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Effect of partially reflecting boundary conditions on the decay of metastable rest states
in an activator-inhibitor system
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We study the effect of the boundary conditions on the spontaneous nucleation and evaporation of excited
domains in the bistable regime of an activator-inhibitor stochastic system. In such a regime aquasivariational
approximation can be used to obtain the stationary distribution. The nucleation and evaporation rates of the
resulting nonuniform structures are investigated using a piecewise-linear dynamics to obtain analytical results.
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I. INTRODUCTION

The decay of metastable states~toward globally stable
ones! is a recurrent problem in various fields of physics a
physical chemistry@1–3#. Typical examples of differen
nucleation phenomena can be observed even in open sys
far from equilibrium @3–7#. The decay of metastable stat
has been studied for many years, from experimental and
oretical points of view @8,9#. The statistical-mechanica
theory was first formulated by Kramers@1#, and extended
since by several authors. A recent review shows the stat
the art@3#. In reaction-diffusion~RD! systems, such phenom
ena can, in principle, be studied in two different ways. T
first one is to evaluate themean-first-passage–time ~MFPT!
between metastable and stable states, and the second o
to find the nucleation rate using theflux-over-population
~FOP! method. These two procedures are deeply related,
give information on the dynamical response of the syst
under the effect of fluctuations@3#.

Both the MFPT and FOP methods require a knowledge
the stationary probability density. It is a nontrivial task
determine this density in nonvariational RD systems. Th
situations call for approximations to find out the global d
tribution. For instance, a WKB-type method has been use
obtain stationary probability densities for some weak-no
cases, conducting~in leading exponential order in the nois
strength! to nonequilibrium generalized potentials@10,11#.

The features of this phenomenon in spatially extend
systems are still under study, particularly when the effec
the boundary conditions~b.c.! is considered. Recently, it ha
been shown that b.c. play a relevant role in the appeara
and stability, as well as on the propagation of spatial str
tures@12–18#. The nature of the interactions between chem
cal systems and their environment is a relevant ingredien
the process of establishing a nonequilibrium~dissipative! re-
gime. Particularly, the role that b.c. will play in a chemic
reaction will depend on their nature. As an example, the fi
unambiguous experimental observation of a Turing struc
was made in single-phase open reactors for which the
551063-651X/97/55~4!/4005~7!/$10.00
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tems are fed by diffusion from the boundaries@19#. Here we
are concerned with partially reflecting b.c.~albedob.c.!, that
relate at the boundaryG the fieldu(x,t) with its derivative,
by an albedo parameterk:

]u

]n U
G

52ku~x,t !U
G

. ~1!

For one-component bistable RD systems, the chang
the relative stability of locally stable attractors induced by
change in the reflectivity of the boundary, was reported
Ref. @14#. These results were extended in Refs.@15,16# to
consider the effect of an external noise in the transition
tween the attractors.

The purpose of this paper is to extend the forementio
analysis to more general bistable systems without the res
tion of a variational formulation. We shall concentrate he
on a simple model of anactivator-inhibitorRD system that
is nonvariational, and investigate the rate of domain form
tion out of the metastable state, induced by an additive
ternal noise~fluctuations!, under the effect of partially re-
flecting boundary conditions. By a ‘‘quasivariation
approximation,’’ that is consistent with a singular perturb
tion approximation, we shall estimate thenonequilibrium po-
tential for the system~for stationary patterns!, identify the
globally stable stationary solution from the metastables on
and investigate the effect of fluctuations in the spirit of t
flux-over-populationapproach to the reaction–rate theory f
extended systems.

In the following sections we present a deterministic an
stochastic analysis of the specific model we will work o
First we solve the stationary case with albedo b.c. The st
includes a linear stability analysis of the resulting patte
and the calculation of the ‘‘effective nonequilibrium pote
tial’’ for the stationary case by using anquasivariational
approximation.

The stochastic analysis consists in the study of the ef
of external additive noises, by focusing on the nucleat
4005 © 1997 The American Physical Society
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4006 55G. IZÚS, R. DEZA, H. S. WIO, AND C. BORZI
rate of the nonuniform resulting structures and the rela
MFPT. Section VI includes a final discussion of our resu

II. MODEL

We consider here a simple two-component, excitable
system, defined in one dimension as:

]u~x,t !

]t
5~et r !

