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Sporadic driving of dynamical systems
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In this paper the sporadic driving of time continuous systems and accompanying phenomena are examined.
Mathematical analysis of sporadically driven linear systems gives an explanation for the observed dependence
of the asymptotic stability of the sporadically driven system on the driving period. Several generalizations of
sporadic driving are proposed and their practical implications are considered. The sensitivity of the synchro-
nized motion between sporadically coupled chaotic systems to the influence of noise is explored. The synchro-
nization test of nonlinear models for time series is enhanced through the usage of sporadic driving.
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I. INTRODUCTION

Nowadays it is well known@1# that even for dynamica
systems behaving chaotically, one can find subsyst
which possess the property of asymptotic stabili
Asymptotic stability of the driven subsystem is a necess
and sufficient condition for synchronization of the subsyst
to the driving chaotic system@1,2#. Initially, the idea of syn-
chronized chaotic motions seemed surprising and a bit p
doxical due to the sensitive dependence upon initial con
tions. Since then, several researchers have contributed t
area and interesting results have emerged: synchronizatio
hyperchaotic systems and one directionally coupled o
dimensional arrays of chaotic systems connected with a
lar signal@3–6#, transmission of information signals betwee
synchronized chaotic systems@3,5–9#, generalized synchro
nization @10–12#, etc.

In @13#, the asymptotic stability of dynamical system
which are driven by random forces at regular intervals w
investigated. On the basis of numerical simulations it w
conjectured that, for a class of randomly driven dynami
systems, the final trajectory of the system is completely
dependent of the initial state provided that the time inter
between two adjacent kicks by the random force is sma
than a certain threshold value. In@14#, it was reported that
synchronized motion between two identical one directiona
coupled dynamical systems can be achieved when ce
variables of the driven system are set to the correspon
variables of the driving system only at discrete times. Mo
generally, in@15# it was shown that the asymptotic stabili
of a time continuously driven dynamical system impli
asymptotic stability of the time discontinuous driven cou
terpart for sufficiently small driving periods. In other word
under certain conditions it is sufficient to drive a~chaotic!
dynamical system only in time-equidistant moments in or
to achieve its asymptotic stability, and not continuously
time goes on. In@15#, the time discontinuous driving of dy
namical systems was namedsporadic driving. The possible
applications of sporadic driving in communications we
pointed out and analyzed to a certain extent. Sporadic d
ing enables the perfect transmission of chaotic sign
551063-651X/97/55~4!/4035~14!/$10.00
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through bandlimited channels. It was also shown how to
alize a digital communication system on the basis of spora
driving. Living in the era of digital communications, thi
might be an interesting and significant application of chao
systems. The concept of sporadic driving may also be
plied to synchronizing dynamical systems that are coup
by a signal that consists of spike trains. This case may,
example, occur with firing neurons or coupled lasers t
interact with a~chaotic! sequence of sharp intensity puls
@16#. Although being physically connected continuously
some synapses or fiber optics, there is practically no inte
tion betweenthe spikes and, therefore, the case of spora
driving is ~at least approximately! realized.

In this paper, we analyze the properties and the mec
nism of asymptotic stability of sporadically driven system
Clear understanding of the origins of asymptotic stability
sporadically driven systems is of great significance for
previously mentioned and some new applications that w
possibly emerge in the future.

In Sec. II we shall summarize the achieved results rega
ing the idea of time discontinuous driving of dynamical sy
tems and pose several relevant questions. Section III g
answers to these questions through mathematical analys
linear examples, and points to some interesting phenom
These phenomena are also encountered in sporadi
driven nonlinear systems, as is shown in Sec. IV throu
numerical analysis. Section V contains generalizations
sporadic driving in different directions. Implications of th
proposed generalizations for practical applications of s
radic driving are considered. In light of the latest results
the performance of the synchronized motion in a noisy en
ronment, Sec. VI addresses this issue for the case of spo
cally coupled chaotic systems. Section VII shows how s
radic driving can be used to test nonlinear models
experimental data. In Sec. VIII we summarize and ma
some concluding remarks.

II. SPORADIC DRIVING

The idea of asymptotic stability of time continuous d
namical systems that are time discontinuously driven
4035 © 1997 The American Physical Society
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been discussed by several authors@13–15#. In order to avoid
any possible terminology ambiguities, at the beginning
definestable, asymptotically stable, andunstabledriven dy-
namical systems.

Definition 1.Consider a driven dynamical system

ẋ5G„x,s~ t !…, ~1!

wherexPUx#RN,sPUs#RM,G:Ux3Us→RN. We say that
Eq. ~1! is stablewith respect to the driving signals(t) if
there exists a phase pointx0,1, such that for all«.0 and
t0, a d(«,t0).0 can be found such tha
ix0,12x0,2i,d(«,t0) implies

ix~ t;t0 ,x0,1!2x~ t;t0 ,x0,2!i,« for t.t0 . ~2!

The setB(«,t0) of all phase pointsx0,2 that satisfy Eq.~2! is
called theregion of stabilityof Eq. ~1!. If Eq. ~1! is not stable
then it is calledunstable.

Definition 2. Consider Eq.~1!. We say that Eq.~1! is
asymptotically stablewith respect to the driving signals(t) if
~i! Eq. ~1! is stable with respect to the driving signals(t); ~ii !
there exists a phase pointx0,1 and a positive numberd(t0),
such thatix0,12x0,2i,d(t0) implies

lim
t→`

ix~ t;t0 ,x0,1!2x~ t;t0 ,x0,2!i50. ~3!

The setB(t0) of all phase pointsx0,2 that satisfy Eq.~3! is
called theregion of asymptotic stabilityof Eq. ~1!.

In simple terms, a driven dynamical system is asympt
cally stable if it possesses asymptotically stable solutio
Some of these solutions may be different, i.
limt→`ix(t;t0 ,x0,1)2x(t;t0 ,x0,18 )iÞ0, where both
x(t;t0 ,x0,1) andx(t;t0 ,x0,18 ) denote asymptotically stable so
lutions. Different asymptotically stable solutions have diffe
ent regions of asymptotic stability. In Definition 2x0,2 de-
notes one phase point which belongs to the region
asymptotic stability of the solutionx(t;t0 ,x0,1).

In this paper we shall consider the driven dynamical s
tem ~1! when its driving signal is applied only at equidista
time pointstn5nT,n5 . . . ,21,0,11, . . . , in thefollowing
manner: Decompose the state vectorx into two parts
u5@x1 , . . . ,xM# and v5@xM11 , . . . ,xN#. At times tn the
componentsu are forced to new valuess(tn), that is,
u(tn)5s(tn). In the time intervalstn,t,tn11, Eq. ~1! be-
haves in an undriven way and free from the driving sig
s(t). For this kind ofsporadic drivingonly the values of
s(t) at the time pointstn are relevant for the behavior of Eq
~1!. Therefore, we say that Eq.~1! is driven by the time
sequencesT5$s(tn)% ~note the usage of the subscriptT).
Sporadic driving of Eq.~1! as described in this paragraph c
be mathematically written as

u̇5Fu~u,v!1 (
n52`

1`

d~ t2tn!„s~ tn!2u~ tn2!…,

v̇5Fv~u,v!, ~4!

whered(t) denotes a Dirac pulse,u(tn2) are the values of
the signalu(t) immediately prior to the driving timestn , and
Fu5@ f 1 , . . . ,f M# andFv5@ f M11 , . . . ,f N# are a decompo-
e

i-
s.
,

-

f

-

l

sition of the vector fieldF that governs the evolution of Eq
~4! in the time intervalstn,t,tn11. Integrating Eq.~4! from
time t5nT2« to t5nT1«, one can find in the limit
«→0 that Eq.~4! describes a dynamical system which
sporadically driven bysT . For T50 the sporadically driven
system~4! becomes a time continuously driven system, i.
the sporadic driving reduces to the driving method of Pec
and Carroll@1#

u5s,

v̇5Fv~u,v!. ~5!

