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Minimum energy state of the one-dimensional Coulomb chain
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One-dimensional chains of laser-cooled ions have recently been confined in the fields of electromagnetic
traps. This paper considers the minimum energy states of this one-dimer@&Dbp&drm of condensed matter.
Molecular dynamics simulations of the minimum energy states are compared to a density functional theory of
the inhomogeneous crystal. Unlike 2D and 3D inhomogeneous Coulombic systems, where mean-field theory
works well in describing the overall density variation on scales large compared to an interparticle spacing, we
show that correlations are essential in determining the density of the 1D Coulomb chain. On the other hand, the
long-range interactions that contribute to the mean field must also be[Edt63-651X%97)02204-9

PACS numbdss): 64.70—p, 61.50—f

. INTRODUCTION other hand, correlation energy scales\ag/a=q?N**1P/L
wherea= (LP/N)P is the average interparticle spacing. For
The one-dimensional Coulomb chain is a form of con-a system of dimensio®>1 andN>1 one can see that the
densed matter that consists of charges of like sign trappecbrrelation energy makes a relatively small contribution so
along a linear axis through the application of strong externathe energy is dominated by long-range interacti@res, the
focusing fields. One-dimensionélD) Coulomb chains con- mean field. This is the familiar case in plasma physics—the
sisting of up to several dozen ions have recently been createtensity variation of an inhomogeneous 2D or 3D plasma is
in experimentkl,2]. Interparticle separations, on the order of determined almost entirely by the mean field, with correla-
micrometers, are sufficiently large so that a classical descrigions affecting the density only on scales of order the inter-
tion of the dynamics is valid in most experiments. The 1Dparticle spacing. However, for dimensi@=1 the correla-
chain has been suggested as an advantageous configuratt@m energy is of the same order as the mean-field energy
for a novel type of atomic clock,4], as well as for quantum arising from long-range interactions; neither can be ne-
computer schemd$]. glected. We will see that for 1D Coulomb chains the corre-
In this paper we consider the equilibrium properties of thelations influence the density on all scales up to the system
1D Coulomb chain. We focus on the zero-temperature classize.
sical limit, where the particles are trapped at equilibrium This argument can be generalized to potentials other than
positions along the chain axis. This limit has been ap-Coulombic. For example, for potentials which are of inverse
proached in experiments by application of laser cooling. Thepower form 1f" at long range, the analogous argument
equilibrium positions are determined by force balance beshows that correlation energy dominates over the mean-field
tween the mutual Coulomb repulsion of the like-sign chargegnergy arising from long-range interactions whBr<n,
and the external focusing fields. For a finite length chairwhereas mean-field energy dominates over correlations in
confined by some external potenti@l(z), the interparticle the opposite casB>n. In three dimensions mean-field en-
spacing varies with positiom along the chain. In this paper ergy and correlation energy are of the same order wheB8.
we devise a theory that explains this variation. Seen in this light, this paper can be regarded as a specific
These 1D inhomogeneous crystals have a unique propergxample of the more general problem of determining equi-
that distinguishes them from other common forms of con{ibrium properties when both correlations and mean-field ef-
densed matter: correlation energy and mean-field energy afects are equally important, applied to the physically inter-
of the same order of magnitude; neither can be neglectedsting case of Coulomb interactions in one dimension.
when determining the equilibrium. Neglecting correlations is  We will account for correlations using a one-dimensional
equivalent to replacing th&l charges by a charged mean- version of the local density approximatidébDA) [6]. In the
field fluid (the correlation energy is the extra energy associLDA one approximates the correlation energy of the inho-
ated with the discreteness of the individual charges, and thimogeneous system by an integral over the correlation energy
energy is neglected in the mean-field approximatitiow-  of a homogeneous system. The approximation works well
ever, the energy of a uniform line charge is infinite: there iswhen the number of chargés is large and the interparticle
no mean-field approximation for the 1D Coulomb chain. Inspacing varies slowly with position.
order to obtain a finite energy the discreteness of the indi- In Sec. Il we develop a general expression for the energy
vidual charges must be taken into account, so one cannaf a Coulomb chain as a functional of the chain dens{),
neglect correlations. i.e., the number of particles per unit lendthe inverse of the
To see this another way, note that the energy of dnterparticle spacingIn Sec. lll we minimize this functional
D-dimensional Coulombic system of sikescales roughly as in order to determine the energy of the chain and the density
q>N?/L. This estimate follows from considering long-range as a function of positio. The results are compared to mo-
interactions between particles separated by a distance of diecular dynamics simulations of the 1D chain. An asymptotic
der L; there are roughl\N? pairs of such particles. On the expression for the density of the chain is derived, valid for
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FIG. 1. Coulomb chains confined by a quadratic potential for
different values of the particle numbir The positiore of each ion z
is scaled to ¢%/mw?) 2,

| he | d ic f i FIG. 2. Density per unit lengtlm, as a function of positionz.
arge N. The lowest-order asymptotic form applies eVenDots:n(zi) determined by MD simulation, whem is the position

yvhen surrounding conductors are present, and S_hOWS t_hGF the ith charge. Lines: method of trial variational functions.
image charges have only a small effect on the chain densityyasheq lines: one-parameter functifig. (23)]; solid lines: two-
In Sec. IV we examine the approximations inherent in theparameter function[Eq. (27)]. Both z and n(z) scaled to
LDA and consider an improvement to the LDA called the (¢2/mw?)13

square-gradient approximation. In Sec. V we discuss our re-

sults. as

IIl. LOCAL DENSITY APPROXIMATION a(2)=2.,-7. @)

