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Renormalization group of the Domany-Kinzel cellular automaton
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We apply the dynamically driven renormalization group to study the critical properties of the Domany-
Kinzel probabilistic cellular automaton. To preserve the absorbing state, clusters with at least one site occupied
are renormalized into one occupied site and clusters with all sites empty are renormalized into one empty site.
We have obtained the phase diagram as well as the critical exponent related to the spatial correlation length.
[S1063-651X%97)01304-4

PACS numbeps): 64.60.Ak, 02.50-r, 05.40+]

[. INTRODUCTION have constructed a real space RG such that a cluster with at
least one site occupied is renormalized into one occupied
Among the variety of irreversible models that describe asite. Only clusters with all sites empty are renormalized into
nonequilibrium phase transition from an active state to arPne empty site.
absorbing state, the Domany-Kinzel probabilistic cellular au- For systems in equilibrium, that is, for systems defined by
tomaton[1] together with the contact procelsd are perhaps @ Hamiltonian, the appropriate RG space is the space of the
the simplest ones. According to Jans§8hand Grassberger parameters, or coupling constants, that define the Hamil-
[4], any one-component model displaying a transition fromtonian. A sequence of RG transformations correspond to a
an absorbing to an active state belongs in the same univettajectory in this space. Systems far from equilibrium, that is,
sality class as direct percolation. In fact, the Domany-Kinzelsystems that lack detailed balance, on the other hand, are not
cellular automaton is equivalent to direct percolation. defined by Hamiltonians but by the dynamic rules or equiva-
The Domany-Kinzel probabilistic cellular automaton is lently by the transition probabilities that govern its time evo-
defined as follows. In a one-dimensional lattice each site calution. In this case the appropriate RG space is the space of
be in one of two states, either empty or occupied. At eaciparameters that define the transition probabilities.
time step the sites are updated simultaneously and indepen- Here we use a real space R6-8] that renormalizes the
dently. The state of a given site depends only on the states #fansition probabilities so that one obtains a RG transforma-
two neighboring sites in the previous time step. The rules aréon in the space spanned by the parameters that define the
as follows:(1) if the two sites are both empty, the given site transition probabilities. In the case of the Domany-Kinzel
will be empty; (2) if one site is occupied and the other is cellular automaton studied here this space will be the space
empty, the given site will be occupied with probabiligy; ~ defined by the parameteps andp,. The scheme we use is
and(3) if the two sites are both occupied, the given site will an application of the dynamically driven renormalization
be occupied with probability,. Due to the rule number 1, group introduced by Pietroneret al. [9] and Vespignani
the state with all sites empty will be an absorbing state. et al. [10,11] to study systems in critical states. A study of
In the stationary state the Domany-Kinzel automaton exthe Domany-Kinzel by means of a phenomenological RG
hibits two states: the absorbing state with all sites empty anfias been done by Bagneit al. [12].
an active state with a nonzero density of occupied sites. For The RG transformation was accomplished by using cells
small values op; the system is in the absorbing state. Whenof sizeb=2 and by using a series of approximations to the
the parametep; is increased the absorbing state becomestationary state. As we increase the order of the approxima-
unstable for sufficiently large values pf, giving rise to an  tion, better values were obtained for the universal critical
active state. The phase transition from the absorbing to thexponent as well as for the nonuniversal critical quantities.
active state is a continuous transition and belongs to th@ur best value for the critical exponent related to spatial
same universality class as direct percolation. correlation length iy, =1.013, which should be compared
Renormalization groupRG) techniques in real space to v, =1.100+0.005 obtained from transfer matrix methods
have been used successfully in studying the critical behavid]. The critical value ofp, along the line p,=0 is
of equilibrium statistical models since the work of Niemeyerp.=0.792, which is close tqp.=0.799+0.002 obtained
and van Leeuwefi5]. In these techniques small clusters of from simulations{13].
sites are renormalized into just one site according to certain
rules. For the case of the Ising model with the up-down Il. RG TRANSFORMATION
symmetry, the most important rule is the majority rule,
which preserves the up-down symmetry of the model at each Consider a one-dimensional lattice Nf sites in which
step of the renormalization. Any RG scheme should be set upach site can be in one of two states, either empty-Q) or
in a way to preserve the symmetries and the main propertiegccupied ¢r;=1). At each time step the sites are updated
of the model studied. In the present case the most importaisimultaneously, and independently, so that the transition
property is the existence of an absorbing state, which shouldrobability W(o|o') from state o’ =(oy,05,...,0y) tO
then be preserved by the RG trasformation. To this end, wetateo= (0,05, ... ,0y) iS given by
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which is the desired expression for the renormalized transi-
W(ola) =11 w(ailo] o/, y), (1) tion probability. Due to the presence of the stationary prob-
' ability on the right hand side of E¢10), this is not a trans-
formation that involves only the transition probability.
However, if we use an approximation for the steady state
w(1/000=0, w(1|10)=w(1|0)=p,;, wW(1|11))=p,. P(0), such as a mean field approximation, then ELp)
(2)  provides a well defined RG transformatiwv— W from the