One can check the asymptotic stability of any~time continu-
ously or time discontinuously! driven system~1! numerically
through conditional Lyapunov exponents~CLE!, or analyti-
cally through a properly defined Lyapunov function. Th
CLEs of Eq.~4! depend not only on the vector fieldF and
the driving signalsT , but also on the driving periodT, since
T is one of the defining parameters of Eq.~4!. Therefore,
CLEs of Eq.~4! will vary with T and will differ from those
of Eq. ~5!, but their negativity is still a valid criterion for the
asymptotic stability. This will be illustrated numerically an
analytically in this paper. In@14# it was observed that despit
the presence of a positive CLE of Eq.~5!, it is still possible
to achieve asymptotic stability of Eq.~4! for certainT.0
values.

The following theorem determines the conditions f
asymptotic stability of sporadically driven dynamical sy
tems. Its proof also explains the mechanism of asympt
stability of sporadically driven systems.

Theorem.Consider the driven systems~4! and ~5!. If Eq.
~5! is asymptotically stable, then the sporadically driven s
tem ~4! is asymptotically stable for sufficiently small drivin
periodsT.

Proof: Denote withB the region of asymptotic stability o
Eq. ~5!. Consider two copies of Eq.~5! driven by the same
signal s(t) and starting from nearby initial condition
v0 ,v08PB, and the v components v(t;t0 ,v0) and
v8(t;t0 ,v08) of their trajectories. The primed variables a
from the second copy of Eq.~5!. The evolution of the differ-
enceDv(t)5v(t;t0 ,v0)2v8(t;t0 ,v08) in the limit of small
Dv is governed by

Dv̇5DvFv~s,v!Dv ~6!

whereDvFv is the Jacobian of the vector fieldFv with re-
spect to the variablesv, and the higher-order term
o(s,v,v8) are neglected. Due to the assumed asymptotic
bility of Eq. ~5! it follows that limt→`iDv(t)i50. In terms
of CLEs, averaging Eq.~6! over the attractor will yield nega
tive CLEs ofv̇5Fv(s,v) with respect tos for all initial con-
ditions v0PB.

Now consider two copies of the sporadically driven sy
tem ~4! which are driven by the sampled versionsT of s(t).
Consider their two trajectoriesx(t;t0 ,x0) and x8(t;t0 ,x08)
which are based on nearby initial conditionsx0 ,x08 whosev
components belong toB. Note that theu components of
x(t;t0 ,x0) and x8(t;t0 ,x08) become irrelevant after the firs
driving sample of sT is applied. We shall consider th
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asymptotic stability only of thev subsystem. The evolution
of the differenceDv(t)5v(t;t0 ,x0)2v8(t;t0 ,x08) is gov-
erned by

Dv̇5Fv~u,v!2Fv~u8,v8!5DuFv~u,v!Du1DvFv~u,v!Dv,
~7!

whereDuFv andDvFv are the Jacobians of the vector fie
Fv with respect to the variablesu and v, respectively. All
higher-order terms in Eq.~7! are neglected. The driving im
pulse at the momenttn forces u and u8 to the same new
value s(tn) and thus the differenceDu(tn) to a new value
0. Thus, immediately after the momenttn , DuFv(u,v)Du
can be neglected compared withDvFv(u,v)Dv, andu can be
replaced bys.

~i! Consequently, Eq.~7! reduces to Eq.~6!. ~ii ! If T is
sufficiently small thenv(tn ;t0 ,x0), v8(tn ;t0 ,x08)PB for all
tn or at least for a large portion of driving timestn .

Properties~i! and ~ii ! along with the asymptotic stability
of Eq. ~5!, assure thatv(t;t0 ,x0) and v8(t;t0 ,x08) will ap-
proach each other immediately after the time pointtn . As
time elapses fromtn , v(t;t0 ,x0) andv8(t;t0 ,x08) may begin
to diverge due to the possibly unstable nature of Eq.~7!. But,
for sufficiently smallT, the initial convergence after tim
tn betweenv(t;t0 ,x0) andv8(t;t0 ,x08) dominates the overal
behavior of Dv(t). As a consequence, limt→`Dv(t)50.
Since in addition Du(tn)50 it follows that
limt→`ix(t;t0 ,x08)2x8(t;t0 ,x08)i50. Thus, Eq. ~4! is as-
ymptotically stable for sufficiently small driving periodsT.

For largeT values in Eq.~4!, the trajectoryv(t;t0 ,x0)
may one or more times leave and reenterB between two
driving impulses bysT . Whetherv(tn ;t0 ,x0) belongs toB or
not, depends onv(tn21 ;t0 ,x0), as well as onT. Thus, any
change inT might exclude some points fromB and include
some new points inB, which means that the region o
asymptotic stability depends onT. A simple consequence o
the Theorem is

Corollary. If Eq. ~5! is unstable, then for sufficiently
small driving periodsT, the sporadically driven system~4! is
unstable.

The validity of the Theorem is not conditioned on th
asymptotic stability of the nondriven system

u̇5Fu~u,v!,

v̇5Fv~u,v!, ~8!

but when Eq.~8! is asymptotically stable then the Theorem
obvious and Eq.~4! is asymptotically stable for sufficiently
largeT. Therefore we pay attention only to the case wh
Eq. ~8! is chaotic. In our examples we shall also consider
case when Eq.~8! is an unstable dynamical system in th
sense that it diverges to infinity.

If Eq. ~5! is asymptotically stable, then the Theorem im
plies the existence of a positive valueTH such that Eq.~4! is
asymptotically stable for allT,TH . The speed of the initia
convergence~after time pointstn) of two trajectories of Eq.
~4!, starting at nearby initial conditions, is determined by t
CLEs of Eq. ~5!. When s(t) is generated by an identica
dynamical system to Eq.~8! and is used in such a way as
synchronize Eq.~4! to the driving system, then the speed
n
e

the later chaotic divergence~in the intervalstn,t,tn11) is
determined by the positive Lyapunov exponent~s! ~LE! of
Eq. ~8!. Therefore, the critical valueTH is mainly determined
by the CLEs of Eq.~5! and by the positive LE~s! of Eq. ~8!.
If a driven dynamical system has many different asympto
cally stable solutions, then their CLEs will be different,
general. Consequently, CLEs andTH will be different for
different asymptotically stable solutions of a sporadica
driven system.

For the sporadically driven system~4! one can always
find the stroboscopic mapMv:RN→RN2M which is given
by sampling the solutionx(t;t0 ,x0) at time pointstn

u~n!5s~n!, ~9!

v~n11!5Mv„v~n!,u~n!…, ~10!

wheres(n), u(n), andv(n) denotes(tn), u(tn) and v(tn),
respectively. In Eq.~9! we use the fact thatu(tn)5s(tn). In
this paper, we assume the uniqueness of solutions, tha
solutions of a dynamical system are uniquely determined
its defining differential equations and initial condition
Thus, if in the limit n→` states of the sporadically drive
dynamical system~4! at timestn are determined bys(n) then
it follows that even in the time intervals between two ad
cent ‘‘kicks’’ by s(n) the dynamics of Eq.~4! is determined
by s(n). In short, if and only if the driven map~9!–~10! is
asymptotically stable with respect tos(n), then the sporadi-
cally driven dynamical system~4! is asymptotically stable
with respect tosT . The numerical computation of the ma
Mv just by numerical integration of Eq.~4! over a certain
period of time is always possible, but it does not simplify t
question ‘‘Is Eq.~4! asymptotically stable for a givenT?’’
When it is possible to analytically construct the mapMv then
its analysis may be much simpler than the analysis of Eq.~4!.
This will be exploited in Sec. III where, due to the lineari
of the driven systems, the construction of a stroboscopic m
will be possible.