Consider a collection oN like charges, confined along ) ) )
the z axis at positiong; , i=1,... N, by an external potential 1he inverse of this function,
$e(2). ) )
Note that we need not specify the formaf as a function n(z)=a *(z), 6)
of the transverse coordinatesandy; symmetry implies that
only thez dependence o, is needed when considering the is the density of particles per unit length along the Coulomb
chain equilibrium(We say nothing here concerning stability chain. Figure 2 indicates that this density displays a smooth
of this equilibrium to transverse motions; see RE¥s8] for  dependence om. In Fig. 2 we have actually plotted(z),
a discussion of stability The potential energy of this system rather tham(z;) wheren(z) is determined by interpolation

is of n(z). (Plotting the density evaluated at the actual particle
positions gives one a better feel for the actual length of the

N chain)
E=2, q%G(z :Zj)+2i qoe(Zi), Q) One goal of this section will be to attain some analytic

=l understanding of how the densityz) varies. We will con-

where G(zz) is the Green's function for the electrostatic struct an approximate expression for the enekgyf the
potential (multiplied by —4) including the effects of sur- SyStém that depends a1{(z). Functional minimization of
rounding conductors, if any. The equilibrium positions canWith respect ton(z) then will determine how the density
be determined by minimization & with respect to the;’s, ~ Varies. , _ _
which can be easily performed numerically provided tNat For example, the term.mvolvmg the external pgtenual can
is not too large. Some results are displayed in Fig. 1, neglec€ approximated by an integral ove(z) whenN is large
ing image charge effects so that=1//z,— z;|, and choosing andn(z) varies slowly:

for the external potential a quadratic well:

N
Q6ul2) = bmo’z? @ 23 asz)=a| dznzeia.  ©

wherem is the mass of a charge and is the oscillation

frequency associated with the potential. ®,[n] is a functional ofn(z) that determines the potential
Two observations are immediately apparent: the Coulomignergy due to the external potential.

chains depicted in Fig. 1 are inhomogeneous; that is, the We also require an integral expression for the Coulomb

interparticle spacing depends on position; and this depen- Self-energyX;-;q°G(z ). To this end, consider the self-

dence is smooth as a function nf potential-energyb of a globule of uniform fluid with density
We define the interparticle spacimgz) at positions p(r,z), chosen such that
itz po, T<ro(2)

Z=— (3) PLD=10,  r>ry2) @
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wherep, is a constant density. The radiug(z) and density Suppose that the Coulomb chain is infinitely long and
po of the globule are chosen so as to match the number pédromogeneous irz. ThenU is the difference between the
unit lengthn(z): energy of the chain and that of a uniform density cylinder.
) The correlation energy ™™ for this homogeneous system
mo(2) po=N(2). (8)  can be determined analyticaligee Refs[8,9)):
The self-potential-energy of the globule is h
U ) y— 2 +1n 200 15
Noan gt 19

d)ng'p(r,z)¢(r,z)d3r, 9

) ) ) ) ) where vy is Euler's constant. Provided that and r, are
where ¢ is the electrostatic potential, a solution to P0|sson’ss|ow|y varying, we can employ Eq15) to find U for a

equation nonuniform system in the local density approximation:
V2p=—4mqp(r,z). (10) ) o
In the Appendix we show for a long thin globule for U:Lmdz nz) -~ (M (16)
which
dry(2) or, substituting from Eq(15),
4z <1 and ry(z)<D. (11
o 1 n(z)rq(z)
— 2 - — -
whereD is the distance to surroundirfif any), that® can be U=q f,wdz #(z)| ¥ 4 +in 2 - @D
expressed in terms af(z) andry(z) as a double integral
overz. Note that the correlation energy depends logarithmically on
w0 n(2)? n(z) (= 2y \ 4 ro. However, whenb andU are added together to obtain an
dbzqu dz - — expression foE in Eq. (13), the dependence an, vanishes
- 0 ro(2)) dy and the energy depends only on the density per unit length:

x{y[n(z—y>e<z,z—y>+n<z+y>e<z,z+y>]}}. 12 . T d
)= |~ dz )| oy - 3 [y iniynca)] w

One might hope that minimization db+®d, with respect

to n(z) would provide a well-defined result for(z). How- X[yn(z—y)G(z,z—y)+yn(z+y)G(z,z+y)]

ever, the result depends an(z), and in factd—ow» as

ro(z)—0, since a line charge has infinite self-energy. +q¢>e(z)]. (18
In physical terms, the number of particles per unit length

