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Differentiable generalized synchronization of chaos

Brian R. Hunt,* Edward Ott,† and James A. Yorke* ,‡

University of Maryland, College Park, Maryland 20742
~Received 13 September 1996!

We consider simple Lyapunov-exponent-based conditions under which the response of a system to a chaotic
drive is asmoothfunction of the drive state. We call thisdifferentiable generalized synchronization~DGS!.
When DGS does not hold, we quantify the degree of nondifferentiability using the Ho¨lder exponent. We also
discuss the consequences of DGS and give an illustrative numerical example.@S1063-651X~97!02704-9#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Recently, the concept ofgeneralized synchronizationhas
been introduced@1# to characterize the dynamics of a r
sponse system that is driven by the output of a chaotic d
ing system. Generalized synchronization~GS! is said to oc-
cur if, ignoring transients, the responsey is uniquely
determined by the current drive statex. That is, y5f~x!,
wheref is a function ofx for x on the chaotic attractor o
the drive system~the attractor is assumed to be bounded!. If
GS applies, thex dynamics can typically be topologicall
reconstructed from they dynamics.~Depending on the di-
mension of the vectory and on the fractal dimension of th
attractor inx, reconstruction may require formation of a d
lay coordinate vector fromy @2#.!

In the case of continuous time~flows! we can write the
combined drive-response system as

dx/dt5f~x!, ~1a!

dy/dt5g„y,h~x!…, ~1b!

where xPRk, yPRl , and f:Rk→Rk, h:Rk→Rm, and g:Rl

3Rm→Rl are continuously differentiable functions. In th
case of a discrete time drive-response system, we write

xt115F~xt!, ~1a8!

yt115G„yt ,H~xt!…, ~1b8!

where we assumeF is invertible,G~y,H! is invertible iny,
andF, G, andH are continuously differentiable.

Kocarev and Parlitz@3# formulated a condition for the
occurrence of GS for the system~1!, which, after a slight
reformulation, can be stated as follows: GSoccurs if, for all
initial x0 in a neighborhood of the chaotic attractor of th
drive system, the response system is asymptotically st.
Recall that the response system is said to be asymptotic
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stable if there is a region ofy spaceB such that, for any two
initial y vectors y0

~1! ,y0
~2!PB, we have limt→`iy~t,x0,y0

~1!!
2y~t,x0,y0

~2!!i50, andy~t,x0,y
~1!! and y~t,x0,y

~2!! are in the
interior of B for t sufficiently large. In the remainder of thi
paper we assume the response system is asymptoti
stable.

There are various situations motivating consideration
GS. The most natural such situation occurs in the one-w
synchronization of two oscillators. An important special ca
of the dynamics~1b! is that of linear coupling,

g„y,h~x!…5 f̃~y!1C•~x2y!, ~2!

between two nearly identical oscillatory systems, whereC is
a coupling matrix, andf̃ andf are close. In cases where thex
dynamics is chaotic andC is properly chosen, exact stab
synchronism,y(t)5x(t), occursprovided f5f̃ ~see @1,3,4#
and references therein!. Experimentally, one cannot expe
exact equality off and f̃, and hence one cannot expect exa
synchronism. Even so, GS might apply, with essentially
same useful practical consequences as exact synchronis

Another situation occurs when we cannot observe the s
tem statex directly, and Eq.~1b! models the response of th
measurement apparatus to the system state. Still anothe
ample is where the responsey is a linearly filtered version of
the input~e.g., see@5#!. More generally, we can expand th
viewpoint to regard Eq.~1b! as a nonlinear filter.