An example based on Chua’s circuit illustrating the The
rem follows. A driving chain of one-dimensional impulse
sT5x1T5$ . . . ,x1(2T),x1(0),x1(T), . . . % generated by
Chua’s circuit

ẋ5C~x! ~11!

sporadically drives an identical copy of Chua’s circuit

ẏ5C~y!1F (
n52`

1`

d~ t2tn!„x1~ tn!2y1~ tn2!…,0,0G ,
~12!

where the vector field C(x) is defined as C(x)
5@a(x22x12g(x1)),x12x21x3 ,2bx2#, g(x)5m1x

1 1
2 (m02m1)@ ux11u2ux21u# and m0521.27,m1

520.68,a510.0,b514.87. In a large area around these p
rameter values Eq.~11! exhibits the chaotic double-scro
attractor.

In this example a one directional time discontinuous co
pling between two time continuous dynamical systems~11!
and ~12! is performed. If Eq.~12! is asymptotically stable
with respect tox1T then Eq.~11! and Eq.~12! synchronize.
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The sum in Eq.~12! describes an infinite coupling betwee
x1 and y1 only in the equidistant timestn . As a result,
y1(t) is forced to be equal tox1(tn) at timestn . Between
two adjacent driving impulses, Chua’s circuit~12! oscillates
unforced and independently from the driving system~11!.
Denotingv5@y2 ,y3# and u5@y1# one can readily see th
compatibility of Eq. ~12! with Eq. ~4!. The subsystem
v5@y2 ,y3# is linear and its asymptotic stability can be eas
proved: CLEs are (20.5,20.5). Then from the Theorem i
follows that there exists a maximal driving periodTH of the
sequence of driving impulses that still allows Eq.~11! and
Eq. ~12! to synchronize. Numerically, we have found that t
asymptotic stability of Eq. ~12! is assured for
T,TH50.26. This is illustrated in Fig. 1. Figure 1 shows t
differenceix(t;0,x0)2y(t;0,y0)i between two trajectories o
Eqs. ~11! and ~12! which are based on two different initia
conditionsx0 andy0, for T50.10,0.15,0.20.

The onset of synchronization between two identical d
namical systems which are sporadically coupled, as in E
~11! and~12!, can be viewed from another point of view. Th
driven dynamical system~12! nonlinearly interpolates the
samplesx1T and produces the interpolated signaly1(t). If
Eq. ~12! is asymptotically stable for a givenT, then the non-
linear interpolation is successful, that is,y1(t)5x1(t). In this
case,x1(t) is uniquely determined by its samplesx1T . The
spectrum of the signal(n52`

1` d(t2nT)x1(nT) is periodic
with periodn5 1/T and is given by

X1~ f !+ Fn (
n52`

1`

d~ f2nn!G5n (
n52`

1`

X1~ f2nn!

where + denotes convolution. Due to the periodicity of i
spectrum, the signal(n52`

1` d(t2nT)x1(nT) can be trans-
mitted through an ideal low-pass channel with transfer fu
tion

HLP~ f !5H 1n for u f u,
n

2

0 otherwise

FIG. 1. Differenceix(t;0,x0)2y(t;0,y0)i between two solutions
of Eq. ~11! and Eq.~12! which are based on two different initia
conditionsx0 andy0, for T50.10,0.15,0.20.
-
s.

-

„the channel response to a single Dirac pulse excita
d(t) is @sin(pnt)/pnt#…. Then the channel output may be wri
ten as

x̃1~ t !5
sin~pnt !

pnt
+ (
n52`

1`

d~ t2nT!x1~nT!]

5 (
n52`

1`

x1~nT!
sin@pn~ t2nT!#

pn~ t2nT!
.

The values ofx̃1(t) at the timesnT are

x̃1~nT!5 (
m52`

1`

x1~mT!
sin„p~n2m!…

p~n2m!
5x1~nT!

and the sequencex1T can be exactly recovered by samplin
x̃1(t) at times nT, that is, x1T5 x̃1T . Then the sequence
x̃1T can be used to drive Eq.~12! and to successfully produc
the interpolated signaly1(t). Thus, the concept of sporadi
driving makes possible the synchronization of chaotic s
tems connected via bandlimited channels, and the trans
sion of chaotic signals through bandlimited channels. A
cording to @17#, power spectra of chaotic signals a
exponentially decreasing and, therefore, with infinite wid
But, as previously argued, despite the infinite width of th
spectra, it is still possible to perfectly transmit chaotic s
nals through bandlimited channels using the concept of s
radic driving. This is not in contradiction to the well know
sampling theorem@18#, since the chaotic signals are gene
ated~at least in this paper! by deterministicdifferential equa-
tions which, in addition, areknownat the receiver. Only the
initial conditions of the driving system are not known at t
receiving end of the channel, i.e., at the interpolating si
On the contrary, the sampling theorem assumes no kno
edge about the information source.

Even though the Theorem is of particular importance
the concept of sporadic driving, it does not address the
lowing questions:~1! If a sporadically driven dynamical sys
tem is unstable forT0,T,T01« where «.0, does this
imply that the system is necessarily unstable for
T.T01«? ~2! Do the CLEs~or at least the largest one! of a
sporadically driven system monotonously rise as the driv
periodT increases?~3! If a time continuously driven system
is unstable then is the sporadically driven version of
same system necessarily unstable for allT? One might ex-
pect that the natural answer to the previous questions is
firmative. For example, consider the first question. If for
driving periodT1 the chaotic behavior of the sporadical
driven system overpowers the initial convergence of its t
jectories immediately after the driving timestn , then one
may expect that this will also be the case for allT.T1. As a
little surprise we shall see that the answers to the three q
tions are all negative. The negative answer to the sec
question implies the existence of a driving periodT with
smallest CLEs of Eq.~4!, and, therefore, the fastest conve
gence of nearby orbits and fastest synchronization. The
swers will be given through examples exploiting sporadica
driven linear systems. Certain phenomena will be enco
tered during these examples. Afterwards, we shall show
these phenomena also occur in the sporadically dri
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55 4039SPORADIC DRIVING OF DYNAMICAL SYSTEMS
Chua’s circuit, the Lorenz system and the Ro¨ssler system.
We shall also show that sporadic driving may result indead-
beat synchronization in continuous-time systems@19#.

III. SPORADICALLY DRIVEN LINEAR SYSTEMS

In this section, we examine the asymptotic stability
sporadically driven linear systems. We use linear system
our analysis since their analytical treatment is possible
the analytical construction of stroboscopic maps as in E
~9! and ~10! is feasible. We shall see several phenome
which are interesting and seem strange at first glance.
earity of the driven system will enable us to explain t
origins of these phenomena. Furthermore, the observed
nomena also appear when nonlinear systems are sporad
driven, as in Sec. IV.

Consider a linear two-dimensional system which is s
radically driven by an arbitrary signals(t), or more precisely
by a sequence of samplessT

ẋ15ax11bx21 (
n52`

1`

d~ t2tn!„s~ tn!2x1~ tn2!…,

ẋ25cx11dx2 . ~13!