in a fluid globule depends not only on the confining force
along thez axis, but also on the radial confining force. As Here we have used the fact that }im,G(z,z')=1/z
one increases the radial confining force in order to shrink the-2z'|, and have performed an integration by parts.
globule onto thez axis, the globule will become longer and  Equation(18) is the main result of this paper. In the next
longer inz without limit. We therefore cannot use E(.2)  section we minimizeE[n] in order to determine the energy
alone to determine the density per unit lengifz) of the E and densityn(z) of the chain. However, before we do so,
Coulomb chain. it may be instructive to evaluate E(.8) for a particular case
As discussed in the Introduction, we also need to accourthat can be compared to an exact result. For a Coulomb chain
for correlations, which are neglected in E@2). In order to  of finite length and uniform interparticle spaciray, the
account for correlations we add and subtrdetfrom the  Coulomb self-energy is
exact energ¥ given by Eq.(1), using Eq.(6) for the exter-
nal potential energy: 2 ]
E= 2 2> (19
E=d+d +U, (13) a =1 = il
where (we neglect the external potential and image charges for sim-
plicity). The sums can be performed explicitly for larbje
U=92>, G(z,z)—. (14  [10]:
1>]
. , q? In N
Now, U is the difference between the exact Coulomb self- E=— (N-1)y—1+In(N-1)+O _” (20)
energy of the chain, and the energy of a uniform fluid glob- o N
ule with the same density per unit length,dds an expres-
sion for the correlation energy of the system. We will now Let us compare this result to E@L8). A uniform chain ofN
obtain an approximate form for the correlation enetdy charges has lengt,(N— 1) and densitya, ! so, neglecting
which is valid when Eq(11) holds. image charges, Eq18) becomes
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TABLE |. Energy of Coulomb chains in a quadratic wgl units of mw?(q%/mw?)?3).

N Esimulation E(N)a E(N)b E(N)C E(N)d
20 180.3 181.1 179.8 180.1 179.8
40 665.76 665.84 665.27 665.6 665.3
80 2389.71 2393.9 2389.2 2389.8 2389.2
160 8414.2 8424.6 8413.9 8414.2 8413.53
1280 342 063.1 341913.3 341 876.50
5000 3735837.1 37348727 3734 469.71
10 000 12513 080.7 12 510529.8 12 509 232.82
8Equation(26).

®Numerical minimization of Eq(29) (same asvi =2 in Table I)).
®Best value, full numerical minimization, finite-difference method.
dBest value, full numerical minimization, Legendre expansion metfrain Table ).

ag(N-1) at 1
E(n)=q2f *" Tdz] yag - 2> G(z,zty)=—.
0 2 |yl
% ., d One straightforward choice fan(z) that works reasonably
X fo dy In(yag *) dy [n(z—y)+n(z+y)]|. well involves a single parametér[8]:
3N 2
@ (1B e
o - - nz)=14L L otherwise 23
The derivatives ofh(z*+y) created functions at the chain 0 '
ends, so the integral ovgrcan be evaluated, after which the
z integral can be performed, yielding L being the half length of the chain. The required integrals in
E[n] can then be performed analytically, yielding
(N-1)g®
Eza—[y—1+ln(N—1)]. (22 1 - 3 g?N?
0 = e S
E 10wa L +5 |75 +In(6N)|. (24

This matches Eq(20) to O(InN/N). When an external po- L ) . .
tential is added we will see in the next section that the energ}/linimization of E with respect td- provides a relation be-

functional also matches simulation results for the minimumtweenL andN:

energy state to high accuracy. 5

L3(N)=3—qu —1—3+In(6N)
Mw Y 5

, (25
Ill. DETERMINATION OF THE COULOMB CHAIN

DENSITY AND ENERGY IN THE LDA and use of this relation in E§24) implies that the energy of

In this section we minimiz&[n] using several different the chain is
techniques. First, we employ trial variational functions in
order to obtain analytic estimates for the energy and density E(N)=
of the chain. Next, we consider a full numerical minimiza-
tion of the energy functional using two numerical tech-
niques: expansion af(z) in basis functions, and finite dif- For variousN valuesE(N) is compared to the simulation
ferencing. Finally, we consider the limit of largd and results in Table I, and the density is compared to the simu-
analytically expand the variational solution fio¢z) in pow-  lation in Fig. 2. The energies are close, but are slightly larger
ers of 1(InN). In each case we compare the results to mothan the simulation results, and the length of the chain is
lecular dynamics(MD) simulations. For simplicity image slightly overestimated, although &sincreases the percent-
charge effects are neglected throughout, except in Sec. Ill Gge error decreasgslowly).

An improved fit to the simulation results can be achieved
by using a more flexible trial variational function,

3 Nmw?L%(N) (26)
10 :

A. The method of trial variational functions

An approximate minimization of Eq18) can be accom- A-BZ, |z]<L
plished by choosing an appropriate variational function for n(z)= 0, |z|>L. (27
n(z) whose shape depends on one or more independent pa-
rameters. The energy can then be minimized with respect tShe constraint that“ n(z)dz=N implies a relation be-

these parameters. tween the parametess, B, andL:
We will neglect image charges and assume a harmonic

potential of the form given by Ed2). In this case 2L(A—BL?/3)=N, (29
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so there are actually two independent variational parameters, The scaled half length is determined by the condition

as opposed to only one in E(RJ3). that the number of charges remains fixed during the minimi-
The integrals in Eq(18) can be performed analytically, zation procedure:

yielding the following result folE[ n]:

- i
L=N/f dzn(z). (31
62 A BL? -1
E=q’L{ — = A?+L%— |5 ——
15 q 3 5 We first perform the numerical minimization by means of
12 26 a finite-difference scheme. We replace the functige) by
+ — AB— — B?L.? + — \/A/ tanh *(\/B/AL) the set of discrete value¥yz;), z=i/M, i=0,1,2....M. In
5 25 5L order to speed up the numerics we use the symmetry of the
4AB 282L4 harmonic well to assume(—z) =n(z), and we also assume
+(2A2_T L2+ {y+In[2L(A— BLZ)]}] n(1)=0. The integral overz is then performed using the
corrected composite trapezoid rule:

(29
1
ffdz—m( 2 f(z)+ [f(0)+f(1)]

(To obtain this result one must take into account the density
discontinuities atz=+*L, which createé functions in the 1
derivative ofn.)