' . .old W to the newW transition probability.
These rules completely define the Domany-Kinzel probabi- It is interesting to write Eq(10) in the form

listic cellular automaton since

where

w(0|oi ,ai, ) +w(lfoi ,0f,1)=1. ©) W(r7)=> > R(rlo)W (a|o)S(a'|7), (11

We remark that the expressidh) implies that, given the
statecd’, the variablesr; are independent random variables, where
which in turn is equivalent to saying that each site should be
updated independently of the others, as desired. We call this 0 R(7'|o")P(a’)
property of the cellular automatame-site independence S(o'|7")= S, R(r'|c)P(a')’
In the stationary state the following condition:

(12

From this last expression it is clear théto’| ') is normal-
P(o)=> W (a|a’)P(a") (4  ized with respect to the variables and that it can be inter-

o’ preted as a conditional probability @f' given 7'. In this
way it becomes quite obvious that the renormalized transi-
tion probabilityW(7|7") is properly normalized with respect
to the variables as it should. One important property &f
follows from a specific property oR. We will see in the
next section thaR (| o) is either zero or one from which it
follows that R(7'|o)R(7|o)= (7', 7)R(7|c). Using this

holds for any value of’, whereP(¢) is the stationary prob-
ability. If we use the notatio® (o,0") for the probability
of having states’ at a given time and state at a/ time
steps later then

I\ —\N\ ' '
P Ao.a)=W(ala")P(a"). ®) last equality we can check that
Similarly,
E(T,T,):W(T|T,)E(T,) (6) ; R(T|0-)S(O-|T’)=5(T,17)v (13)

is the analog equation for the renormalized system wherghdependently of (o).
W(7|7") is the(one-steprenormalized transition probability We remark that we should not expect, in general, that,
we are looking for and=(7q,7,,...,7y/), With N'=N/b, given the stater’, the variablesr; be independent. In other
denotes a renormalized state. words, the stochastic process definedvisgr| '), given by
Let R(7lo) be a conditional probability of the renormal- Eq. (10), will not have the desired one-site independence.
ized stater given the stater, which has the following prop-  This property, however, can be accomplished in an approxi-
erties: mate way as follows. Let us define the one-site marginal
transition probabilityw(r;|7") by
R(rl0)=0, X R(rlo)=1. 7
' Winlr)=2" (77, (14
The RG transformations are obtained by demanding[@iat
where the sum is over a#; exceptr;. Next we construct a
P(r,7)=2 2 R(ro)R('|c")P(o,0') (8 transition probabilithWg(r|7') as being the product of these
o g one-site transition probabilities, that is, we define

from which it follows that _
We(7r) =1 W(r| 7). (15
~ I
P(r')=2 R(+'|c")P(a"). 9 ~
7 Of course Wg(7|7') does not coincide, in general, with

This last expression is the one used in real space RG foiV(7] ). _ o _
equilibrium systems. Taking the ratio of the last two equa- The final step in the renormalization procedure is to say

tions we obtain11] that the renormalized cellular automaton will be defined by
p ) . ) the transition probabilityW(7|7'), which in turn has the
W)= 2,2, R(rlo)W (oo )R(7'|o")P(a”) form of Eq. (1). The last step is an approximation that we
SoR(T'|od")P(a") ' call the one-site independence approximation. In this manner

(100  we obtain a renormalized probabilistic cellular automaton,
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with the property of one-site independence, whose one-sitg,,

transition probabilityw( ;| 7') is obtained from the original
onew(a;i|a’) through Egs(14), (10), and(1). Thus we un-
derstand the present renormalization as the transformation

w(oi|a") — W(ri|7').