In order to examine the asymptotic stability of Eq.~13! we
define a differencee5x2x8 where the primed variables ar
from a system identical to Eq.~13! and driven by the same
signalsT . Due to the linearity of Eq.~13! it is easy to con-
struct a stroboscopic map between two successive kick
sT

e1~nT!50,

e2„~n11!T…5F(
iÞk

d2pk
pi2pk

epiTGe2~nT!5r ~T!e2~nT!,

~14!

wherep1 andp2 are the eigenvalues of the matrixA5@c
a
d
b#.

If e2(nT)→0 whenn→` then Eq.~13! is asymptotically
stable. Therefore,

ur ~TH!u5 U d2p2
p12p2

ep1TH1
d2p1
p22p1

ep2THU51 ~15!

determinesTH . LEs of the nondriven version of Eq.~13! are
equal to the real parts ofp1 and p2 while the CLE of
v5@x2# subsystem is equal tod. If p1 andp2 are real then
TH is completely determined through Eq.~15! by LEsp1 and
p2 of the nondriven system and CLEd of the time continu-
ously driven system. Otherwise, whenp1 and p2 are com-
plex conjugate,TH in addition depends on their imaginar
part.

The dependence of the ratior (T) on the driving period
T is graphically presented in Figs. 2–4. If we choose a d
ing periodT, such thatur (T)u,1, then the system~13! is
asymptotically stable, forur (T)u51 it is stable, and other
wise it is unstable. For certain values ofp1 andp2, interest-
ing facts about the ratior (T) can be observed. Figure
shows the ratior (T) for different pairs of real eigenvalue
p1 ,p2 when d521.0(,0). First, we note that the sub
f
in
d
s.
a
n-

e-
lly

-

by

-

system v5@x2# is asymptotically stable if and only i
d,0. According to the Theorem the asymptotic stability
the v subsystem implies the existence of positiveTH or, in
other words, Eq.~15! has a positive solution forTH . One can
easily see this in another way. Immediately after the driv
at the timet50 is applied, the differencee2(t) behaves as
ė25de2 and initially the ratior (T) enters the region~21, 1!.
If the driving period is smaller than the value~if there is any!
at which r (T) leaves the region~21, 1! then Eq.~13! is
asymptotically stable. Figure 2 illustrates several interest
cases:~a! Eq. ~13! is asymptotically stable only in the
initial region T,TH for p150.1,p2521.2 ~curve A!
and p150.0001,p2520.2 ~curve D). ~b! TH→`
when p1520.1,p2521.2 ~curve B!; ~c! For
p1520.1,p2520.2 ~curveC) the regionT.TH where Eq.
~13! is unstable is followed by a region ofT values where
Eq. ~13! is asymptotically stable.

Knowing the valuer (T), one can compute the large
CLE of Eq. ~13! asl15 lnur(T)u. Note that a smallerT does

FIG. 2. The ratior (T) for different pairs of real eigenvalue
p1 ,p2 when d521.0. A2(p150.1, p2521.2), B2(p1520.1,
p2521.2), C2(p1520.1, p2520.2), D2(p150.0001,
p2520.2).

FIG. 3. The ratior (T) for different pairs of complex eigenval
ues p15r1 js,p25r2 js, when d521.0. A2(r520.02,
s51.4),B2(r50.01,s51.2).
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not mean higher stability and faster convergence during
synchronization transient. Furthermore, for certain pa
p1 ,p2 there exists a valueT̂, such thatr (T̂)50. If one
choosesT5T̂ then two copies of Eq.~13! driven by the same
driving sequencesT will synchronize after only two sample
of sT are received. This is similar to the notion ofdead-beat
synchronizationof discrete-time systems@19#.

Figure 3 shows the ratior (T) for different pairs of com-
plex eigenvaluesp15r1 js,p25r2 js and d,0. When
r,0 one or more regions ofT values where Eq.~13! is
unstable may occur. Whenr.0 infinitely many regions of
T values where Eq.~13! is asymptotically stable occur, bu
their length decreases asT increases. One can choose ar
trarily largeT which givesur (T)u,1 and thus achieve syn
chronization.

What happens whend is not negative? According to th
Corollary, if d.0 thenr (T).1 for sufficiently smallT. In
other words, if the time continuously driven subsyste
v5@x2# is unstable, then so is Eq.~13! for sufficiently small
driving periodsT. If d50 then the time continuously drive
subsystemv5@x2# is stable and the behavior ofr (T) in the
vicinity of T50 is not obvious. On the basis of knowledg
of only d, one cannot determine whether, for smallT, stabil-
ity will convert into instability or asymptotic stability. Figure
4 illustratesr (T) for different triples (d>0,p1 ,p2). Surpris-
ingly, even ford>0 there may exist one or more regions
T values, where the sporadically driven system is asympt
cally stable~curvesA,C,D andF). CurveF shows that even
for unstable time continuously driven subsystems one
sometimescarefully choose an arbitrarily large driving pe
riod T and achieve asymptotic stability. But one should
aware of the fact that the length ofT regions where
ur (T)u,1 decreases for largerT and therefore the driving
period should be very accurately chosen. For certain dyna
cal systems, stability~curveB) and instability~curveE) at
T50 can turn into instability for allT.0.

Let us summarize the previous graphics and discussio
d,0 (d.0) then the subsystemv5@x2# is asymptotically
stable~unstable! andTH.0 (TH50) which is in accordance

FIG. 4. Ratior (T) for different triples (d,p1 ,p2). A2(d50,
p150.1, p250.02), B2(d50, p150.1, p2520.02),C2(d50,
r50.03, s51), D2(d50, r520.03, s50.8), E2(d50.5,
p150.02,p2520.9),F2(d50.5, r50.05,s51.3).
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with the Theorem. Ifd50, which means that Eq.~13! is
stable forT50, then whether this stability will convert into
instability or asymptotic stability forT.0 depends on othe
entries of the matrixA. If d.0 ~Eq. ~13! is unstable for
T50) then still there may exist infinitely many regions
T values where the sporadically driven system is asympt
cally stable. Multiple regions ofT values producing asymp
totically stable sporadically driven system may also oc
whend<0.

This kind of dependence of the asymptotic stability of
sporadically driven system onT is not a special feature o
linear systems. We have used the linear system~13! since its
mathematical analysis is possible. Now we shall investig
the stability of sporadically driven nonlinear systems. T
asymptotic stability of these systems will be analyz
through their CLEs, since their stability analysis throu
Lyapunov functions or linearized equations is much mo
difficult. Similar phenomena to those shown in Figs. 2
have been observed in these cases. When it occurs, we
qualitatively explain the difference in the behavior of sp
radically driven linear and nonlinear systems.

IV. SPORADICALLY DRIVEN NONLINEAR SYSTEMS

For the sake of simplicity, in this section, chaotic syste
are sporadically driven by one-dimensional sequences
duced by their nondriven counterparts. Therefore,
asymptotic stability of the driven system results in synch
nized motion with the driving system. We have numerica
investigated the dependence of the CLEs of the driven s
tem on the driving periodT, and have obtained similar de
pendencies to those for the linear system~13! which were
given in Figs. 2–4. Several diagrams will be given whi
show these dependencies and indicate that the numerica
sults are in accordance with the Theorem. As is well know
a driven system is asymptotically stable if and only if
CLEs are all negative. CLEs of driven systems will be d
noted asl1>l2>l3.

First we consider three sporadically driven Chua’s circu

ẏ5C~y!1F (
n52`

1`

d~ t2tn!„x1~ tn!2y1~ tn2!…,0,0G ,
~16!

ẏ5C~y!1F0, (
n52`

1`

d~ t2tn!„x2~ tn!2y2~ tn2!…,0G ,
~17!

