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Probabilistic cellular automata are prototypes of nonequilibrium critical phenomena. This class of models
includes among others the directed percolation prob{Bmmany-Kinzel model and the dynamical Ising
model. The critical properties of these models are usually obtained by fine tuning one or more control param-
eters as, for instance, the temperature. We present a method for the parallel evolution of the model for all the
values of the control parameter, although its implementation is in general limited to a fixed number of values.
This algorithm facilitates the sketching of phase diagrams and can be useful in deriving the critical properties
of the model. Since the criticality here emerges from the asymptotic distribution of some quantities, without
tuning of parameters, our method is a mapping from a probabilistic cellular automaton with critical behavior to
a self-organized critical model with the same critical properf{i€4.063-651X97)00604-1

PACS numbegps): 05.50+q, 64.60.Ht, 64.60.Lx, 05.70.Jk

I. INTRODUCTION properties. In Sec. Il we apply this method to the study of
the Domany-Kinzel model of directed percolation and to the

Recently, several papef4—5] have appeared discussing two-dimensional Ising model.
the relations between self-organized criticalil800 [6] and On the other hand, the mapping implies that to each PCA
usual critical phenomena. Some of th¢f] stress the fact corresponds a SOC model defined in a high or infinite di-
that one can reformulate classic critical systefnamely, ~mensional space. This correspondence can give some insight
directed percolationin a way indistinguishable from SOC, into the nature of the SOC phase, as addressed in Sec. IV.
while others[1] focus on the role of the control and order We end with some conclusions and perspectives.
parameters.

We started our investigation from the obs_ervatﬂ@hthat Il. THE FRAGMENT METHOD
one can express the problem of directed site and bond per-
colation[8] in a form reminiscent of the invasion percolation =~ We deal with probabilistic cellular automata, i.e., discrete
procesg 9] or the Bak-Sneppen self-organized mofted].  models defined on a lattice. Let us consider explicitly the
The advantage of this formulation is that the critical value ofone-dimensional Boolean case. A configuration at time
the percolation probability does not need to be adjusted caré-+ 1 is obtained from the configuration at tirhdy applying
fully, but instead emerges from the probability distribution of in parallel a probabilistic rule to each site. The rule is imple-
a set of continuous variables, while the original model ismented on a computer by comparifgseudgrandom num-
defined in terms of Boolean variables. bers with a certain number of fixed parametgusobabili-

The directed percolation problem can be formulated inties. One can think of PCA as the evolution of a
terms of probabilistic cellular automatBCA) [11]. PCA are  deterministic discrete system on a random quenched field
very general models that include for instance the kinetidthe set of random numbers
Ising model[12]. For simplicity, we refer to the directed site percolation

In this paper we show how any critical PCA may be problem in 21 dimensions, where the highpr the higher
mapped into a SOC model. The mapping is presented corithe probability of percolating. In this case one can visualize
structively in Sec. Il. It can also be considered as a multisitéhe random field as the height of a corrugated landscape, and
coding techniqud 13], particularly adapted to probabilistic p as the water level. There will be percolation if the water is
systems(where the usual multisite performs badlffrom a  able to percolate on the corrugated landscape, i.e., if the
computational point of view, this algorithm allows a quick plane at heighp is not completely blockedin this directed
determination of phase diagrams and computation of criticainodel water is forbidden to back-percolatEor each value

of p, we denote wh a 1 the sites that are wet, and with a 0
those that are dry.

*Also at INFN and INFM sezione di Firenze; DRECAM-SPEC, One can stack a set of planes, and let them evolve in
CEA Saclay, 91191 Gif-Sur-Yvette Cedex, France. Electronic adparallel. We can read the state of a certain site for all values
dress: bagnoli@dma.unifi.it of p as a vector of 1's and 0’s, each component being labeled

