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Effect of partially reflecting boundary conditions on the decay of metastable rest states
in an activator-inhibitor system
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We study the effect of the boundary conditions on the spontaneous nucleation and evaporation of excited
domains in the bistable regime of an activator-inhibitor stochastic system. In such a regirasieariational
approximation can be used to obtain the stationary distribution. The nucleation and evaporation rates of the
resulting nonuniform structures are investigated using a piecewise-linear dynamics to obtain analytical results.
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PACS numbdis): 02.50~r, 05.40:+j, 47.54+r

I. INTRODUCTION tems are fed by diffusion from the boundarj@€]. Here we
are concerned with partially reflecting b(albedob.c), that
The decay of metastable statésward globally stable relate at the boundary the fieldu(x,t) with its derivative,
ones is a recurrent problem in various fields of physics andby an albedo parametér
physical chemistry[1-3]. Typical examples of different

nucleation phenomena can be observed even in open systems au

far from equilibrium[3—7]. The decay of metastable states on| = kux.b| Q)

has been studied for many years, from experimental and the- r r

oretical points of view[8,9]. The statistical-mechanical

theory was first formulated by Kramef4], and extended For one-component bistable RD systems, the change in

since by several authors. A recent review shows the state dhe relative stability of locally stable attractors induced by a
the art[3]. In reaction-diffusionRD) systems, such phenom- change in the reflectivity of the boundary, was reported in
ena can, in principle, be studied in two different ways. TheRef. [14]. These results were extended in Rdfs5,16 to
first one is to evaluate thmean-first-passagdime (MFPT)  consider the effect of an external noise in the transition be-
between metastable and stable states, and the second ondwsen the attractors.
to find the nucleation rate using thux-over-population The purpose of this paper is to extend the forementioned
(FOP method. These two procedures are deeply related, anahalysis to more general bistable systems without the restric-
give information on the dynamical response of the systention of a variational formulation. We shall concentrate here
under the effect of fluctuations]. on a simple model of aactivator-inhibitor RD system that
Both the MFPT and FOP methods require a knowledge ofs nonvariational and investigate the rate of domain forma-
the stationary probability density. It is a nontrivial task to tion out of the metastable state, induced by an additive ex-
determine this density in nonvariational RD systems. Thes¢ernal noise(fluctuationsg, under the effect of partially re-
situations call for approximations to find out the global dis-flecting boundary conditions. By a *“quasivariational
tribution. For instance, a WKB-type method has been used tapproximation,” that is consistent with a singular perturba-
obtain stationary probability densities for some weak-noisdion approximation, we shall estimate thenequilibrium po-
cases, conductingn leading exponential order in the noise tential for the system(for stationary patterns identify the
strength to nonequilibrium generalized potentidls0,11]. globally stable stationary solution from the metastables ones,
The features of this phenomenon in spatially extendednd investigate the effect of fluctuations in the spirit of the
systems are still under study, particularly when the effect oflux-over-populatiorapproach to the reaction—rate theory for
the boundary conditionb.c) is considered. Recently, it has extended systems.
been shown that b.c. play a relevant role in the appearance In the following sections we present a deterministic and a
and stability, as well as on the propagation of spatial strucstochastic analysis of the specific model we will work on.
tures[12—19. The nature of the interactions between chemi-First we solve the stationary case with albedo b.c. The study
cal systems and their environment is a relevant ingredient iincludes a linear stability analysis of the resulting patterns
the process of establishing a nonequilibrigaissipative re-  and the calculation of the “effective nonequilibrium poten-
gime. Particularly, the role that b.c. will play in a chemical tial” for the stationary case by using aguasivariational
reaction will depend on their nature. As an example, the firsapproximation
unambiguous experimental observation of a Turing structure The stochastic analysis consists in the study of the effect
was made in single-phase open reactors for which the sy®f external additive noises, by focusing on the nucleation
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rate of the nonuniform resulting structures and the relate
MFPT. Section VI includes a final discussion of our results

1. MODEL

We consider here a simple two-component, excitable RD

system, defined in one dimension as:

2

Ju(x,t) d“u
_ (-1) 27 ~ _ —a)—
pr (e7y) P +u(l-u)(u—a)—v
dv(X,t) _ v N 2
Gt 2 TRuUT . (2

where u(x,t) and v(x,t) are called the activator and the
inhibitor, respectively, in a biological context. The constant
e,7,B,7, anda are all positive.