ẏ5C~y!1F0,0, (
n52`

1`

d~ t2tn!„x3~ tn!2y3~ tn2!…G ,
~18!

where the driving sequencesx1T ,x2T ,x3T are produced by
Eq. ~11!. Figures 5–7 show the two largest CLEs of Eq.~16!,
Eq. ~17!, and Eq.~18!, respectively. The third CLE for al
three systems Eq.~16!, Eq.~17!, and Eq.~18! equals2` and
corresponds to the driven coordinate~see Appendix!.

As stated in Sec. II, the subsystemv5@y2 ,y3# is asymp-
totically stable. CLEsl1 andl2 of Eq. ~16! are negative for
T,0.26, and almost identical to each other forT,0.86. For
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largeT values,l1 tends to 0.39 andl2 tends to 0.0 which
are just the two largest LEs of a nondriven Chua’s circu
This numerical observation can be generalized in the follo
ing way: CLEs of a sporadically driven system tend to t
LEs of the nondriven system whenT→`.

The subsystemv5@y1 ,y3# is not asymptotically stable
its CLEs are 0.0 and22.5. Due to the presence of a CL
with value 0.0, the Theorem does not determine whether
~17! is asymptotically stable or not for smallT. As shown on
Fig. 6, numerical computations have indicated asympt
stability of Eq. ~17! for TP(0,0.83)ø(1.25,1.49), whilel1
achieves its minimum forT50.19.

CLEs for v5@y1 ,y2# subsystem are 1.5 and25.1. Ac-
cording to the Theorem, for sufficiently small values of t
driving periodT, the sporadically driven system~18! is un-
stable as can be seen in Fig. 7. Despite this, Eq.~18! is
asymptotically stable forTP(0.4,0.85)ø(1.56,1.68).

Also we have numerically examined the Lorenz system

ẋ5L~x!, ~19!

FIG. 5. Two largest CLEs of Chua’s circuit~16! which is driven
by x1T generated by an identical Chua’s circuit.

FIG. 6. Two largest CLEs of Chua’s circuit~17! which is driven
by x2T generated by an identical Chua’s circuit.
.
-

q.

ic

where L(x)5@16.0(x22x1),45.6x12x1x32x2 ,x1x2
24.0x3]. Time sequencesx1T ,x2T ,x3T were used to sporadi
cally drive three identical copies of Eq.~19!

ẏ5L~y!1F (
n52`

1`

d~ t2tn!„x1~ tn!2y1~ tn2!…,0,0G , ~20!

ẏ5L~y!1F0, (
n52`

1`

d~ t2tn!„x2~ tn!2y2~ tn2!…,0G , ~21!

ẏ5L~y!1F0,0, (
n52`

1`

d~ t2tn!„x3~ tn!2y3~ tn2!…G .
~22!

Time continuously driven subsystemsv5@y2 ,y3# and
v5@y1 ,y3# are asymptotically stable and so are Eq.~20! and
Eq. ~21! for smallT ~see Figs. 8–10!. The time continuously
driven subsystemv5@y1 ,y2# is stable but is not asymptoti
cally stable~its largest CLE is 0.0). Numerical integration o

FIG. 7. Two largest CLEs of Chua’s circuit~18! which is driven
by x3T generated by an identical Chua’s circuit.

FIG. 8. Largest CLE, the average noise-induced synchroniza
error erms , and the maximal noise-induced synchronization er
emax for the Lorenz systems~20! which is driven byx1T generated
by an identical Lorenz system~19!.
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Eq. ~22! showed that its stability forT50 transforms into
asymptotic stability for smallT.0. Furthermore, Eq.~22! is
asymptotically stable in three separated regionsT
P(0,0.02)ø(0.07,0.12)ø(0.27,0.31) ~see Fig. 10!. For all
three systems~20!, ~21!, and ~22! we observed thatl2 was
much smaller thanl1, and thusl2 is not shown in Figs.
8–10.

Numerical examinations over the Ro¨ssler system

ẋ5R~x!, ~23!

where R(x)5@2.01x1(x224.0),2x12x3 ,x210.45x3#,
have also revealed nontrivial dependence between the C
of the sporadically driven systems

ẏ5R~y!1F (
n52`

1`

d~ t2tn!„x1~ tn!2y1~ tn2!…,0,0G ,
~24!

FIG. 9. Largest CLE, the average noise-induced synchroniza
error erms , and the maximal noise-induced synchronization er
emax for the Lorenz systems~21! which is driven byx2T generated
by an identical Lorenz system~19!.

FIG. 10. Largest CLE, the average noise-induced synchron
tion error erms , and the maximal noise-induced synchronizati
error emax for the Lorenz systems~22! which is driven byx3T
generated by an identical Lorenz system~19!.
Es

ẏ5R~y!1F0, (
n52`

1`

d~ t2tn!„x2~ tn!2y2~ tn2!…,0G ,
~25!

ẏ5R~y!1F0,0, (
n52`

1`

d~ t2tn!„x3~ tn!2y3~ tn2!…G ~26!

and the driving periodT. The time continuously driven sub
systemv5@y2 ,y3# is unstable, and so is Eq.~24! for all
driving periods~see Fig. 11!. Furthermore, the two larges
CLEsl1 andl2 of Eq. ~24! are both positive. The subsyste
v5@y1 ,y3# is also unstable, but Eq.~25! is asymptotically
stable for TP(1.07,2.74) ~see Fig. 12!. The subsystem
v5@y1 ,y2# is asymptotically stable with l1
520.23,l2523.33, and so is Eq.~26! for T,2.4 ~see Fig.
13!. In the case of Eq.~25! and Eq. ~26!, there exists a
driving periodT which results in the smallestl1, and there-
fore fastest convergence of trajectories of the driven syst
~25! and ~26! to those of the driving system~23!.

The dead-beat synchronization reported in Sec. III is p
sible mainly because the driven system is linear. As a re

n
r

a-

FIG. 11. Two largest CLEs of the Ro¨ssler system~24! which is
driven byx1T generated by an identical Ro¨ssler system.

FIG. 12. Two largest CLEs of the Ro¨ssler system~25! which is
driven byx2T generated by an identical Ro¨ssler system.



t
s-
ca
si
th
en

ys
t

th
ts
s
e

d.
as-

jects
e not
se

ce
the
an
all
ven
riv-
dic

-

If
Es
ery
ion

ith

the
ll

es

pe
’s
d

of

55 4043SPORADIC DRIVING OF DYNAMICAL SYSTEMS
of the linearity, the solution~s! T̂ of the equationr (T̂)50
does not depend on the state of the driven system at
driving moment. Unlike the sporadic driving of linear sy
tems, dead-beat synchronization was not achieved in the
of sporadically driven nonlinear systems. As can be ea
observed from Figs. 5–13,16,17, the two largest CLEs of
examined sporadically driven nonlinear systems do not t
to 2` for any value of the driving periodT. Whether dead-
beat synchronization in sporadically driven nonlinear s
tems is possible and under what conditions is the subjec
our current research.

V. GENERALIZATION OF SPORADIC DRIVING

A. Combination with other synchronization methods

Several generalizations of Pecora-Carroll~PC! synchroni-
zation method have been proposed so far. The PC me
relies on decompositions of the vector field into two par
drive and response, where each part corresponds to a
space spanned by the originally chosen coordinates. For

FIG. 13. Two largest CLEs of the Ro¨ssler system~26! which is
driven byx3T generated by an identical Ro¨ssler system.