TOn leave from Facultad de Ciencias, UNAM, Mexico. by p.
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In the initial configuration sites are either wet or dry, in- which does not depend op. The Boolean functionanp,
dependently of. Thus, all vectors are either filled with 1's OR, XOR, andNOT correspond to the set operations intersec-
or with 0's. Going on with the percolation process, a com-tion, union, symmetric difference, and complement, respec-
ponentp of the vector at a certain site and tihe 1 will be  tively. We shall use the same symbol for Boolean and set
wet if there is at least a wet component at the same heighiperations. The initial configuration is independenppthis
among its neighbors at tinteand if the height of the random means thal(i0 are either the empty set or the unit interval, in
field at that position is less than. One can easily express accord withx?. Applying the set operations we obtain the
this in computer language. Each component corresponds togsymptotic fragmentX”.
bit in @ computer word. With words af bits, p can assume For a given value op, X'(p) is 1 if the pointp belongs to
the values 01,1/, ....i/n,...(n—1)/n. The (bitwise) OR e fragmentX! and O otherwise. Thus we can obtain the
of the W(_)rds In th? neighborhood give 1 for all vglues of asymptotic value ofx}(p) from the asymptotic fragments
p for which there is at least one wet neighbor. Given a ran-< . . -

. ; ; Xi, which evolved without an explicit dependence pnlif
dom numberr in that site, all planes witlp>r have the : . ¢ - L
possibility of percolating. This is expressed in computerSome functloq of the(i. gxh|b|ts a phas_e transmpn In corre-
terms by taking a wordR(r) filled with 0's up to a fraction spondence with a critical V"’.‘luf’c' this behavpr can be
r of bits and then with 1's, and performing thewo of extra_cted from the asymptotic fragments. For instance, the
R(r) with the previous word. Iterating this procedure, we getdens'typ '
in the last line of the latticésay at timeT) a set of partially 1L
filled words. If at timeT a word has the bit numbésr equal p(p)=— E X' (p), (4)
to 1, this means that fop=k/n, water would have perco- L=
lated to that sitégiven the set of random numbegrs ) . ] )

The procedure can be generalized to words of arbitrarys proportional to the number of fragments to which the point
length. In the limitn—, the Boolean vectors become the P belongs,
characteristic functions of subsets of the unit interval, which

L
we call fragments. The manipulation of fragments is not lim- _ E T
ited to this bitwise implementation, as we shall see in the P(p) Z‘l [peXil. ®
following.

The fragment expressions do not depend explicitly on the The above procedure can be applied to all probabilistic
control parametep. The critical value ofp and the critical cellular automata. The practical recipe for the implementa-
scaling law of the order parameter are obtaiagubsteriori  tion is as follows.

from the distribution of fragments. (A) PCA Express the model as a probabilistic cellular
Let us now formalize these concepts. For simplicity weautomaton whose evolution rule only uses Boolean expres-
refer to the Domany-Kinze(DK) model [11], which is a  sions, and convert the control parametgrs,0,, . . . ,py) 10

simple one-dimensional PCA. We denote wih=0,1 the  expressions likgr,<py], where p, appears alone on the
state of a sité at timet, i=0,... L—1, with L the size of right side.

the lattice. We shall simplifx’ =x!**, x.=x!,,. All space (B) Fragments Replace the variables with fragments
index operations are modulb (periodic boundary condi- X{C[0,1)", and substitutgr,<p,] with R(ry) (r>pil
tions). The evolution rule may be written as with its complemeniR(r,)). The initial configurationx? is
, replaced byx°=R(x?).
X'=[r<p](x-@®x)\/[r<q]x-x,, (1) (C) Implementationimplement the fragments as arrays of

bits (the simplest approagtor as sparse vectofsee later
and iterate the rule.
(D) Criticality. The asymptotic distribution of fragments

where® represents the exclusivar operation(sum modu-
lus two), \/ the OR operation, and the multiplicatiofor
/\) stands for thean operation, with Fhe usual pr:o_rlty gives the critical propertiegcontrol parameters and expo-
rules. The control parametepsandq are fixed, and =r; is nents of the original model

a random number uniformly distributed between O and 1, and | ¢ s jllustrate separately each of the previous points.
where[logical expressiohis 1 if logical expressions true
and 0 otherwis¢14,15.