While knowledge of the existence of a relation of th
form y5f~x! is useful, it is often important to also conside
the continuity and smoothness of the functionf. For ex-
ample, it is known in the context of filtering@5# that the
relationship between the filtered signal and the system s
although expressible@6# in the form y5f~x!, can be such
that the attractor reconstructed fromy may have a larger
information dimension than the original attractor inx space.
That is, the functionf may be ‘‘wild’’ enough that it
changes the attractor’s information dimension. If we are
terested, for example, in deducing the attractor dimension
the drive system from observations of the responsey, this is
undesirable. One can also cite other examples where s
ciently smoothf is desirable~e.g., obtaining eigenvalues o
unstable periodic orbits or Lyapunov exponents of the dr
system from observations of the response!. Thus we wish to
consider a stronger version of GS that we denotedifferen-
tiable generalized synchronization~DGS!. By this we simply
mean that there is GS and the functionf~x! is continuously
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4030 55BRIAN R. HUNT, EDWARD OTT, AND JAMES A. YORKE
differentiable forx on the chaotic attractor of the drive sy
tem. In addition, if DGS does not hold, we wish to quant
the degree of nondifferentiability using the Ho¨lder exponent.

Remark.Note that the attractor of the drive system m
be smooth in some directions and fractal in others, and
we are primarily interested in the functionf~x! evaluated for
x on the attractor of the drive system. In this context
define differentiability off as follows. If there exists a ma
trix “xf, such that for smalld with x1d on the attractor,

f~x1d!5f~x!1d•“xf1o~ idi !,

then we sayf is differentiable at the pointx on the attractor.
Note that this defines differentiability requiring the evalu
tion of f only at points on the drive attractor and that t
definition includes directions cutting across the fractal str
ture of the attractor.

II. HÖ LDER EXPONENT AND DGS

Assuming GS applies, we first consider the Ho¨lder expo-
nentg~x! of the functionf~x! evaluated at the point~x,y!,
wherex is on the drive attractor andy5f~x!. For pointsx
andx1d on the drive attractor, we define the Ho¨lder expo-
nentg~x! of f~x! at x as

g~x!5 lim
d→0

inf$ logif~x1d!2f~x!i / logidi%, ~3!

if the right-hand side is less than one, andg~x!51 if the
right-hand side is greater than one.

It can be easily shown thatg~x!.0 implies thatf is con-
tinuous atx, and thatf is not differentiable atx for g~x!,1.
If f~x! is differentiable atx, theng~x!51. If f~x! is discon-
tinuous atx, theng~x!50. On the other hand,g~x!51 does
not necessarily imply thatf~x! is differentiable atx, nor
doesg~x!50 necessarily imply thatf~x! is discontinuous
at x.

We proceed to determineg~x! in terms of the dynamics o
the drive and response systems. At each pointx on the drive
attractor, and at each corresponding pointy5f~x! of the
response, we imagine that we evaluate the past-his
Lyapunov exponents. That is, for timeT.0 we look at theT
preimage ofx, evaluate the finite-time Lyapunov exponen
over the orbit segment traveling from theT preimage ofx to
x, and then letT→`. For almost every pointx with respect
to the attractor’s natural measure, thesameset of numbers
for the past-history Lyapunov exponents will be found, a
these are also the same as the forward Lyapunov expon
at x. ~We call such pointstypical.! However, usually there is
also a dense set of pointsx on the attractor for which the
past-history Lyapunov exponents are different from those
typical points. The set of all these atypical points has z
natural measure, but these points are nevertheless signifi
in our considerations. Thus, in general, we must regard
past-history Lyapunov exponents asx dependent. The sim
plest example illustratingx dependence of the past-histo
Lyapunov exponents is the case wherex lies precisely on the
unstable manifold of an unstable periodic orbit in the chao
attractor of the drive system. In that case, asT→`, the T
preimage ofx approaches the periodic orbit. Thus the pa
at
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history exponents will be those of the periodic orbit, whi
in general are different from those of typical orbits on t
attractor.

To begin our quantitative discussion, we first consider
case of a map where the drive system attractor has a s
past-history Lyapunov exponents that at each pointx on the
attractor consists ofk21 positive exponents and one neg
tive exponent, denoted by2hd~x!. In this case we expect th
attractor structure at each pointx to be smooth in thek21
expanding directions and to be fractal in the contracting
rection corresponding to the Lyapunov exponent2hd~x!.
This situation applies for many examples encountered
practice ~e.g., for chaotic attractors of invertible two
dimensional maps such as the He´non map, the Ikeda map
etc.!; the considerations also translate readily to flows w
one negative Lyapunov exponent. Let2hr~x! denote the
least-negative response-system past-history Lyapunov e
nent corresponding to the point„x,y5f~x!… ~recall that we
assume the response to be asymptotically stable, imply
that all response exponents are nonpositive; we conside
case where the Lyapunov exponents of the response sy
are negative!.