FIG. 14. Dependence of the maximum value of the driving
riod TH that still yields synchronized motion between two Chua
circuits on the driving durationt. The Chua’s circuits are couple
via the method of sporadic driving with finite duration.
he

se
ly
e
d

-
of

od
:
ub-
v-

ery vector field the number of PC decompositions is limite
Furthermore, not all of the decompositions result in an
ymptotically stable response subsystem. In@3,5#, it was pro-
posed that dynamical systems should be seen as ob
whose coordinates can be chosen by the observer and ar
given a priori. On this basis, a more general drive-respon
decomposition „active-passive decomposition~APD! in
terms of@3,5#… was proposed. Neither the drive~active! nor
the response~passive! part needs to correspond to a subspa
spanned by the originally chosen coordinates. As a result,
number of APD decompositions is infinite, and one c
hopefully find an APD decomposition which is better than
PC decompositions in the sense that the CLEs of the dri
system are more negative and it responds better to the d
ing system. It is rather straightforward to generalize spora
driving in this direction. Actually, a sporadically driven APD
decomposition is also described by Eq.~4!, with the only
difference being thatu and v are the new coordinates ob
tained through a change of the old coordinatesx, andFu and
Fv are a decomposition of the original vector fieldF and
correspond to the new coordinatesu andv. The Theorem is
also valid for sporadically driven APD decompositions.
the APD decomposition is carefully chosen, then the CL
of the continuously driven passive subsystem may be v
negative. Thus, the sporadically driven APD decomposit
can achieve asymptotic stability for large values ofT, and
the sequencesT can be transmitted through a channel w
narrow band.

Sporadic driving can also be generalized in the way
Fujisaka-Yamada method@20# generalizes Pecora-Carro
driving. The following driven dynamical system:

u̇5Fu~u,v!1 (
n52`

1`

d~ t2tn!E„s~ tn!2u~ tn2!…

v̇5Fv~u,v! ~27!

behaves independently from the driving signalsT except for
the timestn when theu components are forced to new valu

-

FIG. 15. Evolution of the differencesie(t)i , e1(t), e2(t), and
e3(t) for two Chua’s circuits which are coupled via the method
sporadic driving with finite duration.T50.85,t50.4.
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4044 55STOJANOVSKI, KOCAREV, PARLITZ, AND HARRIS
u(tn)5(I2E)u(tn2)1Es(tn), whereE is the coupling ma-
trix, and I is an identity matrix. Equation~27! reduces to Eq.
~4! whenE5I .

One may also apply sporadic driving to two-directiona
coupled systems: ẋ5F(x)1(n52`

1` d(t2tn)E„x8(tn)
2x(tn2)… and ẋ85F(x8)1(n52`

1` d(t2tn)E8„x(tn)
2x8(tn2)…, whereE andE8 denote the coupling matrices.

B. Sporadic driving with finite duration

In practical realizations of sporadic driving with ele
tronic circuits, the driving duration around timestn will al-
ways be finite and nonzero. This is our motivation for ge
eralizing the idea of sporadic driving in the following wa
The driving is again applied periodically, but its duration
finite rather then tending to zero. The duration of the drivi
is denoted ast. Each driving period is divided into two part
with lengthst andT2t. At the beginning of each driving
period, during the time intervalt, the response system
being driven by the driving signal as

u5s~ t !,

v̇5Fv~u,v!, ~28!

while in the remaining time interval, with lengthT2t, the
driven system behaves independently from the driving sig

u̇5Fu~u,v!,

v̇5Fv~u,v!. ~29!

We illustrate the concept of sporadic driving with fini
duration through an example with two identical Chua’s c
cuits which are coupled in their first coordinatesx1 andy1.
The driven Chua’s circuit behaves independently and cha
cally only during the time periods with lengthT2t which
occur periodically with periodT. During the periodic time
intervals with lengtht the y1 component of the driven
Chua’s circuit is being kept equal to the componentx1 of the
driving Chua’s circuit.

Figure 14 shows the functional relation between the d
ing durationt and the maximum value of the driving perio
TH that still allows synchronized motion between the tw
Chua’s circuits. Surprisingly,TH versust is not a monoto-
nously increasing function as one would intuitively expe
In certaint ranges, an increase in the driving duration do
not contribute to any increase inTH . In the remainingt
ranges the dependence betweent andTH is approximately
linear. In order to clarify this surprising dependence we g
the following analysis.

During the intervals with lengtht, CLEs of Eq.~28! are
in power and for Chua’s circuit they are both20.5. In the
remaining intervals each with lengthT2t Chua’s circuit
~29! behaves freely and its positive LE is 0.39. Converge
duringt and divergence duringT2t cancel each other whe
20.5t10.39(T2t)50, that is, T52.28t. When t50
Chua’s circuit~29! is asymptotically stable even for positiv
T, i.e., forT,0.26, sincey1 component of the driven system
is made equal to the componentx1 of the driving system at
-

al

-

ti-

-

.
s

e

e

times tn . So, we linearly approximate the dependence
tweenTH and t as TH50.2612.28t ~dotted curve at Fig.
14!.

In the driving intervals with lengtht, the difference
e5x2y evolves according to

F ė2
ė3

G5F 21 1

2b 0G3Fe2e3G , ~30!

while e150. One can solve Eq.~30! and see thate2(t) and
e3(t) approach 0 in an oscillating manner. Therefore, lar
driving durationt does not mean smaller differenceie(t)i
for everye(0), and itmight also mean larger projection o
e(t) on the unstable eigenspace. During the nondriving
tervals the driven Chua’s circuit behaves chaotically a
e2(t) ande3(t) diverge from 0 in anoscillatingmanner. The
differencee(T) achieved at the end of the nondriving inte
val depends not only on the LEs of the driving Chua’s c
cuit, but also onie(t)i and the projections ofe(t) on the
unstable and stable eigenspaces. Figure 15 showsie(t)i ,
e1(t), e2(t), ande3(t) for T50.85 andt50.4.

As a result of the oscillatory behavior around 0 ofe2(t)
and e3(t) during both driving and nondriving intervals
for certain ranges of t values @t
P(0.24,0.44)ø(0.66,0.86)ø(0.91,0.99)# larger driving in-
terval t allows smaller maximum value of the nondrivin
interval TH2t and does not contribute to any increase
TH ~see Fig. 14!.

VI. SPORADIC DRIVING IN PRESENCE OF NOISE

In this section we address the sensitivity of the synch
nized motion of sporadically coupled identical chaotic sy
tems to noise influence. It is a well known fact that the CL
are a necessary and sufficient condition for synchronized
tion @1,2#. From their definition it is obvious that they, a
well as the LEs, refer only to the long-term behavior. Ho
ever, when all the CLEs are negative there can still ex
points in the synchronization manifoldx5y whose maximal
LE for perturbations transverse to the synchronization ma
fold is positive when computed over afinite time interval
@21#. Such fluctuations in the CLEs computed over a fin
time are the reason that the synchronization transient is
accompanied with a monotonous approach towards the
chronization manifold, but instead brief intermittent hig
magnitude~comparable to the size of the attractor! depar-
tures from the synchronization manifold appear.

