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Renormalization group of the Domany-Kinzel cellular automaton

Tânia Toméand Mário J. de Oliveira
Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05315-970 Sa˜o Paulo, São Paulo, Brazil

~Received 4 December 1996!

We apply the dynamically driven renormalization group to study the critical properties of the Domany-
Kinzel probabilistic cellular automaton. To preserve the absorbing state, clusters with at least one site occupied
are renormalized into one occupied site and clusters with all sites empty are renormalized into one empty site.
We have obtained the phase diagram as well as the critical exponent related to the spatial correlation length.
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I. INTRODUCTION

Among the variety of irreversible models that describe
nonequilibrium phase transition from an active state to
absorbing state, the Domany-Kinzel probabilistic cellular a
tomaton@1# together with the contact process@2# are perhaps
the simplest ones. According to Janssen@3# and Grassberge
@4#, any one-component model displaying a transition fro
an absorbing to an active state belongs in the same un
sality class as direct percolation. In fact, the Domany-Kin
cellular automaton is equivalent to direct percolation.

The Domany-Kinzel probabilistic cellular automaton
defined as follows. In a one-dimensional lattice each site
be in one of two states, either empty or occupied. At e
time step the sites are updated simultaneously and inde
dently. The state of a given site depends only on the state
two neighboring sites in the previous time step. The rules
as follows:~1! if the two sites are both empty, the given si
will be empty; ~2! if one site is occupied and the other
empty, the given site will be occupied with probabilityp1;
and~3! if the two sites are both occupied, the given site w
be occupied with probabilityp2 . Due to the rule number 1
the state with all sites empty will be an absorbing state.

In the stationary state the Domany-Kinzel automaton
hibits two states: the absorbing state with all sites empty
an active state with a nonzero density of occupied sites.
small values ofp1 the system is in the absorbing state. Wh
the parameterp1 is increased the absorbing state becom
unstable for sufficiently large values ofp1 , giving rise to an
active state. The phase transition from the absorbing to
active state is a continuous transition and belongs to
same universality class as direct percolation.

Renormalization group~RG! techniques in real spac
have been used successfully in studying the critical beha
of equilibrium statistical models since the work of Niemey
and van Leeuwen@5#. In these techniques small clusters
sites are renormalized into just one site according to cer
rules. For the case of the Ising model with the up-do
symmetry, the most important rule is the majority ru
which preserves the up-down symmetry of the model at e
step of the renormalization. Any RG scheme should be se
in a way to preserve the symmetries and the main prope
of the model studied. In the present case the most impor
property is the existence of an absorbing state, which sho
then be preserved by the RG trasformation. To this end,
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have constructed a real space RG such that a cluster wi
least one site occupied is renormalized into one occup
site. Only clusters with all sites empty are renormalized in
one empty site.

For systems in equilibrium, that is, for systems defined
a Hamiltonian, the appropriate RG space is the space of
parameters, or coupling constants, that define the Ha
tonian. A sequence of RG transformations correspond t
trajectory in this space. Systems far from equilibrium, that
systems that lack detailed balance, on the other hand, are
defined by Hamiltonians but by the dynamic rules or equi
lently by the transition probabilities that govern its time ev
lution. In this case the appropriate RG space is the spac
parameters that define the transition probabilities.

Here we use a real space RG@6–8# that renormalizes the
transition probabilities so that one obtains a RG transform
tion in the space spanned by the parameters that define
transition probabilities. In the case of the Domany-Kinz
cellular automaton studied here this space will be the sp
defined by the parametersp1 andp2 . The scheme we use i
an application of the dynamically driven renormalizatio
group introduced by Pietroneroet al. @9# and Vespignani
et al. @10,11# to study systems in critical states. A study
the Domany-Kinzel by means of a phenomenological R
has been done by Bagnoliet al. @12#.

The RG transformation was accomplished by using c
of sizeb52 and by using a series of approximations to t
stationary state. As we increase the order of the approxi
tion, better values were obtained for the universal criti
exponent as well as for the nonuniversal critical quantiti
Our best value for the critical exponentn' related to spatial
correlation length isn'51.013, which should be compare
to n'51.10060.005 obtained from transfer matrix method
@1#. The critical value of p1 along the line p250 is
pc50.792, which is close topc50.79960.002 obtained
from simulations@13#.

II. RG TRANSFORMATION

Consider a one-dimensional lattice ofN sites in which
each site can be in one of two states, either empty (s i50) or
occupied (s i51). At each time step the sites are updat
simultaneously, and independently, so that the transi
probability W(sus8) from states85(s18 ,s28 , . . . ,sN8 ) to
states5(s1 ,s2 , . . . ,sN) is given by
4000 © 1997 The American Physical Society
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W~sus8!5)
i
w~s i us i8 ,s i118 !, ~1!

where

w~1u00!50, w~1u10!5w~1u01!5p1 , w~1u11!5p2 .
~2!