The nonlinear nature of Eq2) makes these equations
difficult to solve, even in the stationary case. We conside
the following piecewise-linear version of Eq®) that, while
keeping the essential features of the bistable problem,
amenable for analytical calculations:

au(x,t) 2
_ (-1) 22 —al—
P (ery) € ut+6lu—al-vy,
w(xt) 3
=—%+Bu—yv.
ot X2 Bu—yv 3

Here [ x] is the Heaviside step function, aad(>0) is the
excitability threshold. Equation$2) and (3) represent a
bistable system ia<vy/(B8+ vy). Otherwise, Eqs(2) and(3)
represent a monostable excitable RD system. This model is
piecewise-linear version of the Bonhoffer—van der Pol sys
tem, which is a fundamental model of an excitable RD sys
tem[13,17,2Q. Such an equation has been used to model th
Belousov-Zhabotinskii reaction in the excitable regifaé],
pulse propagation in nerve fib¢e2,23, the formation of
spatial structures in electric glow discharges, ¢f—27.
For this kind of system, stationary patterns have been pr
dicted in theory and observed in experimeitg,28—3(Q.

As far asa is positive, the piecewise-linear dynamics is
essentially the same as the original one. We must emphasi
here that neither the original set of equatioi nor its
piecewise-linear versiot3) are variational as far ag is
positive, because the conditions needed to define a potent
are not fulfilled[10]. When the inhibitor fieldy follows the
activatoradiabatically (that is, whener,— ), we can con-
sider thatdv/dt=0. Herev can be exactly obtained from
u, and it is possible to write out a Lyapunov functional for
this case. The resulting time-evolution equation for the acti
vator field is nonlocal in the space coordingt&,31,32.

IIl. PATTERN FORMATION

In this section, we will solve Eq3) with symmetric al-

bedo b.c. for the stationary case. The analysis of stationary-
pattern formation for the proposed model, for infinite geom-

etry, was done by Kuramot®8]. The generalization of the
method to finite geometry results straightforwardl]. The

stationary solution is written as a linear combination of ex-
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fonentials exp¢x), wherek; are the roots of the character-
Jistic polynomial. The solution is piecewise analytic, with
matching points afx|=x., where u(x;)=a. The coeffi-
cients are fixed by the boundary conditionsxat + L :

au _—k
n :L_+ u(x,t)
4
v i
% iL——f— U(X,t)

*L

and the matching conditions &t . The stationary solutions
are independent of, , since it is a dynamical parameter that
specifies the ratio between the relaxation constant ahd
that ofwv.

We will concentrate on simple symmetric patterns. The
tsolution under consideration is such that a central part of the
system forms a frozen activated region. The structures have
an inner region where varies abruptly, and two outer re-
gions where the activator and inhibitor fields vary in a
smooth fashion. When the parametds small enough, these
regions are separated by a sharp interface. The albedo bound-
ary conditions will affect the extension of the frozen acti-
vated region.

In Fig. 1(a@) we show the behavior of the matching coor-
dinatex, as a function ok for different values of the thresh-
old parametern. We found that there is a parameter regime
(small a) where there are two disconnected branches of
Xc, and therefore two nonuniform structures exist that are
associated with these parameters.aBicreases, a qualita-
tive change inx.(k,a) occurs. There is a critical value of
& indicated bya., such that fora>a, the two branches
toalesce. This last aspect is depicted in Fi@),Ifor the case
‘of k— (i.e., Dirichlet b.c).
€ Itis worth remarking here that, for small enough values of
k, there are nonhomogeneous solutions that tend toward the
known stable homogeneous Neumahknr+0) solutiong13].
However, they are not included in Fig. 1 because in that case

&he whole pattern is above the threshaldi.e., it does not

have the form we analyze here.

For both open or closed curves, as previously indicated,
Hatterns corresponding to the upper branches have a larger
activated zone. It is stability that selects between these
branches. Figure 2 shows typical patterns associated to
i3l 0.052=0.1243k=4.06, andz, =5, respectively.

The linear stability results show that the structures that
correspond to the uppedtower) branches are stableun-
stablg. The stable patterns are associated with the existence
of an important activated region, which is equivalent to large
dissipation. The set of points in the plane, (k) where the
two branches coalesdéor a<a.) constitutes themarginal
stability line that separates stable from unstable behavior
[13].