In the case of directed site percolatipsq, Eq. (1) can A PCA
be rewritten as The evolution rule is generally expressed by means of
transition probabilities. Note, however, that the transition
X' (p)=[r<plX_(p)\V/X+(pP)), (2)  probabilities do not completely characterize the problem for
the damage spreading transitidr$], since there are many
where we emphasize the dependence oh p. ways of actually implementing the probabilistic choices in a

The fragment approach consists in readiki(p) as the computer code. The general approach for deriving a Boolean
value of the characteristic function of the fragmejtat p.  expression from transition probabilities is to write formally
The expressiorir<p] is the characteristic function of a the future value of the dynamical variablthe spin as a

fragmentR(r)=[r,1). function of the spins in the neighborhood and of the transi-
Equation(2) in terms of fragments is tion probabilities converted to random Boolean variables,
e, X' =f(x_,x;,....[r<pi].[r<pp],...). Then there

X'=R(r)(X_\/X;), 3 are several way§18,19 of expressing a Boolean function
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using a set of standard Boolean operations kke, OR,
XOR, and NoOT. Clearly, one should expend some effort in
reducing the length of the resulting expression. Sometimes
(see the Ising model in Sec. Jlbne has to transform from
[r<f(p)] to something likg f ~*(r)<p] (or more complex
expressions

B. Fragments

The method can be applied to any number of parameters. P
In the case ofm parametergy, ... ,py the fragments are
subsets of then-dimensional unit hypercube. For instance,
in the general DK model, Eq1), there are two control pa-
rameters p andqg) and the fragments are a subset of the unit
square. In this way it is possible to draw a sketch of a phase
diagram, in just one simulation.

However, if one is interested in crossing the critical sur-
face along one linésee the computation of critical exponents 0.0 — ‘ J ’
in Sec. Il D), one has to express the parameters as functions 00 01 02 03 04 05 06 07 08 09 10
of a single variable, sag, and transform the expressions p
accordingly. For instance, the directed bond percolation
problem corresponds to the curge p(2—p), which can be FIG. 1. The density vs the control parameter for the directed

expressed ap=s and q=s(2—s). The corresponding ex- site percolation problem, E¢2). The inset shows a snapshot of the
pression is first 40 segmentx!, Eq. (3), aftert time steps. Shown are the

results of one simulation with =320 andt=1000. The resolution
X' =[r<s](x_@®x, )\/[1-V1-r<s](x_x,), (6) is480 bits.

which gives the following fragment expression: we call it the sparse fragment method. The rules of combin-
ing sparse fragments are more complex than above. On the
X' =R(r)(X_eX )VR(A1—V1-r)(X_X,). (7) other hand, in this way one has infinite precision, which
proves useful in finding the critical behavior, as explained in
Sec. II D.
In general a fragment is formed by just one segment if the
The simplest way of implementing a fragment on a com-gyolution rule can be expressed using oalyp and OR,
puter is by means of an array of bits and using bitwise whjle for instance thexor between two overlapping frag-
Boolean operations. Generally one uses computer W@2s ments causes holes. As an example, the site percolation rule
or 64 bitg for efficiency, but it is possible to use multiple Eq. (2) can be implemented as sparse fragments by consid-

words to increase the sampling frequency of probability. Thesring the evolution of the lower extremuar=a! of the seg-
numerical advantage over other multispin approa¢hkis ments[a,1] as[20,1,5

the use of just one random number for all theimulations.
Referring to ap layer as a cut of the fragment space-time a’=maxr,min(a_,a,)). (8
configuration with a given value qf, we see that the layers

at differentp are not independent, since they use the same ggmetimes the problem can be reformulated withar

random numbers. The influence of these correlations is diséperations For instance, the bond percolation probiém

cussed in Sec. Il D. . can be rewritten af5,20,21
One can increase the sampling frequency around the re-

gion of interest(for instance the critical regiorby appropri-

ately defining the correspondence of the bits with the values X'=([r-<plx)V([r+<plx:) ©)

of p. This affects the wayR(r) is implemented. With the

fragment method it is still possible to perform simulationswith two random numbers per site. The evolution of this rule

starting from a single sitéGrassberger methpckeeping  can be easily implemented using sparse fragments.