~21!H e2
]2u

]x2
1u~12u!~u2a!2vJ

]v~x,t !

]t
5

]2v
]x2

1bu2gv, ~2!

where u(x,t) and v(x,t) are called the activator and th
inhibitor, respectively, in a biological context. The consta
e,t r ,b,g, anda are all positive.

The nonlinear nature of Eq.~2! makes these equation
difficult to solve, even in the stationary case. We consi
the following piecewise-linear version of Eqs.~2! that, while
keeping the essential features of the bistable problem
amenable for analytical calculations:

]u~x,t !

]t
5~et r !

~21!H e2
]2u

]x2
2u1u@u2a#2vJ ,

]v~x,t !

]t
5

]2v
]x2

1bu2gv. ~3!

Hereu@x# is the Heaviside step function, anda (.0) is the
excitability threshold. Equations~2! and ~3! represent a
bistable system ifa,g/(b1g). Otherwise, Eqs.~2! and~3!
represent a monostable excitable RD system. This model
piecewise-linear version of the Bonhoffer–van der Pol s
tem, which is a fundamental model of an excitable RD s
tem @13,17,20#. Such an equation has been used to model
Belousov-Zhabotinskii reaction in the excitable regime@21#,
pulse propagation in nerve fiber@22,23#, the formation of
spatial structures in electric glow discharges, etc.@24–27#.
For this kind of system, stationary patterns have been
dicted in theory and observed in experiments@24,28–30#.

As far asa is positive, the piecewise-linear dynamics
essentially the same as the original one. We must empha
here that neither the original set of equations~2! nor its
piecewise-linear version~3! are variational as far asb is
positive, because the conditions needed to define a pote
are not fulfilled@10#. When the inhibitor fieldv follows the
activatoradiabatically ~that is, whenet r→`), we can con-
sider that]v/]t50. Herev can be exactly obtained from
u, and it is possible to write out a Lyapunov functional f
this case. The resulting time-evolution equation for the a
vator field is nonlocal in the space coordinate@17,31,32#.

III. PATTERN FORMATION

In this section, we will solve Eq.~3! with symmetric al-
bedo b.c. for the stationary case. The analysis of station
pattern formation for the proposed model, for infinite geo
etry, was done by Kuramoto@28#. The generalization of the
method to finite geometry results straightforwardly@13#. The
stationary solution is written as a linear combination of e
d
.
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ponentials exp(kix), whereki are the roots of the characte
istic polynomial. The solution is piecewise analytic, wi
matching points atuxu5xc , where u(xc)5a. The coeffi-
cients are fixed by the boundary conditions atx56L:

]u

]n U
6L

57ku~x,t !U
6L

,

~4!

]v
]n U

6L

57kv~x,t !U
6L

,

and the matching conditions atxc . The stationary solutions
are independent oft r , since it is a dynamical parameter th
specifies the ratio between the relaxation constant ofu and
that of v.

We will concentrate on simple symmetric patterns. T
solution under consideration is such that a central part of
system forms a frozen activated region. The structures h
an inner region whereu varies abruptly, and two outer re
gions where the activator and inhibitor fields vary in
smooth fashion. When the parametere is small enough, these
regions are separated by a sharp interface. The albedo bo
ary conditions will affect the extension of the frozen ac
vated region.

In Fig. 1~a! we show the behavior of the matching coo
dinatexc as a function ofk for different values of the thresh
old parametera. We found that there is a parameter regim
~small a) where there are two disconnected branches
xc , and therefore two nonuniform structures exist that
associated with these parameters. Asa increases, a qualita
tive change inxc(k,a) occurs. There is a critical value o
a, indicated byac , such that fora.ac the two branches
coalesce. This last aspect is depicted in Fig. 1~b!, for the case
of k→` ~i.e., Dirichlet b.c.!.

It is worth remarking here that, for small enough values
k, there are nonhomogeneous solutions that tend toward
known stable homogeneous Neumann (k→0) solutions@13#.
However, they are not included in Fig. 1 because in that c
the whole pattern is above the thresholda; i.e., it does not
have the form we analyze here.

For both open or closed curves, as previously indicat
patterns corresponding to the upper branches have a la
activated zone. It is stability that selects between th
branches. Figure 2 shows typical patterns associated
e50.05,a50.1243,k54.06, andzL55, respectively.