IIl. RENORMALIZATION ALGORITHM

We use a renormalizatioR( | o) in the form of a prod-

uct that for the case=2 reads

N/2

R( rlo):k[[l R(7| ook, Tak+1), (16)

where

R(1|00)=0, R(1|10)=R(1|01)=R(1|1)=1, (17)

and

R(0]00) =1,

The rule R(0|00)=1 ensures that the state with all sites

R(0|10)=R(0|01)=R(0[11)=0. (18)

1
p(0g,07,08,09|72,73)= =————R(7,|06,07)
Ty, T3

X R(7-3|0'8,0'g)P(O'G,(T7,0'8,0'9),
(21)

with

5(72,73)22 > 2 2 R(7oe,07)

96 07 08 09

XR(13|l08,09)P(06,07,08,09). (22)

To actually use the above equations we have to calculate
in each step of the renormalization the stationary probability
distribution P(o) related to the old transition probability
w(oi|o{ ,o{,,), which satisfies the balance equation

empty will be again an absorbing state after the renormaliza- P(o)= E W(ol|a")P(a"), (23

tion transformation.
To calculate the renormalized transition probability

W( |7, 73) we consider a cluster of nine sites of the origi- whereW(o|o ") is given by Eq(1). Of course, this equation
nal space-time lattice: two sitékabeled 1 and 2) at a time cannot be solved exactly and we should seek approximate

/, three(labeled 3, 4, and 5) at timé— 1, and four(labeled
6, 7, 8, and 9) at timg"— 2. The renormalization of the sites

is as follows: ¢1,05)— 71, (06,07)— 715, and (og,09)

—73. Using Eqs(14), (12), and(11), the renormalized tran-

sition probabilityw (7| 7,,73) is calculated by

W(ry|7p,m)=2 2 2 > 2 2 Rir|oy,05)

where

g1 02 0Og 07 0g 09
XWy(01,07]06,07,08,09)

X p(0g,07,08,09|72,73), (19

W2(0'110'2|0'6a0'710'8a0'9):2 E 2 W(oq|o3,04)

XW(0p|o4,05)W(03|06,07)

XW(0o4lo7,08)W(05|0g,00),
(20)

P(O'l,o'z, .

!
%n 9n+1

R~

(o8

solutions.

The simplest approximate solution of HEg3) is obtained
by writing the following equation for the one-site probabil-
ity:

P(o)=2 2 W(oi|o],0p)P(ay,0%), (24

! r
g1 02

and by inserting, in the right hand side of it, the following
approximation for the two-site probability:

P(o1,02)=P(01)P(0,). (25

The equation then becomes a closed equation, which can
then be solved by repeated iterations.

Better approximations can be set up by generalizing this
procedure. An approximation of orderis obtained as fol-
lows. From Eq.(23) we write down an equation for the
n-site probability distribution, namely,

o= 2 2 W(aa|al o W(og| oy, o) W00 ) P(0],0h, .o )
’

(26)
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Next we use the following approximatioii4,15 for the ; o
(n+1)-site probability:
P(o1,02,03, ...,01,01h+1) |
_ P(oy,05,...,00)P(02,03, ... ,0n+1)
P(oy,03, ...,0p) ’ |
(27) Ps
and insert it in the right hand side of E@6). Then Eq.(26)
becomes a closed equation for thaite probability distribu-
tion since |
P(oy,03,... ,O'n):E P(oq1,00,...,00). (28 07 08 0.9 1.0
o1 p1
If the order of the approximationn=4, then FIG. 1. Renormalization group trajectories in the parameter
P(oq,0,,03,04) is obtained fromP(o5,03,...,0,) by  space p,,p,) of the Domany-Kinzel cellular automaton, obtained
summing over allo; exceptoy, o5, o3, ando,. When by using the approximation of order=4. Almost all trajectories
n<4, then forn=1, flow to either one of two fully atractive fixed points. One of them is

related to the active statepen circle and the other to the absorb-
P(0y,05,03,04)=P(01)P(0-)P(03)P(aa); (29 ing state(origin of coordinates The two bases of attraction are
(01,02,05,04) (01)P(o2)P(a3)P(0s); (29 separated by a line, identified with the critical line of the model,
where the hyperbolic nontrivial fixed poififull circle) and a fully

for n=2, repulsive point(stay are located.