IV. NONEQUILIBRIUM POTENTIAL:
QUASIVARIATIONAL APPROXIMATION
FOR STATIONARY SOLUTIONS

For the nonuniform stationary patterns associated with the
casee<1, a “quasivariational” approximation is available,



55 EFFECT OF PARTIALLY REFLECTING BOUNDARY ... 4007

X /L a uyv {a.u)
100 ~ . 0.75
0.60 )
0.75 2
0.45
050 | 3
030
0.25 2
0.15 )
! 000 ' . : ' :
0.00 1 | | | ! I 1 ) \ 12 ) 375 500
0 20 40 80 80 000 ° f (53 w) 7
" .u.
Xe L FIG. 2. Typical nonuniform stationary patterns for the activator
100 b (u) and inhibitor @) fields, for the values of the parameters:
: k=4.06, €e=0.05 a=0.1243, y=3, and 8=1. The patterns la-
beled with 1 (activator field and 2 (inhibitor field) correspond to
075 matching coordinate.=2.9115(locally stable, and the patterns
: labeled with 3 and 4 correspond to activator and inhibitor fields
associated to the matching coordinate= 2.3425(unstablg.
050 turbation method[20]). For that casev=—u+6u—a]
—u=h*(v), and the nonequilibrium potential in these re-
0.25 gions results in:
Eoutef{u(x)'”hi(v):v(x)}
000 ; : ' 1/dv\? 1+
0.00 005 010 015 | ad S8} Y 2y —ovarix]—x
FIG. 1. (a) Values of the matching coordinateg as a function of k ) k )
the (dimensionlessalbedo parametek, for a fixed length [ =5) + Pk + oV , (6)
L -L

and several values of the threshold paramateil) 0.06,(2) 0.12,

(3) 0.124 245,4) 0.1243,(5) 0.1244, and6) 0.125.(b) Values of . . . L .
the matching coordinate, as a function of the threshold parameter where the integration domains are limited to the regions

a, for k—oo (i.e., Dirichlet b.c). In both casese=0.05,4=1, and |X| = |X°| € for the ogﬁ region andx°| + 6$|X|$L for the
y': 1/3 ’ ’ out™ region, respectively.
' The nonequilibrium potential for Eq3) can be approxi-

that allows us to identify the globally stable stationary Solu_mated,for the stationary caseas

tion of Eq.(2). Following Ref.[5], where such a method was Lne= Louter + Louter + Linner- )
developed, we divide the functional space into two parts.

One is the shape diu} in the inner region of the interface, The (locally stabl¢ uniform stateu=v =0 (that lies on the
where we exploit the fact that the variation of the fields  thermodynamical brangitan also be included in EG7). As
not significant. The nonequilibrium potential in this region asthe averages af,v, andv, are zero at this uniform state, this

is approximated: results in:
1 (Xte [€2/du\?2 u? Lygfu=0p=0}=0. (8)
LinnedU(X),v(X)~v,}=— dx(—(— +—+oyU
e Ve Xc—e 2 \dx 2 | In Figs. 3 and 4 we show the numerical valuefqfz as a
function of k for several values o&. In Fig. 3, the lower
—(u—a) g[u_a]] ' (5)  (uppe) branches correspond to the largemalley values of
Xc, corresponding to the metastaklenstablgé nonuniform

stationary patterns. In Fig. 4 we show the behavior of the
wherev, is a characteristic value of the inhibitor field in the nonequilibrium potential for small values af We conclude
inner region(in our calculationy,=v(x.)]. The integration that for this parametric regime, the nonhomogeneous station-
domain is limited to the region where|x/—e  ary solutions associated with the upper branches in Fay. 1
<|X|<|x + €. are the globally stable solutionsThis situation changes
On the other hand, in the outer regions we approximatavhen the threshold increases, as can be inferred from Fig. 3,
the stationary behavior of the activator by considering thatesulting in achange in the relative stabilitpetween the
€~ 0 (this approximation is consistent with the singular per-nonuniform patterns and the homogeneous solution
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For this case the approximation cannot be applied, and the
value of Ly loses its meaning. This fact explains why the
lower branch increases abruptly for small enough values of
k.