These rules completely define the Domany-Kinzel proba
listic cellular automaton since

w~0us i8 ,s i118 !1w~1us i8 ,s i118 !51. ~3!

We remark that the expression~1! implies that, given the
states8, the variabless i are independent random variable
which in turn is equivalent to saying that each site should
updated independently of the others, as desired. We call
property of the cellular automatonone-site independence.

In the stationary state the following condition:

P~s!5(
s8

Wl ~sus8!P~s8! ~4!

holds for any value ofl , whereP(s) is the stationary prob-
ability. If we use the notationPl (s,s8) for the probability
of having states8 at a given time and states at a l time
steps later then

Pl ~s,s8!5Wl ~sus8!P~s8!. ~5!

Similarly,

P̃~t,t8!5W̃~tut8!P̃~t8! ~6!

is the analog equation for the renormalized system wh
W̃(tut8) is the~one-step! renormalized transition probability
we are looking for andt5(t1 ,t2 , . . . ,tN8), with N85N/b,
denotes a renormalized state.

Let R~tus! be a conditional probability of the renorma
ized statet given the states, which has the following prop-
erties:

R~tus!>0, (
t
R~tus!51. ~7!

The RG transformations are obtained by demanding that@6#

P̃~t,t8!5(
s

(
s8
R~tus!R~t8us8!Pl ~s,s8! ~8!

from which it follows that

P̃~t8!5(
s8
R~t8us8!P~s8!. ~9!

This last expression is the one used in real space RG
equilibrium systems. Taking the ratio of the last two equ
tions we obtain@11#

W̃~tut8!5
(s(s8R~tus!Wl ~sus8!R~t8us8!P~s8!

(s8R~t8us8!P~s8!
,

~10!
i-

,
e
is

re

or
-

which is the desired expression for the renormalized tra
tion probability. Due to the presence of the stationary pro
ability on the right hand side of Eq.~10!, this is not a trans-
formation that involves only the transition probability
However, if we use an approximation for the steady st
P(s), such as a mean field approximation, then Eq.~10!
provides a well defined RG transformationW→W̃ from the
oldW to the newW̃ transition probability.

It is interesting to write Eq.~10! in the form

W̃~tut8!5(
s

(
s8
R~tus!Wl ~sus8!S~s8ut8!, ~11!

where

S~s8ut8!5
R~t8us8!P~s8!

(s8R~t8us8!P~s8!
. ~12!

From this last expression it is clear thatS(s8ut8) is normal-
ized with respect to the variabless8 and that it can be inter-
preted as a conditional probability ofs8 given t8. In this
way it becomes quite obvious that the renormalized tran
tion probabilityW̃(tut8) is properly normalized with respec
to the variablest as it should. One important property ofS
follows from a specific property ofR. We will see in the
next section thatR(tus) is either zero or one from which i
follows thatR(t8us)R(tus)5d(t8,t)R(tus). Using this
last equality we can check that

(
s
R~tus!S~sut8!5d~t8,t!, ~13!

independently ofP(s).
We remark that we should not expect, in general, th

given the statet8, the variablest i be independent. In othe
words, the stochastic process defined byW̃(tut8), given by
Eq. ~10!, will not have the desired one-site independen
This property, however, can be accomplished in an appr
mate way as follows. Let us define the one-site margi
transition probabilityw̃(t i ut8) by

w̃~t i ut8!5( 8
t

~tut8!, ~14!

where the sum is over allt j exceptt i . Next we construct a
transition probabilityW̃R(tut8) as being the product of thes
one-site transition probabilities, that is, we define

W̃R~tut8!5)
i
w̃~t i ut8!. ~15!

Of course W̃R(tut8) does not coincide, in general, wit
W̃(tut8).

The final step in the renormalization procedure is to s
that the renormalized cellular automaton will be defined
the transition probabilityW̃R(tut8), which in turn has the
form of Eq. ~1!. The last step is an approximation that w
call the one-site independence approximation. In this man
we obtain a renormalized probabilistic cellular automato
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with the property of one-site independence, whose one-
transition probabilityw̃(t i ut8) is obtained from the origina
onew(s i us8) through Eqs.~14!, ~10!, and~1!. Thus we un-
derstand the present renormalization as the transforma
w(s i us8) → w̃(t i ut8).

III. RENORMALIZATION ALGORITHM

We use a renormalizationR(tus) in the form of a prod-
uct that for the caseb52 reads

R~tus!5)
k51

N/2

R~tkus2k ,s2k11!, ~16!

where

R~1u00!50, R~1u10!5R~1u01!5R~1u11!51, ~17!

and

R~0u00!51, R~0u10!5R~0u01!5R~0u11!50. ~18!