Our principal results for the case where the drive has o
one negative exponent are the following. Their application
the general case, in which there may be more than one n
tive exponent, is discussed later.

~i! The Hölder exponent of the functionf~x! at a pointx
on the drive attractor is one ifhr~x!>hd~x!. For typical sys-
tems, ifhr~x!,hd~x! the Hölder exponent is

g~x!5hr~x!/hd~x!. ~4!

We discuss the meaning of the phrase ‘‘typical system’’ s
sequently.@Including the atypical cases, we have that,
general, ifhr~x!,hd~x!, theng~x!>hr~x!/hd~x!.#

~ii ! The functionf~x! is differentiable for allx on the
drive attractor~i.e., DGS applies!, if

hr~x!.hd~x! ~5!

for all x on the drive attractor.
Recall that the existence of a Ho¨lder exponent,g~x!.0,

claimed in~i!, means thatf is continuous for pointsx on the
drive-system attractor. In some cases, results in the litera
@7# on the existence of invariant manifolds and their pers
tence under perturbation yield conclusions similar to~but
generally weaker than! ~i! and ~ii !.

We now give a heuristic argument for~i! and ~ii !. For
simplicity, consider the case wherex is a point on a periodp
unstable periodic orbit embedded in the drive attractor.
d0 denote an initial displacement from the pointx, where
x1d0 is on the drive attractor. Using Eq.~1a! or Eq. ~1a8!
take the displaced point forward in time by the amountn,
d0→dn , wheren5mp andm is an integer. Similarly, take
the pointy1dy05f~x1d0! forward the same timen using
Eq. ~1b! or Eq. ~1b8!, dy0→dyn . According to the Hartman-
Grobman theorem, there exists a change of variables
makes the dynamics linear in a finite region about the p
odic orbit ~assuming generic eigenvalues!. Thus it suffices to
consider the dynamics as linear. Assumed0 to be chosen to
lie in the eigendirection of the linearized drive system cor
sponding to the eigenvalue yielding the contracti
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55 4031DIFFERENTIABLE GENERALIZED SYNCHRONIZATION . . .
x-Lyapunov exponent,2hd~x!. We wish to examine the be
havior of dy05f~x1d0!2f~x! as it is iterated forward in
time. To do this we write the linearized drive-response s
tem aszn115Zzn where

z5FxyG ,
Z5F X O

W Y G . ~6!

Herex is ak vector,y is an l vector,z is a (k1 l ) vector,O
is the l3k zero matrix, and the matricesX, Y, andW have
dimensionsk3k, l3 l , andk3 l , respectively. Generically,X
andY have distinct eigenvalues,

Xexp5lxpexp , p51,2,...,k, ~7!

Yeyq5lyqeyq , q51,2,...,l . ~8!

The matrixZ has eigenvalueslxp , lyq with corresponding
(k1 l )-dimensional eigenvectorsezxp andezyq,

Zezxp5lxpezxp, p51,...,k, ~9!

Zezyq5lyqezyq, q51,...,l . ~10!

The eigenvectors are

ezxp5Fexpêp G ,
ezyq5F OeyqG , ~11!

where êp5~lxp1l2Y!21Wexp , O is the k-dimensional zero
vector, thel3 l unit matrix is denoted1l and the indicated
inverse exists assuming the generic conditionlxpÞlyq for
all p andq. Our original question of what happens tody0 as
it is iterated can be addressed by considering the entire
tem with initial displacement

dz05F d0
dy0

G ,
where the initialx displacement isd05d0exd andexd is thex
eigenvector corresponding to the contractive eigendirec
with eigenvaluelxd, ulxdu5exp~2hd!. Writing dz0 as

dz05d0Fexdêd G1F O
dy02d0êd

G , ~12!