Equation(29) can be minimized numerically for a given 12M [+ (1)]) (32
value ofN by substituting forA in terms ofN, B, andL via _
Eq.(28), and minimizing with respect tB andL. Results for ~where f(z) is the integrand in Eq(30). Since symmetry
the energy are displayed in Table I, and the density is comimplies n’(0)=0, one can show that’(0)=0; andn(1)=0
pared to the simulations in Fig. 2. There is a considerablémplies f(1)=0. We replacef’(1) by its finite-difference
improvement in the fit compared to the one-parameter variaform, f'(1)=[f(1)—f(zy_1)IM=—f(zy_)M.
tional function of Eq.(23). We must also finite difference the integrals owethat

One might imagine that by choosing even more flexibleenter intof(z). For those integrals we employ the uncor-
trial functions with more variational parameters, one couldrected composite trapezoid rule,
further improve the accuracy of the fit. However, as we will - MEi—1
see in the next section, this is true only up to a certain point, [ 1= % — —
since the convergence of the theory to the true energy anJO 9(y)dy= 2 g(yJ)+ 5 [9(0)+g(1=2)]],
density turns out to be “asymptotic.” By this we mean that (33
a series of increasingly flexible variational functions con-
verges only up to a certain point, beyond which the resultsvhere g=Inyn’(z;=y), noting that the logarithmic diver-
for n(z) and E diverge. However, we will see that &  gence ing(0) vanishes through a cancellation between the
increases, more terms in the series can be kept before loss o integrals overy. The derivative ofn is evaluated using
convergence, and for large it is possible to determine the the midpoint rule:
energy and the density to high accuracy.

n(zi11)—n(z_1)

n'(z)= , 1=1,...M-1
B. Numerical minimization of E[n] 2(1M)
In order to numerically minimizé&e[n], we first assume n’(0)=0,
that n(z) is nonzero only for|z|<L, whereL is the half
length of the chain, a parameter to be determined during the n'(1)=—n(zy_1)/(1M). (34
minimization procedure. We writE[n] in terms ofz=z/L,
y=y/L, andn=n(q%mw?)¥® where g%/ mw?)*?is a scale For a given number of chargéé there areM variational
length associated with the harmonic potential: parameters,n(z), i=0,... M—1. Minimization of E[n]
with respect to thes® parameters can be performed using
2q2L any numerical minimization routine.
E= (@med f Zn(2)| n(2){y+In[n(z)L ]} Results for the energy as a functionMfare displayed in

Fig. 3 for N=20, 40, 80, and 160 charges. A& increases,

1 7_ — the energy is observed to converge to a value which is a
+ 5 o dy In(y)n’(z—y) good match to the simulation resulisee Table); however,
whenM becomes too large the energy begins to diverge. As
1z 1= N increases, the range & over which energy converges
3 fo In(y)n’(z+y)+ 5 Lz ) (30 increases, and the energy can be determined to more signifi-

cant figures. The loss of convergence is a common problem
. in local density approximations of Coulombic systems, and
and where. = L/(g%/mw?)*® andn’(z) = dn/dz. Here again is related to the onset of oscillations in the density. These
we have neglected image charges so thét,z*+y)=1/y| oscillations can be observed in Fig. 4 fbi=20 and 40,
and we have assumed the trap is harmonic for simplicity. which displays the density as a function of position com-
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0 10 20 30 40 50 60 70 80 FIG. 5. Density as a function of position determined by the

method of basis functions, compared to MD simulatidppen
circles for N=20, 40, 80, and 160, keeping different numbers of
basis functions: forN=20, M=2-5; for N=40, M=2-6; for
N=80, M=2-7; for N=160, M=2-8. For each value ol the
dashed curve corresponds kb=2 [same as Eq(27)]. For M=3
the differentM values can be distinguished by noting that the den-
sity at z=L increases a$/ increases. Botlz andn(z) scaled to
pared to the MD simulations. F&f=20 and 40 we also plot (g%/mw?)3,
the density for the values &fl that gives the best fityl =40
and 60, respectively. Fdd=80 and 160 no oscillations in proach rather than to a fundamental property of the density
the density are apparent becaldeis not sufficiently large  functionalE[n], we have also employed a second numerical
to have lost convergeno@ =80 for these twoN values.  minimization technique. In this approach we expard) in
One can see that the fit improvesMsncreases. the even Legendre polynomials:

Lest the reader think that the oscillationsrigz) are re-

number of points

FIG. 3. Energy as a function of the number of poiktskept in
the finite-difference method fd¥=20, 40, 80, and 160. Energy in
units of mw?(q%/mw?)?2.

lated to a numerical instability in our finite-difference ap- X _
N2)= 2 AnPon(2). (35)
m=0
10 o T ‘ T The coefficientA, is determined by the normalization condi-
tion Eq. (31),
] A N (36)
* oL’

so now there _areM+1 variational parametersA,,

A,,....Ay, andL. Minimization of Eq.(30) is aided by the

fact that all of the required integrals oveandy (except for

f3dznnn) can be performed analyticallfNote that the

caseM =1 corresponds to the trial function of E®7).]

