is rather interesting and useful. Most often,
dition is fulfilled in the case of synchronized identical cha- experimental measurements produce scalar data
otic systems where the motion settles in the manifotdy, = ={z(0),z(L), ... ,z(N,L)} whereL denotes the sampling
whose dimension is 1/2 of the dimension of the full spaceinterval. Then,z, is used to construct a sequence of phase-
Riddling of the basin means that arbitrarily close to thespace vectors ={s(0),s(L), ...,S(NL)}. Here we shall
points that belong to the basin of the chaotic attractor on@ot be concerned with the phase-space reconstruction
can find points with a nonzero measure that go to the othemethod and shall assume trstis already given. The main
attractor. Even for the points that are arbitrarily close to thepbjective in nonlinear time-series modelling is to find a vec-
invariant manifold there is a nonzero probability that theytor field F (or a mapM) which is optimal according to a
will eventually settle on the other attractor. When a noise isertain criterion and models the real system with differential
present the chaotic oscillations are permanently being movegquations

off the invariant manifold. The noise repeatedly moves the
chaotic state to the basin of the other attractor and eventually
the motion will settle on the other attractor.

In the dynamics of the Lorenz system there is a symmetr){_| ) . ) o
(X1,X2)— (=X, —X5). Due to this symmetry the two Lorenz aving chosen the optimal vector field, synchronization

systems (19) and (22) can synchronize either in-phase can_be used to test how p_recisélynodels th(_e equations of
V1=X1, Yo=X,, Y3=Xz OF in-antiphase/; = — Xy, Y= — X, motion[29]. As proposed if29], linear coupling should be
ya=Xs, and, furthermore, the two synchronized staies ~ US€d for that purpose

phase and in-antiphaskave identical CLEs and they gain . .

and lose their stability27] simultaneously a$ changes. Our x=F(x)+E(s(t) —x), (32

VII. TESTING EXPERIMENTAL MODELS WITH
SPORADIC DRIVING

x=F(x). (31)
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wheres(t) denotes the linear interpolation of the sequencehe asymptotic stability of sporadically drivéinear systems

S, and the Coup”ng matrie may have On'y ohe nonzero on the dl’lVII’]g perIOd IS ana!y“ca”y |nVeSt|g.ated. Similar de-
elementE;; = 1 that belongs to the main diagonal. Since thePendence has been numerically observed in the case of spo-
signals(t) is known only at discrete times, a linear interpo- radically drivennonlinear systems such as Chua’s circui,
lation is used to computs(t) at other points of the time Lorenz, and Resler system. Generalization of sporadic driv-

scale which produces the linearly interpolated sigi(a). ing in the direction of active-passive decomposition, linear

The synchronization test for the validity of the modelling gﬂs;nanﬁat\\;\éo'gg:ﬁ“Orgalozzléplmg’nﬁir:/?a?nd'f gﬁgithilogftzﬁe
vector fieldF relies on two solutionx(t) andx’(t) of Eq. Y prop j P

: ) : maximal driving periodl'y which still yields asymptotic sta-
S’i) O Bg:]réxs,?lst'% r;sﬂsztagt ﬁ%r?g d?itl/g:étz:(;f)rgibr::tg?da:\?jr bility of the driven system on the driving duratierhas been
the c,oupling strengthy ére properly chosen andl assure reported and explained. Our numerical experiments on the

asymptotic stability of Eq32), andF is structurally close to influence of noise on the synchronized motion have shown

X that high-quality synchronization between sporadically
the true vector field then the sequengeshould be close to : : L . o
the experimentally obtained sequerge On the contrary, coupled systems is possible. High-quality synchronization is

the chaotic instabilitv of Eq(32) wh ~o ’ possible even in some cases where synchronization cannot
e chaotic instability of Eq(32) when =0 causes_ to be achieved with continuous coupling. On the basis of spo-

diverge froms, . Thus, if the mean differenc®=|[x. —s.|  radic driving, the synchronization te29] for the validity of

is much smaller the>’=|x/ —s||, then it should be ac- models derived from experimental data has been modified.
cepted as a good proof thitis a good model for the real The results of the modified test are more reliable.

chaotic system. However, even whErperfectly models the

real chaotic systemx(t) does not tend ta(t), andx, does APPENDIX

not tend tos, , sinces(t) is not a true solution of Eq31). .
ThusD is not equal to 0 which decreases the gap between Lemm_a.The k smallest cond|.t|onal Lygpunov exponents
D andD’. Having in mind that sporadically coupled chaotic of a continuous systerAl) that is sporadically driven by a
systems may express asymptotic stability, we propose that iy dimensional sequencg

the synchronization test Eq¢32) one should use sporadic

driving instead of the time continuous driving
+ oo

X=F(x)+ X S(t—t)Ety) —x(ty-), (33

+ oo

U=Fy(uo)+ 2 8(t=—ty)(S(ty) —u(t,-))

p=F,(Uu, Al
whereT could be any multiple oL. If the sampling interval v=F,(u.0) (AL)

L is sufficiently smallif it is not then also the synchroniza-
tion test employing Eq(32) will not work] then one can find = : o -

X . roof. Without driving, the(ordinary Lyapunov expo-
a pair of values for parametefsand . such that Eq(33) is nents are gilvenuas ving (ordinary Lyapunov exp
asymptotically stable. The synchronization test employing
Eq. (33) will give smallerD compared to the case when it

equal — .

exploits Eq.(32) and consequently a bigger marginid. A= Iimiln(Rﬂ),
Furthermore, as it was shown in Sec. Il, the sporadically ool T
driven model(33) produces a time continuous sigre(t)
and nonlinearly interpolates the experimental dataf the whereR; (i=1,... N) are the diagonal elements of the
modelling vector field is perfect. upper triangular matrbR" that is obtained from @R de-

In some cases experimental measurements are not eq@omposition of the linearized flow
distant in time. Still our modified synchronization test of
experimental models is applicable. Sporadic driving is not D¢"(ug,v0)=Q"- R". (A2)
restricted only to time-equidistant driving, and asymptotic
stability of a time discontinuously driven system can also bgygre Q" is an orthogonal matrix and is some period of

achieved when the driving impulses appear nonequidistantlyme [Numerically theQR decomposition(A2) is computed
in time according to a certain deterministic rule or the t'meiteratively using some suitable time st&p|

iSnter_vatIhbetweenfthe dfivir‘g itmptutljs‘?[s Itz atrandgm vatr_iable. In the case of sporadic driving by means of a sequence
0, in the case of nonequidistant data the time discontinuo T_ (T 4T

driving of the experimental model should follow the sameUér the flow ¢ =(¢u . 4,) has to be replaced by a mép
rule as the process of measurement. An exception to this rule
may appear when the measurements are done too often, in
which case not every vector in the sequence of reconstructed,
phase-space vector is necessary to obtain asymptotical@f'
stable experimental model. f

(un+1,vn+1) — Gn(un'vn’gﬂH—l) — (sn-%—l, ¢I(un,vn)),

th s'=s(nT), u"=u(nT) andv"=v(nT). The firstk rows
the Jacobian matriDG(u",v") equal zero. Therefore,
also the firstk rows of the Jacobian matrix of the-fold
iterated mapDG"(ugy,v) equal zero. ItQR decomposition
DG"(ug,vp)=Q"-R" yields an upper triangular matriR"

We have numerically and analytically examined the spowhere again the firstk rows vanish and thus
radic driving of time continuous systems. The dependence dR{}=0=\;=—x fori=1,... k.

VIIl. CONCLUSION
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