The rule R(0u00)51 ensures that the state with all sit
empty will be again an absorbing state after the renormal
tion transformation.

To calculate the renormalized transition probabil
w̃(t1ut2 ,t3) we consider a cluster of nine sites of the orig
nal space-time lattice: two sites~labeled 1 and 2) at a time
l , three~labeled 3, 4, and 5) at timel 21, and four~labeled
6, 7, 8, and 9) at timel 22. The renormalization of the site
is as follows: (s1 ,s2)→t1 , (s6 ,s7)→t2 , and (s8 ,s9)
→t3 . Using Eqs.~14!, ~12!, and~11!, the renormalized tran
sition probabilityw̃(t1ut2 ,t3) is calculated by

w̃~t1ut2 ,t3!5(
s1

(
s2

(
s6

(
s7

(
s8

(
s9

R~t1us1 ,s2!

3w2~s1 ,s2us6 ,s7 ,s8 ,s9!

3r~s6 ,s7 ,s8 ,s9ut2 ,t3!, ~19!

where

w2~s1 ,s2us6 ,s7 ,s8 ,s9!5(
s3

(
s4

(
s5

w~s1us3 ,s4!

3w~s2us4 ,s5!w~s3us6 ,s7!

3w~s4us7 ,s8!w~s5us8 ,s9!,

~20!
ite

on

a-

and

r~s6 ,s7 ,s8 ,s9ut2 ,t3!5
1

P̃~t2 ,t3!
R~t2us6 ,s7!

3R~t3us8 ,s9!P~s6 ,s7 ,s8 ,s9!,

~21!

with

P̃~t2 ,t3!5(
s6

(
s7

(
s8

(
s9

R~t2us6 ,s7!

3R~t3us8 ,s9!P~s6 ,s7 ,s8 ,s9!. ~22!

To actually use the above equations we have to calcu
in each step of the renormalization the stationary probab
distribution P(s) related to the old transition probabilit
w(s i us i8 ,s i118 ), which satisfies the balance equation

P~s!5(
s8

W~sus8!P~s8!, ~23!

whereW(sus8) is given by Eq.~1!. Of course, this equation
cannot be solved exactly and we should seek approxim
solutions.

The simplest approximate solution of Eq.~23! is obtained
by writing the following equation for the one-site probab
ity:

P~s1!5(
s18

(
s28

w~s1us18 ,s28!P~s18 ,s28!, ~24!

and by inserting, in the right hand side of it, the followin
approximation for the two-site probability:

P~s1 ,s2!5P~s1!P~s2!. ~25!

The equation then becomes a closed equation, which
then be solved by repeated iterations.

Better approximations can be set up by generalizing
procedure. An approximation of ordern is obtained as fol-
lows. From Eq.~23! we write down an equation for the
n-site probability distribution, namely,
P~s1 ,s2 , . . . ,sn!5(
s18

•••(
sn8

(
sn118

w~s1us18 ,s28!w~s2us28 ,s38!•••w~snusn8 ,sn118 !P~s18 ,s28 , . . . ,sn8 ,sn118 !.

~26!
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Next we use the following approximation@14,15# for the
(n11)-site probability:

P~s1 ,s2 ,s3 , . . . ,sn ,sn11!

5
P~s1 ,s2 , . . . ,sn!P~s2 ,s3 , . . . ,sn11!

P~s2 ,s3 , . . . ,sn!
,

~27!

and insert it in the right hand side of Eq.~26!. Then Eq.~26!
becomes a closed equation for then-site probability distribu-
tion since

P~s2 ,s3 , . . . ,sn!5(
s1

P~s1 ,s2 , . . . ,sn!. ~28!

If the order of the approximation n>4, then
P(s1 ,s2 ,s3 ,s4) is obtained fromP(s2 ,s3 , . . . ,sn) by
summing over alls i excepts1 , s2 , s3 , and s4 . When
n,4, then forn51,

P~s1 ,s2 ,s3 ,s4!5P~s1!P~s2!P~s3!P~s4!; ~29!

for n52,

P~s1 ,s2 ,s3 ,s4!5
P~s1 ,s2!P~s2 ,s3!P~s3 ,s4!

P~s2!P~s3!
;

~30!

and forn53,

P~s1 ,s2 ,s3 ,s4!5
P~s1 ,s2 ,s3!P~s2 ,s3 ,s4!

P~s2 ,s3!
. ~31!

IV. RESULTS

The renormalization transformation defined in the pre
ous sections may be sought as a trajectory in the sp
spanned by the parametersp1 andp2 . Within the space of
parametersp1 and p2 , the renormalization transformatio
may be seen as a mapping (p1 ,p2)→(p18 ,p28). Given
w(1u10)5w(1u01)5p1 , w(1u11)5p2 , and w(1u0,0)50
we obtainp185w̃(1u10) andp285w̃(1u11) by using Eq.~19!.
It can be easily checked thatw̃(1u0,0)50, implying that a
system with one absorbing state indeed renormalizes
another one with the same property.