In the real systems the noise is inevitably present. The
fore we are interested only in a synchronized motion wh
is resistant to the negative influence of noise, i.e., in a hi
quality synchronized motion in the language of@22,23#. The
noise permanently disturbs the synchronized motion wh
gives rise to a sustained transient behavior. Since the C
do not characterize the transient behavior they cannot be
cessfully exploited to quantitatively express the noise infl
ence, and their negativity is not a sufficient condition for t
high-quality synchronized motion. As shown in@22,23# the
synchronized motion in the real chaotic systems may be
terrupted with outbreaks of desynchronized bursty beha
provoked by the noise. The main cause of the desynch
nized bursts are the phase points lying in the synchroniza
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55 4045SPORADIC DRIVING OF DYNAMICAL SYSTEMS
manifold that have one or more positive CLEs compu
over a finite time, that is, as pictorially expressed in@22,23#,
the unstable invariant sets embedded within the chaotic
tractor and therefore lying in the synchronization manifo
whose maximal CLE is positive. The invariant sets of th
kind are unstable both to perturbations lying in the synch
nization manifold and being transverse to it. When the sta
of the coupled systems come close to such an invariant
the disturbance in the synchronized motion caused by
noise gets amplified by the transverse instability of the
variant set provoking the motion to be kicked off the sy
chronization manifold. Obviously, the proper criterion for
high-quality synchronization is the negativity of the CLEs
all the invariant sets embedded within the chaotic attrac
@22,23#. Although this criterion sounds very simple an
mathematically precise it is rather impractical and cumb
some due to the infinite number of the invariant sets wh
transverse stability must be checked. In@23# it was proposed
to exploit the negativity of the time derivative of Lyapuno
functions as a tool to show that the perturbations caused
the noise decay permanently rather than sometimes b
amplified by the transversely unstable invariant sets. B
finding a Lyapunov function which proves the decay of t
noise-induced perturbations is a very difficult task. A rec
work @24# has eased the checking of the transverse stab
of the invariant sets by pointing out that typically the pe
odic orbits with low period are the invariant sets with large
CLE. Identifying the transverse stability of the low-perio
orbits may explain the reasons for the existence or none
ence of the high quality synchronization. Still the direct me
surement~when possible! of the noise-provoked disturbance
to the synchronized motion is the most reliable and the e
est tool to directly determine the quality of the synchroniz
tion. If the synchronized motion of two coupled systems
the presence of noise is not interrupted by high-magnit
desynchronized burst for a long time~during which the
coupled systems come very close to every point on the c

FIG. 16. A 6003600 grid of the riddled basin of attraction fo
Eqs. ~19! and ~22! when T50.28. The phase point
@p11D1 ,p21D2 ,p3 ,p11D1 ,p22D2 ,p3# that go to the in-phase
manifold are represented as white dots, while the black dots co
spond to the initial states going to the in-antiphase manifo
p150.5085,p251.0552,p3524.1274.
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otic attractor! then we can safely conclude that the synch
nization is of high quality.

What are the consequences for quality of the synchro
zation in a noisy environment when the chaotic systems
sporadically coupled? Two sporadically coupled chaotic s
tems, in the time intervals when oscillating independen
from each other, amplify the noise perturbation due to th
chaotic nature and the permanent decrease in their sync
nization error is not possible. Thus, from the point of view
the sporadic driving the negativity of the time-derivative
the Lyapunov functions is an inapplicable tool. In the case
time-discontinuous couplings the maximal CLE for a giv
initial state which is computed over a finite time depen
also on the time of appearance of the next driving impul
We have seen in Sec. IV that the CLEs for coupled chao
systems may depend on the driving periodT in a very com-
plicated manner. It is reasonable to assume that the max
CLE for an unstable periodic orbit lying in the synchroniz
tion manifold may depend on the driving period also in
complicated way~the driving is done by the unstable per
odic orbit generated by another dynamical system@22#!. So,
while the chaotic attractor gets more negative maximal C
with increase inT, an unstable periodic orbit may experien
more positive maximal CLE. On the contrary, a change
T may turn the otherwise positive maximal CLE of an u
stable invariant set into a negative one, that is, a high qua
synchronized motion may emerge when sporadic driving
used instead of a time continuous driving.

Such a complication of the issue of noise influence in
case of sporadic driving has strengthened our decision
express the quality of the synchronized motion of spora
cally coupled systems through a direct measurement of
synchronization error. Here we present results from num
cal experiments concerning the quality of synchronized m
tion of the sporadically coupled Lorenz systems~19!–~22! in
the presence of small additive noise. We used the fou
order Runge-Kutta method. In real systems, both the driv
and the driven system, as well as the driving signal during
transmission, are contaminated by the noise. Thus we ad
small random noise to all the coordinates of the driving a
the driven systems, and to the driving signal. The rand
noise had uniformly distributed amplitudes in the ran

e-
.

FIG. 17. The probabilityP of going to the in-antiphase manifold
as function of the transverse deviationD2. T50.28.
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(21027,11027). The adjacent noise samples were uncor
lated, and so were the noises added to any two diffe
coordinates.

After the initial time period of length 10, which was a
lowed for the transient oscillations to die out, we measu
the synchronization errore(t)5ix(t)2y(t)i . Figures 8–10
present the dependence oferms andemax on the driving in-
tervalT, whereerms denotes the average value ofe(t) aver-
aged over a time interval of length 12000, andemax denotes
the maximal value of the errore(t) observed during the sam
time. Sinceerms is averaged over the whole chaotic attrac
it is no surprise that in Figs. 8 and 9 it follows the changes
the largest CLE@23,25,26#. The maximal erroremax, which
is sensitive to the local instabilities of the synchronized m
tion, reveals the magnitudes of the possible intermitt
bursts, and values ofemax small compared to the attracto
size are a clear indication of a high-quality synchroniz
motion. As shown in Figs. 8 and 9 theT regions of high-
quality synchronization for the pairs of Lorenz systems~19!
and ~20!, and ~19! and ~21! agree very well with theT re-
gions of asymptotic stability. Highering and lowering th
noise level did not cause any qualitative change to the n
sensitivity except for the scaling oferms and emax propor-
tional to the change in the noise level. These results, al
with the simulations we carried out for the Chua’s circuit a
the Rössler system, clearly indicate that a high-quality sy
chronized motion between sporadically coupled chaotic s
tems is possible. Furthermore, high-quality synchronizat
also emerged in the cases when the time continuous dri
does not lead to synchronized motion at all~for example,
driving the Chua’s circuit withx2T or x3T or driving the
Rössler system withx3T).

According to Fig. 10, a high-quality synchronization
two Lorenz systems when driving withx3T is not achievable
for any driving periodT despite the negativity of the large
CLE in three separateT regions. Here we show that th
underlying reason is the riddled basin of the chaotic attra
lying in the synchronization manifold. A chaotic attract
may have a riddled basin only if it lies in an invariant man
fold with lower dimension than that of the full space a
another attractor exists outside the manifold@28#. This con-
dition is fulfilled in the case of synchronized identical ch
otic systems where the motion settles in the manifoldx5y,
whose dimension is 1/2 of the dimension of the full spa
Riddling of the basin means that arbitrarily close to t
points that belong to the basin of the chaotic attractor
can find points with a nonzero measure that go to the o
attractor. Even for the points that are arbitrarily close to
invariant manifold there is a nonzero probability that th
will eventually settle on the other attractor. When a noise
present the chaotic oscillations are permanently being mo
off the invariant manifold. The noise repeatedly moves
chaotic state to the basin of the other attractor and eventu
the motion will settle on the other attractor.