The linear stability results show that the structures t
correspond to the upper~lower! branches are stable~un-
stable!. The stable patterns are associated with the existe
of an important activated region, which is equivalent to lar
dissipation. The set of points in the plane (xc ,k) where the
two branches coalesce~for a,ac) constitutes themarginal
stability line that separates stable from unstable behav
@13#.

IV. NONEQUILIBRIUM POTENTIAL:
QUASIVARIATIONAL APPROXIMATION

FOR STATIONARY SOLUTIONS

For the nonuniform stationary patterns associated with
casee!1, a ‘‘quasivariational’’ approximation is available
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55 4007EFFECT OF PARTIALLY REFLECTING BOUNDARY . . .
that allows us to identify the globally stable stationary so
tion of Eq.~2!. Following Ref.@5#, where such a method wa
developed, we divide the functional space into two pa
One is the shape of$u% in the inner region of the interface,
where we exploit the fact that the variation of the fieldv is
not significant. The nonequilibrium potential in this region
is approximated:

Linner$u~x!,v~x!;v I%5
1

et r
E
Xc2e

Xc1e

dxH e2

2 S dudxD
2

1
u2

2
1v Iu

2~u2a!u@u2a#J , ~5!

wherev I is a characteristic value of the inhibitor field in th
inner region@in our calculation,v I5v(xc)#. The integration
domain is limited to the region whereuxcu2e
<uxu<uxcu1e.

On the other hand, in the outer regions we approxim
the stationary behavior of the activator by considering t
e;0 ~this approximation is consistent with the singular p

FIG. 1. ~a! Values of the matching coordinatexc as a function of
the ~dimensionless! albedo parameterk, for a fixed length (L55)
and several values of the threshold parametera: ~1! 0.06,~2! 0.12,
~3! 0.124 245,~4! 0.1243,~5! 0.1244, and~6! 0.125.~b! Values of
the matching coordinatexc as a function of the threshold paramet
a, for k→` ~i.e., Dirichlet b.c.!. In both cases:e50.05,b51, and
g51/3.
-

.

te
t
-

turbation method@20#!. For that casev52u1u@u2a#
→u5h6(v), and the nonequilibrium potential in these r
gions results in:

Louter$u~x!;h6~v !,v~x!%

5E
out6

dxH 12 S dvdxD
2

1
11g

2
v21~v I2v !u@ uxu2xc#J

1
k

2
v2U

L

1
k

2
v2U

2L

, ~6!

where the integration domains are limited to the regio
uxu<uxcu2e for the out1 region anduxcu1e<uxu<L for the
out2 region, respectively.

The nonequilibrium potential for Eq.~3! can be approxi-
mated,for the stationary case, as

LNE5Louter11Louter21Linner. ~7!

The ~locally stable! uniform stateu5v50 ~that lies on the
thermodynamical branch! can also be included in Eq.~7!. As
the averages ofu,v, andv I are zero at this uniform state, thi
results in:

LNE$u50,v50%50. ~8!

In Figs. 3 and 4 we show the numerical value ofLNE as a
function of k for several values ofa. In Fig. 3, the lower
~upper! branches correspond to the larger~smaller! values of
xc , corresponding to the metastable~unstable! nonuniform
stationary patterns. In Fig. 4 we show the behavior of
nonequilibrium potential for small values ofa. We conclude
that for this parametric regime, the nonhomogeneous stat
ary solutions associated with the upper branches in Fig.~a!
are the globally stable solutions. This situation changes
when the threshold increases, as can be inferred from Fig
resulting in achange in the relative stabilitybetween the
nonuniform patterns and the homogeneous solut

FIG. 2. Typical nonuniform stationary patterns for the activa
(u) and inhibitor (v) fields, for the values of the parameter
k54.06, e50.05, a50.1243, g5

1
3, andb51. The patterns la-

beled with 1 ~activator field! and 2 ~inhibitor field! correspond to
matching coordinatexc52.9115 ~locally stable!, and the patterns
labeled with 3 and 4 correspond to activator and inhibitor fie
associated to the matching coordinatexc52.3425~unstable!.
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(u50,v50). The upper branches in Figs. 3 and 4 corr
spond to the unstable solutions and represent the barrier
tween the uniform and nonuniform locally stable solutio
@14,15#. If we consider thatLNE$u50,v50%50, these upper
branches give themselves the magnitude of the barrier w
the uniform stateu5v50 represents the metastable pha
~as in Fig. 4!. It is worth remarking here that, as can b
inferred from Fig. 1~b!, the upper and lower branches in Fig
4 will not join, even in the limitk→`.