P(0y,02)P(0,03)P(03,04) p2=1 atp,=1/2, which is a fully repulsive fixed point, and
P(o1,02,03,04)= ; the linep,=0 atp;=p..
P(02)P(03) The nontrivial fixed point is located over the separatrix
(30 line and is attractive along a direction parallel to the separa-
trix and repulsive in the direction perpendicular to the sepa-
and forn=3, ratrix (a hyperbolic fixed point According to the RG theory
the critical exponent, , related to the correlation length, is
P(oy,02,03)P(02,03,04) obtained from the eigenvaluealong the repulsive direction
- (3D throughv, =Inb/In\. The eigenvalue is the largest eigen-
value of the Hessian matrix related to the transformation
(p1,P2)—(p1,p3) calculated at the nontrivial fixed point.
IV. RESULTS The location of the critical lingthe separatrikis in fair
The renormalization transformation defined in the previ-2greement with previous results coming from numerical
ous sections may be sought as a trajectory in the Spmselmulatlon[13], as can be seen in Fig. 2. The critical value
spanned by the parametgrs and p,. Within the space of Pc=0.792 of p, at p,=0 differs from the value
parametersp; and p,, the renormalization transformation Pc=0.799*0.002 obtained from numerical simulatioft3]
may be seen as a mappingi(p,)—(p,,p,). Given N about1%. o _
w(1]10)=w(1|01)=p,, w(1|11)=p,, and w(1]|0,0)=0 Table | shows the values of the critical poipg (a_llong
we obtainp,=w(1|10) andp}=wW(1|11) by using Eq(19). p,=0) for several values of the order of approximation up to

It can be easily checked tha(1]0,0)=0, implying that a n=_8. Forn=4 the figures are very close to the value ob-

system with one absorbing state indeed renormalizes intB"“ne‘.j .fro”.‘ S|mulgt|ons. In the same ta'ble the values of the
another one with the same property. nontrivial fixed point together with the eigenvalieand the

We have iterated Eq19) numerically using approxima- critical exponenty, =In2/In\ are also shown. All figures for
tions of ordern=1. 2. 3. 4. 5 and 8. For all orders of the eigenvalue. were obtained numerically since it is very

approximation that we used we have found, in the planéjlfﬂcult to calculate the derivatives of the Hessian matrix

(p1,p,), two fully attractive fixed points (0,0) and (1,1), "elated to the transformatiorp{,p,)—(p;,pz). The best
one fully repulsive fixed point (1/2,1), and one nontrivial value of the critical exponents that were obtained from the

fixed point (p7,p3). The attractive fixed point (0,0) is re- approximation of orden=8 is v, =1.013, which should be

lated to the absorbing state whereas the other attractive fixe(ii)”m""red tov, =1.100-0.005 obtained from transfer ma-
point (1,1) is related to the active state. Almost all trajecto-tr'x methods{1].
ries are attracted to either one or the other of these two points
as can be seen in Fig. 1. The base of the attraction is sepa-
rated by a line, which should be identified as the critical line We used a real space RG to obtain the critical behavior of

of the Domany-Kinzel model. The separatrix hits the linethe Domany-Kinzel cellular automaton. The phase diagram

P(01,02,03,04)= P(0y,03)

V. CONCLUSION
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TABLE I. For each valuen of the order of approximation the

M= critical point p. (along p,=0), the nontrivial fixed point
(p% ,p3), the eigenvalua corresponding to this fixed point along
08 | the relevant direction, and the critical exponent=In2/In\, related
to the correlation length, are shown.
ACTIVE
05 - /o n Pe pI P> A vy
12 1 0.745782 0.595189 0.826419 2.118 0.924
04l FROZEN | 2 0.778384 0.598983 0.927874 2.144 0.909
\; 3 0.788641 0.591302 0.949335 2.034 0.976
4 0.792203 0.591732 0.946004 2.000 1.000
02 \m . 5 0.791504 0.591872 0.945275 1.988 1.009
o 8 0.791654 0.591930 0.944997 1.982 1.013
0'00.5 06 07 ) ‘

0.9 1.0 universality class, as expected. The location of the critical
line is in good agreement with previous results, the value of
p; at p,=0 differing in about 1% from the value obtained
FIG. 2. Phase diagram of the Domany-Kinzel probabilistic cel-from numerical simulations. The best value of the critical
lular automaton showing the frozen absorbing state and the aCtiV@Xponents is in fair agreement with the values obtained from
state. The squares are results coming from numerical simulation$;nsfer matrix methods and from numerical simulations. A
[13] and the line is the result obtained from the present real spac&,ay of improving these figures is to use a renormalization
renormalization group using the approximation of order4. scheme for which the renormalization factoris less than
two. This could be accomplished, for instance, by renormal-
is the same as the one obtained from simulation. The criticaking a block of three sites into a block of two in which case
line, with the exception of the point (1/2,1), is dominated bywe would haveb= 3/2. Another way of getting better values
just one nontrivial fixed point implying, within the ideas of is to use a RG space with more parameters instead of just
RG, that all critical points along the line are in the sametwo, as we have done here.
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