LA Convergence to a limiting value of energy and density as
"‘. 1 M increases is quite rapid. HoweverMf becomes too large
Vo convergence is lost and oscillationsrifz) again ensue, just

n(z)

: as in the finite-difference schenfsee Fig. 3. Indeed, when
e N is not large, the loss of convergence makes it difficult to
determine the energy or the density beyond a certain accu-
racy. For example, whenN=160, Table Il implies
E=8413.9+0.1), and the density matches the MD simula-
FIG. 4. Density as a function of position determined via the tion well, but forN=20 or 40 the energy does not converge
finite-difference method, compared to the MD simulations for t0 @ very well-defined value, and neither does the density, as
N=20, 40, 80, and 160. Dashed linéd:=80. Solid lines are the can be observed in Fig. 5.
values ofM giving the best fitM =40 for N=20 andM =60 for However, the Legendre function technique is well suited
N=40. Bothz andn(z) scaled to ¢%/mw?)*3, to consideration of very larg&l values. We consider the
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a function of the number of basis functidvis(best

M N=20 N=40 N=80 N=160 N=1280 N=5000 N=10 000
2 17980 665.270 2389.189 8413.924 341913.280 3734872.736 12510 529.844
3 179.76 665.242 2389.173 8413.535 341878.863 3734503.176 12509 345.314
4 179.38 665.061 2389.099 8413.526 341876.692 3734474936 12509 252.360
5 178.62 664.720 2388.923 8413.444 341876.504 3734470.699 12509 237.350
6 664.144  2388.636 8413.288 341 876.501 3734469.886 12509 233.982
7 2388.200 8413.056 341876.488 3734469.724 12509 233.105
8 8413.728 341 876.444 3734469.706 12509 232.875
9 341 876.369 3734469.706 12509 232.826

10 3734469.694 12509 232.822

11 3734 469.664 12509 232.821

casesN=1280, 5000, and 10 000 in Table II. Fbr=1280
the value ofM giving the best convergenceli$=6, achiev-

Z=zIL, y=y/L, N=nL/N, ¢.=d.L/gN, (37)

ing eight figure accuracy in the resulting energy. Whenyherel s the half length of the chain. Assuming the chain

N=10 000, ten significant figure accuracy nis achieved
for M =11 (the maximum value oM that our code allowed
The densities for these three cases are shown in FHign &
logarithmic scalg Convergence to the limiting form may be
seen here by plottingn(z) for two values ofM, the best

value, and the best value minus one. Since there is no ob-g[n]=

servable difference im(z) between the twdV values, we

may conclude that the densities shown have converged to the

correct limiting form, even though there are no simulation
data with which to compare sind¢ is too large to perform
simulations easily.

C. The large N limit of the LDA

It is possible to obtain some analytic results figz) and
E(N) in the limit thatN—oo. First we scal@, y, andz in the
following manner:

1

—— method of basis functions| 1

- — -large N asymptotic form

0.8

n(z)

FIG. 6. Density as a function of for N=1280, 5000, and

10 000. Solid curves are the results of the method of basis func-

tions. For eactN value two values oM are plotted, the best value
and the best value minus orisee text, the curves fall atop one
another. Dashed curves correspond to the I&gesymptotic form
of Egs. (48), (493, and (53). n(z) scaled toN/L® whereL© is
given by Eq.(47), andz scaled to %/mw?)*3,

runs fromz=—L to L, so thatn(z) =0 for |z|>L, and keep-
ing image charge effects, the energy functional of B®)
can be written as

quld INI_n_J’wd_I_d
T, Zl n“(y+In +nn)—§ . ynyd—y—
X [YG(z,z+y)Nn(z+y) +yG(zz=y)n(z-Y)]
Mo

(39

whereG=LG.
We will perform a variation keepingin dz=N=const, or

1 [ —
J ndz=1.
-1

This variation is most easily performed by adding a
Lagrange multiplieix and minimizing the function

(39

_ . N (1
F[n]=E[n]—q2E J dzn. (40)
-1
The variational equatio@F/5n(x) =0 then implies
_ _ °__d
[2y+1+2Inn+2 InNN]n+ ¢pe— N — f dy Iny d_y_
0
X[YG(z,z+y)n(z+y) +yG(z,z-y)In(z—y)1=0,
[Z]l<1 (413
and this equation, along with the condition
n(z)=0, [Z]>1 (41b

determines the density.

We will solve Eq.(41) iteratively forn in an expansion in
InN. However, before we do so it is instructive to examine
one feature of the solution following from E¢41): n(z) is
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either continuous at==1, i.e.,n(£1)=0, or elsen(*1) is N=40
singular. Ifn(z) is discontinuous at=*1, the derivatives in — — : —
EqQ. (419 imply that

COO0C0O0CO00O000 OO0 C 0O O O O &} o] R=oo

[2y+1+2 A, +2 INNTR, + de— A+ 1 (1)(1—2)G(Z,1)

C00000O00O00OQOO0 00O O 0 O O R=86

XIN(1-=2)+n(—1)(1+2)G(z,—1)In(1+2)