track of nonzero fragments. The method is powerful if one

uses a small interval around the critical point, so that all

clusters for variougp are similar. When using two param-

eters(sayp andq) one has to implement differently expres-  The critical properties of the original model are obtained

sions like[r <p] (fill the unit square in the direction from  from the asymptotic distribution of fragments. The fragment

r to 1) from [r<q] (fill the unit square in they direction  method introduces strong correlations amprigyers as also

fromr to 1). noted in Ref[5]. One can exploit these correlations consid-
The alternative approach in representing fragments corering differences in the direction. If the patterns for differ-

sists in keeping track of the starting and ending points of alent p layers have similar sizes, the fluctuations cancel out.

segments that form a one-dimensional fragment. The apFhis happens in general if the rule does not contanR (see

proach is very similar to the treatment of sparse matrices, sbig. 1). On the other hand, theor generally implies strong

C. Implementation

D. Criticality



55 ALGORITHMIC MAPPING FROM CRITICALITY TO. .. 3973

10 T T T T T T T T 1"

. 0.8

7 0.6

q
04
02 1 02
01 Sl
00 ' J ' " R
00 01 02 03 04 05 06 07 08 09 1.0 ' ’
P 0.5 0.6 0.7 0.8 0.9 1
FIG. 2. The densityp vs the control parametgy for the xorR p

dilution, Eq.(1), with g=0. The inset shows a snapshot of the first
40 segmentX" aftert time steps. One simulation has=320 and
t=1000. The resolution is 480 bits. Notice that the simulation re-
produces well also the poimt=1, for whichp=0.

FIG. 3. The contour plot ofp(p,q) of the Domany-Kinzel
model, Eq.(1), for a lattice of L=2000 sites and=4000. The
resolution is 12& 128 bits. White corresponds to=0 and the
contour lines are drawn at 0.1 intervals.

variations of clusters withp, so that the fluctuations can in
principle be wider than uncorrelated simulatiotsee, for
instance, Fig. 2

A powerful method for the computation of critical quan-
tities exploits the scaling relation

obtained in just one simulation by iterating two-dimensional
fragments. The plot of the asymptotic densjyp,q) is
shown in Fig. 3. It compares well with those obtained with
other method$11,16,17. From the convergent behavior of
the contour lines, the positiorp& 1/2,g=1) of the discon-
m(p,t)=a*'3’”m(a1"’(p—pc)+pc,at) (10) tinuous transition for the density is clearly indicated. Near
the corner p=1,0=0) the surface becomes irregular: this is
numerically solving it for the unknow, v, andp.. Thisis  due to the prevalence of theR in Eq. (1). One can also
an easy task for the sparse fragments approach, since one dadestigate the chaotic phase of the DK model by iterating
obtainm(p,t) andm(p’,at) with p'=a'(p—p.)+p. for  two fragment configurations with the same random numbers.
each value ofy and p.. For the bit approach one has to The Hamming distance between two replicas with a given
compute the value of the exponents gndso as to make all value ofp andq is the (p,q) component of the density of the
data collapse on a singlsmooth curve. This can be per- XOR between the two asymptotic fragment configurations. A
formed neamp, approximating the curves with polynomials plot of the resulting Hamming distance is shown in Fig. 4.
(or any other fitting functio) and minimizing they? of the ~ Here one can notice a trace of the density phase boundary
regression. [near 0=0.8,g=0)], due to the critical slowing down.

For the directed site percolation problem we found
p.=0.705%4),8=0.210 6%5),r=1.7195(5) for a system
of size 16, in the interval 0.% p<0.71 for different values
of «=1024,2048,4096,8192. The agreement with previous

In this section we show some results of the fragmenimeasurement$8] is satisfactory. Moreover, we want to
method applied to classical problems: the determination o$tress that these values were obtained with data coming from
the phase diagram and critical properties of the Domanysimulations of less than 20 min of CPU time on a 150 MHz
Kinzel model, and the two-dimensional Ising model. PC runningLINUX [22].