Lygla.u.)

0.1657

0.1656
V. NUCLEATION RATE

In Sec. IV, we showed that the behavior of the nonvaria-
tional system[Egs. (2) and (3)] is quasipotential when the
limit e<1 is considered. Here the nucleation rate of nonho-
mogeneous structures is calculated using the flux-over-
population method3]. For the sake of completeness, here
we repeat some steps of the procedures developed in Ref.

0.1655

01654

01653 [5]. We consider Eq(3) with independent additive external
0 noisesf;(x,t),
. . i au(x,t) . 2(92u
FIG. 3. Values of the nonequilibrium potentiél as a function =(er) Ve — —u+6lu—al—v+f(xt)

of the (dimensionlessalbedo parametek, corresponding to cases at IX

between curve$3) and (4) in Fig. 1: the values for the threshold

parameten are(1) 0.124 245(2) 0.124 255(3) 0.124 265, and4) du(x,t) v

0.1243. The uppeflower) branches corresponds to the lowap- . aZ + Bu—yv +fy(x,1). (9)

pen closed branches in Fig. 1, and they are associated with the
unstable (metastablg nonunlfogm patterns. Here we have used f.(x,t) are chosen as Gaussian and white,
€=0.005, er,=10, B=1, y=3 andL=5.

. . <fi(xvt)>=0|

(u=0p=0). The upper branches in Figs. 3 and 4 corre-
spond to the unstable solutions and represent the barrier be- Fop — / /
tvSeen the uniform and nonuniform Ioc%lly stable solutions (OG0, (L)) =286, 8(t=t) o(x=x"), - (10
[14,19. If we consider thal’ygiu=00v =0} =0, these Upper \ harej j=12 andg; is the noise intensity. This noise af-
branches give themselves the magnitude of the barrier wheg s the system in an additive manner:
the uniform stateu=v =0 represents the metastable phase
(as in Fig. 4. It is worth remarking here that, as can be U
inferred from Fig. 1b), the upper and lower branches in Fig. —'=Fi{u}+ fi. (17
4 will not join, even in the limitk— o, at

Whenx.— L the approximation fails because the nonuni-
form patterns experience a qualitative change in their profile
(the size of the activated region results of the ordeL pf

gquation(ll) assumes that the space has been discretized
into a regular lattice, so that; and f; are defined at the
lattice pointsi, andF;{u} are the sum of thlocal) reaction
terms plus the spatially discretized version of the diffusion

Ly lau.) term. The subscript labels both the lattice point and the
0.300 3 chemical species, so thétiui=2j=1,2f':Luj(x)dx, where
3 u;=u andu,=v. Equationg9) and(10) can be transformed
0.225 into a Fokker—Planck equation for the probability density
[~ P{ul 't}r
0.150 |-
- IP »d #?  F;
0075 - n {u; ,t}= > g"auiauj a0, P{u;,t}, 12
0.000 |- L\ 5 . .
= wheregj;=g;8;; [the discrete version of; §(x—x")]. The
-0.075 |- \\ 4 stationary distribution is readily obtained using the nonequi-
- librium potential
R A~ S—
k Po{u}=Cexd — Lnelul/g], (13

FIG. 4. Values of the nonequilibrium potentiic as a function ~WhereC is the normalization constant. Equatict8) repre-
of the (dimensionlessalbedo parametek, corresponding to the S€Nts the global distribution for E¢L2). For simplicity we

case of open branches in Fig. 1. Hereg=0.005, have fixedg;=g,=g9. _
er, =10, B=1, y=3 andL=5. For(1) and(2), the value of the In the FOP method, the rate at which the metastable state

threshold parameter was=0.04; while, for (3) and (4), it was ~ decays is calculated in terms of the ratio of toeal prob-
a=0.06. The upper branches 1 and 3 correspond, for all values dibility flux crossing the energy barrier and the population of
k, to the unstable nonuniform patterns. the metastable stateorresponding to a stationary current-
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carrying situation3,5]. To obtain it, we first need the sta-
tionary distributionaround the saddle point'®. Linearizing y= ; Unén- (22)
F around this unstable state,