D0000Q0O0CCO00O00C O O O & 0O OR=7.2

1+z

d — ‘ . . ‘ . . . ‘
~/, dylnyd—y[yG(z,z—y)nm(z—y)] 0 1 2 3 4 5 6 7 8

iz _d __ FIG. 7. Effect of image charges on equilibrium positions, for
B Jo dy Iny d_y[yG(Z*Z+y)nin(Z_y)]:0’ N=40. Right half of chain displayed. Spherical conductor, of radius
(42) R, centered at origin, is placed around the chain. Results for three
values ofR are shown. Distances are in units off(mw?).
wheren,(z) is the solution fom(z) when[z]<1. However,
asz—=*1, the terms proportional to (h+z) are singular, so dently image charges affect the 1D chain onlyCdfl/InN).
n,(2) is either infinite atz—=+1 or elsen;,(=1)=0. The effect of image charges on the 1D chain can be easily
__We will focus on the nonsingular solutions for which observed in MD simulations that include surrounding con-
n;,(=1)=0. Under this restriction iterative solutions of Eq. ductors. Figure 7 shows the equilibrium positions of 40
(41 can be constructed. We have scaled the density so thatéharges in a trap consisting of a harmonic external potential
is of O(1) asN—w». The lowest-order solution to E41) is  as well as a spherical conducting shell of radRusentered at
therefore the origin. The Green's function in this case is
- G(z,2')=1/z—2'|-RI|R*~zZ|. As one would expect in-
N~ ¢e(2) tuitively, the charges are attracted to their images in the con-
SN [Z]<1. (43) ductor, slightly lengthening the chain. However, even when
R is only slightly larger tharnL the charge distribution is
The Lagrange multiplier is then determined by the conditionaimost the same as the caRe. This is different than for

)=

Eq. (39), so the lowest-order solution for is 2D or 3D plasmas, where the presence of nearby conductors
0) — would strongly distort the charge distribution.
AT=IN+(¢e)/2, (44) Improvements to Eq48) can be made in an asymptotic

N —_— . . -1 .
Where<¢e>=fl,1dz $<(2). Thus to lowest order ifinN) . series in powers oflnN)~". To next order, we write

the density is

o o n=n@+n®), (493

1_ ¢e(z_)_ < ¢e>/2 |;|'$ 1 L
nO(z)= S 2InN : -1 (45) A=A 4\ D (49b)
’ L=LO+LD, (499

Note thatge(z_) depends on the half lengthof the chain,

which we have not yet determined. For example, for the.l.he solution fom™ follows from Eq.(413:
harmonic potential ' '

— __ me? L7 2 NN +[ 2+ 1+ 2 Inn@ ] + P -\ D)
be(2)= 57 - (46)
20 N 1+z

—d — -
— — )(7—
The length of the chain is determined by the condition that dy Iny dV[yG(Z’Z yIn(z=y)]
n=0 at z==x1. For the harmonic potential this condition

together with Eqs(45) imply that B 11—7— —d = —
P . dy Iny dy[yG(z,Zer)n (z+y)]=0, (50
03— A
LO3=3N InN ——, (47)

where{M = ¢o(Z)| — 0+ L)~ be(Z)| — @), or Taylor ex-

the lowest-order solution for the half length of the chain. Forpanding,
this half length the density becomes

n®=3(1-22). (48) ‘?fel): L % @(Z_)\L=L(O)- (51)

Note that Eq(48) is equivalent to the trial function, E¢R3),

which explains why this trial function is a good choice for a Note that unless™@(+1)=0, ™ is infinite atz=+1; as we

plasma in a harmonic confinement potential. discussed previously we therefore have chas8ti=1)=0.
Equations(45), (47), and (48) apply even when there are  The Lagrange multiplien™ is determined by Eq(39),

surrounding conductors that create image charge effects. Evivhich implies
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l _
J' ﬁ(_l)dZ: 0. (52) 10 [ T T T T T T ]
_1 B
The correction to the half length®™ is determined by the 8 T ]
condition thatn™(+1)=0.
For the harmonic potential of Eq46), and neglecting 6 ]

image charges, one can substitute &) into Eq. (50) and
perform the integrals analytically. After some work, and after
applying the conditions™(+=1)=0. and Eq.(52) we obtain 4
for the density

n(z)

2(INN)nM =2(1-2%)[ -5+ 6 In2—3 In(1—2?)], 20 ]
(539 [
0
for half length of the chai
and for half length of the chain 0 5 4 6 8 0 1 1

3Ng? 7 *

(LO+LW)3= q2 In(6N)+y— = +0 —) : _ _ _
Mw; 2 InN FIG. 8. Density as a function af for N=160. Dots: MD simu-

(53b lation results. Dashed curve: larde asymptotic form[Eqgs. (48),
(493, and (53)]. Solid curve: numerically iterated solution of Eg.
Equation (53b) is similar to the expression for the half (41), showing sixth iterate. Botl andn(z) scaled to ¢%/mw?)'?.
length, Eq.(25), derived using the trial function method.