We have iterated Eq.~19! numerically using approxima
tions of ordern51, 2, 3, 4, 5, and 8. For all orders o
approximation that we used we have found, in the pla
(p1 ,p2), two fully attractive fixed points (0,0) and (1,1)
one fully repulsive fixed point (1/2,1), and one nontrivi
fixed point (p1* ,p2* ). The attractive fixed point (0,0) is re
lated to the absorbing state whereas the other attractive fi
point (1,1) is related to the active state. Almost all trajec
ries are attracted to either one or the other of these two po
as can be seen in Fig. 1. The base of the attraction is s
rated by a line, which should be identified as the critical li
of the Domany-Kinzel model. The separatrix hits the li
-
ce

to

e

ed
-
ts
a-

p251 atp151/2, which is a fully repulsive fixed point, and
the linep250 at p15pc .

The nontrivial fixed point is located over the separatr
line and is attractive along a direction parallel to the sepa
trix and repulsive in the direction perpendicular to the sep
ratrix ~a hyperbolic fixed point!. According to the RG theory
the critical exponentn' , related to the correlation length, is
obtained from the eigenvaluel along the repulsive direction
throughn'5 lnb/lnl. The eigenvaluel is the largest eigen-
value of the Hessian matrix related to the transformati
(p1 ,p2)→(p18 ,p28) calculated at the nontrivial fixed point.
The location of the critical line~the separatrix! is in fair
agreement with previous results coming from numeric
simulation@13#, as can be seen in Fig. 2. The critical valu
pc50.792 of p1 at p250 differs from the value
pc50.79960.002 obtained from numerical simulations@13#
in about 1%.

Table I shows the values of the critical pointpc ~along
p250) for several values of the order of approximation up
n58. For n>4 the figures are very close to the value ob
tained from simulations. In the same table the values of t
nontrivial fixed point together with the eigenvaluel and the
critical exponentn'5 ln2/lnl are also shown. All figures for
the eigenvaluel were obtained numerically since it is very
difficult to calculate the derivatives of the Hessian matr
related to the transformation (p1 ,p2)→(p18 ,p28). The best
value of the critical exponents that were obtained from t
approximation of ordern58 is n'51.013, which should be
compared ton'51.10060.005 obtained from transfer ma
trix methods@1#.

V. CONCLUSION

We used a real space RG to obtain the critical behavior
the Domany-Kinzel cellular automaton. The phase diagra

FIG. 1. Renormalization group trajectories in the parame
space (p1 ,p2) of the Domany-Kinzel cellular automaton, obtaine
by using the approximation of ordern54. Almost all trajectories
flow to either one of two fully atractive fixed points. One of them i
related to the active state~open circle! and the other to the absorb-
ing state~origin of coordinates!. The two bases of attraction are
separated by a line, identified with the critical line of the mode
where the hyperbolic nontrivial fixed point~full circle! and a fully
repulsive point~star! are located.
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is the same as the one obtained from simulation. The critic
line, with the exception of the point (1/2,1), is dominated b
just one nontrivial fixed point implying, within the ideas of
RG, that all critical points along the line are in the sam

FIG. 2. Phase diagram of the Domany-Kinzel probabilistic ce
lular automaton showing the frozen absorbing state and the act
state. The squares are results coming from numerical simulatio
@13# and the line is the result obtained from the present real spa
renormalization group using the approximation of ordern54.
tt
al

universality class, as expected. The location of the criti
line is in good agreement with previous results, the value
p1 at p250 differing in about 1% from the value obtaine
from numerical simulations. The best value of the critic
exponents is in fair agreement with the values obtained fr
transfer matrix methods and from numerical simulations
way of improving these figures is to use a renormalizat
scheme for which the renormalization factorb is less than
two. This could be accomplished, for instance, by renorm
izing a block of three sites into a block of two in which ca
we would haveb53/2. Another way of getting better value
is to use a RG space with more parameters instead of
two, as we have done here.

-
ve
ns
ce

TABLE I. For each valuen of the order of approximation the
critical point pc ~along p250), the nontrivial fixed point
(p1* ,p2* ), the eigenvaluel corresponding to this fixed point alon
the relevant direction, and the critical exponentn'5 ln2/lnl, related
to the correlation length, are shown.

n pc p1* p2* l n'

1 0.745782 0.595189 0.826419 2.118 0.92
2 0.778384 0.598983 0.927874 2.144 0.90
3 0.788641 0.591302 0.949335 2.034 0.97
4 0.792203 0.591732 0.946004 2.000 1.00
5 0.791504 0.591872 0.945275 1.988 1.00
8 0.791654 0.591930 0.944997 1.982 1.01
ett.
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