Whenxc→L the approximation fails because the nonun
form patterns experience a qualitative change in their profi
~the size of the activated region results of the order ofL).

FIG. 3. Values of the nonequilibrium potentialLNE as a function
of the ~dimensionless! albedo parameterk, corresponding to cases
between curves~3! and ~4! in Fig. 1: the values for the threshold
parametera are~1! 0.124 245,~2! 0.124 255,~3! 0.124 265, and~4!
0.1243. The upper~lower! branches corresponds to the lower~up-
per! closed branches in Fig. 1, and they are associated with
unstable ~metastable! nonuniform patterns. Here we have use
e50.005, et r510, b51, g5

1
3, andL55.

FIG. 4. Values of the nonequilibrium potentialLNE as a function
of the ~dimensionless! albedo parameterk, corresponding to the
case of open branches in Fig. 1. Heree50.005,
et r510, b51, g5

1
3, andL55. For ~1! and ~2!, the value of the

threshold parameter wasa50.04; while, for ~3! and ~4!, it was
a50.06. The upper branches 1 and 3 correspond, for all value
k, to the unstable nonuniform patterns.
-
e-

en
e

-
s

For this case the approximation cannot be applied, and
value ofLNE loses its meaning. This fact explains why th
lower branch increases abruptly for small enough values
k.

V. NUCLEATION RATE

In Sec. IV, we showed that the behavior of the nonvar
tional system@Eqs. ~2! and ~3!# is quasipotential when the
limit e!1 is considered. Here the nucleation rate of nonh
mogeneous structures is calculated using the flux-ov
population method@3#. For the sake of completeness, he
we repeat some steps of the procedures developed in
@5#. We consider Eq.~3! with independent additive externa
noisesf i(x,t),

]u~x,t !

]t
5~et r !

~21!H e2
]2u

]x2
2u1u@u2a#2vJ 1 f 1~x,t !

]v~x,t !

]t
5

]2v
]x2

1bu2gv1 f 2~x,t !. ~9!

f i(x,t) are chosen as Gaussian and white,

^ f i~x,t !&50,

^ f i~x,t !, f j~x8,t8!&52d i j gid~ t2t8!d~x2x8!, ~10!

where i , j51,2, andgi is the noise intensity. This noise a
fects the system in an additive manner:

]ui
]t

5Fi$u%1 f i . ~11!

Equation ~11! assumes that the space has been discret
into a regular lattice, so thatui and f i are defined at the
lattice pointsi , andFi$u% are the sum of the~local! reaction
terms plus the spatially discretized version of the diffusi
term. The subscripti labels both the lattice point and th
chemical species, so that( iui5( j51,2*2L

L uj (x)dx, where
u15u andu25v. Equations~9! and~10! can be transformed
into a Fokker–Planck equation for the probability dens
P$ui ,t%,

]P

]t
$ui ,t%5F(

i j
gi j

]2

]ui]uj
2

]Fi

]ui
GP$ui ,t%, ~12!

wheregi j5gid i j @the discrete version ofgid(x2x8)#. The
stationary distribution is readily obtained using the noneq
librium potential

Po$u%5Cexp@2LNE$u%/g#, ~13!

whereC is the normalization constant. Equation~13! repre-
sents the global distribution for Eq.~12!. For simplicity we
have fixedg15g25g.

In the FOP method, the rate at which the metastable s
decays is calculated in terms of the ratio of thetotal prob-
ability flux crossing the energy barrier and the population
the metastable statecorresponding to a stationary curren

e
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carrying situation@3,5#. To obtain it, we first need the sta
tionary distributionaround the saddle point u(s). Linearizing
F around this unstable state,

Fi5(
j
Ai jv j

v i5ui2ui
~s! , ~14!

we obtain

P~s!$v%5CsexpF2
1

2(
i j

si jv iv j G , ~15!

andCs is a positive constant:Cs5exp@2L$us%#. By an or-
thogonal transformationM that diagonalizes the varianc
s i j5(s21) i j , the resulting stationary distribution can b
written in terms ofj i5( jM i jv j as @3,33#

Ps$j%5CsexpF2
1

2(
j

j j
2

s j
G . ~16!