The first example is the one-dimensional directed site per- As a second application, we consider now the kinetic ver-
colation, i.e., the lineg=p of the DK model, Eq.(2). A  sion of an equilibrium system, the two-dimensional Ising
snapshot of part of the asymptotic fragment configuration isnodel with heat bath dynami¢23,24). In Appendix A we
shown in Fig. 1, with the plot of the densip(p). As illus-  show how to express the evolution equation of this model as
trated above, if one computes th@r dilution [the line  a totalistic PCA, and how to translate its evolution in frag-
g=0 of the DK model, Eq(1)], the fragments decompose ment language. In Fig. 5 we show the plot of the magnetiza-
into several segments, as shown in the inset of Fig. 2. Cortion m(p) with respect top=exp(—2J) for an Ising model
respondingly, the integrated density converges slowly to avith reduced interaction constadt The transition is well
smooth curve. characterized by plotting the second moméstandard de-

The complete phase diagram of the DK model can beviation) of the magnetization as a function pf We found

Ill. APPLICATIONS



3974 F. BAGNOLI, P. PALMERINI, AND R. RECHTMAN 55

0.5¢ ) "] 5
0 X! = R(a) 0
Z; - X
04
° fp F
0.3
q
02} . ' 't
) , X!
z;(p) = [p € X;]
0.1
FIG. 6. The diagram showing the mapping from criticality to
self-organized criticality.
0 " fragment models with no control parameter, that is, models
0.75 0.8 0.85 0.9 0.95 1 that show self-organized criticalitf60OQ. It is evident that
the fragment method may be applied to any critical PCA.
p This result is summarized in the diagram of Fig. 6. The state

xit(p) may be obtained by evolving the PCA with a given
FIG. 4. The contour plot of the asymptotic value of the distanceP (labeled byf,, in the diagramor by building the fragments
between two replicas of the system evolving under the same reaX; and evolving them with the fragment methoB {n the
ization of the noise. The parameters are those of the previous figureliagram that does not depend gn Finally, by probingX}
with a p layer, that is, by checking iK' extends down to
P.=0.172-0.002 andB=0.11+0.002, in good agreement p, we recoverx;. Although it is easier to think of one-

with the exact valuep,= (12— 1)? and 3=1/8. dimensional fragments, this result is valid for any number of
control parameters.
IV. CRITICALITY AND SELF-ORGANIZED CRITICALITY It is interesting to describe a “traditional” SOC model

with the fragment language, trying to obtain thdayer de-
We have shown how the DK model and the Ising model,scription that would make the SOC model correspond to a
which are PCA with critical behavior, may be mapped intousual critical model.

1 1.4x1072
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FIG. 5. The magnetizatiom and the susceptibility Van) (fluctuation of the magnetizatigiior a two-dimensional Ising model of size
L=100x 100, averaging over 10 samples every 1000 time steps after a transient of 10 000 time steps. The resolution is 32 bits.



55 ALGORITHMIC MAPPING FROM CRITICALITY TO. .. 3975

Let us discuss the one-dimensional Bak-Snappen model ACKNOWLEDGMENTS
[10] with nearest-neighbor interactions. In this model one
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parallel version of the previous modékhich is not very
efficient from a computational point of viewFor the sake of
simplicity, we divide the discussion in two parts: the re-
search of the minimum and the actual evolution. Let us start by considering the one-dimensional Ising
Let us visualize the,; as the lower extremum of segments model. Its reduced Hamiltonian can be written as

(fragment$ X;, and cut the configuration with a line at
heightp. The minimum is localized at site, for which there
is only one intersection. It can be expressed using a Boolean HX)==3 __EO Ti0i1, (A1)
variable 8} , (a Kroneckers) .

We wish to acknowledge fruitful discussions with P.

APPENDIX: THE ISING MODEL

L-1

_ whereo;=2x;—1 andx;=0,1. We choose the heat bath dy-
St =\ X(P)(/\ Xi(p)), (1)  namics[23,24], for which the probabilityr(x—y) of going
P 7 from a configurationx to a configurationy that can differ
assuming that the minimum is unique in the continupus from xin a certain numbefi,} of sites is
limit. exp(— H(Y))
The fragmentsX; at and nearest to the minimum are re- T(X—Y) =, (A2)
placed by segments of random leng&(r)], S'exp(—H(Y"))

where the sum in the denominator extends over all combina-
tions of the differing sitesyik. This transition probability