we see that the first vector on the right-hand side of Eq.~12!
evolves with time asulxdu

n5exp~2nhd!. Typically we ex-
pect thatdy02d0êd has no special relationship to the eige
directions ofY. In this case all of the eigendirections ofY
will be ‘‘excited.’’ For large timen the response eigenvalu
of largest magnitude will dominate,ulyru

n5exp~2nhr!.
Thus, for largen, dyn consists of two components: one e
cited by the first vector on the right-hand side of Eq.~12!
decaying as exp~2nhd!, and one excited by the second ve
tor on the right-hand side of Eq.~12! decaying as exp~2nhr!.
-

s-

n

Which of these two behaviors dominates at largen is deter-
mined by whetherhd.hr or hd,hr . We have after a large
number of iterates

dy0→dyn; H exp@2hr~x!n#, if hr~x!,hd~x!

exp@2hd~x!n#, if hr~x!>hd~x!
,

~13a!

d0→dn;exp@2hd~x!n#, ~13b!

where dyn5f~x1dn!2f~x!. For hr~x!,hd~x!, we have
from Eq. ~13!,

if~x1dn!2f~x!i;idnig~x!, ~14!

whereg~x! is given by Eq.~4!. Thus, sincedn→0 asn→`,
Eq. ~14! yields Eq.~4!. Similarly, for the casehr~x!>hd~x!,
Eqs.~13! again yield Eq.~14!, but with g~x!51. This argu-
ment applies forx being a periodic point. Another argumen
not given here, shows that the same result applies to the
wherex is any nonperiodic point on the attractor.~In the case
of a periodic orbit the past-history and forward Lyapun
exponents are the same. Whenx is nonperiodic they are no
necessarily the same, and it is the past-history exponents
are relevant.!

In order to demonstrate~ii !, we note that when
hr~x!.hd~x!, takingd05d0exp , for anyp51,2,...,k, the lin-
ear dynamics~7! always results in

dzn>lxp
n d0Fexpêp G , ~15!

for sufficiently largen. Thus, since theexp generically span
the x space, we have that the derivatives off~x! exist and
are given by

exp•“xf5êp , p51,2,...,k. ~16!

@In the case of complexlxp , we can take the real and imag
nary parts of~16!.#

In the above discussion obtaining~i! it was assumed tha
the drive-response system was typical in that the cho
direction ford0 ~namely,d05d0exd! yieldsdy0, which results
in a nonzero component ofdy02d0êd along the response
system eigendirection corresponding to the exponent2hr~x!.
As an example where this is not the case, consider
situation where the response system is of the form~2! and
the drive and response are exactly matched,f̃5f. In this case
we can have exact synchronism,y5x @i.e., f~x!5x#. Thus,
even though Eq.~5! may be violated, the surfacey5f~x!
is still smooth~it is the hyperplanex5y!. However, a generic
perturbation of the functionf̃ away from f restores the
validity of Eq. ~4!. On the other hand, we note that, if th
perturbation is small, the resulting component ofdy0 along
the response-system eigendirection corresponding to
exponent2hr~x! is expected to be small~it is zero when
the perturbation is zero!. Thus in this case we might
for example, expect ad dependence of the form
if(x1d)2f(x)i>Kidig(x) to apply with a relatively small
value ofK. A small enough value ofK would have the effect
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4032 55BRIAN R. HUNT, EDWARD OTT, AND JAMES A. YORKE
that, in the presence of limited precision measurement an
small noise, the consequences of nondifferentiability may
unobservable.