Equation(20) is now written as,

Fi=2 A, ¢ do_ -
Y ay? yd_y_ , (23
v Ui (19 where
we obtain
Kﬁl% Um’gmnun: Y, (24

, (15

1
P(S){U}: CSEX[{ —EZ SijUivj
4 « being the rate of growth of the unstable mode at the saddle
point[3,33)] (the positive eigenvalue of the matiipd||). The
formal solution to Eq(23) that already satisfies the boundary
conditions is given by

andCg is a positive constanCs=exqd — L{u}]. By an or-
thogonal transformatiorM that diagonalizes the variance
aijz(sfl)ij, the resulting stationary distribution can be
written in terms ofé;=X;Mj;v; as[3,33

d( )_C_’de ’ex;{y—,z} (25)
V=l ly & 2y )

with C’ a constant. The nontrivial solution is acceptable only
The other matrices are also transformed in the formIf YIS negz’:\tlve, in which casé(y) is an error functhn. The
constantC’ can be calculated by normalizing{u} in the
metastable region: we approxima®g{u} by a Gaussian dis-
tribution around the metastable staté”,

2
PS{&) = Csex;{ —%E i—’ . (16)

] J

I[Al=|IM[[|Al[MT||. We chooser, as thenegativevariance
associated with thenstablemode. We have calculated the
probability current that flows from the locally stablmeta-

stablg uniform pattern to the more stable nonuniform pat-
tern. The steady curreg, is defined by Ps{u}=ex{ —ﬁﬁg)/gjtiEj Bij i | (26)
- 9~ _ o
J{&8=—1> gmnE—Fn} Pl 17) Whgreﬁﬁrg(:LNE{um}) is calculated from the global distri-
m m bution, andz;=u;—u{™ Using Eqs(19), (25), and(26), we

determine the constant

3 _, ag ©7T f d{n}Ps{n}=exq—£<N"£/g](rn[ J(zmsf”b),
w0k (27)

which satisfies

In the flux-over-population method, boundary conditions inwhere c{™ are the eigenvalues ¢fB || in Eq. (26). The
functional space are imposed so that there is a source of thresulting current is
current at the metastable state and a sink at the stable solu-
tion [3]. Therefore, the magnitude of the current near the
saddle point isstationary

The usual ansatz to solve E@.8) is

d
‘]n:|K|0'nUnP(S){§}_¢- (29)
dy
To obtain the nucleation rate, we must calculate the prob-
P{&}=p{& P4 €L, (199  ability current that flows across the surfaég=0 of the

unstable mod¢33],
whereP{ ¢} is the stationary distribution of E¢12) without

either sink or source. Near the saddle pdimhere there are dp
no sources or sinkswe can use the linearized forfh4) and I= L _Od{g}Jl:|K|‘TlU1J§ :Od{g}P(5>{§}d—y. (29
(15) with P{&}=PS{£&}, resulting in: ! '

S G

5 We finally obtain the nucleation rateas:
—~ ~ 0Oy

—+ — & =0.
et gnmﬁfné’fm Anma_m fmﬁém P{f} 0 (20

%)mw(rn[ o 11 Vo)

Xexp(—[LE - L2/, (30)

To solve Eq.(18), we assume that

p{&t=a(y), (21) o
where £{}= Lyg{u®} and the prime ifl’ means that the
as in Ref.[5], wherey is linear in the deviation from the unstable moder; is excluded. The negative varianog is
saddle-point, related withk, ando4 is simply given by[5]
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gllog (<T>/Tg) {103 a.u.) gllog (<T>/Tg) ]l fau.)
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FIG. 6. Values ofglog,(({7)/ 1) as a function of theédimen-
sionles$ albedo parametek, for a fixed lengthL=5 and the fol-
lowing (smal) values of the threshold parameter (1) 0.04, (2)

0.05, and(3) 0.06. Heref=1, y=3, €=0.05, ander,=10. (1)
denotes the MFPT associated with the transition between meta-
stable and stable states. The constant region of the curves corre-
sponds to the nucleation of nonuniform structures.