does not depend axnand satisfies the detailed balance prin-
ciple.
The configuratiory is not limited to differ fromx only at
one site: the evolution can be applied in parallel changing all
1t . . . . . even(or odd sites. Since the transition probabilities do not
i =X (6-1xV 0 (Vi 1) ([1i<p]®Xi). (13 depend on the previous value of the cell, the space-time lat-
tice decouples into two noninteracting sublattices: one with
Similar but more complex expressions can be found foreven sites at even times and odd site at odd times, and the
the invasion percolation process. One can see that in theg@mplementary one. By considering only one sublattice, the
“traditional” SOC models there are long range space inter-neighborhood of the one-dimensional Ising model is the
actions, and also interactions amopdayers[see Eq(11)].  same as that of the Domany-Kinzel model. The kinetic Ising
We think that the second ingredient is the most important: ifimodel is just a totalistic cellular automatémithout adsorb-
one knows how some quantity like the density varies withing states
p, it is not difficult to imagine a mechanism that automati- The local transition probabilities(x;_;,X;+;—Y;) can
cally reaches the critical point. It is still to be proved that thisbe computed from EqA2) considering a difference in just
is the actual mechanism of SOC. On the other hand(8q. one site. They are
shows that there exists space gmdbcal mechanisms that
can be classified as SOC. 7(0,0-1)=p/(1+p), 7(0,1-1)=1/2,

X =X® (A1 VAT VAL ) R @X),  (12)

where the fragmenA; , is completely filled if 5 =1 and
completely empty ifA},k: 0. The evolution can be expressed
on ap layer as

X

1,0-1)=1/2, 1,1-1)=1/1+p),
V. CONCLUSIONS ( ) 7( )=1/(1+p)

. - with p=exp(—2J).
forTnhfn:;?%rgleg:ug}Z;h%? ngsze d?:nf;criqesregnzogg E;S na;larecilge It is convenient to introduce here the totalistic functions
P g PP gk that take the value 1 if the sum of the variables in the

from criticality to self-organized criticality. For what con- neighborhood is and zero otherwise. An efficient way of
cerns the first topic, the possibility of having a sketch of the iiding these functions is described i19]. For the

phase diagram without huge computation resources is usef . .

in determining the position of the critical line. Numerical omany-Kinzel neighborhood they are
applications of the fragment method will be presented in
future work. From the theoretical point of view, we think
that the fOI’ma|ism presented in thIS WOI’k a.”OWS a Clear Char’rhe evo|ution equation for the |Sing Ce”u'ar automaton is
acterization of the basic properties of self-organized models,

suggesting analogies between usual critical phenomena andx’' =[r<p/(1+p)]co\/[r<1/2]c,\/[r<1/(1+p)]cC,.
self-organized ones. (A3)

Co=X_\/X4, C1=X_®X,, Cr=X_X,.
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Before using the fragment method one has to invert the r r 1
[r<f(p)] (r>f(p)]) expressions and substitute them with X'= R( F) Co\/R<E) CiVv r<§ C,

R(FY(r)[R(f"1(r))]; p-independent expressions like

[r<1/2] trasform toR(0) or R(0) according withr. We 1-r 1-r
leave them in the equations with the assumption that a true VRl ——|CaVR| \ | Ca (AB)
value mean®k(0) and a false value meaRg0). Wefinally
find that wherep=exp(—2J).
r 1—r The C, functions can be computed efficiently using the
X,:E(E Co+[r<1/2]C;+R T) C,, (A4) homogeneous polynomial3; [19],
where now theC, are fragments. Co=C1VCa\/C3V/Cy, C1=D;8Dg,
For the 2D square Ising model with heat bath dynamics,
the Hamiltonian is C,=D,®Dj3,C3=Dj3, C,=Dy,,
L-1

H(X):_EHZ:O 0ijTit1; T 070 j+1 (A5) where

, , o Di=X, ®&X, _®&X_,®&X__,
with o ;=2x; ;— 1. The lattice decouples again in two non-
interacting sublattices.

Repeating the procedure as above, one has again a tota
istic cellular automaton. Using the totalistic functio@g of
four nearest neighbors, we find that D3=DyD;, Dyu=X, X, X_X__.

|_D2:X++X+—@(X++@X+—)(X—+@X——)@X—+X—— )
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