Note that having only one negative drive exponent i
plies fractal structure of the drive attractor in the eigendir
tion corresponding to2hd~x!. Thus our stipulation that we
can pick a smalld0 aligned along the contracting directio
such thatx1d0 is a point on the attractor can be satisfied.
the case where there are several contracting directions fo
response system, the attractor may be ‘‘empty’’ in some
the contracting directions~i.e., for some of the contracting
directions, there may be no smalld0 aligned along that con
tracting direction such that bothx and x1d0 are on the at-
tractor!. In that case, by slightly extending our conside
ations, our previous discussion can still be applied. To
this, at each pointx on the attractor we consider those neg
tive drive exponents that correspond to eigendirections
locally intersect the attractor at more than a single po
~‘‘nonempty’’ eigendirections!, and we take the most nega
tive of those, which we now denote by2hd~x!. In terms of
this new designation ofhd~x!, our statements~i! and ~ii ! are
still expected to apply. The reason for taking the most ne
tive intersecting drive exponent is that the definition ofg~x!,
Eq. ~3!, specifies a limit inferior overd, andg~x! from Eq.
~4! is smallest for largerhd~x!. To see that there may b
contracting directions that are empty in the sense that t
intersect the attractor only at a single point, recall that hi
dimensional systems can often be shown to possess lo
dimensional ‘‘inertial manifolds’’@8# such that there is a
dynamical system for state points in the inertial manifo
and this dynamical system yields all the ergodic invari
sets of the original higher-dimensional system~in particular,
its chaotic attractors!. In that case contracting eigendirectio
transverse to the inertial manifold are clearly empty. In
absence of knowledge as to which of the contracting-dr
eigenvalues are empty, statements~i! and~ii ! are still useful
in that use of the most contracting-drive Lyapunov expon
in place ofhd~x! provides a lower bound ong~x! @statement
~i!#, and asufficientcondition for DGS@Eq. ~5!#.

Finally, we remark that the condition for DGS can som
times be verified in terms of finite-time Lyapunov exponen
The time-T Lyapunov exponents of a system are defined
be 1/T times the logarithms of the singular values of t
Jacobian matrix of the time-T map of the system.~The sin-
gular values of a matrixM are the square roots of the eige
values ofMM T, whereMT is the transpose ofM .! If, for
someT and for all x on the attractor, the most negativ
time-T Lyapunov exponent of the drive system atx exceeds
the least-negative time-T Lyapunov exponent of the respons
system at@x,f~x!#, then we can show that condition~5!, and
hence DGS, holds.~It may sometimes be possible to veri
this finite-time condition for a single iteration in the case
a map or an infinitesimal time step in the case of a flow.!

III. AN EXAMPLE

We now consider a simple example. The drive system
given by a generalized baker’s map@9#, which takes the unit
square, 0<x~1!,1, 0<x~2!,1, to itself,
or
e
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xn11
~1! 5H laxn

~1! ,

l11lbxn
~1! ,

if xn
~2!,a

if xn
~2!>a

, ~17a!

xn11
~2! 5H 1

a
xn

~2! , if xn
~2!,a

1

b
~xn

~2!2a!, if xn
~2!,a

~17b!

wherea1b51 and we also takela1lb51. See Fig. 1. The
response system assumed to be of the form

yn115lyn1xn
~1! , ~18!

can be considered as a discrete version of a low-pass
@10#. The attractor for Eq.~17! has a natural measure that
uniform in x~2! and varies wildly in thex~1! direction pro-
vided thatlaÞa. The box-counting dimension of the attra
tor is D052, since typical trajectories are dense in the u
square by virtue ofla1lb51. The past-history Lyapunov
exponents for the drive system evaluated at a po
x5(x(1),x(2)) are @9#

h1~x!5a~x!ln
1

a~x!
1b~x!ln

1

b~x!
.0 ~19a!

h2~x!5a~x!ln la1b~x!ln lb,0, ~19b!

where

a~x!5 lim
n→`

na~x!

n
, ~20a!

b~x!5 lim
n→`

nb~x!

n
. ~20b!