In the dynamics of the Lorenz system there is a symme
(x1 ,x2)→(2x1 ,2x2). Due to this symmetry the two Loren
systems ~19! and ~22! can synchronize either in-phas
y15x1, y25x2, y35x3 or in-antiphasey152x1, y252x2,
y35x3, and, furthermore, the two synchronized states~in-
phase and in-antiphase! have identical CLEs and they gai
and lose their stability@27# simultaneously asT changes. Our
-
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numerical simulations have shown that both chaotic attr
tors ~one lying in the manifoldy15x1, y25x2,y35x3, and
the other lying in the manifoldy152x1, y252x2,
y352x3) have riddled basins of attraction forall driving
periodsT where the largest CLE is negative. In terms of@28#
the two basins are called intermingled. Figure 16 show
two-dimensional slice of the basin of attraction of the i
phase and in-antiphase attractors. We have randomly ch
a point @p1 ,p2 ,p3# lying on the Lorenz chaotic attractor
Numerically solving Eqs.~19! and ~22! ~without adding
noise! we have determined the basin to whom a phase p
@p11D1 ,p21D2 ,p3 ,p11D1 ,p22D2 ,p3# belongs where
@p11D1 ,p21D2 ,p3# and @p11D1 ,p22D2 ,p3# are the
states att50 of Eq.~19! and Eq.~22!, respectively,D1 is the
deviation along the in-phase manifoldx5y and D2 is the
deviation transverse to the same manifold. We have a
magnified different regions of Fig. 16 and have inspec
basins near other points@p18 ,p28 ,p38#. The riddled structure of
Fig. 16 was always present. As previously said, for ridd
basins even arbitrarily close points to the manifoldx5y have
nonzero probability of settling to the in-antiphase manifo
So, another proof of the presence of a riddled basin in E
~19! and ~22! is Fig. 17, whereP denotes the numerically
estimated probability that a randomly chosen point w
transverse deviationD2 belongs to the basin of the chaot
attractor lying in the in-antiphase manifold. The probabil
P scales as a power law withD2, i.e., P;D2

h which is in
accordance with the theoretical results in@28#. Due to the
riddled basins neither in-phase nor in-antiphase synchron
tion can persist indefinitely in presence of noise, and
Lorenz systems~19! and ~22! repeatedly switch from in-
phase to in-antiphase synchronization and vice versa.
time intervals with in-antiphase synchronization are resp
sible for the large values of the errorserms andemax.

VII. TESTING EXPERIMENTAL MODELS WITH
SPORADIC DRIVING

The problem of determination of equations of motio
of a chaotic system on basis of experimentally colle
ed data is rather interesting and useful. Most oft
experimental measurements produce scalar datazL
5$z(0),z(L), . . . ,z(NzL)% where L denotes the sampling
interval. Then,zL is used to construct a sequence of pha
space vectorssL5$s(0),s(L), . . . ,s(NL)%. Here we shall
not be concerned with the phase-space reconstruc
method and shall assume thatsL is already given. The main
objective in nonlinear time-series modelling is to find a ve
tor field F ~or a mapM) which is optimal according to a
certain criterion and models the real system with differen
equations

ẋ5F~x!. ~31!

Having chosen the optimal vector fieldF, synchronization
can be used to test how preciselyF models the equations o
motion @29#. As proposed in@29#, linear coupling should be
used for that purpose

ẋ5F~x!1E„ŝ~ t !2x…, ~32!
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where ŝ(t) denotes the linear interpolation of the sequen
sL , and the coupling matrixE may have only one nonzer
elementEii5m that belongs to the main diagonal. Since t
signals(t) is known only at discrete times, a linear interp
lation is used to computes(t) at other points of the time
scale which produces the linearly interpolated signalŝ(t).
The synchronization test for the validity of the modellin
vector fieldF relies on two solutionsx(t) andx8(t) of Eq.
~32!. Both solutions start ats(0), but x(t) is obtained for
m.0, andx8(t) for m50. If the driving coordinatexi and
the coupling strengthm are properly chosen and assu
asymptotic stability of Eq.~32!, andF is structurally close to
the true vector field then the sequencexL should be close to
the experimentally obtained sequencesL . On the contrary,
the chaotic instability of Eq.~32! whenm50 causesxL8 to
diverge fromsL . Thus, if the mean differenceD5ixL2sLi
is much smaller thenD85ixL82sLi , then it should be ac-
cepted as a good proof thatF is a good model for the rea
chaotic system. However, even whenF perfectly models the
real chaotic system,x(t) does not tend toŝ(t), andxL does
not tend tosL , sinceŝ(t) is not a true solution of Eq.~31!.
ThusD is not equal to 0 which decreases the gap betw
D andD8. Having in mind that sporadically coupled chaot
systems may express asymptotic stability, we propose th
the synchronization test Eq.~32! one should use sporadi
driving instead of the time continuous driving

ẋ5F~x!1 (
n52`

1`

d~ t2tn!E„s~ tn!2x~ tn2!…, ~33!

whereT could be any multiple ofL. If the sampling interval
L is sufficiently small@if it is not then also the synchroniza
tion test employing Eq.~32! will not work# then one can find
a pair of values for parametersT andm such that Eq.~33! is
asymptotically stable. The synchronization test employ
Eq. ~33! will give smallerD compared to the case when
exploits Eq.~32! and consequently a bigger margin toD8.

Furthermore, as it was shown in Sec. II, the sporadica
driven model~33! produces a time continuous signalx(t)
and nonlinearly interpolates the experimental datazL if the
modelling vector field is perfect.

In some cases experimental measurements are not
distant in time. Still our modified synchronization test
experimental models is applicable. Sporadic driving is
restricted only to time-equidistant driving, and asympto
stability of a time discontinuously driven system can also
achieved when the driving impulses appear nonequidista
in time according to a certain deterministic rule or the tim
interval between the driving impulses is a random variab
So, in the case of nonequidistant data the time discontinu
driving of the experimental model should follow the sam
rule as the process of measurement. An exception to this
may appear when the measurements are done too ofte
which case not every vector in the sequence of reconstru
phase-space vector is necessary to obtain asymptoti
stable experimental model.

VIII. CONCLUSION

We have numerically and analytically examined the s
radic driving of time continuous systems. The dependenc
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the asymptotic stability of sporadically drivenlinear systems
on the driving period is analytically investigated. Similar d
pendence has been numerically observed in the case of
radically drivennonlinear systems such as Chua’s circu
Lorenz, and Ro¨ssler system. Generalization of sporadic dr
ing in the direction of active-passive decomposition, line
one- and two-directional coupling, and finite duration of t
driving have been proposed. Nontrivial dependence of
maximal driving periodTH which still yields asymptotic sta-
bility of the driven system on the driving durationt has been
reported and explained. Our numerical experiments on
influence of noise on the synchronized motion have sho
that high-quality synchronization between sporadica
coupled systems is possible. High-quality synchronization
possible even in some cases where synchronization ca
be achieved with continuous coupling. On the basis of s
radic driving, the synchronization test@29# for the validity of
models derived from experimental data has been modifi
The results of the modified test are more reliable.

APPENDIX

Lemma.The k smallest conditional Lyapunov exponen
of a continuous system~A1! that is sporadically driven by a
k-dimensional sequencesT

u̇5Fu~u,v!1 (
n52`

1`

d~ t2tn!„s~ tn!2u~ tn2!…

v̇5Fv~u,v! ~A1!

equal2`.
Proof. Without driving, the ~ordinary! Lyapunov expo-

nents are given as

l i5 lim
n→`

1

nT
ln~Rii

n !,

whereRii
n ( i51, . . . ,N) are the diagonal elements of th

upper triangular matrixRn that is obtained from aQR de-
composition of the linearized flow

DfnT~u0 ,v0!5Qn
•Rn. ~A2!

HereQn is an orthogonal matrix andT is some period of
time. @Numerically theQR decomposition~A2! is computed
iteratively using some suitable time stepT.#

In the case of sporadic driving by means of a seque
sT the flowfT5(fu

T ,fv
T) has to be replaced by a mapG

~un11,vn11!5Gn~un,vn,sn11!5„sn11,fv
T~un,vn!…,

with sn5s(nT), un5u(nT) andvn5v(nT). The firstk rows
of the Jacobian matrixDG(un,vn) equal zero. Therefore
also the firstk rows of the Jacobian matrix of then-fold
iterated mapDGn(u0 ,v0) equal zero. ItsQR decomposition
DGn(u0 ,v0)5Qn

•Rn yields an upper triangular matrixRn

where again the first k rows vanish and thus
Rii
n50⇒l i52` for i51, . . . ,k.
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