However, Eq.(53b) is a better(slightly shortey approxima- The exact Coulomb energy of the chain is

tion for the length, since it does not rely on an arbitrary

choice for the form of a trial function. Equatiori48) and q°

(53) provide the asymptotic form for the density and length E=2 Tz -z’ (55)
of the chain in a harmonic trap neglecting image charges. As j"<'i

an example we compare the asymptotic form for the density

to the N=1280, 5000, and 10 000 data in Fig. 6, and weNow, a small oscillation in the density of the chain is equiva-

compare to the MD simulation fdd=160 in Fig. 8. lent to an oscillation in the position of the particles. To be
Further improvements can be made by iterating the soluprecise, for largeN we can write a differential equation re-

tion of Eq. (41) in order to keep even higher-order correc- lating the density to the positioz(i) of particlei, based on

tions to the density in powers ¢fN) L. The interation can Egs.(3) and(5):

be performed numerically, and we find that it provides ex- )

cellent asymptotic convergence to the numerical simulations. n(z)=1/(dz/di). (56)

For example, Fig. 8 shows the result keeping up to the sixth ) o ) ) )

iterate, which is very close to the simulation results forSolution of this differential equation yields

N=160. However, as in the numerical work of Sec. 11l B, the

convergence is iny asym_ptotic: if too many iterates are kept i(2)=nyz ﬁ cogkz), (57)

the solution begins to oscillate. k

IV. THE SQUARE-GRADIENT APPROXIMATION which can be inverted to obtaif(i) to O(A?):

In Eq. (18) the local density approximation was used in _ . Ag _ A .
the energy functional. This approximation employs the cor- 2(1)=aol + == COS(kaol)< 1-% sm(kaol)) +0O(AY),
relation energy per particle of a homogeneous Coulomb (58)
chain, Eq.(15), in order to determine the correlation energy
U of the inhomogeneous chalisee Eq(16)]. To see whatis  wherea,=1/n, is the average interparticle spacing. To first
left out in making this approximation, and how one might order in A one can see that there is an oscillation in the
systematically improve on the LDA, consider an infinite interparticle spacing, as one would expect since the density
Coulomb chain, initially homogeneous with density, to s oscillating inz.
which is added a small density oscillation: Using Eq(58) in Eq (55) and again expanding iA to
quadratic order, one finds that for an infinite chain the terms

n(z)=no+A sin(kz), (34 Jinear inA cancel by symmetry and the energy is
wherek is the wave number of the oscillation. We will de- 222 *  ir?(kani/2
termine the effect of this oscillation on the energy of the E—E,+2(N—1) 4 D St (.aOJ ) (59
chain in two ways. First, we can determine the energy by agk2 i=1 j° '

expanding an exact expression for the chain energy in pow-

ers of A. Second, we will employ our energy functional, Eq. whereE, is the energy of the uniform chain, given by Eq.
(18). Comparing these two results will tell us what the LDA (20) for large N. The O(A?) term is the potential energy
has left out, and how we might improve on it. associated with a phonon of wave number
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Assuming thaka, is small, so that the wavelength of the
inhomogeneity is long compared to an interparticle spacing,
one can expand the sum in E&9) to obtain

E=E,+2(N-1)g?A%a,

X

3
5~ In(kao) (60)

2 14212

k 2
io)+

n(z)

We will now compare this expression to the expression ob-
tained from Eq(18). Substituting Eq(54) into Eq.(18), and
keeping only terms up to quadratic orderAnone performs
the integrals over a chain of finite length=(N—1)a,.
Then takingL —« and keeping only terms @ (L) one finds
that the energy is

(N-1)
2

E= E0+

252, |3

g°Acag E—In(kao) . (61
Note that this expression, which employs the LDA, is nearly
the same as the exact expression, (), but misses the last FIG. 9. Density as a function af using the square-gradient

term in the square brackets. This term@fk?), along with  approximation forN=20 and for three values dfl. Both z and
the other terms in the series of even higher order, is missing(z) scaled to ¢2/mw?)%3.

from the LDA. By keeping thi©(k?) term in the energy we

may improve the convergence of the energy functional to the

actual energy. This extra energy can be expressed in terms Y?f have devel_oped an energy functio[ﬁﬂ._(;S)]_ based.on
a derivative of the density: the local density approximation. When minimized, this en-

ergy functional provides the energy and density per unit
q? 1 9n\? length as a function of position. The results were compared
AESGA:mj dz(ﬁ E) ' (62 to molecular dynamics simulations and were found to be in
good agreement with the simulations provided that the num-
where we have kept terms only to lowest orderAinThis  ber of patrticles in the chain was sufficiently large. Of course,
extra energy is associated with variations in the density, anth present experiments a few dozen charges at most are
is similar to a term appearing in the energy of inhomoge+rapped in the chain; and the determination of the equilib-
neous fluids and referred to as the square-gradient approxium can be easily performed via molecular dynamics simu-
mation(SGA) or the van der Waals approximatiphl]. Ina |ations such as those described in Sec. II. The density func-
fluid it provides an approximation to the interfacial energytjgnal theory is valuable fo>1, when MD simulations are
due to _surface tension. It is positive sin_ce surface tensioRificult to perform. Such large chains may be realized in
always increases the energy of a stable interface. future experiments since some possible applications such as
Equation(61) shows that the LDA neglects terms propor- atomic clocks[3,4], quantum computerf5], and bunched

tional to gradients of the density. Thus, for slowly varying . . .
densities, the LDA is a good approximation, as expectedcryStamzed beams in storage ringk?] appear to favor large