FIG. 5. Values ofglog,(((7)/ 7o) as a function of thédimen-
sionles$ albedo parametey, for a fixed lengthL=5, and the fol-
lowing values of the threshold parametar (1) 0.124 245,(2)
0.124 255, (3) 0.124 265, and(4) 0.1243. HereB=1, y:%,
€=0.05, ander,=10. (7) denotes the MFPT associated with the
evaporation of nonuniform structures.

o,=0/k. (31

geneous one, and (the MFPT associated to the process of

. o . nucleation of nonuniform patternsemains constant.
With the global steady distribution, we can obtain P n

[0 — £$)]. The effect of the boundary conditions appears
essentially inCye. A similar result(iin a monostable regime

was obtained by Ohta in Rdﬁ-)] for infinite geometry. By app|y|ng the method deve|oped in Réﬁ], we ex-

If there is a reasonable separation of time scales, thgjored the influence of a controlled flux at the boundary of
mean-first-passage time is simply determined by half the inthe relevant species, for instance chemical, on the self-
verse of the nucleation rate: organizing behavior of a one-dimensional activator-inhibitor
system in a bistable regime. The b.c. considered correspond
to adjusting the gradient of the concentrations of the fields at
the boundaries in proportion to the value of the concentration
The factor 7, is usually determined by the curvature of itself (the albedo parameter represents this yatigsing a
Lne, and is typically several orders of magnitude smaller‘quasivariational approximation”(because our system is
compared to the average tim{e) [3,5]. The prefactor is norvariationa) we analyze the global stability of the result-
expected not to produce any singular behavior except nearig stationary patterns. We have found that the bistable be-
the marginal stability lingwhere Rek)—0]. In this region,  havior of the system is governgih the limit e<1) by a
the unstable statis not well isolated 15,18, and the whole  functional Lye that approaches the numerical value of the
approximation fails, since it has been derived under the asnonequilibrium potential for the relevant states in the nucle-
sumption that the saddle point is well separated from thetion or evaporation processes. The “effective potential”
stable nonuniform state. Near the marginal stability line, thenere obtained allows us to identify the stable stationary pat-
nucleation ratg30) is only qualitatively valid; nonetheless, terns from the metastable ones, as well as the direct calcula-
the growth rate itself is meaningf{ib]. tion of the barrier height between these attractors. A change

The behavior of 7) (or more properly ofyIn({(7)/7) as a in the relative global stability between uniform and nonuni-
function of the albedo parametkiis shown in Fig. 5 for the  form stable stationary states is seen as the threshold increases
case where the globally stable stationary state is the uniforror the reflectivity of the boundary decreases. A similar be-
solutionu=v=0. Here( ) is associated with the process of havior was found in a single-component bistable system
evaporationof nonuniform metastable patterii$ refers to  [14,15,18. The nucleation rate of inhomogeneities for this
the stability of the homogeneous state system and the evaporation rate of metastable inhomogene-

In Fig. 6 we show the behavior of the MFPT betweenities were calculated by the flux-over-population method,
metastable and stable states for the smatlarametric re- and we used the effective Lyapunov functional to obtain the
gime. In the region, where the homogeneous solution is thetationary global probability distribution.
globally stable one{7) (the MFPT associated to the evapo-  Summarizing, we found that the reflectivity at the bound-
ration of metastable nonuniform pattern®sults to be a ary alters the local stability properties of the homogeneous
monotonically increasing function df, until somek;, (de-  stationary solution, producing changes in the basin of the
pendent upora) is reached, for which atability exchange homogeneous attractor. This influence results in a modifica-
occurs. Above that value, the stable state is now the inhomdion of the parameter region of stability for the solutions as

VI. CONCLUSIONS

()= moexp(— [ L.~ L{2 VI g). 32
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the albedo parameter is varied. The albedo b.c. give a simpkbility of studying the decay of metastable states(ganer-
way to alter the stability of the thermodynamic branch, and itally speaking transitions between locally stable states, when
allows us to advance or retard self-organizing phenomenghe system is subject to external noises, for a large variety of
without altering the nonlinear dynamics of the systems. Fokijtuations of great practical interest. The analysis of such
systems that admit a nonequilibrium potential it is knownsijtuations will be the subject of further work.
that partially reflecting b.c. alter such a potential by adding
to it a “surface term”[14-164. We hope that the present
analysis will stimulate the experimental search of this kind of
phenomenon. Considering the interesting generation of open
reactors fed by diffusion from the boundaries, the possibility The authors thank L. Petcoff for her valuable help with
of controlling the boundary conditions seems to be feasiblethe manuscript. Partial support from CONICET, Argentina,
The present “quasivariational” approach opens the posthrough Grant No. PID 3366/92 is also acknowledged.
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