The other matrices are also transformed in the fo
iÃi5iM iiAiiMTi . We chooses1 as thenegativevariance
associated with theunstablemode. We have calculated th
probability current that flows from the locally stable~meta-
stable! uniform pattern to the more stable nonuniform p
tern. The steady currentJ̃n is defined by

J̃n$j%52F(
m

g̃mn

]

]jm
2F̃nGP$j%, ~17!

which satisfies

(
n

] J̃n
]jn

50. ~18!

In the flux-over-population method, boundary conditions
functional space are imposed so that there is a source o
current at the metastable state and a sink at the stable
tion @3#. Therefore, the magnitude of the current near
saddle point isstationary.

The usual ansatz to solve Eq.~18! is

P$j%5r$j%Ps$j%, ~19!

wherePs$j% is the stationary distribution of Eq.~12! without
either sink or source. Near the saddle point~where there are
no sources or sinks!, we can use the linearized form~14! and
~15! with Ps$j%5Ps$j%, resulting in:

(
mn

F g̃nm ]2

]jn]jm
1Ãnm

sn

sm
jm

]

]jm
Gr$j%50. ~20!

To solve Eq.~18!, we assume that

r$j%5f~y!, ~21!

as in Ref.@5#, wherey is linear in the deviation from the
saddle-point,
-

he
lu-
e

y5(
n

Unjn . ~22!

Equation~20! is now written as,

g
d2f

dy2
2y

df

dy
50, ~23!

where

k21(
mn

Umg̃mnUn5g, ~24!

k being the rate of growth of the unstable mode at the sad
point @3,33# ~the positive eigenvalue of the matrixuuÃuu). The
formal solution to Eq.~23! that already satisfies the bounda
conditions is given by

f~y!5
C8

A2pugu
E
y

`

dy8expFy82

2g G , ~25!

with C8 a constant. The nontrivial solution is acceptable on
if g is negative, in which casef(y) is an error function. The
constantC8 can be calculated by normalizingP$u% in the
metastable region: we approximatePs$u% by a Gaussian dis-
tribution around the metastable stateu(m),

Ps$u%5expF2LNE~m!/g1(
i j

Bi jh ih j G , ~26!

whereLNE(m)(5LNE$um%) is calculated from the global distri
bution, andh i5ui2ui

(m) Using Eqs.~19!, ~25!, and~26!, we
determine the constant

~C8!215E d$h%Ps$h%5exp@2LNE~m!/g#S)
n

A~2psn
~m!! D ,

~27!

wheresn
(m) are the eigenvalues ofuuB21uu in Eq. ~26!. The

resulting current is

Jn5ukusnUnP
~s!$j%

df

dy
. ~28!

To obtain the nucleation rate, we must calculate the pr
ability current that flows across the surfacej150 of the
unstable mode@33#,

I5E
j150

d$j%J15ukus1U1E
j150

d$j%P~s!$j%
dr

dy
. ~29!

We finally obtain the nucleation rateI as:

I5S us1u
2p D 1/2ukuS)

n
8A2psnD S)

n
A2psn

~m!D 21

3exp~2@LNE~m!2LNE~s!#/g!, ~30!

whereLNE(s)5LNE$u(s)% and the prime in)8 means that the
unstable modes1 is excluded. The negative variances1 is
related withk, ands1 is simply given by@5#
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s15g/k. ~31!

With the global steady distribution, we can obta
@LNE(m)2LNE(s)#. The effect of the boundary conditions appea
essentially inLNE. A similar result~in a monostable regime!
was obtained by Ohta in Ref.@5# for infinite geometry.

If there is a reasonable separation of time scales,
mean-first-passage time is simply determined by half the
verse of the nucleation rate:

^t&5t0exp~2@LNE~s!2LNE~m!#/g!. ~32!

The factor t0 is usually determined by the curvature
LNE, and is typically several orders of magnitude smal
compared to the average time^t& @3,5#. The prefactor is
expected not to produce any singular behavior except n
the marginal stability line@where Re(k)→0#. In this region,
the unstable stateis not well isolated@15,18#, and the whole
approximation fails, since it has been derived under the
sumption that the saddle point is well separated from
stable nonuniform state. Near the marginal stability line,
nucleation rate~30! is only qualitatively valid; nonetheless
the growth rate itself is meaningful@5#.