Also, adding Eq(61) to the energy functional should helpto . : .
suppress oscillations in the density that occurred in the LDA One-dimensional Coulombic matter was observed to have

since such oscillations increaadEg;,. However, the coef- a property that disting_uishes it from ot.her Coulc_>mbic Sys-
ficient of 2 in Eq. (61) is rather small, so we find that it does €MS: both the mean-field and correlation energies must be
not stop the oscillations: it merely reduces their magnitudek€Pt when determining equilibrium properties; unlike 2D and
An example is shown in Fig. 9 for the case NfE=20 par- 3D Plasmas, correlation effects influence the density on
ticles, a case for which oscillations are easily apparent in th§cales large compared to an interparticle spacing. As a con-
LDA (see Fig. 4 We have added E¢g, to the energy func-  S€duence, image charges due to surrounding conductors were
tional of Eq.(18) and have minimized the energy using the shown to have only a small effect on the charge distribution
finite-difference method described in Sec. IIB. At in-  ©f @ 1D Coulomb chain. As we discussed in the Introduction,
creases the density oscillations are suppressed but not elinfflis balance between correlation and mean-field effects also
nated compared to Fig. 4, where only the LDA was em_oc%urs in higher-dimensional systems. In twe(’) dimensions the
ployed in the energy functional. For larger valueshband ~ L/r* potential has this property, as does the” Potential in

for M =100 the density in the SGA was found to be almostthree dimensions.

identical to the LDA results. In the future we intend to extend the present work to
study finite-temperature effects in the 1D chains. Presumably
V. DISCUSSION the equilibrium density is affected by the pressure associated

with random thermal motions of the particles, and a density
In order to describe the minimum energy states of inho{functional theory based on minimization of free energy can
mogeneous 1D Coulomb chains confined by external fieldye developed to describe this behavior.
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¢(r,Z)=qPOJ dﬁ’j dz’frO(Z)r’dr’G(r,r’)
0 Z—e€ 0

2m ’ e ’ ro(z’) ™ ’
+Qpo . de B dz . r'dr'G(r,r’)

2 o ’
+qpof da’f dz’JrO(Z)r’dr’G(r,r’).
0 Zt+e 0

(A3)

In the last two integralg is sufficiently large so that we
can replaces(r,r') by G(z,z'), the Green'’s function evalu-

APPENDIX: MEAN-FIELD ENERGY
OF A UNIFORM GLOBULE

In this appendix we evaluate a general expression for the
mean-field self-energy of a uniform fluid globule of density
po- We assume that the globule is cylindrically symmetric
and thin: its radius o(z) is small compared to the distance to
the surrounding electrodeB,, and slowly varying as a func-
tion of axial positionz. The density and radius are chosen to
equal a given number per unit lengtiiz),

7 6(2)2p0=N(2). (A1)  ated along the axis. Ther’ and ¢ integrals can then be
performed.
The electrostatic potential is then In the first integral in Eq(A3), r andr’ are sulfficiently
, close together to neglect the conducting walls, and then we
¢(r,z)=qp0f dG’J' dz’frO(z )r’dr’G(r,r’). can approximaté by its vacuum form,
0 —®© 0
(A2) 1 1

G )= = =

We will eventually be interested in values iofand z within
the globule, sdz—2'| is much greater than both andr
except for a small range af values near, |z—z'|<e where

V(z=2)24r24+1'2=2r1'cos’

Ther' integral can then be done exactly. Putting together all
three terms we have

2 Z+e
¢(F,Z)=qp0j0 de’Li dz’{ Jr2=2rrjcosd’ +ry+(z—2')2—\r?+(z—7')?

Jr2=2rricosd’ +r%+(z—2')2+r—r 0099’)

JrZ+(z—2")2-r cos’

+r cosﬁ’ln(

z

(A4)

+7TC]p0(f dz’r{)ZG(z,z’)+f ) dz’r(’,ZG(z,z’)),

z+

whererj=ry(2') andry=ry(2).
The integrals ovep and fromz—e€ to z+ € in the first term can be performed asymptotically in snedlhoting thatr and
ro are also ofO(e)] and the result is

ré(z)—r2+réln452/r§+f dy[ra(z+y)G(z,z+y)+r3(z—y)G(z,z—Yy)], r<ro(z)

(r,z)=mqpoX (A5)

rSIn4eZ/r2+f dy[rad(z+y)G(z,z+y)+r3(z—y)G(z,z—y)], r>ro(2)

where we have made the replacemgntsz’ —z andy=z—2', respectively, in the last two integrals of E@4).

The integral ovey is infinite ase—0 sinceG(z,z+y)— 1/ly| asy—0. However, thes dependence can be canceled out by
a mathematical trick. If one multiplies and divides yin the integrand and then integrates by parts, aterm appears,
canceling the laterm in Eq.(A5). One can then take—0 and obtain a finite result:

o 2y \ d
ri(z)—r2- fo dy In(ro(—z)) d—y{y[ré(z—y)e<z.z—y)+r%<z+y)G<z,z+y>]}, r<rg
b(r,2)=mqpoX (A6)

de 2y\ d ) )
- |, dy | 7| G {0Mrz=y)8@z=y) +rizHy)Gz 2yl 1> 1o,
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Note that the form of the potential as a functionrof the same as that of an infinite cylinder of radigs it is quadratic in
r within the plasma and logarithmic outside the plasma. This form for the potential is valid only when &odh , are small
compared both to the gradient scale lengthrgifz) and the distance to the electrodes.

Finally, the energy® of the globule follows from the general formula

1 3 1 * fo(2)
O=3q| pd d°r=3Qqpe27 ﬂodz . r dre(r,z).

Performing ther integral yields

e n(z) xd | 2y | d G G A7
2@ C YN @{y[n(z—y) (z,z—y)+n(z+y)G(z,z+Yy)]} |, (A7)

where we have employed E(A1) to express 3(z) in terms ofn(z).

<I>=q2f dz
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