In Eq. ~20!, na~x! @nb~x!# is the number of times the firstn
preiterates fromx are in x~2!,a @x~2!>a#. @Note thata~x!
1b~x!51.# By virtue of the symbolic dynamics for Eq.~17!,
there are orbits that visit the regionsx~2!,a and x~2!>a in
any order. Thus any value fora~x! in @0,1# can be attained by
proper choice ofx. On the other hand, ifx is randomly cho-
sen in the area of the unit square~0<x~1,2!<1!, we have
a~x!5a and b~x!5b with probability one@i.e., the natural
measure of the regionx~2!,a ~x~2!>a! is a ~b!#. Thus the
Lyapunov exponents for typical points on the drive attrac
are

FIG. 1. The generalized baker’s map, Eqs.~17!.
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FIG. 2. y vs x~1! for Eqs.~17! and ~18!.
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h̄15a ln
1

a
1b ln

1

b
.0, ~21a!

h̄25a lnla1b lnlb,0. ~21b!

Hence, although the box-counting dimension of the dr
attractor isD052, by the Kaplan-Yorke formula@9,11#, its
information dimension is between 1 and 2,

D1511~ h̄1 /uh̄2u!. ~22!

Application of the Kaplan-Yorke formula to the combine
drive-response system Eqs.~17! and ~18! again yields Eq.
~22! provided thathr.uh̄2u ~wherehr5ln l21!, but yields a
larger value of the dimension ifhr,uh̄2u. Figure 2~a! shows
a numerical computation of the surfacey5f~x! for a case
satisfying hr5ln l21,uh̄2u @la50.2, l50.8#. The resulting
curve is fractal as indicated by its very wrinkled appearan
~Note that sincef is independent ofx~2! anda, it suffices to
plot y versusx~1! and Fig. 2~a! is valid for all 0,a,1.!

Now consider the case wherehr5ln l21.uh̄2u. In this
case the filter does not change the Kaplan-Yorke dimens
i.e., the attractor of the combined drive-response syst
Eqs.~17! and~18!, still has the information dimension give
by Eq. ~22!. On the other hand, even thoughhr.uh̄2u, there
is still the possibility that there are pointsx on the drive
e

e.

n;
,

attractor at whichhr,uh2~x!u. In particular, ifla,lb , then
by Eq. ~19b!, we see that, depending onx, uh2~x!u can attain
any value in the range

ln~1/la!>uh2~x!u> ln~1/lb!. ~23!

We now consider the case where

ln~1/la!.hr.uh̄2u. ~24!

In this case there are pointsx at which the Ho¨lder exponent
predicted by Eq.~4! is less than one. The natural measure
these points is zero, but they are dense in the attractor. T
although the information dimension is preserved, the surf
y5f~x! is still nonsmooth. Figures 2~b! and 2~c! show the
results of numerical computations of the surfacey5f~x! for
two cases satisfying Eq.~24! @la50.2, l50.6 for Fig. 2~b!,
la50.2,l50.4 for Fig. 2~c!, and we assumea<0.2 in both
cases@12##. The effect of the dense set whereg~x!,1 clearly
manifests itself in the plot shown in Fig. 2~b! giving the
surface an extremely wrinkled appearance. The other c
satisfying Eq.~24!, Fig. 2~c! appears less wrinkled sincehr is
closer to ln~1/la!. Finally Fig. 2~d! shows a case wher
hr.ln~1/la! ~la50.2, l50.1! in which case the function
y5f~x! is predicted to be differentiable everywhere. As pr
dicted, the curve in Fig. 2~d! appears to be smooth.
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Note that, as we increasel from zero,f~x! first loses
differentiability as l passes throughla , which is the
Lyapunov number of the period one unstable periodic o
(x(1),x(2))5~0,0!. More generally, consider the syste
~1a8!,~1b8!, where thek-dimensional drive system is un
formly expanding ink-1 directions and is uniformly con
tracting in one direction, and the response system is a lin
filter of the formyn115Lyn1Axn , whereL andA are ma-
trices. Letl,1 denote the magnitude of the largest eige
value of L. Now say that the parameters of the filter a
varied. We conjecture that the bifurcation at whichf~x! first
becomes nondifferentiable typically occurs asl increases
through a critical value that is determined by a special lo
period periodic orbit which has the smallest ‘‘contracting
Lyapunov number among all the periodic orbits on the
I.
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g
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ys
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it
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tractor@13#, and the criticall is just this minimum Lyapunov
number.
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