The behavior of̂ t& ~or more properly ofgln(^t&/t0) as a
function of the albedo parameterk is shown in Fig. 5 for the
case where the globally stable stationary state is the unif
solutionu5v50. Here^t& is associated with the process
evaporationof nonuniform metastable patterns~it refers to
the stability of the homogeneous state!.

In Fig. 6 we show the behavior of the MFPT betwe
metastable and stable states for the small-a parametric re-
gime. In the region, where the homogeneous solution is
globally stable one,̂t& ~the MFPT associated to the evap
ration of metastable nonuniform patterns! results to be a
monotonically increasing function ofk, until somekcrit ~de-
pendent upona) is reached, for which astability exchange
occurs. Above that value, the stable state is now the inho

FIG. 5. Values ofglog10(^t&/t0) as a function of the~dimen-
sionless! albedo parameterk, for a fixed lengthL55, and the fol-
lowing values of the threshold parametera: ~1! 0.124 245,~2!
0.124 255, ~3! 0.124 265, and~4! 0.1243. Hereb51, g5

1
3 ,

e50.05, andet r510. ^t& denotes the MFPT associated with th
evaporation of nonuniform structures.
s

e
-

r

ar

s-
e
e

m

e

o-

geneous one, andt ~the MFPT associated to the process
nucleation of nonuniform patterns! remains constant.

VI. CONCLUSIONS

By applying the method developed in Ref.@5#, we ex-
plored the influence of a controlled flux at the boundary
the relevant species, for instance chemical, on the s
organizing behavior of a one-dimensional activator-inhibi
system in a bistable regime. The b.c. considered corresp
to adjusting the gradient of the concentrations of the field
the boundaries in proportion to the value of the concentra
itself ~the albedo parameter represents this ratio!. Using a
‘‘quasivariational approximation’’~because our system i
nonvariational! we analyze the global stability of the resul
ing stationary patterns. We have found that the bistable
havior of the system is governed~in the limit e,1) by a
functional LNE that approaches the numerical value of t
nonequilibrium potential for the relevant states in the nuc
ation or evaporation processes. The ‘‘effective potentia
here obtained allows us to identify the stable stationary p
terns from the metastable ones, as well as the direct calc
tion of the barrier height between these attractors. A cha
in the relative global stability between uniform and nonu
form stable stationary states is seen as the threshold incre
or the reflectivity of the boundary decreases. A similar b
havior was found in a single-component bistable syst
@14,15,18#. The nucleation rate of inhomogeneities for th
system and the evaporation rate of metastable inhomog
ities were calculated by the flux-over-population metho
and we used the effective Lyapunov functional to obtain
stationary global probability distribution.

Summarizing, we found that the reflectivity at the boun
ary alters the local stability properties of the homogene
stationary solution, producing changes in the basin of
homogeneous attractor. This influence results in a modifi
tion of the parameter region of stability for the solutions

FIG. 6. Values ofglog10(^t&/t0) as a function of the~dimen-
sionless! albedo parameterk, for a fixed lengthL55 and the fol-
lowing ~small! values of the threshold parametera: ~1! 0.04, ~2!
0.05, and~3! 0.06. Hereb51, g5

1
3 , e50.05, andet r510. ^t&

denotes the MFPT associated with the transition between m
stable and stable states. The constant region of the curves c
sponds to the nucleation of nonuniform structures.
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the albedo parameter is varied. The albedo b.c. give a sim
way to alter the stability of the thermodynamic branch, an
allows us to advance or retard self-organizing phenom
without altering the nonlinear dynamics of the systems.
systems that admit a nonequilibrium potential it is know
that partially reflecting b.c. alter such a potential by add
to it a ‘‘surface term’’ @14–16#. We hope that the presen
analysis will stimulate the experimental search of this kind
phenomenon. Considering the interesting generation of o
reactors fed by diffusion from the boundaries, the possibi
of controlling the boundary conditions seems to be feasi

The present ‘‘quasivariational’’ approach opens the p
-
3

nd

al

s
ec

-

.

le
it
a
r

g

f
en
y
e.
-

sibility of studying the decay of metastable states, or~gener-
ally speaking! transitions between locally stable states, wh
the system is subject to external noises, for a large variet
situations of great practical interest. The analysis of su
situations will be the subject of further work.
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